Меню Рубрики

Анализ определения воды в нефти

Нефть и нефтепродукты содержатся в сточных водах нефтехимических и нефтеперерабатывающих производств, а также производств пестицидов, ПАВ и др. [1—4]. Многокомпонентный состав сточных вод нефтехимических производств затрудняет идентификацию отдельных компонентов и методы их обезвреживания. В настоящее время эти стоки классифицируют как мало- и многосернистые. Среднее содержание нефти и нефтепродуктов в сточных водах нефтеперерабатывающих заводов составляет 10 000 мг/л [5].

Пороговая концентрация по привкусу 0,1 мг/л [7]. Пороговая концентрация по запаху разных видов нефтепродуктов: бензин с добавкой нефти 0,00005, дизельное топливо 0,0005, деодорированный керосин 0,82, сырая нефть 0,1— 0,5, мазут 0,22—0,5, нефть очищенная 1,0—2,0 мг/л. В воде, содержащей 0,5 мг/л нефтепродуктов, мясо рыбы приобретает привкус нефти через 1 сут, 0,2 мг/л — через 3 сут, а 0,1 мг/л — через 10 сут [8]. Пороговая концентрация по запаху в мясе рыб 0,1 мг/л . При концентрации 0,25 мг/л мясо форели приобретает привкус через 24 ч, а при 1 мг/л — сразу [9].

Для теплокровных животных при приеме внутрь нефтепродукты малотоксичны. ЛД50 бензина для кроликов 28 350 мг/кг . Нефтяная пленка на поверхности воды пропитывает перья у перелетных птиц, они не могут взлететь и погибают.

Нефть и нефтепродукты относятся к числу трудноокисляемых органических веществ, как на очистных сооружениях канализации, так и в естественных условиях — в водоемах. Неочищенная нефть отличается высокой стабильностью, особенно при низкой температуре воды. В экспериментальных водоемах при низкой температуре воды сохраняет токсичность для водорослей 2 мес. [13]. Нефтепродукты, попавшие в водоем со сточными водами, подвергаются различным изменениям, постепенно опускаются на дно водоема. Бактериальное окисление нефтепродуктов на дне происходит примерно в 10 раз медленнее, чем на поверхности [14]. В водоемах примерно 40% нефти оседает на дне, 40% остается в воде в виде эмульсии и 20% — на поверхности в виде пленки. Нефтяная пленка даже толщиной 0,5 мм на поверхности водоемов затрудняет аэрацию воды, а нефть на дне образует донные отложения; в иле в местах спуска сточных вод обнаружено 3,5—22,0 % нефти [15]. Поэтому при изучении влияния на водоем сточных вод, содержащих нефть, необходимо отбирать не только среднюю пробу, но и отдельные ее фракции (поверхность, глубина примерно 10 см от поверхности, придонные слои и осадок).

Самоочищение водоемов от нефти происходит очень медленно. За 2,7 сут. содержание эмульгированных нефтепродуктов в воде снижалось при 20 °С на 40%, а при 5°С лишь на 15% [16]. В присутствии водной растительности в модельных опытах нефтяная пленка исчезала при ее толщине 0,06 см через 4—6 сут, а при 0,6 см — через 20—22 сут [17]. Следовательно, в водоемах нельзя рассчитывать на самоочищение от нефти. Эти процессы можно использовать лишь при доочистке в биологических прудах.

Нефтепродукты тормозят биологический процесс очистки сточных вод в аэротенках при 50 мг/л [18].

Определение в водных растворах: нефелометрия; весовой метод ;люминесцентный, ИК-спектрометрия, газохроматографический, автоматический метод [19].

Очистка сточных вод: механическая (решетки, отстойники, песколовки, нефтеловушки, песчаные фильтры), физико-химическая (нейтрализация, флотация, окисление кислородом воздуха и озоном, коагуляция), биологическая (аэротенки, аэрируемые пруды на 60 сут пребывания в них сточных вод, биологические фильтры [18, 21—23]. Эффективность очистки сточных вод от нефти на разных типах сооружений составила: нефтеловушки — 99,9%, через песок 50—87%, биофильтры — 47,5%, аэротенки — 53,4% [24]; окисление озоном [25]; биологическая очистка в аэротенках и биологических прудах (при малых концентрациях нефтепродуктов). Нефть и нефтепродукты разлагаются в аэробных условиях микроорганизмами; добавление к сточным водам минеральных солей, хозяйственно-фекальных вод, необходимых для жизнедеятельности микроорганизмов, подача воздуха способствуют более быстрому разложению остатков нефти и нефтепродуктов как на сооружениях биологической очистки в аэротенках, аэрофильтрах и биологических прудах, так и в небольшой степени в водоемах [26]. См. также [27, 28].

  1. Карелин Я. А., Жуков Д. Д., Денисов М. А. и др. Очистка производственных сточных вод (Опыт Ново-Горьковского нефтеперерабатывающего завода). М., Госстройиздат, 1970. 152 с.
  2. Хаскин С. А., Карш В. П. — В кн.: Очистка нефтеперерабатывающих сточных вод. М., 1973.
  3. Wilber Ch. — In: The Biological Aspects of Water Pollution. Springfield, 1969, p. 73.
  4. Грушко Д. AI., Кожова О. M., Мамонтова Л. М. — Гидробиологический журн., 1978, т. 14, № 2, с. 55.
  5. Монгайт И. Л., Родзиллер И. Д. — В кн.: Промышленные сточные воды. Вып. 5. М. Медгиз, 1960, с. 7.
  6. Sittig М. Environmental Sources and Emissions Handbook. Perk Ridge, New Jersey , London, England, 1975. 523 p.
  7. Гусев А. Г. — Журн. ВХО им. Д. И. Менделеева, 1972, т. 17, № 2, с. 134.
  8. Гусев А. Г. — В кн.: Производственные сточные воды. Вып. 5. М., Медгиз, 1960, с. 34
  9. Krishnaswatni S. К., Kupchatiko Е. Е. — J. Water Pollution Control Feder., 1969, v. 41, № 5, part 2, p. R189.
  10. Мосевич H. А., Гусева H. В., Драгулин M. Г. и dp. — В кн.: Известия ГосВНИОРХ, М., Пищепромиздат, 1952, т. 31, вып. 1, с. 41.
  11. Миронов О. Г. — Зоологич. журнал, 1969, т. 48, № 7, с. 980.
  12. Chipman W. A., Galisoff Р. S. Effects of Oil Mixed with Carbonized Sand on Aquatic Animals. Spec. Sci. Rep. Fisher. № 1, U. S. Fish, and Wildlife Service. Wash., 1949. 52 p
  13. Dickman M. — Artie. Kanad. Field-natur., 1971, v. 85, № 3, p. 249.
  14. Изъюрова А. И. — Гигиена и санитария, 1950, № 1, с. 9.
  15. Дадашев X.К., Григорян Э. В., Агамирова С. Н. Сокращение потерь нефтепродуктов с промышленными сточными водами нефтеперерабатывающих заводов. Баку, 1957. 138 с.
  16. Ломано Л. В., Майер Л. Н., Черепнева В. С. Материалы республиканского научно-технического совещания по изучению, комплексному использованию и охране водных ресурсов. Минск, 1965, с. 41.
  17. Морозов И. В., Петров Г. /7. — В кн.: Теория и практика биологического самоочищения загрязненных вод. М., Наука, 1972, с. 42.
  18. Жуков А. И., Демидов Л. Г., Монгайт И. Л. и др. — Канализация промышленных предприятий. Очистка промышленных сточных вод. М., Стройиздат, 1969. 370 с.
  19. Новиков Ю. В., Сайфутдинов М. М. — Гигиена и санитария, 1977, № 10, с. 60.
  20. Семенов А. Д., Страдомская А. Г., Павленко Л. Ф. — В кн.: Методы анализа природных и сточных вод. Сер. Проблемы аналитической химии, Т. 5. М., Наука, 1977, с. 220.
  21. Itieson Pachatn R. — In: Hepple P. (Ed.). Water Pollution by Oil. Proceed, by of Seminar held at Aviemor Invernes — Shiee, Scotland aponsored by the Institute of Water Pollution Control and the Institute of Petroleum, with the Assistance of Eur. Office of WHO, 4—8 May 1970. Amsterdam — London — New York, 1971, p. 143.
  22. Матвеев AI. C. — Химия и технология топлив и масел, 1962, № 8, с. 24.
  23. Рубинштейн С. Л., Хаскин С. А. Очистка сточных вод нефтеперерабатывающих заводов, М., ЦНИТЭНефтехим. Сер. «Нефтепереработка и нефтехимия», 1966. 85 с.
  24. Денисов М. А. Тезисы докладов конференции по методам очистки газовых выбросов и промстоков от вредных веществ. Дзержинск, 1967, с. 12.
  25. Меренищева Т. Н., Плехоткин В. Ф. Очистка промышленных сточных вод методов озонирования. Обзорная информация. Сер. «Прикладная химия», НИИТЭХим, М., 1974, 21 с.
  26. Карелин Я. А., Воробьева Г. И. — Химия и технология топлив и масел, 1957, № 10, с. 29.
  27. Немковский Б. Б., Злобина Г. П., Губанова И. Ф. — Гигиена и санитария, 1962, № 1, с. 61.
  28. Изъюрова А. И. — Там же, 1958, № 2, с. 72.
  29. Роговская Ц. И. — В кн.: Биохимический метод очистки производственных сточных вод. М., Стройиздат, 1967, с. 5.

источник

Нефтепродукты (НП) относятся к числу наиболее распространенных и опасных веществ, загрязняющих природные воды. Нефть и продукты ее переработки представляют собой сложную, непостоянную смесь предельных и непредельных углеводородов и их различных производных. Понятие «нефтепродукты» в гидрохимии условно ограничивается только углеводородной фракцией (алифатические, ароматические и ациклические), составляющей главную и наиболее характерную часть нефти и продуктов ее переработки. В международной практике содержание в воде нефтепродуктов определяется термином «углеводородный нефтяной индекс» (hydrocarbon oil index).

В связи с неблагоприятным воздействием нефтепродуктов на организм человека и животных, на биоценозы водоемов, контроль за содержанием нефтепродуктов в водах обязателен и регламентируется требованиями ГН 2.1.5.1315-03, ГН 2.1.5.2280-07, СанПиН 2.1.5.980-00, Приказом Росрыболовства от 18.01.2010 №20.

Предельно допустимые концентрации (ПДК) нефтепродуктов в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования 0,3 мг/дм3, в водах водных объектов рыбохозяйственного значения — 0,05 мг/дм3.

В настоящее время применяют методы определения содержания нефтепродуктов в воде, основанные на различных физических свойствах нефтепродуктов:

  1. Метод ИК-спектрофотометрии
  2. Гравиметрический метод
  3. Флуориметрический метод
  4. Метод газовой хроматографии.

Метод ИК-спектрофотометрии (ПНД Ф 14.1:2:4.168; МУК 4.1.1013-01, НДП 20.1:2:3.40-08) заключается в выделении эмульгированных и растворенных нефтяных компонентов из воды экстракцией четыреххлористым углеродом, хроматографическом отделении НП от сопутствующих органических соединений других классов на колонке, заполненной оксидом алюминия, и количественном их определении по интенсивности поглощения C-H связей в инфракрасной области спектра. Диапазон измеряемых концентраций: 0,02 – 2,00 мг/дм3. Погрешность методики при Р=0,95 ( ±δ, %): 25 – 50%.

Гравиметрический метод ( ПНД Ф 14.1:2.116-97) основан на извлечении нефтепродуктов из анализируемых вод органическим растворителем, отделении от полярных соединений других классов колоночной хроматографией на оксиде алюминия и количественном определении гравиметрическим методом. Диапазон измеряемых концентраций: 0,30 – 50,0 мг/дм3. Погрешность методики при Р=0,95 ( ±δ, %): 25 – 28% (для природных вод), 10 – 35% (для сточных вод).

Преимуществами этого метода определения НП являются высокая чувствительность и экспрессность анализа.

Методом газовой хроматографии (ГОСТ 31953-2012 ) определяют массовую концентрацию нефтепродуктов в питьевой воде, в том числе расфасованной в емкости, природной (поверхностной и подземной) воде, в том числе воде источников питьевого водоснабжения, а также в сточной воде с массовой концентрацией нефтепродуктов не менее 0,02 мг/дм3.

Метод основан на экстракционном извлечении нефтепродуктов из пробы воды экстрагентом, очистке экстракта от полярных соединений сорбентом, анализе полученного элюата на газовом хроматографе, суммировании площадей хроматографических пиков углеводородов в диапазоне времен удерживания равным и (или) более н-октана ( ) и расчете содержания нефтепродуктов в воде по установленной градуировочной зависимости. Этот метод позволяет определить не только общее содержание нефтепродуктов, но и проводить идентификацию состава нефтепродуктов. Погрешность методики при Р=0,95 ( ±δ, %): 25 – 50%.

В лаборатории АНО «Испытательный Центр «Нортест» измерение массовой концентрации нефтепродуктов в пробах природных, питьевых, сточных вод выполняется флуориметрическим и гравиметрическим методами анализа.

источник

Тема: Определение содержания воды в составе нефти

Раздел: «Физико-химические методы исследования углеводородных систем»

Цель работы: Изучение методики определения массовой доли воды в составе сырой нефти.

В составе сырой нефти присутствуют различные примеси: вода, соли, механические примеси, зола, а также минеральные кислоты и щелочи, которые во время ее переработки могут частично переходить в нефтепродукты. Наличие минеральных примесей усложняет переработку нефти и негативно сказывается на эксплуатационных свой­ствах нефтепродуктов.

Примеси свободных минеральных кислот или щелочей в нефте­продуктах, особенно при повышенной температуре, вызывают коррозию металлических частей машин, двигателей и трубопроводов. Кроме того, при наличии этих примесей уменьшается стойкость нефтепродуктов к окислению. Поэтому нефтяные масла, моторные и котельные топлива даже с ничтожными следами минеральных кислот или щелочей непригодны к использованию.

Для определения содержания воды используют качественные и количественные методы анализа.

Качественное испытание на воду (проба Клиффорда). Это испытание, служащее для определения наличия следов воды, не заметных для глаза может быть рекомендовано только для светлых нефтепродуктов (бензины, керосины, реактивные и дизельные топлива). Заключается оно в том, что испытуемый продукт, встряхивают в делительной воронке с порошком марганцевокислого калия. При наличии влаги образуется быстро исчезающая слабо-розовая окраска. Этот метод довольно чувствителен к наличию суспензированной воды и менее чувствителен к определению наличия растворенной воды.

Количественный метод определения содержания воды (способ Дина-Старка). Сущность метода состоит в нагревании пробы нефтепродукта с нерастворимым в воде растворителем, отгонке воды и растворителя от нефтепродукта с после­дующим их разделением в градуированном приемнике на два слоя и измерении объема сконденсированной воды.

Прибор для определения содержания воды состоит из колбы 2 (рис.1), приемника-ловушки 3 и холодильника 4. Приемник представ­ляет собой градуированную пробирку объемом 10 мл с конической нижней частью.

Рис.1. Установка для определения содержания воды в нефти:

1 – электроплита, 2 – колба, 3 – приемник-ловушка, 4 — водяной холодильник

Рис. 2. Функции манипулятора

Левая клавиша мыши (ЛКМ) — при нажатии берется объект или выполняется действие с объектом (можно взять бутыль с образцом, шланг, колбу, включить электроплиту и т. д.).

Средняя клавиша (2) — при прокрутке назад (на себя) сцена отдаляется, при прокрутке вперед (от себя) сцена приближается (нажатие не используется).

движение вправо — сцена движется вправо,

движение влево — сцена движется влево,

движение вверх — сцена движется вверх,

движение вниз — сцена движется вниз.

Правая клавиша (ПКМ) не используется

3.2 Лабораторное оборудование

Для проведения лабораторной работы необходимо следующее оборудование и реактивы:

— круглодонная колба объемом 200-250мл;

— шланги для соединения холодильника и крана;

— штативы для крепления колбы и холодильника;

— растворитель (изопропиловый спирт);

Справа находится кнопка вызова меню (рис. 4 и рис. 5), в котором можно увидеть кнопки вызова инструментов, используемых в данной лабораторной работе (приемник-ловушка), кнопки управления (пауза, перезапуск) и окошки с необходимыми данными.

4. ПОРЯДОК ПРОВЕДЕНИЯ РАБОТЫ

Цель работы: Изучение методики количественного определения содержания воды в сырой нефти.

1. Взять круглодонную колбу (нажать на нее ЛКМ) и закрепить ее в штативе (нажать на нее еще раз)

2. Залить 50-100 мл испытуемой нефти в круглодонную колбу (количество залитой нефти отображается в боковом меню), добавить в колбу 10 мл растворителя (изопропиловый спирт), опустить в колбу кусочек пемзы (кипелку).

3. Собрать установку (рис.1): присоединить ловушку к круглодонной колбе; установить холодильник, подключить шланги.

4. Включить нагреватель и отрегулировать нагрев так, чтобы в приемник-ловушку стекали 2-4 капли конденсата в секунду (при нажатии на выключатель плитки интенсивность нагрева увеличивается).

5. Начать эксперимент. Если в нефти (нефтепродукте) есть вода, то процессе перегонки она испаряется вместе с растворителем. При этом ловушка постепенно наполняется испаряющейся вместе с растворителем водой, а слой в ловушке вследствие разности плотностей спирта и воды разделяется на две части – нижний вода, верхний – растворитель. При заполнении ловушки излишки растворителя будут перетекать обратно в колбу, а количество воды (нижний слой) продолжает нарастать. Эксперимент прекращают, когда количе­ство воды в ловушке перестанет увеличиваться.

6. После отгонки приемник-ловушку поместить на 1,5-2 мин в холодную воду (цилиндрическую емкость с водой) с температурой 20-250С для разделения на 2 слоя: нижний – вода, верхний — растворитель (для переноса ловушки в воду нажать на нее ЛКМ, установка разбирается автоматически).

7. Измерить количество воды (мл) в ловушке и занести результат в таблицу экспериментальных данных (табл.1).

Обработка экспериментальных данных

1. Рассчитать массовую долю воды Хмасс (в %) по формуле:

V — объем воды в приемнике – ловушке (мл);

V1 – объем нефти взятой для исследования (мл);

ρ – относительная плотность нефти при температуре отбора пробы нефти.

Результат занести в табл.1.

2. Рассчитать содержание воды в объемных процентах (Хоб) по формуле:

Результат занести в табл.1

3. Сравнить полученные данные с приведенными в справочной таблице (приложение 1) данными и сделать вывод о группе нефти по степени подготовки (по содержанию воды)

источник

Необходимость осуществления контроля оборота нефтепродуктов и предотвращения их попадания в почву и водоёмы обусловлена высокой токсичностью этих веществ. В связи с этим, большое значение имеют мероприятия, направленные на определение нефтепродуктов в сточных водах, сброс которых производят промышленные предприятия.

Нефть является многокомпонентным энергоносителем, в состав которого входят вещества как органического, так и минерального происхождения. Полициклические ароматические углеводороды (ПАВ), входящие в состав нефтепродуктов, относятся к высокотоксичным веществам. Отдельные их представители, в частности антрацен, овален и бензпирен (называемый также бензапиреном) обладают канцерогенными свойствами, а также способствуют мутации генов.

Неблагоприятное воздействие на окружающую среду оказывают и другие соединения, входящие в состав продуктов нефти. Этим объясняется необходимость контроля фактической концентрации нефтепродуктов в воде, а также нормирования этой величины, осуществляемых на государственном уровне. Законодательными актами Российской Федерации установлены нормативы предельно допустимых концентраций (ПДК) содержания нефти и её производных в воде различного назначения.

В соответствии с федеральным законом №7 — ФЗ от 10.01.2002 г. «Об охране окружающей среды», субъекты, допустившие превышение предельно разрешённой нормы воздействия на окружающую среду, несут ответственность в зависимости от причинённого природе ущерба, которая может иметь следующие формы:

  • начисление платы за негативное воздействие на окружающую среду;
  • привлечение к административной ответственности, влекущей за собой наложение штрафов на физических и юридических лиц;
  • ограничение, приостановка или полный запрет деятельности хозяйствующих субъектов, наносящих урон экологии.

Обозначенные выше обстоятельства вынуждают хозяйствующие субъекты, вне зависимости от формы собственности, самостоятельно осуществлять наблюдение за промышленными стоками, используя при этом имеющиеся научно – технические достижения в этой области. Наиболее перспективными представляются появившиеся на рынке информационно – измерительные системы, предназначенные для организации непрерывного контроля вредных выбросов (в том числе продуктов нефтепереработки), содержащихся в сточных водах.

Читайте также:  Анализ промывных вод на мбт

Технология контроля наличия в воде нефти и продуктов её переработки в настоящее время преимущественно заключается в периодическом отборе проб воды для последующего проведения лабораторного анализа. Анализ проводится по одному из следующих методов:

  • метод инфракрасной спектрофотометрии;
  • гравиметрический метод;
  • газовая хроматография;
  • флуориметрический метод.

При использовании любого из этих методов в лабораторных условиях, вначале производится извлечение (экстракция) нефтепродукта из пробы. Для этого используются специальные химические вещества – экстрагенты. Так, при анализе фотометрическим методом применяют четырёххлористый углерод, а также физико — химический способ с применением колонки, заполненной оксидом алюминия. Применяя гравиметрический метод, используют органический растворитель и колонку на оксиде алюминия. При проведении анализа флуориметрическим методом, экстрагентом служит гексан.

После выделения нефтепродуктов, исследование в рамках фотометрического способа, проба подвергается спектральному (спектрофотометрическому) анализу, основанному на поглощении нефтяными углеводородами отдельных частей инфракрасного спектра, которым облучается проба. Гравиметрический метод сводится к простому взвешиванию выделенного из пробы нефтепродукта. Газовая хроматография сопровождается использованием вспомогательного газа – носителя, с помощью которого исследуемая проба поступает в специальную газовую хроматографическую колонку.

Технология контроля, сводящаяся к периодическому, пусть даже достаточно частому отбору проб для анализа, страдает явным несовершенством. По сути, это всего лишь точечный контроль, не обеспечивающий объективной картины. Внедрение системы, обеспечивающей постоянный мониторинг сброса нефтепродуктов, позволяет предприятию следить за содержанием сбросов, а также осуществлять планирование и проведение различных мероприятий, направленных на выполнение требований законодательства Российской Федерации в области экологии.

Из всех методов, применяющихся ныне для определения массовой концентрации нефтепродуктов в воде, флуориметрический анализ более всего пригоден для осуществления постоянного контроля этой величины в режиме online. Используемая в нём методика заслуживает более широкого освещения ввиду появления приборов, функционирующих на её основе и поднимающих решение проблемы контроля на качественно новый уровень. Особенностью этой методики является использование излучения ультрафиолетового спектра, в отличие от фотометрического анализа, при котором применяется инфракрасное излучение.

Метод флуоресценции или флуориметрический метод определения массовой концентрации нефтепродуктов в воде основан на особых свойствах полициклических ароматических углеводородов (ПАУ). В природе данные соединения образуются в результате пиролиза целлюлозы, поэтому содержатся в месторождениях углеводородных ископаемых – угольных, газовых и нефтяных, что делает очень удобным использовать их в качестве маркера присутствия нефтепродуктов в воде. ПАУ относятся к классу органических соединений, молекулярное строение которых характеризуется наличием конденсированных бензольных колец.

Флуоресцентные свойства ПАУ заключаются в следующем. При воздействии на эти вещества излучения определённых длин волн ультрафиолетового спектра, атомы ПАУ, подвергшиеся фотонной бомбардировке УФ – излучения и получившие при этом избыточную энергию, начинают генерировать световое излучение более низкой частоты, то есть, обладающее большей длиной волны по сравнению с исходным излучением. Свечение облучаемого таким методом вещества называется флуоресценцией. Данный процесс обусловлен тем, что электроны облучаемого вещества, получая избыточную энергию, совершают переход на более высокий энергетический уровень с последующим возвратом на старую орбиту. Переход из одного состояния в другое сопровождается выбросом высвобождаемой энергии, выделяемой в форме светового излучения. Этот процесс не прекращается, пока вещество продолжает подвергаться облучению. Интенсивность флуоресцентного свечения пропорциональна массе облучаемого ультрафиолетом вещества, что и позволяет использовать этот метод для количественного анализа флуоресцирующих соединений.

Практическая реализация флуориметрической технологии анализа воды воплотилась в создании специального погружного флуоресцентного датчика концентрации нефтепродуктов в воде. Это устройство предназначено для стационарного размещения в контролируемом потоке. Датчик предназначен для работы в составе информационно – измерительной системы, контролирующей состояние объекта по различным параметрам, для чего используются датчики, измеряющие различные величины. Такие системы могут иметь самое широкое применение в различных областях.

В качестве примера рассмотрим сенсор для определения массовой доли нефтепродуктов в воде Art. no. 461 6750 по каталогу GO Systemelektronik. Датчик представляет собой тонкий цилиндр, корпус которого изготовлен из нержавеющей стали марки AISI 316. Добавки молибдена, присутствующие в этом материале повышают его коррозионную стойкость, позволяя изделию работать в особо агрессивных средах. Рабочей стороной датчика, предназначенного для измерения массовой концентрации нефтепродуктов сточных вод, является его торцевая поверхность, на которой расположено прозрачное измерительное окно.

Источником ультрафиолетового излучения с длиной волны 285 нанометров служит установленная внутри датчика специальная ксеноновая лампа. Приёмный фотодиод фиксирует люминесцентное излучение, которое генерируют атомы ПАУ, имеющее длину волны 325 – 375 нанометров. Прибор обладает высокой чувствительностью, нижняя граница определения массовой доли нефтепродукта данным методом равна 3 ppm, что составляет 3 миллионные доли (!) искомого вещества в общей массе. При этом, прибор является очень точным, погрешность измерения в процессе анализа составляет 2%. Длина датчика равна 109 мм, диаметр – 22,2 мм, его вес – 160 г. Опционально датчик комплектуется системой очистки измерительного окна сжатым воздухом.

Монтаж датчика в напорном трубопроводе

Оборудование немецкой компании GO Systemelektronik позволяет создавать системы измерения и контроля различной архитектуры и функционального назначения. Кроме сенсора массовой доли нефти в воде, компанией производится линейка датчиков, служащих для измерения pH контролируемой среды, её температуры, электрической проводимости, содержания кислорода, различных органических компонентов и других параметров.

Отдельные датчики, осуществляющие функции определения содержания нефтепродуктов в воде, а также сенсоры другого назначения, либо их группы, могут иметь следующие варианты подключения:

  • к блоку BlueSense Module;
  • к блоку BlueSense Transducer;
  • к автономному радиомодулю.

Модуль BlueSense Module выполняет следующие функции:

  • осуществляет приём сигналов присоединённых к нему датчиков;
  • преобразует значение измеренной сенсором величины в аналоговый токовый сигнал в диапазоне от 4 до 20 мА;
  • передаёт данные измерений по мультиплексной высокоскоростной линии связи CAN-bus в блок BlueBox;
  • производит включение сигнальных реле при снижении неких контролируемых величин ниже установленного предела, либо достижении ими значений более величины верхнего предела (в зависимости от настройки).

BlueSense BlueBox

Схожими функциями обладает BlueSense Transducer (преобразователь):

  • получает данные от подключенных измерительных датчиков;
  • отображает значения измеренных в процессе анализа величин;
  • осуществляет преобразование данных в аналоговую величину;
  • передачу информации блоку BlueBox.

Кроме этого, BlueSense Transducer имеет ряд функций, недоступных BlueSense Module:

  • возможность передачи данных в удалённую сеть посредством имеющихся интерфейсов RS-232, RS-485 или Profibus ® ;
  • запись и сохранение результатов измерений на карте памяти формата SD;
  • конвертация данных датчика проводимости, определяющего содержание соли в воде;
  • управление двумя встроенными реле контроля уровня;
  • также имеется возможность выполнения специфических задач, задаваемых пользователем системы.

BlueSense Transducer

Для подключения датчиков определения нефтепродуктов, либо других, расположенных в местах, куда трудно или нецелесообразно проводить кабельные линии, предусмотрено наличие специального радиомодуля, представляющего собой передатчик, работающий с использованием стандарта связи IEEE 802.15.4 на частоте 2,4 гигагерц. Радиомодуль обеспечивает передачу измеренных датчиками величин базовой радиостанции на расстояние до 4 километров, в зависимости от характера местности.

Радиомодуль

Передатчик размещён в корпусе из термостойкого пластика размерами (ДxШxВ): 160 мм x 60 мм x 90 мм, оснащён наружной антенной. Степень защиты корпуса — IP66. Срок службы аккумуляторных батарей, обеспечивающих автономное питание устройства, зависит от выбранного режима работы передатчика. При установке интервала связи 2 минуты (то есть, пересылка данных осуществляется каждые 2 минуты), ёмкости батареи хватает на 3 месяца работы. При выборе максимального интервала, равного 60 минут, работоспособность батареи сохраняется более 1 года. Установка режима связи осуществляется методом конфигурирования программного обеспечения, установленного в блоке BlueBox, куда и передаются данные измерений. Базовая радиостанция способна поддерживать связь с 16 сенсорными радиомодулями.

источник

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

(Измененная редакция, Изм. № 3)

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ

Настоящий стандарт устанавливает метод определения воды в нефти, жидких нефтепродуктах, пластичных смазках, парафинах, церезинах, восках, гудронах и битумах.

Сущность метода состоит в нагревании пробы нефтепродукта с нерастворимым в воде растворителем и измерении объема сконденсированной воды.

Стандарт не распространяется на битумные эмульсии.

(Измененная редакция, Изм. № 1, 2).

1. АППАРАТУРА, РЕАКТИВЫ И МАТЕРИАЛЫ

1.1. При количественном определении содержания воды в нефтепродуктах применяются следующая аппаратура, реактивы и материалы:

аппарат для количественного определения содержания воды в нефтяных, пищевых и других продуктах (черт. 1).

Допускается применять колбы типа К-1-500-29/32 ТС, К-1-1000-29/32 ТС, К-1-2000-45/40 ТС с переходом П1-2-45/40-29/32 ТС по ГОСТ 25336 или металлический дистилляционный сосуд вместимостью 500, 1000, 2000 см 3 (черт. 2);

1 — холодильник водный; 2 — приемник-ловушка; 3 — сосуд дистилляционный; 4 — горелка газовая

со шкалой 25 см 3 (при ожидаемом содержании воды более 25 см 3 ), оснащенный запорным краном;

со шкалой 10 см 3 и 2 см 3 ;

приемник-ловушка со шкалой 5 см 3 , с ценой деления 0,1 см 3 и погрешностью не более 0,05 см 3 ;

чашка фарфоровая № 4 или 5 по ГОСТ 9147 ;

цилиндр измерительный номинальной вместимостью 100 см 3 по ГОСТ 1770 ;

горелка газовая или электрическое нагревательное устройство.

Для металлического дистилляционного сосуда применяют круговую газовую горелку с отверстиями по внутренней окружности. Размеры горелки должны позволять ее перемещение вверх и вниз вдоль дистилляционного сосуда во время испытания продуктов, склонных к пенообразованию или застыванию в дистилляционном сосуде;

холодильник типа ХПТ с длиной кожуха не менее 300 мм по ГОСТ 25336 ;

палочка стеклянная длиной около 500 мм с резиновым наконечником или металлическая проволока такой же длины с утолщением на конце;

растворители безводные углеводородные:

— толуол по ГОСТ 5789-78 или толуол нефтяной по ГОСТ 14710-78;

— ксилол нефтяной по ГОСТ 9410-78;

— изооктаны эталонные по ГОСТ 12433-83 или изооктан технический по ГОСТ 4095-75;

— бензин-растворитель для резиновой промышленности — нефрас С2-80/120;

— нефтяные дистилляты с пределами кипения от 100 до 200 °С и от 100 до 140°С;

Допускается применять реактивы квалификации не ниже указанной в настоящем стандарте.

(Измененная редакция, Изм. № 1, 2).

(Измененная редакция, Изм. № 3)

2.1. Отбор и подготовка проб — по ГОСТ 2517 со следующими дополнениями:

пробу испытуемого жидкого нефтепродукта хорошо перемешивают пятиминутным встряхиванием в склянке, заполненной не более чем на 3 /4 емкости. Вязкие и парафинистые нефтепродукты предварительно нагревают до 40-50 ºС.

(Измененная редакция, Изм. № 1).

2.2. С поверхности образца испытуемой смазки шпателем снимают и отбрасывают верхний слой не менее 10 мм, затем в нескольких местах (не менее трех) не вблизи стенок сосуда берут пробы примерно в равных количествах. Пробы складывают вместе в фарфоровую чашку и тщательно перемешивают.

2.3. Испытуемые образцы парафина, церезина, восковых составов и битума (взятые из разных мест) нарезают в мелкую стружку. Хрупкие, твердые пробы дробят и тщательно перемешивают.

2.4. Дистилляционный сосуд, приемник-ловушку и внутреннюю трубку холодильника промывают последовательно нефрасом, ацетоном, водопроводной водой, ополаскивают дистиллированной водой и сушат. При загрязнении стеклянные части прибора промывают хромовой смесью, водопроводной водой, ополаскивают дистиллированной водой и сушат.

В дистилляционную колбу вводят 100 см 3 или 100 г пробы с погрешностью не более 1 %. При применении приемника-ловушки со шкалой 10 см 3 количество испытуемого образца (в зависимости от содержания воды) уменьшают так, чтобы объем воды, собравшейся в приемнике-ловушке, не превышал 10 см 3 .

Затем цилиндром отмеривают в колбу 100 см 3 растворителя в соответствии с табл. 1 , тщательно перемешивают содержимое колбы до полного растворения испытуемого нефтепродукта и прибавляют в колбу несколько кусочков неглазурованного фаянса или фарфора, или несколько капилляров, или 1-2 г олеина, или несколько капель силиконовой жидкости.

Маловязкие нефтепродукты (керосин, дизельное топливо) допускается брать в колбу по объему.

В этом случае отмеряют цилиндром 100 см 3 испытуемого продукта и выливают в колбу. Продукт смывают со стенок цилиндра в колбу однократно 50 см 3 растворителя и два раза по 25 см 3 .

Для нефтепродуктов с низким содержанием воды количество растворителя может превышать 100 см 3 . Навеска нефтепродукта в граммах при этом будет равна произведению его объема на плотность в г/см 3 .

(Измененная редакция, Изм. № 1, 2).

(Измененная редакция, Изм. № 3)

Битумы, битуминозные нефти, асфальты, гудроны, тяжелые остаточные котельные топлива

Нефтяной дистиллят с пределами кипения от 100 до 200 °С или от 100 до 140 °С; толуол или ксилол

Нефть, жидкие битумы, мазуты, смазочные масла, нефтяные сульфонаты и другие нефтепродукты

Нефтяной дистиллят с пределами кипения от 100 до 140 °С или изооктан, или нефрас

(Измененная редакция, Изм. № 3)

2.5. Аппаратуру собирают так, чтобы обеспечить герметичность всех соединений и исключить утечку пара и проникание посторонней влаги.

Вместимость дистилляционного сосуда и приемника-ловушки выбирают в зависимости от предполагаемого содержания воды в пробе.

При использовании металлического дистилляционного сосуда со сменной крышкой между корпусом дистилляционного сосуда и его крышкой должна быть прокладка или твердая, пропитанная растворителем, бумага.

Верхний конец холодильника закрывают неплотным ватным тампоном во избежание конденсации атмосферной влаги внутри трубки холодильника. Включают приток холодной воды в кожух холодильника.

Узкогорлую колбу 1 (см. чертеж 1) соединяют непосредственно при помощи шлифа, а широкогорлую при помощи перехода и шлифов с отводной трубкой чистого и сухого приемника-ловушки 2. К приемнику-ловушке присоединяют при помощи шлифа прочищенный ватой холодильник 3.

При отсутствии аппарата с нормальными шлифами соединения производят посредством корковых пробок. В этом случае срезанный конец отводной трубки приемника-ловушки должен опускаться в колбу на 1-20 мм, а нижний край косо срезанного конца трубки холодильника должен находиться против середины отводной трубки. Во избежание пропуска паров корковые пробки заливают коллодиумом.

2.6. При резкой разнице между температурой в комнате и температурой воды, поступающей в холодильник, верхний конец трубки холодильника следует закрывать ватой во избежание конденсации атмосферной влаги внутри трубки холодильника.

2.3-2.6. (Измененная редакция, Изм. № 1).

3.1. Включают нагреватель, содержимое колбы доводят до кипения и далее нагревают так, чтобы скорость конденсации дистиллята в приемник была от 2 до 5 капель в 1 с.

Металлический дистилляционный сосуд нагревают при положении горелки около 75 мм под дном дистилляционного сосуда. Горелку постепенно поднимают и следят за скоростью дистилляции, которая не должна превышать 5 капель в 1 с.

Если в процессе дистилляции происходит неустойчивое каплеобразование, то увеличивают скорость дистилляции или останавливают на несколько минут приток охлаждающей воды в холодильник.

(Измененная редакция, Изм. № 1).

3.2. Если под конец перегонки в трубке холодильника задерживаются капли воды, то их смывают растворителем, увеличив для этого на непродолжительное время интенсивность кипячения.

3.3. Перегонку прекращают, как только объем воды в приемнике-ловушке не будет увеличиваться и верхний слой растворителя станет совершенно прозрачным. Время перегонки должно быть не менее 30 и не более 60 мин.

Оставшиеся на стенках трубки холодильника капельки воды сталкивают в приемник-ловушку стеклянной палочкой или металлической проволокой.

3.4. После того, как колба охладится, а растворитель и вода в приемнике-ловушке примут температуру воздуха в комнате, аппарат разбирают и сталкивают стеклянной палочкой или проволокой капельки воды со стенок приемника-ловушки.

Если в приемнике-ловушке со шкалой 25 см 3 собралось более 25 см 3 воды, то излишки выпускают в градуированную пробирку.

Если в приемнике-ловушке собралось небольшое количество воды (до 0,3 см 3 ) и растворитель мутен, то приемник-ловушку помешают на 20-30 мин в горячую воду для осветления и снова охлаждают до комнатной температуры.

Затем записывают объем воды, собравшейся в приемнике-ловушке, с точностью до одного верхнего деления занимаемой водой части приемника-ловушки.

(Измененная редакция, Изм. № 1).

4.1. Массовую ( Х) или объемную ( Х1) долю воды в процентах вычисляют по формулам

где V — объем воды в приемнике-ловушке, см 3 ;

Примечание . Для упрощения вычисления плотность воды при комнатной температуре принимают за 1 г/см 3 , а числовое значение объема воды в см 3 — за числовое значение массы воды в г; при массе нефтепродукта (100±0,1) г за массовую долю воды принимают объем воды, собравшейся в приемнике-ловушке, в см 3 .

(Измененная редакция, Изм. № 1, 2).

4.2. За результат испытания принимают среднее арифметическое результатов двух определений.

Результат испытания округляют с точностью до 0,1 %.

(Измененная редакция, Изм. № 2).

4.3. Объем воды в приемнике-ловушке 0,03 см 3 и меньше считается следами.

Отсутствие воды в испытуемом нефтепродукте определяется состоянием, при котором в нижней части приемника-ловушки не видно капель воды.

В сомнительных случаях наличие воды проверяется методом потрескивания. Для этого испытуемый нефтепродукт (кроме дизельного топлива) нагревают до 150 ºС в пробирке, помещенной в масляную баню. При этом отсутствием поды считается случай, когда не слышно потрескивания.

При испытании дизельных топлив 10 см 3 испытуемого продукта при температуре окружающей среды наливают в сухую пробирку вместимостью 25 см 3 и осторожно нагревают на спиртовке. Отсутствием воды считается случай, когда не слышно потрескивания; при однократном потрескивании испытание повторяют. При повторном испытании дизельного топлива даже однократное потрескивание свидетельствует о присутствии воды.

(Измененная редакция, Изм. № 2).

(Измененная редакция, Изм. № 3)

4.4. Точность метода при использовании приемника-ловушки 10 и 25 см 3 .

(Измененная редакция, Изм. № 1).

Два результата определений, полученные одним исполнителем, признаются достоверными (с 95 %-ной доверительной вероятностью), если расхождение между ними не превышает:

0,1 см 3 — при объеме воды, меньшем или равном 1,0 см 3 ;

0,1 см 3 или 2 % от среднего значения объема (в зависимости от тог o , какая из этих величин больше) — при объеме воды более 1,0 см 3 .

Два результата испытаний, полученные в двух разных лабораториях, признаются достоверными (с 95 %-ной доверительной вероятностью), если расхождение между ними не превышает:

Читайте также:  Анализ промышленных и сточных вод

0,2 см 3 — при объеме воды, меньшем или равном 1,0 см 3 ;

0,2 см 3 или 10 % от среднего значения объема (в зависимости от того, какая из этих величин больше) — при объеме воды свыше 1,0 см 3 до 10 см 3 ;

5 % от величины среднего результата — при объеме воды более 10 см 3 .

4.4.1, 4.4.2. (Измененная редакция, Изм. № 2).

1 . РАЗРАБОТАН И ВНЕСЕН Министерством нефтеперерабатывающей и нефтехимической промышленности СССР

Е.М. Никоноров , д-р хим. наук; В.В. Булатников, канд. техн. наук; В.Л. Милованов, канд. техн. наук; И.Е. Жалнин (руководители темы); Т.Г. Скрябина, канд. техн. наук; Л.А. Садовникова, канд. техн. наук; Л.Г. Нехамкина, канд. хим. наук; Т.В. Еремина

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Государственным комитетом стандартов, мер и измерительных приборов СССР от 26.06.65

4 . ВЗАМЕН ГОСТ 1044-41 и ГОСТ 2477-44

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

источник

При добыче нефти ее сопровождают пластовые воды с растворенными в ней солями (хлоридами, сульфатами, карбонатами). Содержание воды и солей в нефти колеблется в широких пределах в зависимости от условий залегания, методов разработки и способов добычи нефти. Обводненность добываемого потока может достигать 80-90%. Минерализованная вода присутствует в нефти в виде эмульгированных глобул, образующих, в основном, нефтяную эмульсию обратного типа «вода в нефти». Нефтяная эмульсия стабилизируется прочными адсорбционными пленками на границе раздела фаз нефть-вода, которые являются физическим барьером для контакта между диспергированными глобулами воды, препятствуют их слиянию (коалесценции) и осаждению (седиментации). Этот барьер создают природные стабилизаторы (эмульгаторы) — различные высокомолекулярные компоненты нефти и примеси. Это такие полярные вещества, как смолы, асфальтены, соли нафтеновых кислот, а также твердые, тугоплавкие парафины и различные механические примеси (глина, ил, кварцевый песок, нерастворимые в воде соли, окислы железа (II, III), сульфид железа и др.).

Обводненные нефти вызывают ряд трудностей и осложнений в работе технологического оборудования: это коррозия трубопроводов, резервуаров, насосов; повышение вязкости и возрастание энергозатрат при перекачке такой нефти; нарушение режима атмосферной перегонки нефти. Во избежание этого разработаны различные методы и способы обезвоживания нефтей. Наиболее простым и эффективным является разрушение эмульсии термохимическим методом с помощью деэмульгаторов – поверхностно-активных веществ различных классов и типов. Согласно общепринятой теории П.А. Ребиндера, действием деэмульгатора ослабляется структурно-механическая прочность адсорбционных слоев, состоящих из природных эмульгаторов. Применение оптимальных дозировок деэмульгатора в сочетании с нагревом эмульсии за счет снижения вязкости эмульсии позволяет интенсифицировать процессы обезвоживания и обессоливания нефтей и провести их наиболее полно. Подробнее об этом, а также о методике лабораторного деэмульгирования нефти можно узнать в [2-4].

Согласно ГОСТ 51858-2002, подготавливаемая к дальнейшей переработке нефть должна иметь характеристики, указанные в таблицах 2 и 3 Приложения 1.

Методика определения содержания воды в нефти методом Дина-Старка.

Метод основан на отделении воды от нефти за счет азеотропной перегонки. Азеотропная перегонка представляет собой процесс ректификации в присутствии растворителя, который является наиболее летучим компонентом смеси. Растворитель выбирается таким, чтобы увеличить относительную летучесть тех компонентов, которые должны быть удалены.

В случае работы по определению остаточной воды в нефти в качестве растворителя, удаляющего воду, выступает легкокипящая фракция деароматизированного бензина. Некоторые углеводороды, находящиеся в бензине, такие как пентан, гексан, гептан, октан, позволяют выделять воду из нефти при температурах меньших, чем это необходимо для кипения воды. К примеру, азеотропная смесь гептана и воды в соотношении 87/13 выкипает при температуре 79,2 0 С, тогда как их температуры кипения составляют 98,4 и 100 0 С.

Ранее, при действии ГОСТа 443-76 использовался бензин марок «Калоша» («Галоша»). В настоящее время он идет под наименованием Нефрас С2-80/120. В целом, может быть использована легкая фракция прямогонного бензина.

Следует отметить, что доверительные результаты метод Дина-Старка дает при анализе остаточной воды. Применение его для определения содержания воды в эмульсии достаточно спорно, так как результат, зачастую, оказывается серьезно занижен.

Пробу нефти предварительно хорошо перемешивают. Затем в круглодонную колбу (рис. 1) емкостью 0,5 л берут навеску нефти в количестве 100 г (с точностью до 0,02 г), наливают в колбу 100 мл прямогонного бензина, добавляют «кипелки» (кусочки фарфора или керамики) и собирают прибор Дина-Старка (рис. 1.). Вся используемая посуда (колба, ловушка-приемник, обратный холодильник) должна быть чистой и сухой. Нагревание колбы с нефтью осуществляют с помощью электронагревательного прибора так, чтобы из холодильника в ловушку стекало по 2-4 капли в секунду сконденсированной азеотропной смеси воды с растворителем.

В процессе перегонки ловушка полностью заполняется и бензин начинает переливаться обратно в перегонную колбу. Вода же постепенно накапливается в нижней части ловушки. Перегонку ведут до тех пор, пока объем воды в ловушке не перестанет изменяться (от 30-ти 60-ти минут).

Рисунок 1 — Прибор Дина-Старка:

Содержание воды в нефти (в % мас.) определяют по формуле:

, (1)

где V – объем воды в ловушке, мл;

— плотность воды, г/см 3 ;

Внимание! При проведении работы существует возможность возгорания установки. Если выставлен чрезмерно мощный уровень нагрева колбы, то образуется большой объем паров, проходящих через холодильник. Эти пары препятствуют обратному течению конденсата в ловушку, в результате чего конденсат накапливается в холодильнике и через некоторое время переливается через его верх на электрическую плитку. Поэтому всегда следует следить на ходом перегонки и уровнем нагрева смеси.

Дата добавления: 2016-03-22 ; просмотров: 1037 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Содержание воды в нефтях и нефтепродуктах

Диапазон содержания воды в нефтях весьма широк и может изменяться от десятых долей до 60 % и более.

Содержащаяся в нефтях вода может быть в трех формах: растворенная, диспергированная и свободная. Содержание растворенной воды зависит в основном от химического состава нефти и нефтепродуктов и температуры. С повышением температуры растворимость воды увеличивается во всех углеводородах. Наибольшей растворяющей способностью по отношению к воде обладают ароматические углеводороды. Чем выше содержание в нефти ароматических углеводородов, тем выше в ней растворимость воды.

При снижении температуры растворимость воды в нефти и нефтепродуктах уменьшается и вода может выделяться в виде дисперсных частиц, образуя водонефтяные эмульсии. В монодисперсных эмульсиях содержание воды может доходить до 74;%. В реальных условиях водонефтяные эмульсии являются полидисперсными. В нефтях, поступающих со сборных пунктов на установки обезвоживания и обессоливания, размеры глобул воды находятся в пределах от 3—5 до 7—10 мкм. Эти размеры зависят от гидродинамических и других условий добычи нефти, а также степени обводненности пласта. Размеры глобул в течение года для одной и той же скважины могут меняться в пределах 5—12 мкм. Содержание воды в нефти может доходить до 97 %, однако большинство нефтей образуют с водой достаточно устойчивые эмульсии с содержанием воды не более 60 %. Остальная часть воды находится в свободном состоянии и легко отстаивается.

Важным показателем нефтяных эмульсий является их устойчивость, т.е. способность в течение длительного времени не разрушаться. Агрегативная устойчивость нефтяных эмульсий измеряется продолжительностью их существования и для различных нефтяных эмульсий колеблется от нескольких секунд до нескольких часов и даже месяцев. Устойчивость водонефтяных эмульсий зависит от ряда факторов, в том числе от наличия в них веществ, называемых эмульгаторами. Эти вещества, адсорбируясь на поверхности раздела фаз, снижают межфазное поверхностное натяжение и таким образом повышают ее устойчивость. Известны десятки подобных веществ, содержащихся в нефтях. Большая их часть принадлежит к классу поверхностно-активных веществ. Такими компонентами нефти являются различные нефтяные кислоты, смолистые соединения.

В процессе образования и стабилизации водонефтяных эмульсий наряду с поверхностно-активными веществами важную роль играют тонкодисперсные нерастворимые твердые продукты, находящиеся в нефти в коллоидном состоянии.

К ним относятся асфальтены, микрокристаллы парафина, сульфид железа и другие механические примеси. Эти продукты образуют на поверхности капель механически прочные оболочки, препятствующие их коалесценции.

Стабилизация водонефтяных эмульсий определяется закономерностями адсорбции на поверхности капель различных эмульгирующих веществ. Вначале этот процесс идет быстро, а затем, по мере заполнения свободной поверхности капель, постепенно затухает и скорость его стремится к нулю. В этот период состав и структура бронирующих оболочек стабилизируются. Время, необходимое для такой стабилизации, называется временем старения эмульсии. Время старения эмульсии зависит от многих факторов и для большинства нефтей СССР изменяется от двух-трех до десятков часов. Во время старения повышается и устойчивость эмульсий к расслоению.

Стойкость эмульсий существенно зависит от фракционного состава нефтей. Чем больше содержание в нефти светлых фракций, тем менее устойчивы водонефтяные эмульсии, так как при этом увеличивается разность плотностей воды и нефти. Эмульсии высоковязких нефтей имеют более высокую стойкость, так как более высокая вязкость дисперсной среды препятствует столкновению частиц воды и их укрупнению, т. е. коалесценции.

Повышение концентрации солей в пластовой воде, которая образует с нефтью водонефтяную эмульсию, приводит к уменьшению стойкости эмульсии, так как в этом случае возрастает разность плотности воды и нефти.

В нефтепродуктах содержание воды значительно меньше, чем в нефтях. Большинство нефтепродуктов по отношению к воде обладает очень низкой растворяющей способностью. Кроме того, нефтяные дистиллятные топлива обладают и меньшей, чем нефть, эмульгирующей способностью, так как в процессе переработки удаляется значительная часть смолистых веществ, нафтеновых кислот и их солей, серосодержащих соединений, которые, как сказано выше, играют роль эмульгаторов.

Наличие воды в моторных топливах, смазочных маслах крайне нежелательно. Содержание воды в смазочных маслах усиливает их склонность к окислению и ускоряет коррозию металлических поверхностей, соприкасающихся с маслом. Присутствие воды в моторных топливах может привести при низких температурах к прекращению подачи топлива из-за забивки топливныхфильтров кристаллами льда.

Методы определения воды в нефти и нефтепродуктах могут быть разбиты на две группы: качественные и количественные.

Качественные испытания позволяют определять не только эмульсионную, но и растворенную воду. К этим методам относятся пробы на прозрачность Клиффорда, на потрескивание и на реактивную бумагу. Первые два из этих методов используют для определения воды в прозрачных нефтепродуктах. Наиболее часто применяемым методом качественного определения воды является проба на потрескивание.

Для количественного определения воды в нефти и нефтепродуктах можно использовать различные их свойства, функционально связанные с содержанием в них воды: плотность, вязкость, поверхностное натяжение, диэлектрическую проницаемость, электропроводимость, теплопроводность и т. д. Заранее рассчитать вид функции, как правило, невозможно из-за неаддитивного вклада воды в измеряемый параметр. Неаддитивность обусловлена химическим взаимодействием молекул воды и вещества. По этой причине математическую зависимость обычно находят, используя экспериментальные данные.

Другая группа методов основана на использовании химических и физико-химических свойств самой воды. К ним, например, относятся метод титрования реактивом Фишера, гидридкальциевый.

Существующие количественные методы определения воды в жидких продуктах, кроме того, делят на прямые и косвенные. К прямым методам относят метод Дина и Старка, титрование реактивом Фишера, гидридкальциевый метод и центрифугирование, к косвенным — диэлькометрический,ИК-спектрофото-метрически кондуктометрический, колориметрический и др.

Пробирка диаметром 10—15 и высотой 120—150 мм

При нагревании нефти или нефтепродукта до 150 °С содержащаяся в них вода вскипает и образует пену, вызывая треск и помутнение продукта. По этим признакам делают заключение о наличии или отсутствии воды в продукте.

В стеклянную пробирку диаметром 10—15 и высотой 120— 150 мм наливают испытуемый продукт до высоты 80—90 мм. Пробирку закрывают пробкой, снабженной термометром и имеющей отверстие для прохождения образующихся паров. Шарик термометра должен находиться на расстоянии 20— 30 мм от дна пробирки. Пробирку с испытуемым продуктом вставляют вертикально в термостат, нагретый до 170°С, и наблюдают за ней в течение нескольких минут, пока температура в пробирке не достигнет 150°С. При наличии в продукте влаги он начинает пениться, слышится треск.

Рис. 2.4. Схема установки для определения воды по методу Фишера

Приборы: стакан для титрования, метиловый спирт, реактив Фишера

Подготовка к испытанию. Для проведения анализа собирают прибор (рис. 2.4) и определяют титр реактива Фишера в соответствии с ГОСТ 24629—81.

Массу навески анализируемого нефтепродукта берут из такого расчета, чтобы на титрование расходовалось 3—8 мл реактива Фишера. В качестве растворителя используют метиловый спирт.

Проведение испытания. В стакан для титрования вводят обезвоженный метанол в объеме, необходимом для погружения платиновых электродов, и оттитровывают реактивом Фишера воду, содержащуюся в обезвоженном метиловом спирте, а также адсорбированную стенками колбы и электродами. В начале титрования реактив Фишера подают по каплям со скоростью одна капля в секунду. При этом стрелка микроамперметра незначительно отклоняется от нулевого деления. Когда стрелка начнет сильно колебаться, реактив Фишера добавляют со скоростью одна капля за 5 с, а при приближении к точке эквивалентности—со скоростью одна капля за 10 с.

Титрование проводят до тех пор, пока стрелка микроамперметра не установится на определенном делении шкалы и не продержится на этом делении в течение 30 с. Такое положение стрелки свидетельствует о конце титрования.

После этого в оттитрованную смесь вносят взвешенную массу или отмеренный объем анализируемого продукта и снова титруют реактивом Фишера до эквивалентной точки.

Необходимая для анализа масса навески нефтепродукта зависит от содержания воды:

3 ; V1— объем реактива Фишера, израсходованный на титрование анализируемого продукта, мл; V2 — объем анализируемого продукта, мл; р — плотность анализируемого продукта, г/см 3 .

За результат анализа принимают среднее арифметическое двух параллельных определений.

Определение содержания воды хроматографическим методом

Содержание воды определяют методом газоадсорбционной хроматографии на насадочной колонке. В качестве сорбентов используют пористые полимеры типа полисорба-1. Детектирование осуществляют по теплопроводности в гелии. После выхода пика воды проводят обратную продувку хроматографической колонки.

Приборы, реактивы, материалы

Хроматограф с детектором по теплопроводности

Подготовка к анализу. Включают хроматограф в сеть и проверяют его герметичность согласно инструкции по эксплуатации прибора. Если хроматографическая колонка загружена свежеприготовленным адсорбентом, то ее продувают гелием в течение 10—12 ч со скоростью 3 л/ч при температуре около 200 °С. Используют колонку длиной 4 м и внутренним диаметром 4 мм.

При анализе нефти необходимо соблюдать следующие условия:

Температура детектора, °С 125-150

Температура испарителя, °С 280

Чувствительность детектирования, мВ 2

Скорость движения ленты диаграммы, 360

Объем анализируемой пробы, мл 0,05-0,2

Проведение анализа. Определение количества воды в нефти чаще всего проводят способом абсолютной калибровки.

После установления заданных условий анализа микрошприцем вводят в испаритель точное количество (1 мкл) калибровочной смеси. В качестве калибровочной смеси используют этиловый спирт-ректификат, содержащий от 0,1 до 6,% воды. При расчете хроматограмм используют массовые коэффициенты чувствительности для воды и этилового спирта—1IKв и 1/Кэт

Количество воды в калибровочной смеси рассчитывают как среднее 3—4 параллельных определений.

После этого пробу нефти тщательно перемешивают и отбирают на анализ хорошо просушенным чистым шприцем в количестве 0,05—0,2 мл. Для герметизации на конец иголки насаживают кусочек резиновой пробки и взвешивают на аналитических весах. Результат взвешиваний записывают в рабочую тетрадь. Затем, сняв с иголки кусочек пробки, пробу вводят в испаритель, снова кусочек пробки насаживают на иголку и взвешивают шприц. По разности взвешиваний определяют массу введенной в колонку пробы. Когда на хроматограмме появится пик воды, осуществляют обратную продувку колонки.

Массовую долю воды А, %, при абсолютной калибровке рассчитывают по формуле:

где S — площадь пика воды в анализируемой пробе, мм 2 ; Ук — объем калиб­ровочной смеси, использованной для анализа, см 3 ; g— массовая доля воды в калибровочной смеси, %; р — плотность калибровочной смеси, г/см ;

5к—площадь пика воды в калибровочной смеси, мм 2 ; М— масса навески анализируемой пробы, г.

источник

Лабораторная работа №1

Определение содержания воды в нефти

Цель работы:определение объемной и массовой доли воды в нефтяной эмульсии и в сухой нефти в технологическом процессе подготовки нефти и в приемо-сдаточных операциях. ГОСТ 2477-65 «Нефть и нефтепродукты. Метод определения содержания воды», ГОСТ Р ИСО 3734-2009 «Нефтепродукты. Определение содержания воды и осадка в остаточных жидких топливах методом центрифугирования».

I. Теоретическая часть

Нефть представляет собой сложную смесь углеводородов, содержащую свыше 1500 отдельных компонентов. Она состоит из низко- и высокомолекулярных углеводородных и неуглеводородных компонентов. Это дисперсная система, характеризующаяся сложной внутренней организацией, способной изменяться под воздействием внешних факторов. Поэтому исследование состава и свойств нефти – трудная задача. Успех исследования нефти в большой степени зависит от продуманного сочетания и последовательности методов ее разделения и анализа.

Используемые методы анализа нефтей и нефтепродуктов можно разделить на четыре группы:

— физические – определение плотности, вязкости, температуры плавления, замерзания и кипения, теплоты сгорания, молекулярной массы и др.;

— физико-химические – хроматография, спектроскопия, колориметрия, рефрактометрия, нефелометрия;

— химические – использующие классические приемы аналитической химии;

— специальные – определение октанового и цетанового чисел моторных топлив, химической и коррозионной активности топлив и масел.

Некоторые показатели качества нефтепродуктов непосредственно указывают на поведение их в условиях эксплуатации, однако нормируемые показатели являются лишь косвенными, но очень важными характеристиками эксплуатационных свойств продуктов. Необходимо отчетливо представлять эту косвенную взаимосвязь и те принципы, на которых основаны общие и специальные методы анализов.

Вода – обычный спутник сырой нефти. Она может содержаться в нефти в виде простой взвеси, то есть в виде крупных капель и тогда легко отстаивается, либо в виде эмульсии (где размер глобул воды колеблется от 0,1 до 10 мк).

Читайте также:  Анализ рассказа вешние воды тургенев

Образование устойчивых эмульсий, состоящих из нефти и воды, приводит к большим потерям нефти, так как при отделении воды от нефти в отстойниках часть нефти отделяется вместе с водой в виде эмульсии.

Нефтяные эмульсии представляют собой дисперсные системы двух жидкостей (нефти и воды), малорастворимых друг в друге. Одна жидкость диспергирована в другой в виде мелких капелек (глобул). Жидкость, которая диспергирована в виде глобул, называется внутренней, или дисперсной фазой, а жидкость, в которой находится дисперсная фаза (глобулы), называется внешней фазой, или дисперсионной средой.

Водо-нефтяные эмульсии возможны двух типов: вода в нефти (В/Н) и нефть в воде (Н/В). В условиях образования нефтяных эмульсий при добыче и обессоливании нефти более агрегативно устойчивы эмульсии типа В/Н, как правило, на практике приходится иметь дело с эмульсиями именно этого типа.

Глобулы дисперсной фазы имеют сферическую форму, которая обеспечивает их наименьший объем и наименьшее значение избыточной поверхностной энергии. Свободная энергия глобул дисперсной фазы способствует их слиянию (коалесценции), однако в агрегативно устойчивых эмульсиях присутствуют вещества – эмульгаторы, или стабилизаторы эмульсии, которые препятствуют этому. В системах, состоящих из двух несмешивающихся жидкостей и не содержащих эмульгаторов и стабилизаторов, капли легко сливаются, и жидкости расслаиваются.

Эмульгаторы адсорбируются на поверхности капелек воды, образуя адсорбционно-сольватные слои (как бы защитную механически прочную пленку), которые повышают прочность поверхностных слоев, и препятствуют слиянию (коалесценции) капель при столкновении. Чем выше прочность этой пленки, тем труднее разрушить эмульсию.

Агрегативная устойчивость нефтяных эмульсий определяется временем их существования и для разных нефтяных эмульсий может колебаться в широких пределах от нескольких секунд до нескольких лет.

Количество глобул воды в 1 литре 1%-ной высокодисперсной нефтяной эмульсии исчисляется триллионами, а общая площадь их поверхности — десятками квадратных метров. На такой огромной поверхности может адсорбироваться огромное количество стабилизирующих эмульсию веществ. Стабилизаторами нефтяных эмульсий (являющихся очень устойчивыми системами) могут быть асфальто-смолистые вещества. В настоящее время это доказано, и коллоидно-дисперсные и асфальто-смолистые вещества выделены из нефтяных эмульсий.

Рис. 1. Расположение молекул поверхностно-активных веществ на границе раздела фаз в водонефтяных эмульсиях:

а – эмульсия типа Н/В; б — эмульсия типа В/Н; 1 – гидрофобная (неполярная) часть молекулы ПАВ; 2 – гидрофильная (полярная) часть молекулы ПАВ.

После удаления из нефти природных эмульгаторов прочность нефтяных эмульсий резко уменьшается и их разрушить значительно легче.

Нефтяные эмульсии подвержены старению: с течением времени прочность их увеличивается. Особенно интенсивно протекает старение нефтяных эмульсии в начальный период их образования. Таким образом, замедление процесса старения нефтяных эмульсий на этапе проведения процесса обессоливания имеет большое практическое значение, так как свежие эмульсии разрушаются значительно быстрее, чем «состарившиеся». Для замедления процесса старения и предотвращения образования устойчивых эмульсий применяют деэмульгаторы. Деэмульгатор, обладающий высокой поверхностной активностью, адсорбируется на поверхности глобул воды и препятствует образованию прочных адсорбционно-сольватных слоев. Поэтому процесс старения эмульсии после добавления деэмульгатора практически прекращается. Для наиболее полного разрушения и прекращения старения нефтяных эмульсий деэмульгатор подают в свежие эмульсии.

Остановимся несколько подробнее на механизме действия деэмульгаторов. Так же как и эмульгаторы, они относятся к поверхностно-активным веществам (ПАВ). В качестве деэмульгаторов нефтяных эмульсий изготовляют и применяют большое количество ПАВ.

На рис. 1 показано расположение молекул ПАВ на границе раздела фаз в водо-нефтяных эмульсиях: гидрофобная неполярная часть молекулы погружена в нефть, а полярная часть, обладающая гидрофильными свойствами, погружена в воду.

Деэмульгаторы обладают большей поверхностной активностью, чем природные стабилизаторы нефтяных эмульсий, и поэтому они вытесняют последние из поверхностного адсорбционного слоя глобул. Вытеснив с поверхности глобулы природные стабилизаторы, деэмульгатор образует адсорбционный слой со значительно меньшей механической прочностью, и капли при столкновении легче сливаются в более крупные, процесс разрушения эмульсии (деэмульсация) значительно облегчается. В качестве деэмульгаторов применяются ионогенные ПАВ (которые в водных растворах диссоциируют на отрицательно и положительно заряженные ионы) и неионогенные (которые не образуют ионов в водных растворах). К первым относятся карбоновые кислоты и их соли, алкилсульфаты – сульфоэфиры:

,

алкилсульфонаты – натриевые или аммонийные соли сульфокислот жирного ряда (RSO3Na), алкиларилсульфонаты – соли ароматических сульфокислот

,

аммонийные основания типа RNH Cl — и др. (здесь R – алкильный радикал, содержащий 10-15 атомов углерода).

Для разрушения нефтяных эмульсий чаще применяются неионогенные деэмульгаторы. Их получают присоединением оксида этилена к органическим кислотам, спиртам, аминам (реакция оксиэтилирования). В результате реакции оксиэтилирования получаются соединения типа:

.

С увеличением n (т. е. длины оксиэтиленовой цепочки) увеличивается их растворимость в воде. В нефтяной промышленности применяются как водорастворимые, так и нефтерастворимые деэмульгаторы. Последние имеют преимущество, заключающееся в том, что они, смешиваясь с нефтью, легче проникают в поверхностные слои глобул и не вымываются водой. Деэмульсация (разрушение нефтяных эмульсий) лежит в основе процессов подготовки нефти к переработке – обезвоживания и обессоливания. При обезвоживании разрушают природную эмульсию нефти с водой, а при обессоливании – искусственно созданную, которая образуется при смешении нефти с промывочной пресной водой.

Механизм разрушения нефтяных эмульсий состоит из нескольких стадий: столкновение глобул воды, преодоление структурно-механического барьера между глобулами воды с частичной их коалесценцией, снижение агрегативной устойчивости эмульсии вплоть до полного расслоения на фазы. Соответственно задача технологов состоит в обеспечении оптимальных условий для каждой стадии этого процесса, а именно: снижении вязкости дисперсионной среды (до 2-4 мм 2 /с) при повышении температуры до некоторого уровня, определяемого групповым составом нефти, одновременно достигается разрушение структурных единиц; уменьшение степени минерализации остаточной пластовой воды введением промывной воды; устранение структурно-механического барьера введением определенных количеств соответствующих ПАВ – деэмульгаторов. Для совершенствования технологических приемов по обессоливанию и обезвоживанию нефтей требуется постановка дальнейших исследований по изучению условий формирования структурных единиц, взаимодействия их с глобулами воды и влияния структурных единиц на структурно-механический барьер; по выбору эффективных ПАВ – деэмульгаторов.

В сырых нефтях обычно находится буровая вода, содержащая значительное количество минеральных солей, главным образом хлоридов натрия, магния и кальция, вызывающих сильную хлористо-водородную коррозию оборудования технологических установок при переработке сырья.

Содержание воды и солей неорганических кислот не является физико-химической характеристикой данной нефти, а зависит от условий ее залегания, добычи и транспорта.

Как в производственных, так и в лабораторных условиях наличие воды в нефти затрудняет перегонку последней, вызывая переброс – бурное вскипание воды, пары которой увлекают за собой нефть.

Перед выполнением анализов нефть должна быть обезвожена. В лабораторных условиях обезвоживание нефти производят либо нагревом и отстоем, либо с помощью реагентов, поглощающих влагу, либо перегонкой.

Наиболее простые и общепринятые методы обезвоживания – подогрев и отстаивание нефти, часто с одновременной добавкой деэмульгатора. Для этой цели пробу сырой нефти в лаборатории переливают в делительную воронку. Измеряют объем эмульсии, добавляют деэмульгатор, нагревают в термостате и отделяют отстоявшуюся свободную воду, измерив ее объем. При расслоении эмульсии в резервуарах скорость расслоения выражается формулой:

, м/сек,

где r – радиус глобулы дисперсной фазы, м

ρд.ф. – плотность дисперсной фазы, кг/м 3

ρд.ср. – плотность дисперсионной среды, кг/м 3

η – динамическая вязкость среды, Па∙с

g – ускорение свободного падения,

и процесс длится от 6 до 12 часов.

Из оставшейся в делительной воронке нефти отбирают необходимое количество (100, 50, 25, 10 мл) ее и определяют количество оставшейся воды методом Дина и Старка на аппарате АКОВ по ГОСТ 2477-65. Затем, проделав необходимые расчеты, определяют общий массовый процент воды в сырой нефти. Если после подогревания и отстоя нефть все еще содержит воду, к ней прибавляют осушители – свежепрокаленную поваренную соль, хлористый кальций, сульфат натрия и др. (10-20 %), и снова отстаивают при комнатной температуре. Иногда для экономии времени при контроле технологического процесса подготовки нефти используют метод центрифугирования. В случае расслоения эмульсии в центрифуге процесс ускоряется значительно и длится 20 минут, так как вместо ускорения свободного падения g действуют центробежные силы.

II. Экспериментальная часть

Задание 1. Определить объемный процент воды в сырой нефти методом центрифугирования.

Оборудование:

2. центрифужная градуированная пробирка V = 10 мл – 2 – 4 шт.

Пробу сырой нефти гомогенизируют встряхиванием в течение 5 мин.

Наливают в четыре центрифужные пробирки до верхней метки (10 мл). Во вторую пробирку прикапывают 2 капли деэмульгатора «Дисольван», в третью пробирку 2 капли деэмульгатора «Сондем», в четвертую пробирку 2 капли деэмульгатора «ECONOBREAK 135». Пробирки помещают в центрифужные гнезда, расположенные диаметрально. Закрывают центрифугу, включают в сеть. Время центрифугирования 3 минуты. Открывают центрифугу после полной остановки ротора. В какой пробирке полностью прошло разрушение эмульсии? В остальных увеличивают содержание деэмульгатора на 2 капли. Повторяют центрифугирование. Данные занести в таблицу.

Рассчитать содержания воды:

,

№ пробы деэмульгатор Количество деэмульгатора Время полного расслоения эмульсии, мин Объем отстоявшейся воды, мл Объемный процент воды, об.%

Задание 2. Определить массовый процент воды в нефти методом Дина и Старка по ГОСТ 2477-65.

Это наиболее распространенный и достаточно точный метод определения количественного содержания воды в нефтях и нефтепродуктах. Он основан на азеотропной перегонке пробы нефти или нефтепродукта с растворителями и применяется во многих странах. В нашей стране определение воды по этому методу проводят по ГОСТ 2477-65.

Оборудование:

1. колбонагреватель или электроплитка;

3. мерный цилиндр на 100 см 3 ;

4. палочка стеклянная длиной около 500 мм с резиновым наконечником или металлическая проволока такой же длины с утолщением на конце;

5. растворители безводные углеводородные:

— толуол или толуол нефтяной;

— изооктаны эталонные или изооктан технический;

— бензин-растворитель для резиновой промышленности – нефрас С2 – 80/120;

— нефтяные дистилляты с пределами кипения от 100 ºС до 200 ºС и от 100 ºС до 140 ºС;

6. кипелки (кусочки пемзы, фарфора, стеклянных капиллярных трубок).

Рис. 1. Аппарат АКОВ-10 (аппарат количественного определения воды):

1. колба круглодонная (V = 0,5 л);

Пробу нефти тщательно перемешивают встряхиванием в склянке в течение 5 мин. Высоковязкие нефти и нефтепродукты предварительно нагревают до 40-50 ºС. Из перемешанной пробы нефти или нефтепродукта берут навеску 100 г в чистую сухую, предварительно взвешенную стеклянную колбу 1. Затем в колбу 1 приливают 100 мл растворителя и содержимое перемешивают.

Маловязкие нефтепродукты допускается брать в колбу по объему. В этом случае мерным цилиндром отмеряют 100 мл испытуемого нефтепродукта и выливают в колбу 1. Затем этим же цилиндром отмеряют 100 мл растворителя и также выливают в колбу. Для равномерного кипения в колбу бросают несколько стеклянных капилляров или несколько кусочков пемзы или фарфора. Колбу при помощи шлифа присоединяют к отводной трубке приемника-ловушки 2, а к верхней части приемника-ловушки на шлифе присоединяют холодильник 3. Приемник-ловушка и холодильник должны быть чистыми и сухими. Во избежание конденсации паров воды из воздуха верхний конец холодильника необходимо закрыть ватой. Включить приток холодной воды в кожух холодильника.

Содержимое колбы нагревают с помощью колбонагревателя или на электрической плитке. Перегонку ведут так, чтобы из трубки холодильника в приемник-ловушку падали 2-4 капли в секунду. Нагрев прекращают после того, как объем воды в приемнике-ловушке перестанет увеличиваться и верхний слой растворителя станет совершенно прозрачным. Продолжительность перегонки должна быть не менее 30 и не более 60 мин. Если на стенках трубки холодильника имеются капельки воды, то их сталкивают в приемник-ловушку стеклянной палочкой. После охлаждения испытуемого продукта до комнатной температуры прибор разбирают. Если количество воды в приемнике-ловушке не более 0,3 мл и растворитель мутный, то приемник помещают на 20-30 мин в горячую воду для осветления и снова охлаждают до комнатной температуры. После охлаждения определяют объем воды в приемнике-ловушке.

Массовую долю воды Х, % рассчитывают по формуле

,

где V — объем воды, собравшейся в приемнике-ловушке мл;

G – навеска нефти или нефтепродукта, взятая для испытания, г.

За результат испытания принимают среднее арифметическое результатов двух определений. Результат испытания округляют с точностью до 0,1 %.

Расхождение между двумя параллельными определениями содержания воды не должны превышать одного верхнего деления занимаемой водой части приемника-ловушки.

N пробы Масса нефтепродукта, г Объем пробы в ловушке, мл Массовая доля воды, масс.% Среднее значение об. % воды

III. Вопросы для самоконтроля

1. Дисперсные системы, их классификация.

2. Образование эмульсий, их классификация.

3. Агрегативная устойчивость нефтяных эмульсий. Скорость расслоения эмульсии, уравнение Стокса.

4. ПАВ, строение, классификация.

5. Адсорбция ПАВов на поверхности мицелл.

6. Методы разрушения нефтяных эмульсий. Механизм действия деэмульгаторов.

7. От чего зависит масло- и водорастворимость деэмульгаторов?

8. Зачем удаляют воду из нефти? Этапы подготовки нефти.

9. Какие группы нормативных документов используются при физико-химическом анализе нефти и нефтепродуктов.

10. Вычислите скорость седиментации (уравнение Стокса) эмульсии типа вода в нефти, если известна относительная плотность нефти, её кинематическая вязкость и радиус мицеллы:

v, мм 2 /с при 20 0 С r ∙10 -4, м
0,76 39,57 10,5

* В условиях задач не указаны единицы измерения плотности.

Лабораторная работа № 2

I. Теоретическая часть

Плотность – не основной параметр для оценки качества нефтепродуктов и лишь в известной степени характеризует их состав, однако она имеет большое практическое значение при определении качества нефтей и нефтепродуктов по объему при учетно-расчетных операциях. Учет количества в объемных единицах не совсем удобен, так как объем жидкости зависит от температуры, которая может изменяться в широких пределах. Зная объем и плотность, можно при отпуске, приме и учете нефти и нефтепродуктов выражать их количество в массовых единицах.

Плотность входит составной частью в различные константы, характеризующие химический состав и свойства нефтепродуктов. Для некоторых продуктов – топлив для реактивных двигателей, мазутов, газотурбинных топлив, осветительных керосинов, бензинов-растворителей, авиационных и дизельных масел – плотность является нормируемым показателем.

Плотностью называется количество покоящейся массы, заключенной в единице объема.

Единицей плотности в системе СИ является кг/м 3 .

Удельный вес нефти — отношение веса нефти к его объему. Единицей удельного веса в системе СИ является Н/м 3 .

Плотность вещества и его удельный вес часто численно совпадают, однако нельзя забывать, что физический смысл этих величин различен.

В исследовательской практике определяется относительная плотность нефтепродуктов.

Относительной плотностью называется отношение плотности нефти или нефтепродукта при 20°С к плотности дистиллированной воды (эталонного вещества) при 4°С, то есть отношение массы нефти или нефтепродукта при 20°С к массе такого же объема дистиллированной воды при 4°С. Относительную плотность обозначают .

Плотность нефти и нефтепродукта зависит от температуры. С повышением температуры их плотность снижается. Зависимость плотности от температуры основана на линейном законе, выраженном формулой Менделеева:

,

где — относительная плотность при температуре анализа;

— относительная плотность при 20°С;

γ — средняя температурная поправка плотности на 1°С;

t — температура, при которой проводится анализ, °С.

Температурную поправку рассчитывают по формуле:

.

Значения поправки γ приведены в таблице 1.

Средние температурные поправки γ плотности на 1°С для нефтей и

Плотность Поправка γ Плотность Поправка γ
0,6900-0,6999 0,000910 0,8500-0,8599 0,000699
0,7000-0,7099 0,000897 0,8600-08699, 0,000686
0,7100-0,7199 0,000884 0,8700-0,8799 0,000673
0,7200-0,7299 0,000870 0,8800-0,8899 0,000660
0,7300-0,7399 0,000857 0,8900-0,8999 0,000647
0,7400-0,7499 0,000844 0,9000-0,9099 0,000633
0,7500-0,7599 0,000831 0,9100-0,9199 0,000620
0,7600-0,7699 0,000818 0,9200-0,9299 0,000607
0,7700-0,7779 0,000805 0,9300-0,9399 0,000594
0,7800-0,7899 0,000792 0,9400-0,9499 0,000581
0,7900-0,7999 0,000778 0,9500-0,9599 0,000567
0,8000-0,8099 0,000765 0,9600-0,9699 0,000554
0,8100-0,8199 0,000752 0,9700-0,9799 0,000541
0,8200-0,8299 0,000738 0,9800-0,9899 0,000528
0,8300-0,8399 0,000725 0,9900-1,0000 0,000515
0,8400-0,8499 0,000712

Плотность ρt нефтепродуктов в пределах температуры t = 20-250 °С можно определить по формуле Мановяна:

.

В США и Англии относительную плотность определяют при одинаковой температуре анализируемого вещества и воды, равной 15,5556 °С (60 °F). Относительную плотность при 20 °С в этом случае рассчитывают по формуле:

.

Экспериментально плотность нефти (нефтепродукта) определяют одним из трех стандартных методов: ареометром (нефтеденсиметром), гидростатическими весами Вестфаля-Мора (рис. 1), и пикнометром (рис. 2). Из них наиболее быстрым является ареометрический метод, а наиболее точным – пикнометрический. Преимуществом пикнометрического метода также является использование сравнительно малых количеств анализируемой пробы. Определение относительной плотности нефти и нефтепродуктов производится пикнометрическим методом с использованием пикнометров типа ПЖ-1, ПЖ-2, ПЖ-3 (ГОСТ 22521) по ГОСТ 3900-85. Метод основан на определении отношения массы испытуемого продукта к массе воды, взятой в том же объеме и при той же температуре. Так как за единицу массы принимается масса 1 см 3 воды при температуре 4ºС, то плотность, выраженная в г/см 3 , будет численно равна плотности по отношению к воде при температуре 4ºС ( ).

Плотность большинства нефтей в среднем колеблется от 0,8 до 0,9 г/см 3 . Высоковязкие смолистые нефти имеют плотность близкую к единице. На величину плотности нефти оказывает существенное влияние наличие растворенных газов, фракционный состав нефти и количество растворенных веществ в ней. Плотности последовательных фракций нефти плавно увеличиваются. Плотность узких фракций нефти зависит также от химического состава. Для углеводородов средних фракций нефти с одинаковым числом углеродных атомов плотность возрастает для представителей разных классов в следующем порядке: нормальные алканы → нормальные алкены → изоалканы → изоалкены → алкилциклопентаны → алкилциклогексаны → алкилбензолы → алкилнафталины.

Для бензиновых фракций плотность заметно увеличивается с увеличением количества бензола и его гомологов. Для некоторых нефтепродуктов плотность является нормируемым показателем качества, она входит также составной частью в различные комбинированные константы и расчетные формулы.

Рис. 1. Весы Вестфаля-Мора:

источник