Меню Рубрики

Количественный химический анализ воды цель

Определение качества воды методами химического анализа.

Опыт № 5 Водородный показатель (рН)

Питьевая вода должна иметь нейтральную реакцию (рН около 7). Значение рН воды водоемов хозяйственного, питьевого, культурно-бытового назначения регламентируется в пределах 6,5 — 8,5.

Оценивать значение рН можно разными способами.

1. Приближенное значение рН определяется следующим образом.

В пробирку наливают 5 мл исследуемой воды, 0,1мл универсального индикатора, перемешивают и по окраске раствора определяют рН:

· Розово – оранжевая – рН около 5

2. Можно определить рН с помощью универсальной индикаторной бумаги, сравнить её окраску со шкалой.

3.Наиболее точно значение рН можно определить на рН – метре или шкале набора Алямовского.

По результатам нашего исследования:

Октябрьский район – рН около 6 — кислая

Ульбинский район – рН около 5- кислая

ВЫВОД: Повышенная кислотность в воде Ульбинского, Октябрьского районов и КШТ свидетельствует о плохом качестве исследуемой воды. Такая вода отрицательно влияет на организм человека, и может вызвать заболевания желудочно-кишечного тракта.

Опыт № 6 Определение хлоридов и сульфатов

Концентрация хлоридов в водоемах – источниках водоснабжения допускается до 350 мг/л.

Много хлоридов попадает в водоемы со сбросами хозяйственно- бытовых и промышленных сточных вод. Этот показатель весьма важен при оценке санитарного состояния водоема. Таблица №4

Осадок или помутнение Концентрация хлоридов, мг/л
Опалесценция или слабая муть 1-10
Сильная муть 10-50
Образуются хлопья, но осаждаются не сразу 50-100
Белый объемистый осадок Более 100

Качественное определение хлоридов с приближенной количественной оценкой проводят следующим образом. В пробирку отбирают 5мл исследуемой воды и добавляют 3 капли 10 %-ного раствора нитрата серебра. Приблизительное содержание хлоридов определяют по осадку или помутнению (см таблицу).

Определение содержания хлоридов

Содержание хлоридов (х) в мг/л вычисляют по формуле

Где, 1,773 – масса хлорид ионов (мг), эквивалентная 1 мл точно 0,05 н. раствора нитрата серебра; V-объем раствора нитрата серебра, затраченного на титрование, мл.

Для расчета по опыту мы взяли 8мг/л (нитрат серебра)

Вывод: в воде КШТ –сильная муть, около 10-50 мг/л хлоридов; Ульбинский и Октябрьский районы – слабая муть, около 1-10мг/л;

Качественное определение сульфатов с приближенной количественной оценкой проводят так:

В пробирку вносят 10мл исследуемой воды, 0.5 мл соляной кислоты (1:5) и 2мл 5%-ного раствора хлорида бария, перемешивают. По характеру выпавшего осадка определяют ориентировочное содержание сульфатов: при отсутствии мути концентрация сульфат ионов менее 5мг/л; при слабой мути, появляющейся не сразу, а через несколько минут – 5-10мг/л; при слабой мути, появляющейся сразу, после добавления хлорида бария, -10-100мг/л; сильная, быстро оседающая муть свидетельствует о достаточно высоком содержании сульфат –ионов (более 100мг/л).

КШТ – ярко выраженная муть, 10-100мг/л; Ульбинский р-н – слабая муть, 5-10мг/л; Октябрьский район – слабая муть, образующаяся сразу после добавления хлорида бария,10-100мг/л;

ВЫВОД: Значительное превышение ПДК обнаружено в исследуемой воде Октябрьского района и КШТ, что может стать причиной некоторых сердечно-сосудистых заболеваний.

Опыт №7 Обнаружение фосфат — ионов.

Реагент: молибдат аммония (12,5г (NH4 )2 МоО4 растворить в дистиллированной Н2 О и профильтровать, объем довести дистиллированной водой до 1л); азотная кислота (1:2); хлорид олова.

К 5мл подкисленной пробы воды прибавляют 2,0мл молибдата аммония и по каплям(6капель) вводят раствор хлорида олова. Окраска раствора синяя при концентрации фосфат ионов более 10мг/л, голубая более 1мг/л, бледно-голубая -более 0,01мг/л.

ВЫВОД: В воде Ульбинского района и КШТ окраска раствора бледно-голубая, содержание фосфат- ионов – более 0,01мг/л, Октябрьский район окраска голубая- более 1 мг/л.

Опыт №8 Обнаружение нитрат – ионов.

Реагент: дифениламин (1г (С6 Н5 )2 NH растворить в 100мл H2 SO4 )

К 1мл пробы воды по каплям вводят реагент. Бледно- голубое окрашивание наблюдается при концентрации нитрат –ионов более 0,001мг/л, голубое –более 1мг/л, синее- более 100мг/л.

ВЫВОД: концентрация нитрат –ионов со всех трех водозаборов одинаковая, более 0,001мг/л

Качественное и количественное обнаружение катионов тяжелых металлов

Методы анализа: качественный анализ, включающий в себя дробный метод, разработанный Н.А Танаевым .Он открыл ряд новых, оригинальных реакций, позволяющих обнаруживать в растворе какой-либо определенный катион в присутствии большого числа других катионов, не прибегая к их предварительному осаждению. Количественный анализ, включающий атомно-эмиссионный метод, основанный на излучении атомных спектров вещества, возбуждаемых в горячих источниках света, а также сравнение и обобщение информации с литературными источниками.

Опыт №9 Обнаружение ионов свинца ( Pb 2+ )

Реагент: хромат калия (10г К2 СrO4 растворить в 90мл H2 O)

В пробирку помещают 5мл пробы воды, прибавляют 1мл раствора реагента. Если выпадает желтый осадок, содержание катионов свинца более 100мг/л; если наблюдается помутнение раствора, концентрация катионов свинца более 20 мл/л, а при опалесценции – 0,1 мг/л [6, c97-98]

ВЫВОД: Самое высокое содержание свинца в воде КШТ более 100мг/л осадок желтого цвета; октябрьский район-помутнение, более 20мг/л; Ульбинский район – опалесценция, 0,1мг/л.

Опыт №10 Обнаружение ионов кальция (Са 2+ )

Реагенты: оксалат аммония (17,5г (NH4 )2 С2 О4 растворить в воде и довести до 1л); уксусная кислота (120мл ледяной СН3 СООН довести дистиллированной водой до 1л).

В 5 мл пробы воды прибавляют 3мл уксусной кислоты, затем вводят 8мл реагента. Если выпадает белый осадок, то концентрация ионов кальция 100мг/л; если раствор мутный — концентрация ионов кальция более 1мг/л, при опалесценции – более0,01мг/л.[6, с128-129]

ВЫВОД: Самое высокое содержание ионов кальция в пробе с Октябрьского района 100мг/л, КШТ и Ульбинский район наблюдается помутнение раствора- концентрация ионов более 1мг/л

Опыт №11 Обнаружение ионов железа ( Fe 2+ )

В пробирку помещают 5мл исследуемой пробы воды, добавляют несколько капель K3 [Fe(CN)6 ] красная кровяная соль. Окраска раствора приобретает цвет под названием: турбулинская синь[6, c194-195]

ВЫВОД: Самое высокое содержание ионов железа 2 содержится в воде с КШТ, т.к по яркости окраски на первом месте- вода с КШТ, на втором – Ульбинский район, на третьем- Октябрьский район.

Опыт №12 Обнаружение ионов железа ( Fe 3+)

В пробирку помещаем 5мл пробы воды, добавляют несколько капель К4 [Fe(CN)6 ] желтая кровяная соль. Окраска раствора приобретает цвет под названием: берлинская лазурь.

ВЫВОД: Самое большое содержание ионов железа3 в воде с Октябрьского района -яркий, насыщенный цвет, в остальных двух пробах окрас менее насыщенный.

Получив результаты эксперимента, мы обратились к альтернативе, т.е возможности замены водопроводной воды талой.

Молекула воды имеет угловое строение;[1]входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине — ядро атома кислорода, межьядерные расстояния О—Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно 0,15 нм. Из восьми электронов, составляющих внешний электронный слой атома кислорода в молекуле воды две электронные пары образуют ковалентные связи О—Н, а остальные четыре электрона представляют собой две неподеленных электронных пары.

Атом кислорода в молекуле воды находится в состоянии sp2-гибридизации. Поэтому валентный угол НОН (104,3°) близок к тетраэдрическому (109,5°). Электроны, образующие связи О—Н, смещены к более электроотрицательному атому кислорода. В результате атомы водорода приобретают эффективные положительные заряды, поскольку на них создаются два положительных полюса. Центры отрицательных зарядов неподеленных электронных пар атома кислорода, находящиеся на гибридных — орбиталях, смещены относительно ядра атома и в свою очередь создают два отрицательных полюса.

Молекулярная масса парообразной воды равна 18 ед. Но молекулярная масса жидкой воды, определяемая путем изучения ее растворов в других растворителях, оказывается более, высокой. Это происходит из-за того, что в жидкой воде происходит ассоциация отдельных молекул воды в более сложные агрегаты (кластеры). Такой вывод подтверждается и аномально высокими значениями температур плавления и кипения воды. Ассоциация молекул воды вызвана образованием между ними водородных связей. По своей структуре вода представляет собой иерархию правильных объемных структур, в основе которых лежит кристаллоподобные образования, состоящие из 57 молекул и взаимодействующие друг с другом за счет свободных водородных связей. Это приводит к появлению структур второго порядка в виде шестигранников, состоящих из 912 молекул воды.

Свойства кластеров зависят от того, в каком соотношении выступают на поверхность кислород и водород. Конфигурация элементов воды реагирует на любое внешнее воздействие и примеси, что объясняет чрезвычайно лабильный характер их взаимодействия. В обычной воде совокупность отдельных молекул воды и случайных ассоциатов составляет 60% (деструктурированная вода), а 40% — это кластеры (структурированная вода).

источник

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВОЙ КОНЦЕНТРАЦИИ ИОНОВ НИКЕЛЯ В ПРОБАХ ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОД МЕТОДОМ ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ

УТВЕРЖДАЮ

Заместитель Министра В.Ф.Костин 20 марта 1996 г.

Методика допущена для целей государственного экологического контроля.

Методика рассмотрена и одобрена Главным управлением аналитического контроля и метрологического обеспечения природоохранной деятельности (ГУАК) и Главным метрологом Минприроды РФ

Главный метролог Минприроды РФ 20.03.96 г.

Начальник ГУАК Г.М.Цветков 20.03.96 г.

Настоящий документ устанавливает методику количественного химического анализа проб природных, питьевых и сточных вод для определения в них ионов никеля при массовой концентрации никеля от 1 до 2500 мкг/дм . При определении содержания ионов никеля (II) в пробах вод концентрация органического углерода в электролизере электрохимической ячейки не должна превышать 10 мг/дм . Мешающее влияние органической составляющей вод при содержании органического углерода выше 10 мг/дм устраняется обработкой пробы ультрафиолетовым облучением. Мешающее влияние 100-кратного избытка ионов меди (II), 50-кратного избытка ионов кадмия (II) и 10-кратного избытка ионов (II) устраняют добавлением пиридина.

Нормы погрешности измерений массовой концентрации ионов никеля регламентированы ГОСТ 27384-87* «Вода. Нормы погрешности измерений показателей состава и свойств».
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ 27384-2002. — Примечание изготовителя базы данных.

Методика количественного химического анализа обеспечивает с вероятностью 0,95 получение результатов анализа массовых концентраций ионов никеля с погрешностью, не превышающей значений, приведенных в таблице 1.

Значения характеристики погрешности измерений и ее составляющих

Диапазон анализируемых концентраций, мкг/дм

Наименование метрологической характеристики

Характеристика случайной составляющей погрешности, , % ( )

Характеристика систематической составляющей погрешности, , % ( )

4.1. Анализатор инверсионный вольтамперометрический по ТУ 4215-001-05828695-95* (НПВП «ИВА») в комплекте с компьютером типа IBM PC с процессором 80486 или выше (операционная система Windows 95/98, свободный последовательный порт RS 232).
________________
* ТУ, упомянутые здесь и далее по тексту, являются авторской разработкой. За дополнительной информацией обратитесь по ссылке. — Примечание изготовителя базы данных.

4.2. Ячейка электролитическая, в состав которой входят:

— стакан стеклянный вместимостью 50 см типа В-1-50ТС по ГОСТ 25336, который выполняет функции электролизера;

— вспомогательный электрод (стержень из стеклоуглерода диаметром 0,2-0,5 см или графита спектрально чистого диаметром 0,5-0,6 см);

— электрод индикаторный (рабочий) графитсодержащий: типа I (импрегнированный, ИГЭ) или типа IV (толстопленочный, ТГЭ) (НПВП «ИВА”).

— электрод сравнения — хлорсеребряный лабораторный насыщенный типа ЭВЛ-1МЗ по ГОСТ 17792.

4.4. Весы лабораторные аналитические общего назначения с наибольшим пределом взвешивания 200 г, 2-го класса точности по ГОСТ 24104*.
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ Р 53228-2008. — Примечание изготовителя базы данных.

4.5. Колбы мерные наливные стеклянные 2-го класса точности по ГОСТ 1770-74 исполнения 1 или 2 вместимостью 1000 см , 100 см , 50 см и 25 см с притертыми пробками; цилиндры вместимостью 50 см и 25 см .

4.6. Пипетки мерные лабораторные стеклянные 2-го класса точности по ГОСТ 20292-74*, вместимостью 10 см исполнения 2 или 3, вместимостью 5 см исполнения 1, вместимостью 1 см исполнения 4 или 5.
________________
* На территории Российской Федерации документ не действует. Действуют ГОСТ 29169-91, ГОСТ 29227-91 — ГОСТ 29229-91, ГОСТ 29251-91 — ГОСТ 29253-91. — Примечание изготовителя базы данных.

4.7. Дозаторы типа ПЛ-01-20, ПЛ-01-200, ПЛ-01-100 или другие с дискретностью установки доз 1,0 или 2,0 мкл.

4.8. Аппарат для приготовления бидистиллированной воды (стеклянный) типа АСД-4 по ГОСТ 15150-69, ТУ 25-1173, 103-84.

4.9. Установка для обработки проб ультрафиолетовым облучением типа 705 UV-Digester («Metrohm», Швейцария).

4.10. рН-метр-милливольтметр типа pH-150.

4.11. Установка для фильтрования под вакуумом с приспособлением для создания вакуума.

5.1. Государственный стандартный образец (ГСО) состава водных растворов ионов никеля (II) с погрешностью не более 1% отн. при 0,95 с концентрацией 1 мг/см .

5.2. Никель хлористый ( ) по ТУ 6-09-02-331-80, ос.ч.

5.3. Калий (натрий) хлористый по ГОСТ 4234 (4233)-77, х.ч., или ТУ 6-09-3678 (3658)-74, ос.ч. и растворы 2 моль/дм и 0,2 моль/дм , приготовленные на тридистиллированной воде.

5.4. Кислота серная по ГОСТ 14262-78, ос.ч.

5.5. Кислота хлористоводородная по ГОСТ 14261-77, ос.ч. плотностью 1,19 г/см .

5.6. Кислота азотная по ГОСТ 11125-84, ос.ч. и раствор 1 моль/дм .

5.7. Этанол по ТУ 6-09-4512-77, ос.ч.

5.8. Диметилглиоксим по ГОСТ 5828-77, ч.д.а.

5.10. Аммиак водный 25% раствор по ГОСТ 24147-80, ос.ч.

5.11. Хлорид аммония по ГОСТ 3773-72, х.ч. или ТУ 6-09-587-75, ос.ч.

5.12. Калий марганцевокислый по ГОСТ 20490-75, х.ч.

5.13. Вода бидистиллированная по ТУ 6-09-2502-77.

5.14. Вода тридистиллированная.

Воду тридистиллированную готовят перегонкой бидистиллированной воды в стеклянном или кварцевом аппарате без резиновых соединений в присутствии серной кислоты и раствора калия марганцевокислого (2-3 см 5% раствора калия марганцевокислого и 0,5 см концентрированной серной кислоты на 1 дм бидистиллированной воды).

5.15. Фильтры обеззоленные (синяя лента).

5.16. Фильтры мембранные со средним диаметром пор 0,5 мкм. Диаметр диска 35-55 мм.

5.17. Универсальная индикаторная бумага.

Реактив по п.5.2 применяется при отсутствии ГСО.

Измерения массовой концентрации никеля выполняют методом, основанном на адсорбционном концентрировании на поверхности графитсодержащего электрода комплексного соединения никеля (II) с диметилглиоксимом. Максимальный катодный ток восстановления комплексного соединения, локализованного на поверхности рабочего электрода, прямо пропорционально зависит от содержания ионов (II) в растворе в интервале 1,0-200 мкг/дм (II) и является аналитическим сигналом (АС). Массовую концентрацию никеля в растворе определяют методом добавки аттестованного раствора ионов никеля (II).

7.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.4.019*.
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ 12.4.103-83. — Примечание изготовителя базы данных.

7.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019*.
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ Р 12.1.019-2009. — Примечание изготовителя базы данных.

7.3. Организация обучения работающих безопасности труда по ГОСТ 12.04.004.
________________
* Вероятно ошибка оригинала. Следует читать: ГОСТ 12.4.004. — Примечание изготовителя базы данных.

7.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой вольтамперометрического анализа и изучивший инструкцию по эксплуатации анализатора инверсионного вольтамперометрического.

Измерения проводятся в нормальных лабораторных условиях.

Температура окружающего воздуха 20±10 °С.

Атмосферное давление (97±10) кПа.

Относительная влажность (65±15)%.

Частота переменного тока (50±5) Гц.

Напряжение в сети (220±10) В.

10.1. Отбор и хранение проб воды.

10.1.1. Химическую посуду, применяемую в процессе анализа и для отбора проб, обезжиривают 10% водным раствором едкого натрия в течение 10-12 часов, промывают бидистиллированной водой, затем промывают раствором 1 моль/дм азотной кислоты и ополаскивают бидистиллированной водой. Затем посуду обрабатывают концентрированной серной кислотой, промывают тридистиллированной водой, заливают хлористоводородной кислотой квалификации ос.ч. разбавленной тридистиллированной водой в соотношении 1:100, выдерживают в течение 2-3-х часов, после чего вновь промывают тридистиллированной водой.

10.1.2. Пробы воды отбирают в полиэтиленовые бутыли, предварительно промытые отбираемой водой. Объем отбираемой пробы воды должен быть не менее 100 см .

10.1.3. Отобранные природные воды фильтруют через плотный фильтр (синяя лента) и подкисляют хлористоводородной кислотой квалификации ос.ч. до pH 2-3, добавляя 1 см концентрированной кислоты на объем пробы 1 дм . Фильтрование природных вод, содержащих небольшое количество мелкодисперсных взвешенных веществ, возможно проводить с использованием мембранных фильтров со средним диаметром пор 0,5 мкм под небольшим вакуумом. Сточные воды фильтруют через плотный фильтр (синяя лента) и измеряют значение pH пробы. Затем с помощью хлористоводородной кислоты или гидроксида натрия устанавливают pH пробы 2-3. Пробы выдерживают не менее 3-4-х часов перед выполнением измерений. Пробы, законсервированные таким образом, хранят в холодильнике при 4-6 °С не более 2-х недель. Незаконсервированные пробы анализируют в день отбора.

10.1.4. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— место, время отбора;

— номер пробы;

— должность, фамилия, отбирающего пробу, дата.

10.2. Подготовка электрохимической ячейки к выполнению измерений.

Стеклянный стакан (электролизер) после проведения анализа обрабатывают концентрированной серной кислотой и промывают бидистиллированной водой. Электроды (индикаторный, вспомогательный, сравнения) промывают бидистиллированной водой. Затем электролизер и электроды (вспомогательный и сравнения) выдерживают в растворе хлористоводородной кислоты концентрации 0,1 моль/дм в течение 1-2-х минут и вновь промывают бидистиллированной водой.

10.3. Приготовление растворов, необходимых для выполнения измерений.

10.3.1. Приготовление основных растворов (ОР) никеля (II) с массовой концентрацией ионов никеля (II) 0,1 мг/см .

10.3.1.1. Приготовление основного раствора никеля (II) из государственного стандартного образца состава ионов никеля (II) с аттестованной концентрацией элемента 1 мг/см .

В мерную колбу вместимостью 50 см вводят 5 см стандартного образца состава никеля (II) и доводят объем раствора до метки бидистиллированной водой.

10.3.1.2. Приготовление основного раствора никеля (II) в отсутствии ГСО:

На аналитических весах взвешивают в химическом стакане 0,4049 г хлористого никеля и растворяют в бидистиллированной воде, содержащей 20 см концентрированной хлористоводородной кислоты. Раствор количественно переносят в мерную колбу вместимостью 1 дм . Объем раствора доводят до метки на колбе бидистиллированной водой.

Читайте также:  Анализ на кислород в воде

Основные растворы устойчивы в течение 6 месяцев.

10.3.2. Приготовление аттестованных растворов никеля (II).

Ознакомиться с документом вы можете, заказав бесплатную демонстрацию систем «Кодекс» и «Техэксперт».

источник

Количественный химический анализ вод. Методика измерений химического потребления кислорода в пробах природных и сточных вод титриметрическим методом

Нормативный документ устанавливает методику измерений бихроматной окисляемости — химического потребления кислорода (ХПК) при обработке пробы воды ионом бихромата при определенных условиях для проб природных (поверхностных и подземных) и сточных (производственных, хозяйственно-бытовых, ливневых и очищенных) вод титриметрическим методом. Методика применима при содержании в воде органических веществ, эквивалентном потреблению кислорода в диапазоне от 4,0 до 2000 мг/дм3.

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ
В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

Директор ФГБУ
«Федеральный центр анализа и
оценки техногенного
воздействия»

__________________ В.В. Новиков

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ
ХИМИЧЕСКОГО ПОТРЕБЛЕНИЯ КИСЛОРОДА
В ПРОБАХ ПРИРОДНЫХ И СТОЧНЫХ ВОД
ТИТРИМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного
экологического контроля

Методика измерений аттестована Центром метрологии и сертификации «СЕРТИМЕТ» Уральского отделения РАН (Аттестат аккредитации № RA.RU.310657 от 12.05.2015), рассмотрена и одобрена федеральным государственным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия» (ФГБУ «ФЦАО»).

Настоящее издание методики введено в действие взамен предыдущего издания ПНД Ф 14.1:2.100-97 и действует с 01 декабря 2016 года до выхода нового издания.

Сведения об аттестованной методике измерений переданы в Федеральный информационный фонд по обеспечению единства измерений.

Разработчик: © ООО НПП «Акватест»

Настоящий нормативный документ устанавливает методику измерений бихроматной окисляемости — химического потребления кислорода (ХПК) при обработке пробы воды ионом бихромата при определенных условиях для проб природных (поверхностных и подземных) и сточных (производственных, хозяйственно-бытовых, ливневых и очищенных) вод титриметрическим методом. Методика применима при содержании в воде органических веществ, эквивалентном потреблению кислорода в диапазоне от 4,0 до 2000 мг/дм 3 .

В зависимости от целей анализа измерение величины ХПК можно проводить в нефильтрованной или фильтрованной пробе. В последнем случае пробу фильтруют в соответствии с п. 9.3.

Измерению мешают хлориды, сульфиды, соединения железа(П), нитриты и другие неорганические вещества, способные окисляться бихроматом в кислой среде.

Мешающие влияния устраняют в соответствии с п. 11.

ГОСТ 12.0.004-90 ССБТ. Организация обучения безопасности труда. Общие положения.

ГОСТ 12.1.004-91 ССБТ. Пожарная безопасность. Общие требования.

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности.

ГОСТ 12.4.009-83 ССБТ. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание.

ГОСТ 17.1.5.04-81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия .

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков.

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Технические условия.

ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия.

ГОСТ 5230-74 Реактивы. Ртути окись желтая. Технические условия.

ГОСТ 6709-72 Вода дистиллированная. Технические условия.

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия.

ГОСТ 14919-83 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия.

ГОСТ 16317-87 Приборы холодильные электрические бытовые. Общие технические условия.

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы. Основные параметры и размеры.

ГОСТ 27384-2002 Вода. Нормы погрешности измерений показателей состава и свойств.

ГОСТ 29169-91 Посуда лабораторная стеклянная. Пипетки с одной отметкой.

ГОСТ 29227-91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования.

ГОСТ 29251-91 Посуда лабораторная стеклянная. Бюретки. Часть 1. Общие требования.

ГОСТ 30813-2002 . Вода и водоподготовка. Термины и определения

ГОСТ 31861-2012 Вода. Общие требования к отбору проб.

ГОСТ 4208-72 Реактивы. Соль закиси железа и аммония двойная сернокислая (соль Мора). Технические условия.

ГОСТ 4220-75 Реактивы. Калий двухромовокислый. Технические условия.

ГОСТ Р 12.1.019-2009 ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты.

ГОСТ Р 53228-2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ OIML R 76-1-2011 ГСИ Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике.

ТУ 6-09-05-90-86 1,10-Фенантролин сульфат ч.

ТУ 6-09-40-2472-87 о-Фенантролин 1-водный, чда.

ТУ 6-09-1181-89 Бумага индикаторная универсальная для определения pH 1 — 10 и 7 — 14.

ТУ 6-09-1678-95 Фильтры обеззоленные (белая, красная, синяя ленты).

ТУ 6-09-3592-87 N-фенилантраниловая кислота (о-Анилинбензойная кислота; Дифениламин-о-карбоновая кислота) чистый для анализа.

ТУ 6-09-3703-74 Серебро сернокислое (серебро сульфат) квалификации химически чистый, чистый. Технические условия.

ТУ 6-09-4711-81 Реактивы. Кальций хлористый (обезвоженный), чистый.

ТУ 64-1-909-80 Шкафы сушильно-стерилизационные ШСС-80П.

ТУ 2265-011-43153636-2015 Мембрана ацетатцеллюлозная Владипор МФАС-ОС-2-37 мм (0,45 мкм).

ТУ 2624-004-48438881-07 Реактивы. Ртуть (II) сернокислая.

ТУ 2642-581-00205087-2007 Стандарт-титры для титриметрии.

ТУ 3442.014.24662585-06 Баня песчаная МИМП-БП.

ТУ 3616-001-32953279-97 Приборы вакуумного фильтрования ПВФ-35 и ПВФ-47.

Титриметрический метод измерения величины ХПК основан на окислении органических веществ избытком бихромата калия (K2Cr2О7) в растворе серной кислоты при нагревании в присутствии катализатора — сульфата серебра. Остаток бихромата калия находят титрованием раствором соли Мора и по разности определяют количество K2Cr2О7, израсходованное на окисление органических веществ.

4.1 Методика измерений должна обеспечивать выполнение измерений с погрешностью (неопределенностью), не превышающей норм точности измерений показателей состава и свойств вод, установленных ГОСТ 27384-2002 .

4.2 Настоящая методика обеспечивает получение результатов измерений с погрешностями, не превышающими значений, приведённых в таблице 1.

Диапазон измерений ХПК ,
мг/дм 3

Показатель точности
(границы относительной погрешности при вероятности Р = 0,95), ±δ, %

Показатель повторяемости
(относительное среднеквадратическое отклонение повторяемости), σ r , %

Показатель воспроизводимости
(относительное среднеквадратическое отклонение воспроизводимости), σR, %

Значения показателя точности методики используют при:

— оформлении результатов измерений, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

Весы лабораторные общего назначения специального или высокого класса точности с наибольшим пределом взвешивания 210 г

ГОСТ Р 53228 или ГОСТ OIML R 76-1

Стандартные образцы бихроматной окисляемости воды (химического потребления кислорода — ХПК) с аттестованным содержанием ХПК с погрешностью не более 2 % при Р = 0,95

Колбы мерные 2-го класса точности исполнения 2, 2а вместимостью 50, 100, 200, 250 и 500 см 3

Пипетки градуированные 2 класса точности исполнения 1, 2 вместимостью 1, 2, 5 и 10 см 3

Пипетки с одной отметкой 2 класса точности исполнения 2 вместимостью 2, 5, 10, 20, 25 и 50 см 3

Бюретка 2 класса точности исполнения 1, 2 вместимостью 25 см 3

Колбы конические Кн исполнения 2 вместимостью 500 см 3

Стаканы химические тип В, исполнение 1 ТХС, вместимостью 50, 100, 250, 400 и 1000 см 3

Воронки лабораторные диаметром 56 мм

Колбы круглодонные К-1 или грушевидные Гр вместимостью 250 см 3 и обратные холодильники со взаимозаменяемыми конусами (установки для определения ХПК)

Стаканчики для взвешивания (бюксы) СВ-19/9, СВ-24/10 и СВ-45/13

Цилиндры мерные исполнения 1, 3 вместимостью 50, 100 см 3

Эксикатор исполнения 2, диаметр корпуса 190 мм

Склянки для хранения проб и растворов из светлого и темного стекла вместимостью 100, 250, 500, 1000 см 3

Посуда полиэтиленовая (полипропиленовая) для хранения растворов вместимостью 250 см 3

Электроплитки с закрытой спиралью и регулируемой мощностью нагрева

Шкаф сушильный общелабораторного назначения с температурой нагрева до 130 °С

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Холодильник для хранения реактивов и проб, обеспечивающий температуру +2 ÷ +5 °С

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не ниже, чем у приведенных в п. 5.1.

Калий двухромовокислый (бихромат калия) или

Калий двухромовокислый стандарт-титр (фиксанал)

Соль закиси железа и аммония двойная сернокислая (соль Мора) (NH4)2Fe(SO4)2 ⋅ 6H2O или

Соль Мора стандарт-титр (фиксанал)

Натрия гидроокись (гидроксид натрия)

N-фенилантраниловая кислота, ч или

Универсальная индикаторная бумага (pH 1 — 10)

Фильтры мембранные Владипор типа МФАС-ОС-2 (0,45 мкм) или

Фильтры бумажные обеззоленные «синяя лента»

Все используемые для анализа реактивы должны быть квалификации ч.д.а. или х.ч., кроме тех, квалификация которых указана в их наименовании.

Допускается использование реактивов и материалов, изготовленных по другой нормативно-технической документации, в том числе импортных, с характеристиками не ниже указанных в п. 5.2.

6.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007 .

6.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ Р 12.1.019-2009 .

6.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004 .

6.4. Помещение лаборатории Должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009 .

6.5. Содержание вредных веществ в воздухе помещения лаборатории не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005 .

К выполнению измерений и обработке их результатов допускаются лица, имеющие квалификацию техника-химика или лаборанта-химика и владеющие техникой титриметрического анализа.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

— температура окружающего воздуха (22 ± 6) °С;

— атмосферное давление (84 — 106) кПа;

— относительная влажность не более 80 % при температуре 25 °С;

— частота переменного тока (50 ± 1)Гц;

— напряжение в сети (220 ± 22) В.

9.1. Отбор проб для измерений величины ХПК производится в соответствии с ГОСТ 31861 и ГОСТ 17.1.5.05 .

9.2. Оборудование для отбора проб должно соответствовать ГОСТ 31861 и ГОСТ 17.1.5.04 .

9.3. Пробы отбирают в стеклянную или пластиковую посуду с пробками, исключающими загрязнение проб органическими соединениями. Посуду, предназначенную для отбора и хранения проб, моют хромовой смесью, затем тщательно (не менее 10 раз) промывают водопроводной и ополаскивают дистиллированной водой. При отборе проб посуду ополаскивают отбираемой водой, не допуская попадания в нее поверхностной пленки и грубых включений. Объем отбираемой пробы должен быть не менее 200 см 3 .

9.4. Измерение ХПК следует проводить не позднее 4 ч после отбора пробы. Если это невозможно, пробу, отобранную в стеклянную посуду, консервируют добавлением раствора серной кислоты (1:2) из расчета 2 см 3 на каждые 200 см 3 пробы воды.

Законсервированную пробу хранят при +2 ÷ +5 °С не более 5 суток.

Пробу, отобранную в пластиковую посуду, замораживают при минус 20 °С. Замороженную пробу хранят не более 1 мес.

9.5. Если измерение ХПК проводят в фильтрованной пробе, то пробу предварительно фильтруют через мембранный фильтр с размером пор 0,45 мкм, очищенный двукратным кипячением в дистиллированной, воде. Допустимо использование бумажных фильтров «синяя лента», промытых дистиллированной водой. При фильтровании через любой фильтр первые порции фильтрата (20 — 25) см 3 отбрасывают.

9.6. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— место, дата и время отбора;

— должность, фамилия сотрудника, отбирающего пробу.

10.1.1 Раствор бихромата калия с молярной концентрацией эквивалента 0,25 моль/дм 3

Отвешивают (6,129 ± 0,001) г бихромата калия, предварительно высушенного в течение 2 ч при (105 ± 5) °С, количественно переносят в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, доводят до метки и перемешивают. Раствор устойчив при хранении в плотно закрытой темной склянке в течение 6 мес.

10.1.2 Раствор бихромата калия с молярной концентрацией эквивалента 0,025 моль/дм 3

50 см 3 раствора бихромата калия с молярной концентрацией эквивалента 0,25 моль/дм 3 помещают в мерную колбу вместимостью 500 см 3 и доводят объем раствора до метки дистиллированной водой.

При использовании стандарт-титра с молярной концентрацией эквивалента 0,100 моль/дм 3 раствор бихромата калия готовят в соответствии с документом на стандарт-титр. Пипеткой с одной меткой 50 см 3 полученного раствора переносят в мерную колбу вместимостью 200 см 3 и доводят объем раствора до метки дистиллированной водой.

Хранят в склянке с притертой пробкой в темном месте не более 1 мес.

10.1.3 Раствор соли Мора с молярной концентрацией эквивалента 0,25 моль/дм 3

49,0 г соли Мора переносят в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, осторожно добавляют 10 см 3 концентрированной серной кислоты и после охлаждения доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде не более 6 мес.

10.1.4 Раствор соли Мора с молярной концентрацией эквивалента 0,025 моль/дм 3

50 см 3 раствора соли Мора с молярной концентрацией эквивалента 0,25 моль/дм 3 помещают в мерную колбу вместимостью 500 см 3 и доводят объем раствора до метки дистиллированной водой.

При использовании стандарт-титра с молярной концентрацией эквивалента 0,100 моль/дм 3 раствор соли Мора готовят в соответствии с документом на стандарт-титр. Пипеткой с одной меткой 50 см 3 полученного раствора переносят в мерную колбу вместимостью 200 см 3 и доводят объем раствора до метки дистиллированной водой.

Хранят в плотно закрытой темной склянке не более 2 мес.

Точную концентрацию растворов соли Мора устанавливают перед каждой серией измерений в соответствии с п. 10.2.

В качестве индикатора используют раствор N-фенилантраниловой кислоты или ферроина (комплекс сульфата железа (II) с 1,10-фенантролином).

Для приготовления раствора N-фенилантраниловой кислоты 0,25 г реактива растворяют в 12 см 3 раствора гидрооксида натрия (для ускорения процесса раствор можно слегка подогреть) и разбавляют дистиллированной водой до 250 см 3 .

Для приготовления раствора ферроина 2,43 г индикатора растворяют в 100 см 3 дистиллированной воды.

При приготовлении раствора ферроина на основе 1,10-фенантролина растворяют 0,980 г соли Мора (NH4)2Fe(SO4)2 ⋅ 6H2O в 100 см 3 дистиллированной воды, добавляют 2,085 г 1,10-фенантролина 1-водного или 2,93 г 1,10-фенантролина сульфата и перемешивают до растворения последнего.

Раствор индикатора хранят в плотно закрытой склянке из темного стекла не более 3 мес.

10.1.6 Раствор гидроксида натрия 0,4 %

0,4 г гидроксида натрия (NaOH) растворяют в 100 см 3 дистиллированной воды. Раствор устойчив при хранении в закрытой пластиковой посуде не более 6 мес.

10.1.7 Раствор сульфата серебра

5,0 г сульфата серебра (Ag2SO4) растворяют в 1 дм 3 концентрированной серной кислоты. Раствор устойчив в склянке из темного стекла в течение 6 мес.

10.1.8 Раствор серной кислоты 1:2

50 см 3 концентрированной серной кислоты добавляют к 100 см 3 дистиллированной воды. Раствор устойчив при хранении в закрытой склянке в течение 6 мес.

Пипеткой с одной меткой вместимостью 10 см 3 отбирают 10 см 3 раствора бихромата калия с молярной концентрацией эквивалента 0,25 или 0,025 моль/дм 3 , переносят в коническую колбу вместимостью 500 см 3 , добавляют 180 см 3 дистиллированной воды и 20 см 3 концентрированной серной кислоты. После охлаждения добавляют в пробу 3 — 4 капли индикатора ферроина или 10 капель раствора N-фенилантраниловой кислоты и титруют раствором соли Мора с молярной концентрацией эквивалента 0,25 или 0,025 моль/дм 3 соответственно до перехода окраски из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Титрование повторяют и при отсутствии расхождения в объемах титранта не более 0,05 см 3 за результат принимают среднее значение. В противном случае повторяют титрование до получения результатов, отличающихся не более, чем на 0,05 см 3 .

Точную концентрацию раствора соли Мора находят по формуле:

где См — молярная концентрация эквивалента раствора соли Мора, 0,25 моль/дм 3 или 0,025 моль/дм 3 ;

Сб — молярная концентрация эквивалента раствора бихромата калия, 0,25 моль/дм 3 или 0,025 моль/дм 3 ;

Vб — объем раствора бихромата калия, взятый для титрования, см 3 ;

Vм — объем раствора соли Мора, пошедший на титрование см 3 .

Мешающее влияние хлоридов при концентрациях менее 300 мг/дм 3 устраняется за счет присутствия в пробе катализатора (сульфата серебра). При больших содержаниях хлоридов к пробе добавляют сульфат ртути (II) из расчета 100 мг на 10 мг хлоридов.

Концентрации сульфидов, соединений железа (II) и нитритов более 0,5 мг/дм 3 (каждого или в сумме) вносят заметную погрешность при малых (до 10 мг/дм 3 ) величинах ХПК. Влияние ионов S 2- и Fe 2+ может быть устранено предварительной продувкой пробы воды воздухом, если проба не содержит летучих органических соединений, или учтено при расчете величины ХПК. Влияние NO2 — учитывают при расчете величины ХПК.

Для учета мешающего влияния ионов S 2- , Fe 2+ , NO2 — определяют их концентрации и пересчитывают на величину ХПК, исходя из того, что 1 мг/дм 3 S 2- , Fe 2+ и NO2 — эквивалентны соответственно 0,44, 0,14 и 0,35 мг/дм 3 ХПК (п. 13).

Анализируемую пробу воды перемешивают энергичным взбалтыванием и отбирают нужный объем пипеткой с одной меткой. Этот объем зависит от предполагаемой величины ХПК и подбирается с таким расчетом, чтобы на окисление расходовалось 40 — 60 % добавляемого бихромата калия. Соответственно также выбирают концентрации бихромата калия и соли Мора для выполнения измерений (таблица 2).

Предполагаемый диапазон величины ХПК, мг/дм 3

Объем аликвоты пробы воды, см 3

Используемые молярные концентрации эквивалента бихромата калия и соли Мора, моль/дм 3

Если концентрация хлоридов в пробе анализируемой воды составляет менее 300 мг/дм 3 , в колбу установки для определения ХПК, вносят с помощью пипетки с одной меткой аликвоту пробы воды, доводят ее, если необходимо, дистиллированной водой до 20 см 3 , добавляют 10,0 см 3 раствора бихромата калия с молярной концентрацией эквивалента 0,025 или 0,25 моль/дм 3 (таблица 2) и 30 см 3 раствора сульфата серебра в концентрированной серной кислоте. Для равномерного кипения в колбу бросают 2 — 3 капилляра, присоединяют к ней обратный холодильник, нагревают содержимое на песчаной бане в вытяжном шкафу до начала кипения (выделения пузырьков). Продолжают кипятить пробу в течение 2 ч, контролируя, чтобы во время кипячения сохранялся желтый цвет пробы. Если проба зеленеет, надо остановить процесс и взять меньшую аликвоту для окисления.

После охлаждения установки промывают холодильник дистиллированной водой (около 50 см 3 ), отсоединяют его, добавляют в колбу, обмывая ее стенки, еще 50 см 3 дистиллированной воды, вновь охлаждают, переносят пробу в коническую колбу, дважды споласкивая колбу, где кипятилась проба, дистиллированной водой (по 20 — 30 см 3 ). Добавляют 3 — 4 капли раствора ферроина (или 10 капель раствора фенилантраниловой кислоты) и титруют избыток непрореагировавшего бихромата калия раствором соли Мора соответствующей концентрации (таблица 2) до перехода окраски индикатора из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Аналогичным образом проводят холостой опыт с 20 см 3 дистиллированной воды.

При использовании растворов с молярной концентрацией эквивалента 0,025 моль/дм 3 необходимо соблюдать исключительную чистоту посуды, так как следы органических соединений могут вызвать ошибки.

Если концентрация хлоридов в воде превышает 300 мг/дм 3 , к отобранной для анализа аликвоте пробы, доведенной до 20 см 3 дистиллированной водой, добавляют сульфат ртути из расчета 100 мг на каждые 10 мг содержащихся в пробе хлоридов и тщательно перемешивают. Далее выполняют измерение, как описано в п. 12.1. Наличие небольшого количества осадка, образовавшегося после добавления сульфата ртути, не мешает определению.

При отсутствии сульфата ртути допускается использовать суспензию ртути окиси желтой в серной кислоте из расчета 70 мг на каждые 10 мг хлоридов. Для приготовления суспензии отмеривают 30 см 3 раствора сульфата серебра в концентрированной серной кислоте в стакан вместимостью 100 см 3 и добавляют требующееся количество оксида ртути. Перемешивают смесь стеклянной палочкой, оставляют на 15 мин, а затем приливают полученную суспензию к пробе.

13.1 Величину ХПК анализируемой пробы воды X, мг/дм 3 , находят по формуле:

где Vмх — объем раствора соли Мора, израсходованный на титрование в холостом опыте, см 3 ;

Vм — объем раствора соли Мора, израсходованный на титрование в пробы воды, см 3 ;

См — молярная концентрация эквивалента раствора соли Мора, 0,25 или 0,025 моль/дм 3 ;

V — объем пробы воды, взятый для определения, см 3 ;

8,0 — масса миллимоля кислорода, эквивалентная 1 ммоль соли Мора, мг/ммоль.

Для учета мешающего влияния ионов S 2- , Fe 2+ и NO2 — измеренную концентрацию каждого иона умножают на его эквивалент по отношению к величине ХПК (соответственно 0,44, 0,14 и 0,35 мг/дм 3 ) и вычитают произведения из найденной величины ХПК X:

где X1 — величина ХПК с учетом мешающего влияния, мг/дм 3 ;

13.2 Расхождение между результатами измерений, полученными в условиях воспроизводимости, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата измерений, и в качестве окончательного может быть использовано их среднее арифметическое значение.

Значения предела воспроизводимости приведены в таблице 3.

Диапазон измерений величины ХПК, мг/дм 3

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6 .

Результат измерений X (или X1) в документах, предусматривающих его использование, может быть представлен в виде:

где Δ — значение характеристики погрешности результатов измерений для данной величины ХПК.

Значение Δ рассчитывают по формуле:

Значение δ приведено в таблице 1.

Допустимо результат измерений в документах, выдаваемых лабораторией, представлять в виде:

при условии Δл 3 (таблица 2, диапазоны величин ХПК (4 — 50) и (180 — 500) мг/дм 3 соответственно), вместо 20 см 3 отбирают 10 см 3 пробы, помещают их в колбу для кипячения, добавляют 10 см 3 дистиллированной воды и далее выполняют измерения в соответствии с п. 12.1. Таким же образом готовят разбавленную в 2 раза пробу, если для окисления в соответствии с таблицей 2 требуется аликвота 10 см 3 — помещают в колбу для кипячения 5 см 3 анализируемой воды и 15 см 3 дистиллированной воды.

Приготовление разбавленной пробы, если для анализа требуется аликвота 5 см 3 (таблица 2, диапазоны величин ХПК (90 — 200) и (900 — 2000) мг/дм 3 соответственно), проводится в 2 этапа. Сначала пипеткой с одной меткой помещают 25 см 3 исходной пробы воды в мерную колбу вместимостью 50 см 3 и доводят объем до метки дистиллированной водой. Затем 5 см 3 разбавленной пробы помещают в колбу для кипячения, добавляют 15 см 3 дистиллированной воды и выполняют анализ в соответствии с п. 12.1.

Результат контрольной процедуры Кк рассчитывают по формуле:

где Хp — результат измерений величины ХПК в разбавленной в 2 раза пробе;

X — результат измерений величины ХПК в исходной пробе.

Норматив контроля К рассчитывают по формуле:

где — значения характеристики погрешности результатов измерений, установленные в лаборатории при реализации методики, соответствующие величине ХПК в разбавленной пробе и в исходной пробе соответственно.

Примечание — Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения: Δл = 0,84 ⋅ Δ, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

Процедуру измерений признают удовлетворительной, при выполнении условия:

При невыполнении условия (1) контрольную процедуру повторяют. При повторном невыполнении этого условия выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Оперативный контроль точности результатов измерений с использованием метода добавок проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К.

Результат контрольной процедуры Кк рассчитывают по формуле:

где — результат измерений величины ХПК в пробе с известной добавкой;

X — результат измерений величины ХПК в исходной пробе;

Норматив контроля К рассчитывают по формуле:

где — значения характеристики погрешности результатов измерений, установленные в лаборатории при реализации методики, соответствующие величине ХПК в пробе с известной добавкой и в исходной пробе соответственно.

Примечание — Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения: Δл = 0,84 ⋅ Δ, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

Процедуру измерений признают удовлетворительной, при выполнении условия:

При невыполнении условия (2) контрольную процедуру повторяют. При повторном невыполнении этого условия выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К.

Результат контрольной процедуры Кк рассчитывают по формуле:

где Хк — результат измерений величины ХПК в образце для контроля;

С — аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле:

где ±Δл — характеристика погрешности результатов измерений, соответствующая аттестованному значению образца для контроля.

Примечание . Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения: Δл = 0,84 ⋅ Δ с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

Процедуру измерений признают удовлетворительной, при выполнении условия:

При невыполнении этого условия контрольную процедуру повторяют. При повторном невыполнении этого условия выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов измерений регламентируют в Руководстве по качеству лаборатории.

источник

Глава 4. Количественный химический анализ

Титриметрический анализ

Количественный анализ вещества это экспериментальное определение (измерение) содержания химических элементов, соединений или их форм в анализируемом веществе, выраженное в численном виде. Цель количественного анализа – определение содержания (концентрации) компонентов в образце.Его можно осуществлять, используя различные методы: химические, физико-химические, физические, биологические.

Химические методывключают гравиметрические (весовые) и титриметрические или объемные виды анализа.

Гравиметрические методыоснованы на точном измерении массы определяемого компонента, либо количественно связанного с ним соединения с точно известным составом.

Под титриметрическим анализом понимают определение содержания вещества по точно измеренному количеству реагента (массе или объему), вступившего в реакцию с определяемым компонентом в эквивалентном количестве.

Методы количественного химического анализа не требуют сложной аппаратуры, обладают хорошей точностью и воспроизводимостью. Так как погрешность многих титриметрических методов не превышает ± 0,5 ¸ 0,1%, а гравиметрических – не более 0,1%, то эти методы до сих пор используются в качестве метрологических при проведении аттестации методик анализа. Однако им присущ ряд недостатков. Наиболее существенными являются — недостаточная селективность и чувствительность, что требует тщательной подготовки пробы и применяемых реагентов.

Для проведения химического анализа используют реактивы следующих квалификаций: ч.(чистые), ч.д.а. – чистые для анализа; х.ч. – химически чистые; о.с.ч. – особо чистые. Наименьшее содержание примесей имеют реагенты марки о.с.ч.ич.д.а.,тогда как реактивыквалификации х.ч.(чистые)и ниже не всегда пригодны для количественных определений и требуют дополнительной очистки.

Качество полученных результатов во многом определяется правильностью подбора посуды и оборудования. Для проведения количественного анализа используют самую разнообразную лабораторную посуду и весы. По назначению ее классифицируют на:

Ø посуду специального назначения – применяется для выполнения узкого круга операций. Это различного рода пикнометры, ареометры, холодильники, круглодонные колбы, колбы Кьельдаля ;

Ø посуду общего назначения – наиболее часто применяемая в самых разных видах работ: кипячении, титровании, фильтрации и т.д. Это пробирки, воронки, химические стаканы, плоскодонные круглые и конические колбы (Эрленмейера), кристаллизаторы, чашки Петри, бюксы, эксикаторы (рис. 4.1 и 4.2);

Рисунок 4.1 – лабораторная посуда общего назначения, применяемая в различных методах анализа.

Рисунок 4.2 – посуда общего назначения: а) стеклянные бюксы с крышками для взвешивания и хранения гигроскопичных веществ; б) различного вида промывалки для ополаскивания посуды.

Ø мерную посуда – служит для измерения объемов жидкости. Ее делят на посуду точного измерения: пипетки (Мора и градуированные), бюретки, мерные колбы Мора (рис.4.3) и неточную измерительную посуду: мерные цилиндры, мензурки, стаканы, колбы с делениями, градуированные пробирки: цилиндрические и конические или пальчиковые (рис. 4.4).

Рисунок 4.3 — посуда для точного измерения объема, применяемая при

отборе аликвот, приготовлении стандартных растворов и в титровании.

Рисунок 4.4 — Посуда для неточного измерения объема, применяемая

для приготовлении растворов подлежащих стандартизации и реагентов

Для взятия аликвот в титриметрии, при количественном осаждении из растворов, а также при приготовлении стандартных растворов различного назначения используют всегда толькопосуду точного измерения и аналитические весы! Посуду для неточного измерения объема и технохимические весы применяют: при приготовлении стандартизируемых растворов, измерении объемов растворов, применяемых для поддержании кислотности среды (буферов), проведения осаждения и титрования аликвот. При работе с мерной посудой, особенно точной, необходимо соблюдать ее чистоту. С этой целью посуду перед применением всегда ополаскиваютдистиллированной водой и сушат. Точную посуду сушат на воздухе с применением эфира или спирта, а неточную и общего назначения – на сушилках с обогревом или в сушильном шкафу. Для исключения ошибки при отборе аликвот и работе с бюретками, их дополнительно ополаскивают еще и измеряемым раствором.

Изменение температуры среды приводит к возникновению погрешности измерения: завышению или занижению определяемого объема, а значит и рассчитываемой концентрации. Поэтому, вся мерная посуда имеет штамп с указанием ее объема при 20ºС, а посуду точного измерения — дополнительно калибруют дистиллированной водой, используя аналитические весы и внося поправку на плотность воды при данной температуре. Иногда имеется дополнительная маркировка, указывающая на термостойкость и химическую устойчивость. Термостойкость стекла обозначается матовым квадратом или кругом. В такой посуде нагревают и кипятят жидкости на плитках и газовых горелках.

Весы. Устройства, применяемые для определения массы тел называют весами. В химическом анализе используют два вида весов: технические и аналитические. Они могут быть как механическими, так и электронными; иметь одну чашку (квадрантные механические и электронные) или две (чашечные и демпферные весы). Под взвешиванием понимают сравнение массы данного предмета с массой калиброванных грузов (разновесов) или же измерение давления, которое предмет оказывает на чашку весов в пересчете его на единицы массы. Разновесы необходимы при работе на демпферных иличашечных весах, а в квадрантных и электронных одночашечных весах шкалы уже проградуированы в единицах массы.

Весы различаются по классу точности и пределам измерения. Технические весы – наименее точные и применяются для взвешивания относительно больших по массе образцов. Для химических целей обычно используют квадрантные или чашечные технические весы на 0,2 – 1 кг (иногда до 5 кг). Точность их не превышает 0,01 – 20 г. Технические весы с точностью 0,1 – 0,01 г называют технохимическими и используют в лаборатории для взятия навесок от 1 до 500 г. В современных электронных технических весах точность измерений может быть и выше: при предельной массе предмета в 500 г, она варьирует от 0,001 г до 0,2 г.

Аналитические весы служат для точного определения массы навески при приготовлении стандартных растворов, проведении гравиметрических измерений и др. Точность демпферных весов составляет ± 2×10 — 4 — 2×10 — 5 г , а электронных — до 2×10 — 6 г. В среднем такие весы рассчитаны на предельную массу предмета 50 – 200 г, но выпускаются весы и повышенной точности на предельную массу навески 1 – 20 г, которые применяют в некоторых видах инструментального анализа, например в спектральном.

При работе на весах необходимо строго соблюдать правила обращения с ними. Из-за неправильной установки или небрежного обращения можно получить недостоверные результаты, а также вывести весы из строя. Особенно это важно помнить при использовании электронных и аналитических демпферных весов.

Индикаторы и их подбор

Для обнаружения точки эквивалентности в титриметрическом анализе применяют индикаторы (от лат. indicare – показывать, обнаруживать). Индикаторами называют реагенты, способные контрастно изменять свой цвет в зависимости от изменения свойств среды. Чаще всего – это органические вещества с обратимо изменяющейся окраской (исключение – осадительные индикаторы).

Далеко не любое вещество, изменяющее свою окраску в зависимости от свойств среды, пригодно в качестве индикатора титрования. Тем более, что индикаторы изменяют свой цвет независимо от того, достигнута или еще не достигнута точка эквивалентности: определяющим моментом являются лишь параметры среды. Поэтому важно правильно подобрать индикатор. К необходимым требованиям при подборе индикатора относятся следующие:

Ø показатель титрования рТ (интервал перехода окраски индикатора) должен находится в области скачка и быть как можно ближе к точке эквивалентности, а значение индикаторной ошибки не может превышать 0,5%;

Ø цвет индикатора — очень интенсивный и четко фиксируется в растворе визуально даже при сильном разбавлении (для 1 — 2 капель индикатора);

Ø чувствительность индикаторного вещества к изменению свойств среды – высокая, чтобы изменение окраски происходило при минимальном избытке титранта в растворе (от 1 – 2 капель титранта);

Ø интервал перехода — узкий и высококонтрастный;

Ø индикатор должен быть стабилен — не разлагаться на воздухе и в растворе;

Ø вещество индикатора — индифферентно по отношению к титруемому раствору или продуктами титрования, т. е. не должны протекать между ними реакции, влияющие на ход кривой титрования.

В зависимости от свойств, индикаторы классифицируют по числу переходов (одно и многопереходные) и по области применения. К однопереходным относится фенолфталеин (малиновый – бесцветный), а к многопереходным – метиловый оранжевый (желтый – оранжевый и оранжевый – розовый). Примерами других многопереходных индикаторов являются: a-Нафтолбензеин — два перехода: зеленый – желтый (рН = 0 – 1) и желтый – синий (рН = 8,4 – 10); Метиловый фиолетовый – три перехода (желтый – зеленый, зеленый – синий, синий – фиолетовый); Крезоловый красный – два перехода (красный – желтый и желтый – пурпурный). К многопереходным относятся также универсальные индикаторы. Иногда многопереходные индикаторы в титровании используются как однопереходные, если изменение цвета не всех переходов происходит в относительно узком диапазоне значений или же они фиксируются не четко.

По области применения различают следующие группы индикаторов:

2. Редокс – индикаторы (окислительно-восстановительнгые).

3. Металлохромные (комплексообразователи).

8. Люминесцентные (флуоресцентные) и металлофлуоресцентные.

Это деление достаточно условно, так как в ходе титрования нередко закономерно изменяются одновременно несколько параметров, которые коррелируют между собой. Например, рН и потенциал системы Е, рН и значение ПР (произведения растворимости). Существует и более полная классификация индикаторов, учитывающая как их химическое строение, так и механизм изменения окраски, но такая классификация достаточно сложна и рассматриваться нами не будет.

Хромофорная теория (ХТ)

Изменение окраски индикатора по ХТ связано с обратимыми структурными процессами (изомеризацией), протекающими за счет внутримолекулярных перегруппировок отдельных функциональный групп в молекуле. Каждая из структурных форм (таутомеров) устойчива только в определенном интервале значений рН или других параметров среды, поэтому присоединение или отщепление протона приводит к перестройке молекулы индикатора, в результате которой появляются новые или исчезают существовавшие раньше функциональные группы, ответственные за окраску (хромофоры). Эти особенности объясняют почему изменение окраски ряда индикаторов протекает не мгновенно, а растянуто во времени, поскольку таутомерные превращения – это внутримолекулярные перегруппировки, которые в отличие от ионных реакций (диссоциации) осуществляются медленнее.

Функциональные группы, отвечающие за окраску индикаторного вещества, получили название хромоморфных (хромо – цветной). К ним относятся: нитрогруппа (О = N – ); азогруппа (– N = N –), несколько близко расположенных друг к другу карбонильных групп (>С=О).

Функциональные группы, усиливающие или стабилизирующие окраску индикатора, называются ауксохромными. Подобными свойствами обладают: аминогруппы (–NH2) и производные аминов; кислород– и азот–содержащие соединения (–О–CH3; –N(CH3)2; –N(C2H5)2), гидроксогруппы (электронодонорные). Окраска индикатора проявляется ярче, если вещество содержит кроме ауксохромных групп, еще и антиауксохромные (электрофильные) группы, обеспечивающие сдвиг электронной плотности в молекуле. Электрофильными свойствами обладают, например, некоторые кислородсодержащие радикалы (-NO2, -NO, -COCH3). В качестве примера приведем структурные формулы таутомерных изомеров однопереходного индикатора п-нитрофенола (рис. 4.8)

Обозначение: ПНД Ф 14.1:2:3.100-97
Название рус.: Количественный химический анализ вод. Методика измерений химического потребления кислорода в пробах природных и сточных вод титриметрическим методом
Статус: взамен
Заменяет собой: ПНД Ф 14.1:2.100-97 «Количественный химический анализ вод. Методика выполнения измерений химического потребления кислорода в пробах природных и очищенных сточных вод титриметрическим методом»
Дата актуализации текста: 05.05.2017
Дата добавления в базу: 01.02.2017
Дата введения в действие: 01.12.2016
Утвержден: 01.09.2016 ФГБУ Федеральный центр анализа и оценки техногенного воздействия
Ссылки для скачивания:

Рисунок 4.8 – Структура таутомерных форм индикаторного вещества

(п-нитрофенола), содержащего хромофорную и ауксохромную группы.

Хромофорная теория также имеет ряд недостатков, в частности:

Ø не объясняет, почему изменение окраски и таутомерные превращения зависят от значения рН среды;

Ø каким образом окраска большинства индикаторов, имеющих хромофорные группы, изменяется практически мгновенно, что противоречит механизму внутримолекулярной перегруппировки;

Ø и, наконец, хромофорная теория не поддается количественному описанию.

Ионно-хромофорная теория.

Эта теория объединила представления ионной (диссоциативной) и хромофорной теорий. Согласно ионно-хромофорной теории, кислотно-основные индикаторы – слабые кислоты и основания, причем нейтральные молекулы и их ионизированные формы содержат разные хромофорные группы. В водном растворе молекула индикатора способна либо отдавать ионы водорода (слабая кислота), либо принимать их (слабое основание), подвергаясь при этом таутомерным превращениям согласно схеме:

HInd Û H + + Ind — Û H + + Ind — B,

где HInd— неионизированная молекула индикатора (слабая кислота, таутомерная форма I) ; Ind — B— анион сильной кислоты, имеющей таутомерную форму II в диссоциированном состоянии (основная форма II).

При понижении рН (подкисление раствора) равновесие в системе смещается влево в сторону неионизированной формыHInd. Как только она начинает доминировать , раствор приобретает ее окраску.

Если раствор подщелачивать (рН увеличивается, а концентрация H + — убывает) – равновесие в системе смещается вправо и доминирующей формой становится Ind — B, которая и придает раствору иную окраску, характерную уже для основной формы II. Так кислая форма фенолфталеина (рН = 8,2) – бесцветна, а при переходе в щелочную среду – образуется анион таутомерной основной формы (рН = 10), окрашенный в красно-малиновый цвет. Между этими формами существует диапазон значений рН (от 8,2 до 10), соответствующих постепенному изменению окраски индикатора.

Глаз человека способен воспринимать окраску только одной из двух форм в смеси, при условии одинаковой интенсивности их цвета, если концентрация одной из этих форм примерно в 10 раз выше, чем второй.

Индикаторов.

1. Кислотно – основные индикаторы это слабые органические кислоты или основания. Окраска индикаторов обратима и определяется значением рН среды. Интервал перехода рассчитывается через константу диссоциации:

DрНинд. = – logКа ± 1, где Ка – константа диссоциации индикатора.

Рассмотрим пример. Константа диссоциации индикатора ализаринового желтого Ка = 10 -11 . Определим интервал перехода индикатора DрНинд:

DрНинд. = – log (10 -11 )± 1 =11 ±1 Þ DрНинд [(11-1) ¸ (11+1)] = [10 ¸ 12].

Интервал перехода индикатора DрНинд = 10 ¸ 12.

2. Редокс – индикаторы – органические вещества, проявляющие свойства слабых окислителей или восстановителей. Могут быть как обратимыми (дифениламин), так и необратимыми, окраска которых разрушается (метиловый красный, метиловый оранжевый, они известны также как кислотно-основные индикаторы). Изменению окраски индикатора соответствует обратимая реакция: Ind + + ne Û Ind;гдеInd + — окисленная (Ox), а Ind — восстановленная (Red) формы индикатора, n— число электронов в данной полуреакции. Изменение редокс-потенциала (интервал перехода индикатора) рассчитывают по уравнению Нернста: DЕ = Е 0 ± 0,059/n,

где Е 0 — стандартный редокс-потенциал для индикатора; n – число электронов в полуреакции.

Например: Редокс-индикатор дифениламин имеет Е 0 = + 0,76 В и n = 2. Определим интервал его перехода.

Согласно формуле: DЕ= 0,76 ± 0,059/2 = 0,76 ± 0,0295 Þ DЕ=(0,76 –0,0295)¸ (0,76 + 0,295) = 0,73 ¸ 0,79 (В).

3. Металлохромные (металлоиндикаторы) — это органические красители (слабые кислоты), имеющие собственные хромофорные группы,и обратимо изменяющие свой цвет при образовании комплексной соли с катионами металлов. Используют их преимущественно в комплексонометрии, например, эриохром черный Т. Для этих индикаторов дополнительно должно выполняться условие: устойчивость комплекса титруемого вещества с титрантом выше, чем комплексов, образуемых им с индикатором в растворе. Интервал перехода вычисляют по формуле:

DрМе = – logКуст. ± 1, где Куст — константа устойчивости комплекса, образованного данным индикатором с титруемым веществом.

4. Осадительные индикаторы.Группа индикаторов незначительна по составу, так как окрашенный осадок должен формироваться в растворе сразу же после практически полного осаждения определяемого вещества (остаточная концентрация менее 10 –6 моль/дм 3 ), а таких веществ немного.

Интервал перехода индикатора определяют по значению произведения растворимости (ПР), образованного им осадка: Dр(ПР) = – logПР. ± 1.

Адсорбционные индикаторы -это органические вещества,проявляющие свойства слабых кислот или оснований, такие как эозин или флуоресцеин.

Механизм действия адсорбционного индикатора показан на схеме (рис. 4.9). Как видно из рисунка 4.9, появление окраски происходит в результате изменения состава ионов на поверхности дисперсной фазы (осадок или коллоидная частица) за счет процессов адсорбции или десорбции ионов индикатора. Это явление объясняется сменой знака электростатического заряда поверхности частиц осадка в ходе титрования. Причина ее в том, что в недотитрованном растворе поверхность осадка преимущественно сорбирует титруемые ионы, которые входят в его состав (осадок AgCl сорбирует неоттитрованные ионы Cl — ) и приобретает их заряд. В результате этого сорбция ионов индикатора становится невозможной.

Рисунок 4.9 – Схематическое изображение структуры сорбированного слоя на поверхности осадка AgCl, образующегося при титровании ионов Cl — раствором AgNO3.

а – до точки эквивалентности (поверхностью сорбируются ионы Cl — , а ионы индикатора Ind — остаются в растворе);

б – после точки эквивалентности (поверхность сорбирует ионы титранта Ag + , которые притягивают ионы индикатора Ind — ).

Как только будет достигнута точка эквивалентности, в растворе появится избыток противоположно заряженных ионов титранта, которые также начнут скапливаться вблизи поверхности осадка, притягивая из раствора ионы индикатора. Образующееся в результате этого вещество окрашивает поверхность осадка.

5. Специфические индикаторы Относительно малочисленная группа индикаторов, так как в основе их применения специфические реакции с титруемом веществом. Такими свойствами обладает раствор крахмала по отношению к молекулам J2: образование соединения синего цвета.

Способы титрования.

Так как напрямую, реакцией с титрантом, можно анализировать далеко не любое вещество, особенно, если оно неустойчиво на воздухе, то для решения подобных задач было разработано несколько приемов (способов) проведения анализа. Они позволяют заменять неустойчивые, в данных условиях соединения, на эквивалентное количество более устойчивого, которое не подвергается гидролизу или окислению. Известны следующие основные способы проведения титриметрического анализа:

Ø обратное титрование или титрование по остатку;

Ø косвенное титрование или по замещению (по заместителю).

В таблице 4.1 показаны области применения различных способов в зависимости от вида титрования.

Таблица 4.1 – Применение различных видов и способов титрования.

название метода частное название метода; (рабочий раствор) вещества, определяемые титрованием
прямым обратным косвенным
Протолито-метрия Ацидиметрия (кислоты: HCl) основания; соли, образован-ные сильным основанием и слабой кислотой соли слабых оснований и сильных кислот; органические соединения
Алкалиметрия (щелочи: NaOH) кислоты; соли, образован-ные слабым осно-ванием и сильной кислотой
Редокси-метрия Перманганато-метрия ( ) восстановители окислители вещества, реагирующие с восстанови-телями
Иодометрия ( и ) восстановители восстановители окислители; кислоты
Комплексо-метрия Комплексоно- метрия (ЭДТА) катионы, образующие с ЭДТА комплексы катионы в водо-нерастворимых соединениях; катионы, для которых отсутствует индикатор катионы, образующие с ЭДТА более устойчивый комплекс, чем с
Метод Седимен-тации Аргентометрия ( ) Анионы, образую-щие с осадок катионы, образующие малорастворимый осадок с ионами галогенов: , , ; ,

Рассмотрим подробнее суть различных способов титрования.

1. Прямое титрование заключается в непосредственном взаимодействии титранта и титруемого вещества. В процессе титрования к аликвоте или навеске вещества постепенно добавляют раствор титранта, объем которого точно фиксируют в Т. Э.В качестве титранта используют рабочий раствор известной концентрации. Расчет содержания вещества в образце выполняют по закону эквивалентов:

= (4.1)

где– количество моль-эквивалентов анализируемого вещества в титруемом образце; а количество моль-эквивалентов титранта, вступившего в реакцию с определяемым компонентом А.

Концентрацию компонента А в растворе вычисляют по формуле:

(4.2)

где – молярная концентрация эквивалента (нормальность) титруемого раствора (определяемого компонента), моль-экв/л; – объем аликвоты титруемого раствора, мл; – концентрация и — объем титранта в точке эквивалентности. При титровании методом отдельных навесок формула (4.2) преобразуется в выражение (4.3):

(4.3)

Метод применяется во всех случаях, когда нет каких-либо ограничений. Например, при анализе кислот, определении жесткости воды.

2. Реверсивное титрованиеэто разновидность прямого титрования, когда рабочий и титруемый растворы меняют местами. В этом случае для анализаотбирают аликвоты рабочего раствора, а в Т.Э. измеряютизрасходованный натитрование объем анализируемого раствора. Вычисления проводят также, как и в прямом титровании, по формулам (4.2) или (4.3). Метод позволяет ограничить площадь поверхности раствора, контактирующей с воздухом, при стандартизации относительно неустойчивых соединений, как например NaOH.

Титрование по заместителю (косвенное) и титрование по остатку(обратное)основаны на использовании вспомогательного раствора, взаимодействующего с определяемым компонентом. Такой прием позволяет выполнять анализ химически нестойких объектов или же при отсутствии подходящего индикатора.

В косвенном титрованиисначала осуществляют реакцию определяемоговеществаАсо вспомогательным растворомВ,а затемтитруют эквивалентное количество образовавшегося продукта реакции С (заместитель). Этот способ можно представить в виде схемы: А + В С + (т-т) , исходя из которой запишем выражение для закона эквивалентов:

= = . (4.4)

Из равенства (4.4) следует, что = и расчет можно также выполнять по формулам (4.2) и (4.3), используемых для прямого титрования. Для полноты реакции вспомогательный раствор всегда берут с небольшим избытком. Такой метод титрования реализуется в йодометрии.

Вобратном титровании также сначала протекает реакция между определяемымвеществомАивзятым в избыткевспомогательным растворомВ,но затем титруют остаток не прореагировавшего вспомогательного раствора. Поэтому необходимо точно знать концентрацию вспомогательного раствора В и его объем, взятый для анализа. Определение компонента А выполняется согласно схеме: А + В Вост + (т-т).Исходя из условий титрования, закон эквивалентов можно записать в виде:

= .(4.5)

= .(4.6)

Если все вещества взяты в виде растворов, то формула (4.6) примет вид

(4.7)

Если хотя бы одно из веществ взято в сухом виде (известна его масса), то следует воспользоваться выражением (4.6) и записать значение для каждого из веществ индивидуально.

И способы их приготовления.

В титриметрии используют растворы, концентрация которых установлена каким-либо способом с высокой степенью точности. Такие растворы называют стандартными титрованными или просто титрованными. Растворы классифицируют по назначению и по способу установления их концентрации.

По назначению их условно делят на рабочие растворы и растворы стандартов (первичные и вторичные).

Рабочими называют растворы, которые используются непосредственно в анализе при определении содержания вещества. Если рабочий раствор не относится к стандартным, то его необходимо отстандартизировать непосредственно перед выполнением анализа, так как концентрация в процессе хранения могла существенно измениться. Точную концентрацию рабочего раствора находят путем титрования стандартного раствора или установочных веществ (метод точных навесок). Это касается, например, таких рабочих растворов, как: NaOH, Na2S2O3×5H2O.

Под стандартным раствором понимают такой титрованный раствор, который устойчиво сохраняет свою концентрацию при длительном хранении. Основное назначениестандартных растворов определение точной концентрации рабочих и иных растворов, применяемых в титровании.

Процесс установления точной концентрации раствора путем его титрования по стандарту называется стандартизацией.

По способу определения концентрации различают первичные стандарты или растворы с приготовленным титром и стандартизированные растворы.

Стандартизированные растворыэто такие растворы, концентрация которых устанавливается по стандарту и заранее не может быть точно определена. К ним относятся растворы кислот, щелочей, гидролизующихся и гигроскопичных солей, а также веществ, которые могут реагировать с атмосферным кислородом и углекислотой. Известно множествоспособовприготовления стандартизированных растворов. Наиболее часто для этой цели применяют: приготовление по приближенной навеске (щелочи, соли), методы разбавления или смешения растворов (кислоты, соли), методы ионного обмена (растворы солей).

Стандартные растворыклассифицируютпо способу определения их концентрации.Различают: первичные стандарты или растворы с приготовленным титром и вторичные стандарты — растворы с установленным титром.

Первичные стандарты — это растворы, которые готовят либо по точной навеске вещества (рис. 4.10), либо путем разведения специально приготовленных стандартизированных реагентов – фиксаналов (рис. 4.11). Фиксанал представляет собой стеклянную запаянную ампулу, выпускаемую промышленностью и содержащую строго нормированное количество реагента, обычно рассчитанного на 1 л 0,1 н. раствора.

Приготовление раствора по точной навеске начинают с расчета ее массы по заданной концентрации (титру или нормальности) и объему колбы. Навеску стандартного вещества взвешивают на аналитических весах с точностью до 1×10 -4 г и количественно переносят в мерную колбу, где ее растворяют при перемешивании (рис. 4.10).

Рисунок 4.10 – Порядок операций при приготовлении раствора первичного

стандарта по точной навеске: 1 – мерная колба Мора; 2 – воронка;

3 – бюкс с навеской вещества; 4 – промывалка с дистиллированной водой;

5 – пипетка или капельница.

а – перенос навески вещества в мерную колбу; б – ополаскивание воронки;

в – доведение объема раствора стандарта до метки.

Этим методом обычно готовят растворы солей, таких как бура (Na2B4O7×10H2O), K2Cr2O7. Количество вещества в растворе находят или по значению точно взятой массы навески (при ее переносе необходимо тщательно промыть бюкс), или рассчитывают методом разности, определяя точную массу бюкса сначала с навеской, а затем – пустого, уже после переноса вещества в колбу. В случае необходимости — концентрацию раствора заново пересчитывают с учетом фактически взятой массы навески.

Порядок приготовления раствора методом разведения из фиксанала показан на рисунке 4.11. Чтобы стандарт, полученный этим методом, был качественным и отвечал всем требованиям, необходимо исключить потери вещества при вскрытии ампулы и переносе его в колбу, а также следить, чтобы осколки ампулы не попали в раствор. Это во многом зависит от правильности обращения с ампулой.

Рисунок 4.11 – Способ приготовления растворов первичного стандарта

методом разведения из фиксанала: 1 – мерная колба Мора на 1л;

2 – нижний боек; 3 – воронка; 4 – ампула фиксанала; 5 – верхний боек.

Перед использованием, ампулу следует ополоснуть дистиллированной водой и только затем ее вскрывать специальным бойком. Сразу же после переноса вещества в колбу, нужно тщательно промыть ампулу дистиллированной водой, не менее, чем 6-ти кратным ее объемом. Этот метод приготовления первичного стандарта проще, чем по точным навескам, но уступает ему в точности. Его используют не только для получения растворов солей, но и различных кислот.

Так как для приготовления раствора первичного стандарта пригодны только точная мерная посуда и аналитические весы, то и к веществам, применяемым для этой цели, предъявляют ряд обязательных требований. В качестве первичного стандарта можно использовать только такие реактивы, которые характеризуются:

Ø высокой чистотой (обычно не хуже, чем 99,99 – 99,999% — квалификации ч.д.а. и о.с.ч.);

Ø точным соответствием формульному составу и относительно высокой молекулярной массой;

Ø устойчивостью при хранении как в твердом виде, так и в растворе (отсутствие процессов гидратации, гидролиза, окисления и карбонизации);

Ø простотой в приготовлении и хорошей растворимостью;

Ø необратимостью реакции при стандартизации, селективностью;

Ø возможностью точной фиксации Т. Э. каким-либо методом.

Вторичным стандартом называют такие стандартизированные растворы, которые устойчивы при хранении и могут быть использованы для стандартизации других растворов.

Вторичные стандарты готовят как растворы приблизительной концентрации любым известным методом, а перед употреблением — определяют их точную концентрацию путем стандартизациипо первичному стандарту. Поэтому при приготовлении вторичных стандартов не требуется высокая точность измерения массы вещества или объема раствора, как в случае первичных стандартов. Для этой цели вполне пригодны технохимические весы и неточная мерная посуда (цилиндры, мензурки, градуированные пробирки).

Примером раствора, обладающего свойствами вторичного стандарта, является соляная кислота. Ее разбавленные растворы могут храниться длительное время, до 1-го месяца и более, без заметного изменения концентрации. Бура, используемая в протолитометрии для стандартизации HCl, относится к первичным стандартам и готовится по точной навеске. Тогда, как рабочий раствор NaOH – свойствами стандарта не обладает вообще и его концентрацию приходится устанавливать заново при каждом использовании.

И их применение в анализе

Последнее изменение этой страницы: 2017-01-19; Нарушение авторского права страницы

источник