Меню Рубрики

Методы анализа проб сточных вод

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Лабораторный анализ сточных вод позволяет с высокой точностью определить их состав и своевременно принять меры по устранению обнаруженных в процессе проверки нарушений. Отбор сточных вод должен производиться с соблюдением всех требований во избежание ложных показаний анализа. Такие проверки должны производиться не только перед началом строительства, но и на протяжении всей эксплуатации объекта регулярно.

Воды из стоков классифицируются согласно их происхождению:

Атмосферные воды состоят из минеральных загрязнений. Данная разновидность не приносит колоссального вреда человечеству и окружающей среде. Замеры производятся с целью определения уровня содержания в них вредоносных веществ. По результатам анализа выявляется негативное влияние человека на внешнюю среду.

Бытовые сточные воды включают в себя все жидкости, сливаемые в канализацию из жилых помещений. Унитазы, ванные, раковины, посудомоечные машины – все агрегаты, использующие воду и имеющие выход в канализацию, образуют однородную хозяйственно-фекальную жидкость. Содержание в ней вредных веществ зависит от количества потребляемой одним человеком воды в процессе жизнедеятельности.

Бытовые подразделяются на:

По уровню загрязненности делятся на:

  • биологические (водоросли, грибок и плесень)
  • минеральные (минеральные соли, песок, щелочи, кислоты)
  • органические(частицы животного и растительного происхождения)

Промышленные сточные воды представляют собой наибольшую опасность, так как могут содержать радиацию, токсичные и ядовитые элементы. Любое производство должно обеспечивать качественную фильтрацию стоков во избежание массового загрязнения воды.

Анализ сточных вод предприятия или жилого дома производится для установления концентрации вредных примесей. Отбор проб осуществляется непосредственно у самого выхода канализационной трубы. При обнаружении повышенного уровня загрязненности обязательно потребуется повторное проведение исследования после устранения нарушений.

Во время исследования оцениваются следующие показатели качества сточной воды:

  1. Химические – кислотность и щелочность. Производится замер агрессивности жидкости по реакции базовой реакции рН. Нормальные показатели колеблются в диапазоне от 6,5 до 8. Химический анализ сточных вод проводится с целью полноценного разбора состава.
  2. Физические – цвет, прозрачность, запах, температура. Каждый аспект оценивается визуально, поэтому данная информация не имеет достаточной достоверности. Вполне объясним тот факт, что сточная вода обладает высокой температурой, характерным запахом и специфической окраской.
  3. Фосфор и азотсодержащие соединения – крайне важный показатель, так как именно этим параметром определяется качество фильтрации и влияние сточных вод на окружающую среду. В сфере производства данные вещества ответственны за присутствие нитритов, нитратов и аммонийного азота, которые способствуют биологической чистке канализационных вод.
  4. Сухой остаток – показатель, отвечающий за санитарное состояние канализации. Для отбора проб сточных вод необходима нефильтрованная жидкость с целью замера уровня сухого остатка. Исследование проводится для оценки количества бактерий, осуществляющих естественную очистку жидкости в процессе своей жизнедеятельности.
  5. Поверхностно-синтетические активные вещества – достаточная концентрация говорит о наличии нормального уровня кислорода в воде из канализации.
  6. Окисляемость – в зависимости от уровня окисляемости варьируется загрязненность канализации неорганическими и органическими элементами. Определение концентрации производится посредством применения биохимического и химического кислорода. Результат анализа дает возможность устранить нарушения своевременно и обеспечить полноценную биологическую фильтрацию сточных вод.
  7. Токсины – правила забора проб на токсины обуславливаются спецификой производственного процесса на предприятии, проходящем проверку. Токсический показатель может существовать как в органическом, так и в неорганическом виде.

Анализ проб сточных вод должен проводиться исключительно в сертифицированных лабораториях, то есть имеющих официальное разрешение на осуществление подобной деятельности. Специалисты служб оценки самостоятельно проведут забор материала, проведут анализ, выдадут документацию с результатом и рекомендациями по устранению выявленных нарушений.

Лабораторные методы анализа сточных вод требуют значительных затрат в плане денег и времени. Для анализа в полевых условиях в считанные минуты на данный момент стал доступен экспресс методика исследования сточных вод. Со знанием норм такое исследование можно провести самостоятельно. Однако есть один существенный минус – достоверность результатов подобного анализа совсем невысокая.

Экспресс-анализ может включать в себя несколько этапов, позволяющих отследить следующие процессы:

  • Колориметрический – для этого используются фотоколориметр и специальные реагенты. Оценка производится за счет выявления проходимости светового потока сквозь исследуемую жидкость. Подобным способом вычисляется уровень щелочности, концентрация хлора, фосфора, железа, ПАВов, алюминия.
  • Органолептический – показатели в этом случае незначительно отличаются от тех, что выявляются при лабораторном исследовании.
  • Титриметрический – в исследуемый образец добавляются реагенты, способные определить наличие определенных элементов – хлоридов, БПК, ХПК, растворенного кислорода.

Во время исследования действуют следующие правила:

  • Стерильная тара объемом в один литр, при помощи которой производится отбор проб сточных вод. Стерильность необходима для устранения посторонних бактерий.
  • Бактериологический анализ сточных вод требует использования не только стерильной, но и герметично закрывающейся тары.
  • Тара должна быть заполнена практически до отказа и ни в коем случае нельзя подвергать воздействию ультрафиолета при транспортировке. Доставка отобранной воды в лабораторию осуществляется в течение двух часов.
  • После проведения процедуры анализа специалист заполняет протокол с указанием результатов по всем требуемым показателям. Протокол является официальным документом, удостоверяющим пригодность/непригодность сточных вод.
  • Выявленные нарушения являются поводом для взимания штрафа с организации.

Чтобы избежать наказания, большинство организаций регулярно обращаются в специальные службы для исследования состояния канализационных вод. Своевременная проверка позволяет сберечь не только денежные средства компании, но и сохранить водные ресурсы в чистоте.

источник

Дата публикации: 01.09.2013 2013-09-01

Статья просмотрена: 14775 раз

Кутковский К. А. Виды сточных вод и основные методы анализа загрязнителей // Молодой ученый. — 2013. — №9. — С. 119-122. — URL https://moluch.ru/archive/56/7745/ (дата обращения: 21.10.2019).

Воды и атмосферные осадки, которые поступают в естественные водоемы с территорий населенных пунктов и предприятий, принято называть сточными водами. Отвод данных вод осуществляется посредством канализации или естественным путем.

Сточные воды это в большей или меньшей степени загрязненные в результате использования бытовые, промысловые и производственные воды, содержащие отбросы или отработанное тепло, а также отличающиеся изменившимися в отрицательную сторону физическими и биологическими свойствами [1, с. 1287]. Из этого можно сделать вывод о, безусловно, антропогенном происхождении и неоднородности стоков, а также о сложности очистки или утилизации данного продукта антропогенной деятельности.

Из-за ухудшившихся биологических и физических свойств, сточные воды пагубно влияют на развитие всей биосферы. Сточные воды провоцируют и ускоряют эвтрофикацию водоемов из обильного содержания в них фосфора и азота, а также приводят к изменению естественных биоценозов и, как следствие, гибели биологических видов, загрязнению объектов водопользования, используемые человеком в качестве источника питьевой воды. Так же происходит обильное воздействие на артезианские бассейны: их биологическая чистота несопоставима с их состоянием до научно-технической революции, обусловившей эру активного антропогенного воздействия на природу.

Вследствие научно-технической мысли, ее развитии и повсеместном внедрение, источниками сточных вод являются практически любые антропогенные объекты: жилые дома, образовательные учреждения, медицинские объекты, торговые склады и точки реализаций товаров, различные сервисные организации, АЗС, металлургическая промышленность, пищевая промышленность, фармацевтической промышленность, сельхозяйственные угодья и т. д.

Для контроля качества и объема поступления сточных вод разрабатываются законы и подзаконные акты, происходит внедрение и разработка как новых, так и уже зарекомендованных себя методов очистки. Формируется всесторонний анализ сточных вод, позволяющий разработать оптимальный алгоритм очистки (с учетом характера загрязнителей) для каждого промышленного объекта и оценить качество воды, покидающей очистные сооружения. Любые нарушения влекут за собой штрафы и санкции, прописанные как в Водном кодексе РФ, так и в Уголовном кодексе РФ.

Определим, какими характеристиками обладают сточные воды, и как загрязнители влияют на процесс очистки. Для начала определим классификацию сточных вод и особенности отдельных их типов.

Виды сточных вод

1) Хозяйственно-бытовые. Этот тип стоков в основном поступает из жилых домов, а так же объектов социального пользования(больницы, образовательные учреждения, торговые центры и т. д.). Отведение происходит посредством хозяйственно-бытовой и общесплавной канализации. Состав загрязнителей: 58 % — органика, 42 % — минеральные вещества. Особенность — высокое содержание азотсодержащих соединений и фосфатов, значительная степень фекального загрязнения.

2) Промышленные сточные воды. Основной загрязнитель — объекты промышленности и предприятия различного рода деятельности. Отведение происходит посредством промышленной канализации. Спектр загрязнителей характеризуется видом промышленной деятельности. Содержат органические и неорганические элементы. Наибольшую опасность для гидросферы и человека представляют нефтепродукты, органические красители, фенолы, поверхностно-активные вещества, сульфаты, хлориды и тяжелые металлы.

3) Поверхностные сточные воды. Основное поступление из дождевых и талых вод, формирующихся из атмосферных осадков, проникающих в почву и стекающих в водоемы посредством ливневой канализации с территории промышленных предприятий и населенных пунктов. Спектр возможных загрязнителей широк и определяется особенностями территории и видом антропогенной деятельности, преобладающей в районе стока.

Анализ сточных вод

Рассмотрим основные источники поступления сточных вод в экосистемы: промышленные и бытовые объекты, на них приходится основная доля поступающих на очистные сооружения стоков. [2, с. 59] Анализ именно этих источников позволяет понять специфику оценки качества сточных вод и спектр загрязнителей. На выходе из очистных сооружений не должно быть примесей, содержишихся в характерной для той или иной природы стоков, либо их количество должно быть минимальным (определяется нормативами).

Для анализа качества вод используются следующие параметры: температура, цветность, запах и прозрачность. Физические показатели качества воды малоинформативные и понятны на интуитивном уровне. Для всех типов сточных вод характерна повышенная температура, специфический запах и сниженная прозрачность (определяется по шрифту). Изменение цветности (измеряется в градусах платинокобальтовой шкалы) присущи промышленным сточным водам и зависят от вида производственной деятельности.

Так же важным методом анализа качества вод является химический анализ. Реакция (рН) коммунальных сточных вод, как правило, нейтральна (6,5–8), а реакция промышленных стоков подвержена изменениям от сильнокислой (рН менее 3) до сильнощелочной (рН более 11) в зависимости от источника поступления. В процессе очистки реакция сточных вод должна стать нейтральной.

Для определения доли примесей как сухих, так и растворенных, используется такой параметр как «сухой остаток», отражающий степень загрязненности воды примесями. Данный параметр берется из нефильтрованной пробы. Он указывает на количество в воде примесей, как взвешенных (руда, окалина, известняк, кокс и т. д.), так и растворенных. В зависимости от содержания примесей сточные воды принято делить на четыре категории: первая — сухой остаток менее 500 мг/л (коммунальные сточные воды), четвертая — выше 30 000 мг/л. Отметка 5000 мг/л разделяет вторую и третью категорию. [4, с. 76]

Процесс очистки сточных вод от взвешенных примесей происходит путем механических методов очистки, самым распространенным из которых является метод отстаивания. Для прогнозирования эффективности этого метода используется показатель «оседающие вещества». Проба воды помещается в цилиндр, после чего оценивается, какое количество взвешенных веществ осядет за 2 часа. Измеряется в мг/л и процентах от сухого остатка. Оседающие вещества в городских сточных водах, как правило, составляют 65–75 %.

Необходимость вычисления сухого остатка обусловлена дальнейшей обработкой промышленных и коммунальных стоков при помощи биологических методов (бактерии), и на этой стадии количество взвешенных веществ не должно превышать 10 г/л.

Следующим важным параметром сточных вод является зольность твердых примесей. Прокаливание сухого остатка проводят при температуре «красного» каления (500–600°С), в результате чего часть химических соединений сгорает и улетучиваются в виде оксидов, углерода, водорода, азота, серы и других примесей, вес пробы уменьшается. Массу остатка, называемого золой, делят на первоначальную массу образца и получают зольность, выраженную в процентах. Для городских сточных вод характерна зольность 25–35 %.

Еще одним показателем является окисляемость. Данный показатель является санитарным, сфера его актуальности распространяется также не только на сточные воды. Окисляемость указывает на степень загрязнения воды органическими и неорганическими веществами, но также он используется для оценки степени органического загрязнения. Окисляемость определяется при помощи аэробных гетеротрофных бактерий (биохимическая окисляемость) и посредством химических реакций (химическая окисляемость — бихроматная, иодатная и т. д.).

Единицами измерения окисляемости является потребление кислорода: БПК и ХПК — биохимическое и химическое потребление кислорода, выраженное в миллиграммах О2 на литр. Большое значение имеет соотношение БПК к ХПК, которое позволяет прогнозировать, какое количество загрязнителей может быть удалено при помощи биологических методов очистки. [3, с. 141]

Химическая окисляемость определяет общее содержание в воде восстановителей — органических и неорганических, реагирующих с окислителями. В сточных водах преобладают органические восстановители, поэтому, как правило, всю величину окисляемости относят к органическим примесям воды.

Важнейшими показателям для сохранности гидросферы и эффективности биологической очистки является содержание фосфора и азотистых соединений. В сточных водах определяется содержание общего, нитратного, нитритного и аммонийного азота. От количества соединений азота зависит степень эффективности биологической очистки. При малом содержание азота в производственных сточных водах на стадии биологической очистки добавляют в воду хлористый аммоний. В хозяйственных стоках концентрация соединений азота всегда высока, из-за обилия поступающих веществ, связанных с процессом человеческой жизнедеятельности.

Концентрация фосфора в сточных водах всегда превышает ПДК. Основой поступления фосфатов в сточные воды служат фосфатные компоненты синтетических моющих средств и фекальные стоки, поступающие как из хозяйственной, так и из промышленной сферы. Избыток фосфорсодержащих соединений является одной из главных причин эвтрофикации водоемов.

Следующими показателями состояния сточных вод являются сульфаты и хлориды. Концентрация сульфатов в городских сточных водах обычно находится на уровне 100- 150 мг/л, хлоридов — 150–300 мг/л. В промышленных стоках (в частности, на металлургических заводах) уровень хлоридов и сульфатов значительно выше, к тому же к ним добавляются цианиды, аммиак и роданистые соединения.

Представленные выше показатели важны для оценки загрязненности стоков, так же их следует учитывать и в процессе трактовки данных, полученных в ходе иных анализов. Концентрацию хлоридов важно знать при определении ХПК, так как хлориды окисляются бихроматом калия до молекулярного хлора. Поэтому при концентрации хлоридов более 200 мг/л требуется их предварительное осаждение или введение поправки к результату анализа ХПК. Синтетические поверхностно-активные вещества, или СПАВ, так же являются серьезными загрязнителями естественных водоемов. Воздействие СПАВ напрямую влияет на эвтрофикацию рек и озер, угнетение процессов самоочищения гидросферы, торможение биохимических процессов в водоемах, вызывая другие губительные для биоценоза процессы.

Читайте также:  При анализе в воде превышение нитратов

Большинство СПАВ — органические вещества, состоящие из двух частей: гидрофобной и гидрофильной. Гидрофобная часть СПАВ соединена обычно с одной гидрофильной группой. В зависимости от физико-химических свойств гидрофильной части СПАВ делятся на три основных типа: анионактивные, катионоактивные, неионогенные. Каждый тип в свою очередь делится на классы в зависимости от химического состава гидрофобной части.

Примерно 75–80 % всех СПАВ, применяемых в быту и промышленности, составляют анионактивные. Важнейшим из них являются: алкилсульфаты с общей формулой R—O—SO3Na (где R — углеводородный радикал с числом углеродных атомов от 10 до 20); алкилсульфонаты R—SO3Na (с числом углеродных атомов 12–15) и алкиларилсульфонаты R—C6Н4—SO3Na (с числом углеродных атомов в радикале 5–18).

Так же присутствие СПАВ резко отрицательно сказывается на работе очистных сооружений, во время очистки сточных вод поверхностно-активные вещества замедляют процессы осаждения твердых взвешенных частиц, провоцируют появление пены в очистных сооружениях и препятствуют биологической очистке. Для предотвращения данных процессов содержание СПАВ в стоках, поступающих на стадию биологической очистки, не должно превышать 20 мг/л. Некоторые фракции (в частности, жесткие СПАВ) предварительно должны быть полностью удалены химическими и физико-химическими методами.

Поверхностно-активные вещества присутствуют во всех сточных водах, в том числе и хозяйственно-бытовых. Источниками СПАВ в сточных водах является результат широкого применения их в быту и промышленности в качестве моющих средств, а также смачивающих, эмульгирующих, выравнивающих, дезинфицирующих препаратов.

Наиболее высокая концентрация токсических веществ определяется в промышленных сточных водах и классифицируются на две категории — неорганические и органические. К органическим токсическим веществам относятся нефтепродукты, смолы, карбоциклические соединения, пестициды, красители, кетоны, фенолы, спирты и СПАВ. Неорганические компоненты представлены солями, щелочами, кислотами и различными химическими элементами (хром, алюминий, свинец, никель, фтор, бор, железо, ванадий и т. д.).

В хозяйственно-бытовых и сельскохозяйственных сточных водах основными биологическим загрязнителями являются бактерии, вирусы, патогенные простейшие и яйца гельминтов, источником которых являются люди и животные.

Для оценки фекальной загрязненности сточных вод используются микробиологические анализы — определение общего микробного числа и количества общих колиформ (коли-тест). Основная задача данных анализов оценить степень фекального загрязнения воды, а не выявление самого факта наличия патогенных микроорганизмов. Вывод делается на основе степени загрязнения сточных вод фекалиями: чем выше уровень загрязнения, тем выше вероятность присутствия патогенных организмов в воде.

Бактериологический анализ сточных вод необходим для оценки эффективности работы очистных сооружений и дает представление о необходимых корректировках процесса очистки сточных вод. Дезинфекция проводится хлором, который оказывает негативное воздействие на качество воды.

Последним показателем является растворенный кислород. Содержание растворенного кислорода (РК) в воде характеризует кислородный режим водоема и имеет важнейшее значение для оценки его экологического и санитарного состояния. Он также необходим для самоочищения водоемов, т. к. участвует в процессах окисления органических и других примесей, разложения отмерших организмов. Снижение концентрации РК свидетельствует об изменении биологических процессов в водоеме, о загрязнении водоема биохимически интенсивно окисляющимися веществами (в первую очередь органическими). Потребление кислорода обусловлено также химическими процессами окисления содержащихся в воде примесей, а также дыханием водных организмов. Поэтому важным фактором является соблюдение качества очищенной воды, поступающей в естественные водоемы. [5, с. 49]

Оценка качественного и количественного состава загрязнителей сточных вод необходима не только для составления плана очистных мероприятий, но и для повышения их эффективности, а так же для мониторинга и последующего прогнозирования негативного антропогенного воздействия на гидросферу и экосистему в целом. Проблемы загрязненности сточных вод, методов очистки и возвращения в естественные источники или их повторное использование, давно перестали быть чем то далеким и несбыточным. За последние 150 лет качество наземных и подземных источников воды резко ухудшилось и требует не только использования современных норм и стандартов, но так же и поиск, разработку и внедрение новых идей и подходов, как к контролю поступающих загрязняющих веществ, так и к методам очистки сточных вод.

1. Советский энциклопедический словарь/Научно-редакционный совет: А. М. Прохоров (пред.).- М.: «Советская энциклопедия», 1981.- 1287 с.

2. Водоотведение и очистка сточных вод: Учебник для вузов/С. В. Яковлев, Я. А. Карелин, Ю. М. Ласков, В. И. Калицун.- М.:Стройиздат, 1996.- 59 с.

3. Комплексное использование и охрана водных ресурсов. Под редакцией О. А. Юшманова М.: Агропромиздат 1985.- 141 с.

4. Евилович А. З. Утилизация осадков сточных вод М.: Стройиздат 1989.- 76 с.

5. Методы охраны внутренних вод от загрязнения и истощения Под редакцией И. К. Гавич М.: Агропромиздат 1985.- 49 с.

источник

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9

Государственное бюджетное образовательное учреждение

«Иркутский государственный медицинский университет»

Министерства здравоохранения Российской федерации

Методы Анализа сточных вод

Учебное пособие обсуждено на методическом совете фармацевтического факультета ИГМУ, рекомендовано к печати и использованию в учебном процессе на кафедре фармацевтической и токсикологической химии Иркутского государственного медицинского университета, протокол № 1 от 20.09. 2013 г.

Авторы: – д-р хим. наук, профессор, зав. каф. фармацевтической и токсикологической химии ГБОУ ВПО ИГМУ,

– канд. фарм. наук, доцент каф. фармацевтической и токсикологической химии ГБОУ ВПО ИГМУ.

— доктор фармацевтических наук, профессор, зав. каф. управления экономики фармации ГБОУ ВПО ИГМУ;

— доктор фармацевтических наук, профессор кафедры технологии лекарственных форм ГБОУ ВПО ИГМУ.

И44 Анализ сточных вод: учеб. пособие / , ; ГБОУ ВПО ИГМУ Минздрава РФ. – Иркутск, 2013. – 53 с.

В учебном пособии по основам экологии и охране природы изложены основы органолептических, физических и химических методов используемых в анализе сточных вод химико-фармацевтических предприятий.

Учебное пособие предназначено для студентов фармацевтического факультета.

© ГБОУ ВПО ИГМУ Минздрава РФ, 2013

Отбор проб сточных вод. Консервация. 3

Органолептические и некоторые физические методы анализа сточных вод. 3

Определение прозрачности. 3

Определение реакции среды (рН) 3

Определение температуры.. 3

Химические и физико-химические методы анализа сточных вод 3

Общее содержание примесей. Сухой остаток. Взвешенные вещества. 3

Биохимическое потребление кислорода. 3

Дихроматная окисляемость. 3

Перманганатная окисляемость. 3

Синтетические поверхностно-активные вещества. 3

Общее содержание азота (общий азот) 3

Тестовые задания по теме «методы Анализа сточных вод». 3

Рекомендуемая литература. 3

Учебное пособие по основам экологии и охране природы предназначено для студентов при подготовке в качества специалиста экологической лаборатории. В пособии приведены основные способы и методы анализа сточных вод химико-фармацевтических предприятий.

Пособие составлено в соответствии с программой по основам экологии и охраны природы для студентов 4 курса фармацевтического факультета.

Анализ сточных вод — одна из наиболее сложных областей аналитической химии (а по отношению к химико-фармацев­тическим предприятиям — фармацевтической химии), так как исследование качественного и количественного состава сточ­ных вод затрудняется вследствие: а) сложного состава сточных вод, б) широкого интервала концентраций примесей, в) изме­нения состава (нестабильность сточных вод во времени), г) малой концентрации загрязняющих веществ.

Для анализа сточных вод используются как классические методы химического анализа, так и современные физические и физико-химические методы:

-спектрофотометрия в видимой и УФ областях спектра;

-пламенная эмиссионная спектроскопия;

-атомно-абсорбционная и атомно-эмиссионная спектро­скопия;

-рентгеноструктурный анализ и др.

Для анализа сточных вод используют также органолептические и некоторые физические показатели.

В экологических лабораториях химико-фармацевтических предприятий наиболее часто используют классические хими­ческие методы, фотоэлектроколориметрию, спектрофотометрию в УФ и видимой областях спектра, органолептические, физические и некоторые другие методы.

Первостепенными задачами в разработке методик опреде­ления отдельных компонентов и групп веществ, присутствую­щих в сточной воде-, остаются максимальная инструментализация и целесообразная автоматизация работ, а также внедре­ние экспрессных тест-систем.

В последние годы для наблюдения за состоянием гидро­сферы все чаще применяются дистанционные методы с ис­пользованием авиации, аппаратуры спутников и околоземных космических станций.

Отбор проб сточных вод. Консервация

Результаты анализа сточной воды будут правильными толь­ко в том случае, если проба для анализа отобрана верно. Ме­сто отбора проб выбирается в зависимости от цели контроля, характера выпуска сточных вод, а также в соответствии с тех­нологической схемой канализации.

К местам отбора проб должен быть свободный доступ. При отборе проб сточных вод с помощью автоматических пробоот­борников доступ к ним посторонних лиц должен быть исклю­чен. Способ отбора пробы сточной воды зависит от цели, ко­торая ставится перед исследователем.

Состав сточной воды обычно сильно колеблется и всецело зависит от технологического процесса производства, поэтому перед отбором пробы необходимо подробно изучить этот про­цесс и брать средние или сред непропорциональные пробы в течение суток или нескольких суток в зависимости от условий спуска сточных вод, так как некоторые цеха спускают сточ­ные воды не ежедневно и нерегулярно.

Если количество спускаемой воды более или менее посто­янно, можно ограничиться только средними пробами. При нерегулярном спуске сточной воды составляют среднепропорциональные пробы, т. е. отбирают порции, пропорциональ­ные объемам спускаемой сточной воды. И средние, и средне-пропорциональные пробы обычно берут в течение суток, сли­вая отдельные порции в большие, чисто вымытые бутыли. По истечении суток содержимое бутыли тщательно перемешива­ют и для анализа отливают часть жидкости (1—3 л) в чисто вымытую посуду. Если количество спускаемой воды непостоянно и ее спус­кают только в известные промежутки времени, это надо обя­зательно учитывать и согласовывать время и способы отбора проб с течением технологического процесса.

Для характеристики изменения состава воды отдельных стоков в различное время дня надо отбирать разовые про­бы и определять в них отдельные компоненты, характер­ные для данного стока. Такие пробы следует брать через одинаковые промежутки времени, например через 1 ч, 2 ч, а иногда и через несколько минут (в зависимости от цели ис­следования) и тотчас же проводить анализ отобранной пробы.

Таким образом, различают простую и смешанную пробы. Простая проба характеризует состав воды в данный момент времени в данном месте.

Смешанная проба характеризует средний состав воды за оп­ределенный промежуток времени в определенном объеме. Как было указано выше, ее получают смешением простых проб, взятых в одном и том же месте через определенные промежут­ки времени (усреднение по времени).

При проведении массовых анализов различают среднесменную, среднесуточную и среднепропорциональную суточ­ные пробы. Среднесменная или среднесуточная проба готовит­ся смешением равных по объему проб через равные проме­жутки времени. Среднепропорциональная проба готовится сме­шением объемов воды, пропорциональных объемам спускае­мой сточной воды, отобранных через равные промежутки времени.

Сроки отбора проб должны устанавливаться с учетом ре­жима расхода и состава сточных вод данного производства. Доступ к точкам сброса (колодцам) имеется на предпри­ятии или за его пределами.

Для отбора сточных вод применяют устройства различного типа, которые должны обеспечивать сохранение химического состава исследуемой воды и гарантировать исключение эле­ментов случайности при отборе проб. В качестве пробоотборных сосудов используют химически стойкие к исследуемой сточной воде стеклянные, фарфоровые и пластмассовые сосу­ды (с притертыми или плотно навинчивающимися крышка­ми) вместимостью, обеспечивающей определение всех иссле­дуемых компонентов. При использовании автоматического анализатора должны быть применены стационарные автома­тические пробоотборники. Стеклянную посуду моют и обеззараживают хромовой сме­сью, тщательно отмывают от кислоты и пропаривают. Поли­этиленовую посуду споласкивают смесью ацетона и хлоро­водородной кислоты (1:1), несколько раз водопроводной во­дой, а затем дистиллированной.

Консервация. При длительном стоянии отобранной для, анализа пробы могут произойти существенные изменения в составе предназначенной для анализа воды, связанные с про­теканием химических, физико-химических и биохимических процессов. Могут изменяться и органолептические свойства воды — запах, цвет, мутность, поэтому, если нельзя начать анализ воды сразу или в крайнем случае через 4 ч после отбо­ра пробы, нужно консервировать пробу для стабилизации ее химического состава.

Универсального консервирующего средства не существует, поэтому пробы для анализа отбирают в несколько бутылей. В каждой из них на. месте отбора воду консервируют, добав­ляя различные консерванты, в зависимости от определяемого компонента.

Способы консервации и сроки анализа проб воды для не­которых показателей качества представлены в табл. 1. Как следует из табл. 1, для определения некоторых пока­зателей качества воды консервирование не допускается, на­пример, при определении органолептических показателей (за­пах, цветность), а также рН, кислотности, хлоридов, сульфа­тов, активного хлора. Для многих показателей рекомендуется консервировать или охлаждать пробу. Охлаждение пробы до 4 °С приводит к замедлению биохимических процессов в про бах воды и, следовательно, к замедлению разрушения многих органических веществ.

Пробы для определения запаха, кислотности, ВПК, нефте­продуктов, фенолов отбирают в стеклянные бутыли.

источник

Величина рН в воде водоемов хозяйственно-питьевого водопользования регламентируется в пределах 6,5 — 8,5. В большинстве природных вод рН составляет от 6,5 до 8,5 и зависит от соотношения концентраций свободного оксида углерода (IV) и HCO3 — . Более низкие значения рН могут наблюдаться в кислых болотных водах за счет повышенного содержания гуминовых и фульвокислот. Летом при интенсивном фотосинтезе рН может повышаться до 9. На величину рН влияет содержание карбонатов, гидроокисей, солей, подверженных гидролизу, гуминовых веществ и др.

В результате происходящих в воде химических и биологических процессов и потерь углекислоты рН воды может быстро меняться, поэтому рН следует измерять сразу же.

Для ориентировочного определения рН можно пользоваться универсальным бумажным индикатором.

Потенциометрический метод определения рН отличается большой точностью (0,02). Определению не мешают окраска, мутность, свободный хлор, окислители, восстановители, повышенное содержание солей.

После проверки потенциометра ополосните дистиллированной водой стаканчик и электроды. Налейте в стаканчик анализируемую воду и измеряйте рН 2 – 3 раза с интервалом 2 – 3 мин. Последние два показания прибора должны быть одинаковыми. Если исследуемая вода имеет низкую температуру (около 0 0 С), то она должна быть нагрета до комнатной температуры.

Определение цветности воды

Цветность природных вод обусловлена главным образом присутствием гуминовых веществ и комплексных соединений железа (III). Количество этих веществ зависит от геологических условий, водоносных горизонтов, характера почв, наличия болот и торфяников в бассейне реки и т.д.

Цветность воды определяют визуально. Результаты выражают в градусах цветности. Цветность от 0 до 50 0 выражается с точностью до 2 0 , от 51 до 100 0 – до 5 0 , от 101 до 250 0 – до 10 0 , от 251 до 500 0 до 20 0. . При цветности выше 80 0 воду необходимо разбавлять.

Читайте также:  Пример анализа воды из скважины

Приготовление стандартных растворов

Раствор 1: 0,0875 г K2Cr2O7, 2 г CoSO4×7H2O и 1 мл серной кислоты (пл. 1,84 г/см 3 ) растворите в дистиллированной воде в мерной колбе на 1 л, доведите объем раствора до метки дистиллированной водой. Этот раствора соответствует цветности 500 0 .

Раствор 2: 1 мл серной кислоты (пл. 1,84 г/см 3 ) растворите в дистиллированной воде в мерной колбе на 1 л, доведите объем раствора до метки дистиллированной водой.

Подготовка шкалы стандартных растворов. Смешивая растворы 1 и 2 в соотношениях, указанных в таблице, приготовьте шкалу цветности.

Раст-вор Градусы цветности
N1,мл N2,мл

В цилиндр, однотипный с теми, в которых приготовлена шкала, налейте 100 мл исследуемой воды. Просматривая сверху на белом фоне, подберите раствор шкалы с тождественной окраской.

Запах воды водоемов не должен превышать 2 баллов, обнаруживаемых непосредственно в воде. Определение основано на органолептическом исследовании характера и интен­сивности запаха воды при 20 0 и 60 0 С.

Запах воды обусловлен наличием в ней летучих и пахнущих веществ, которые попадают в неё естественным путем или сточными водами. По характеру запахи делятся на две группы.

Запахи естественного происхождения описываются по следующей терминологии.

Символ Характер запаха Примерный род запаха
А Ароматический Огуречный, цветочный
Б Болотный Илистый, тинистый
Г Древесный Запах мокрой щепы, древесный
З Землистый Прелый, свежевспаханной земли
Р Рыбный Рыбы, рыбьего жира
С Сероводород Тухлых яиц
Т Травянистый Сена, скошенной травы
Н Неопределенный Не подходящий под предыдущие определения

Чистые природные воды запахов не имеют.

Запахи искусственного происхождения (от промышленных выбросов, для питьевой воды – от обработки воды реагентами на водопроводных сооружениях и т.п.) называют по соответствующим веществам: хлорфенольный, камфорный, бензиновый, хлорный и т.п.

Интенсивность запаха оценивают по пятибалльной системе, приведенной в таблице.

Балл Интенсивность запаха Описание определения
Никакого Отсутствие ощутимого запаха.
Очень слабый Запах, обнаруживаемый опытным исследователем.
Слабый Запах, не привлекающий внимания, но такой, который можно заметить, если указать на него.
Отчетливый Запах, обращающий на себя внимание и делающий воду непригодной для питья.
Заметный Запах, легко обнаруживаемый и могущий дать повод относиться к воде с неодобрением.
Очень сильный Запах настолько сильный, что делает воду непригодной для питья

Водой, не имеющей запаха, считается такая, запах которой не превышает 2 балла.

100 мл исследуемой воды при 20 0 С налейте в колбу вместимостью 150 – 200 мл с ши­роким горлом, накройте часовым стеклом или притертой пробкой, встряхните вращательным движением, откройте пробку или сдвиньте часовое стекло и быстро определите характер и интенсивность запаха. Затем колбу нагрейте до 60 0 С на водяной бане и также оцените запах.

Определение прозрачности воды

Прозрачность воды обусловлена ее цветом и мутностью, т.е. содержанием в ней различных окрашенных и взвешенных органических и минеральных веществ. Мерой прозрачности служит высота столба воды, при котором можно различать на белой бумаге стандартный шрифт определенного размера и типа. Прозрачность по шрифту выражают в см и определяют с точностью 0,5 см. Стандартный шрифт имеет высоту букв 3,5 мм.

В цилиндр с внутренним диаметром 2,5 см и высотой 30 см налейте исследуемую воду и поместите его неподвижно над шрифтом на высоте 4 см. Сливая и доливая исследуемую воду, найдите высоту столба, еще позволяющую читать шрифт. Исследование проводите в хорошо освещенном помещении, но не на прямом свету, на расстоянии 1 м от окна. Измерение повторите 2 – 3 раза.

Определение перманганатной окисляемости

Окисляемость – общее количество содержащихся в воде восстановителей (неорганических и органических), реагирующих с сильными окислителями, например, бихроматом или перманганатом калия. Результаты определения окисляемости выражают в миллиграммах кислорода на 1 л воды (мг О/л).

Все методы определения окисляемости условны, а полученные результаты сравнимы только в том случае, когда точно соблюдены все условия анализа.

Наиболее полное окисление достигается бихроматом калия, поэтому бихроматную окисляемость нередко называют «химическим потреблением кислорода» (ХПК). Большинство соединений окисляется при этом на 95 – 100%. Нормативы ХПК воды водоемов хозяйственно-питьевого назначения – 15 мг О/л, культурно – бытового – 30 мг О/л.

Метод перманганатометрической окисляемости основан на окислении веществ, присутствующих в воде, 0,01 н. раствором KMnO4 в сернокислой среде при кипячении. Без разбавления можно определять окисляемость до 10 мг кислорода в 1 л.

При определении перманганатной окисляемости после реакции должно остаться не менее 40% введенного перманганата калия, так как степень окисления зависит от его концентрации. При большом расходе реагента пробу необходимо разбавлять.

В колбу поместите 100 мл исследуемой воды (или разбавленной до 100 мл), несколько капилляров или кусочков пемзы, прилейте 5 мл разбавленной серной кислоты (1:3) и 10 мл 0,01 н. раствора KMnO4. Смесь нагревайте так, чтобы она закипела не ранее, чем через 5 мин, и кипятите точно 10 мин, закрыв колбу маленькой конической воронкой для уменьшения испарения. К горячему раствору прибавьте 10 мл 0,01 н. раствора щавелевой кислоты. Обесцвеченную горячую (80-90 0 С) смесь титруйте 0,01 н. раствором KMnO4 до слабо розового окрашивания.

Если в процессе кипячения содержимое колбы потеряет розовую окраску или побуреет, то определение необходимо повторить, разбавив исследуемую воду. Определение также необходимо повторить, если при обратном титровании щавелевой кислоты израсходовано более 7 мл или менее 2 мл 0,01 н. раствора KMnO4.

Одновременно проведите холостой опыт со 100 мл дистиллированной воды, обрабатывая ее так же, как и анализируемую воду. Расход перманганата калия не должен превышать 0,3 мл.

;

где Х – перманганатная окисляемость, мг О/л;

V1 – объем перманганата калия, пошедший на титрование исследуемой воды, мл;

V2 – объем перманганата калия, пошедший на титрование холостой пробы воды, мл;

N – нормальность раствора перманганата калия;

V – объем пробы, взятой для анализа, мл.

Определение биологического потребления кислорода (БПК)

БПК — количество кислорода (мг), требуемое для окисления находящихся в 1 л воды органических веществ в аэробных условиях при 20 0 С в результате протекающих в воде био­химических процессов за определенный период времени (БПК за 3, 5, 10, 20 т.д. суток).

Установлено, что при загрязнении водоемов преимущественно хозяйственно-бытовыми сточными водами с относительно постоянным составом и свойствами БПК5 (5-суточное) составляет 70% БПК полного.

Нормативы БПК воды водоемов хозяйственно-питьевого назначения – 3 мг/л кисло­рода, культурно – бытового – 6 мг/л кислорода.

Среди различных методов определения БПК наиболее распространено определение по разности содержания кислорода до и после инкубации при стандартных условиях (при 20 0 С в аэробных условиях без дополнительного доступа воздуха и света).

БПК определяют в натуральной, тщательно перемешанной воде.

Проба для анализа БПК должна быть обработана в день отбора (или при условии хранения пробы в холодильнике на следующий день). Для отбора проб воды необходимо использовать посуду с притертыми пробками и следить, чтобы при отборе проб воды она переливалась через край склянок.

РН воды при определении БПК должна быть в пределах 6,5 – 8,5. Температура исследуемой воды должна быть 20 0 С. Для аэрации воды необходимо перед анализом встряхивать воду в колбе, заполненной водой на ¾ объема, в течение 1 мин. и затем быстро перенести воду в специальные колбы с притертыми крышками, заполняя колбы до самых краев.

Для фиксации кислорода введите в 8 колб емкостью 100 мл с анализируемой водой по 1 мл хлорида или сульфата марганца (400 г MnSO4×2H2O или 425 г MnCl2×2H2O растворите в 1 л дистиллированной воды) и по 1 мл щелочного раствора йодида калия (150 г KI растворите в 100 мл дистиллированной воды, 500 г NaOH растворите в 500 мл свежеприготовленной дистиллированной воды, оба раствора смешайте и доведите общий объем в мерной колбе до 1л). Пипетки на 1 мл следует погружать до дна колбы, часть жидкости при этом будет выливаться. После введения реактивов закройте склянки пробками, перемешайте резким перевертыванием. В таком виде оставьте склянки соответственно две на 3, две на 5 и две на 10 сут. Содержимое двух склянок проанализируйте сразу же.

Перед титрованием (осадок должен хорошо осесть) прибавьте в каждую склянку по 5 мл соляной кислоты (2:1), при этом часть жидкости будет переливаться через край. Каждую склянку закройте пробкой и содержимое её перемешайте, осадок гидроксида марганца при этом растворится и окислит йодистые соединения, а выделившийся йод окрасит раствор в желтый цвет. После перемешивания каждую пробу перенесите в колбу для титрования на 250 – 300 мл и быстро титруйте 0,02 н. раствором тиосульфата натрия в присутствии индикатора крахмала до исчезновения окраски.

;

где Х – содержание растворенного кислорода, мг/л;

V – объем тиосульфата натрия, пошедший на титрование исследуемой воды, мл;

V1 – объем кислородной склянки, мл;

V2 – объем всех реактивов, внесенных в воду для фиксации кислорода, мл;

N – нормальность раствора тиосульфата натрия;

где Х1 – содержание растворенного кислорода в пробе до начала инкубации (нулевой день);

Х2 – содержание растворенного кислорода в пробе после инкубации.

Определение щелочности или кислотности воды

После определения рН воды можно приступить к определению щелочности (если рН>7) или кислотности (если рН — , анионами слабых кислот (например, карбонаты и гидрокарбонаты). Щелочность определяется количеством сильной кислоты, необходимой для замещения этих анионов. Расход кислоты эквивалентен их общему содержанию и выражает общую щелочность воды. Щелочность выражают в мг-экв/л.

В обычных природных водах щелочность зависит в основном от присутствия гидрокарбонатов щелочноземельных металлов, в меньшей степени щелочных. В этом случае значение рН воды не превышает 8,3. Растворимые карбонаты и гидроксиды повышают значение рН.

Отберите 100 мл исследуемой воды, добавьте 2-3 капли индикатора метилоранжа и титруйте 0,1 н раствором соляной кислоты в присутствии контрольного раствора до перехода окраски из желтой в оранжевую.

;

где Щ – щелочность воды, мг-экв/л;

V – объем соляной кислоты, пошедший на титрование исследуемой воды, мл;

VП – объем пробы, взятый для анализа, мл;

N – нормальность раствора соляной кислоты;

Кислотностью называется содержание в воде веществ, вступающих в реакцию с гидроксил — ионами. Расход щелочи, пошедшей на реакцию, выражает общую кислотность воды. В обычных природных водах кислотность в большинстве случаев зависит только от содержания свободного CO2. Естественную часть кислотности создают также гуминовые и другие слабые органические кислоты. В этих случаях рН воды не бывает ниже 4,5. Кислотность выражают в мг-экв/л.

Отберите 100 мл исследуемой воды, добавьте 2-3 капли индикатора фенолфталеина и титруйте 0,1 н раствором гидроксида натрия до появления розовой окраски, не исчезающей в течение 30 секунд.

;

где К – кислотность воды, мг-экв/л;

V – объем гидроксида натрия, пошедший на титрование исследуемой воды, мл;

VП – объем пробы, взятый для анализа, мл;

N – нормальность раствора гидроксида натрия.

Определение жесткости воды

Определение карбонатной жесткости воды

Жесткость воды изучают, чтобы выяснить её пригодность для растениеводства, животноводства, а также для технических целей. Под жесткостью понимают суммарное содержание в воде солей кальция и магния. Общую жесткость определяют комплексонометрическим методом, а карбонатную или временную жесткость – методом нейтрализации. Карбонатная жесткость зависит от содержания в воде гидрокарбонатов кальция и магния. Она почти полностью устраняется кипячением, при котором гидрокарбонаты разлагаются:

Поэтому карбонатную жесткость называют также устранимой, или временной. Карбонатная жесткость отвечает той части катионов кальция и магния, которая эквивалентна содержащимся в воде анионам гидрокарбонатов этих металлов. Жесткость принято выражать в ммоль экв/л.

Поместите 100 мл исследуемой воды в коническую колбу. Прибавьте 2-3 капли индикатора метилоранжа, перемешайте и титруйте раствором HCl до перехода желтой окраски индикатора в оранжевую. Титрование повторите не менее трех раз, до получения хорошо сходимых результатов.

Результаты рассчитайте в ммоль экв/л.

Определение общей жесткости воды

Под общей жесткостью понимают суммарное содержание ионов кальция и магния в воде, выраженное в ммоль экв/л. Она складывается из карбонатной (временной) и некарбонатной (постоянной) жесткости воды. Некарбонатная жесткость обусловлена наличием в воде сульфатов, хлоридов, силикатов, нитратов и фосфатов этих металлов.

Жесткость воды колеблется в широких пределах: от 0,1-0,2 ммоль экв/л в реках и озерах, расположенных в зонах тайги и тундры, до 80 ммоль экв/л и более — в подземных водах, морях и океанах. Различают воду мягкую (общая жесткость до 2 ммоль экв/л), средней жесткости (2-10 ммоль экв/л) и жесткую (более 10 ммоль экв/л). В поверхностных водоисточниках преобладает, как правило, карбонатная жесткость (70-80% от общей). Наибольшего значения жесткость воды достигает в конце зимы, а наименьшего – в период паводка. Так, в реке Волге (г. Нижний Новгород) максимальная жесткость бывает в марте (4,3 ммоль экв/л), а минимальная — в мае (0,5 ммоль экв/л). В подземных водах жесткость воды наиболее постоянна и меньше изменяется в течение года.

Повышенная жесткость способствует усиленному образованию накипи в паровых котлах, отопительных приборах и бытовой металлической посуде, что значительно снижает интенсивность теплообмена. В воде с высокой жесткостью плохо развариваются овощи и мясо, так как катионы кальция образуют с белками пищевых продуктов нерастворимые соединения. Большая магниевая жесткость придает воде горький привкус, поэтому содержание магния не должно превышать 100 мг/л. Общая жесткость питьевой воды во избежание ухудшения ее органолептических свойств должна быть не более 7 ммоль экв/л.

Для устранения или уменьшения жесткости воды применяют специальные методы. Из реагентных методов наиболее распространен известково-содовый, а при комбинировании его с ионообменными методами можно получить глубоко умягченную воду.

Поместите 100 мл исследуемой воды в коническую колбу. Прибавьте 20 мл аммонийного буферного раствора (рН = 10) и на кончике шпателя — несколько кристалликов индикатора эриохрома черного Т или кислотного хром темно-синего. Раствор перемешайте, после появления винно-красной окраски титруйте 0,05 н. раствором трилона Б до перехода окраски в синюю. Титрование повторите не менее трех раз, до получения хорошо сходимых результатов.

Результаты рассчитайте в ммоль экв/л.

Определение нитратов потенциометрическим методом

с ион-селективным электродом

Предельно допустимая концентрация нитратов в воде водоемов 45 мг/л, лимитирующий показатель вредности санитарно-токсикологический.

Читайте также:  Проба анализа воды химическим методом

Массовую долю нитратов в миллионных долях находят по величине рС(NO3 — ) с помощью данных, приведенных в ниже представленной таблице.

Для проведения анализа необходим иономер типа ЭВ-74, рН-милливольтметр рН-340 или рН-121 (с ион-селективным нитратным электродом и электродом сравнения хлорсеребряным).

Подготовка электрода к работе. До начала работы заполните электрод водным раствором, содержащим нитрат калия и хлорид калия (10,11 г KNO3 и 0,37 г KCl растворите в мерной колбе на 1 л и доведите до метки дистиллированной водой). После этого электрод сутки выдерживайте в 0,1 М растворе KNO3. Перед началом работы нитратный электрод поместите на 10 минут в стаканчик с дистиллированной водой.

50 мл воды поместите в стаканчик и измеряйте концентрацию иона нитрата. Перед измерением ион — селективный электрод тщательно ополосните дистиллированной водой и выдерживайте его в дистиллированной воде 10 мин. Измерения повторите три раза и возьмите среднеарифметическое значение трех измерений.

Измерение концентрации иона нитрата проводите непосредственно в логарифмических единицах рС(NO3 — ) = -lgС(NO3 — ) по шкале иономера, предварительно отградуированного по растворам сравнения.

Определение активного хлора

Хлор активный (суммарное содержание свободного хлора, хлорноватистой кислоты, гипохлорит — ионов и хлораминов) в воде водоемов должен отсутствовать, лимитирующий показатель вредности общесанитарный.

Метод основан на том, что свободный хлор, хлорноватистая кислота, гипохлорит — ионы и хлорамины в кислой среде выделяют из йодида калия йод, который оттитровывают тиосульфатом в присутствии крахмала.

Дата добавления: 2014-01-07 ; Просмотров: 1003 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Стоки бытовые и производственные содержат большое число органики, взвешенных частиц, катионов и анионов из-за чего состав сточных вод заранее предсказать невозможно. В случае промышленных стоков, даже простое смешение сточной воды от различных цехов предприятия может приводить к химическим реакциям между содержащейся в стоках органикой, в результате чего могут образовываться производные веществ. Нередко на предприятии совместной очистке подвергаются промышленные стоки и хозбытовые, и тогда если провести анализ сточных вод после очистки, то можно обнаружить массу органических соединений. Поэтому на любом предприятии, при введении в эксплуатацию новых цехов, изменении технологии требуется проведение исследования сточных вод. Где можно сделать анализ проб сточных вод? Одной из особенностей канализационных стоков, является непостоянство состава. Пробы, отобранные на анализ в течение дня из одного контрольного колодца, могут очень сильно отличаться по составу. Необходимо правильно сделать отбор проб сточных вод. Лучше это доверить специализированной лаборатории анализа сточных вод. Высококвалифицированные химики приедут и отберут пробу воды, проведут в условиях лаборатории исследование сточных вод. Анализ сточных вод включает в себя определение различными методами, как органических компонентов, так и неорганики, катионов и анионов, содержащихся в сточных водах. Содержание металлов в сточных водах определяют атомно-адсорбционной спектрометрией, неорганические вещества фотометрическими методами анализа. При проведении анализа сточных вод используют специальные приборы спектрофотометры, которые измеряют светопоглощение в видимой области спектра. Приборы, использующие для измерения ультрафиолетовую и инфракрасную области спектра, используются для анализа органики, содержащейся в сточной воде. Фотометрия, как метод анализа проб сточных вод требует проведения холостого опыта. В одном случае холостой опыт проводят с дистиллированной водой, используя ее вместо исследуемого раствора. В дистиллированную воду добавляют такие же реактивы в той же последовательности , что и в исследуемую пробу воды. Смысл такого опыта заключается в том, чтобы исключить влияние применяемых реактивов на светопоглощение раствора. Для того, чтобы исключить влияние посторонних веществ содержащихся в пробе на результаты анализа, для проведения холостого опыта берут анализируемый раствор, но без добавок в него реагентов. Проведение холостого опыта по такой схеме исключает влияние посторонних веществ, находящихся в пробе. Из результатов анализа вычитают значения, полученные в первом и втором холостных опытах.

В химических лабораториях анализа сточных вод при анализе проб сточных вод широкое применение получило титрование с использованием цветных индикаторов. Титрование при анализе проб сточных вод обычно применяют для определения различных анионов, например хлоридов, сульфатов, свободного хлора, хлораминов. Методы, основанные на взвешивании осадков, или аналитической формы определяемого катиона при анализе проб сточных вод используются редко. Гравиметрию в основном применяют при анализе сточных вод, определяя с ее помощью сульфаты, нефтепродукты, жиры.

При проведении анализа сточных вод большое значение играют методы определения суммарных показателей характеризующих загрязнение воды, химического потребления кислорода(ХПК)и биологического потребления кислорода (БПК).

источник

С развитием человеческой цивилизации масштабы техногенного воздействия на земную природу приобретают всё более глобальный характер. Эта очевидная тенденция и осознание человечеством хрупкости и уязвимости биосферы вынуждают осуществлять постоянный экологический мониторинг. Одним из индикаторов загрязнения окружающей среды служат пробы сточных вод предприятий, исследуемые в лабораторных условиях на содержание вредных примесей. Данные мероприятия могут дублировать проверяемые субъекты, осуществляя параллельный отбор проб сточных вод, и оплачивая их исследование за свой счёт в любой аккредитованной лаборатории.

Отбор проб для осуществления анализа сточных вод обычно выполняется организациями водопроводно – канализационного хозяйства, связанными с субъектом проверки договором на оказание услуг по водоснабжению и водоотведению. Под параллельным отбором понимается взятие проб сточной воды абонентом в то же время и в том же месте с последующим исследованием их в другой лаборатории. Отбор основных и параллельных проб осуществляется по специальной методике, обеспечивающей идентичность содержания в пробоотборах жидкостей. Такое право закреплено в действующих Правилах холодного водоснабжения и водоотведения Российской Федерации.

Сам факт существования таких пунктов в действующих правилах и договорах продиктован нередкими случаями возникновения спорных ситуаций между организациями городских водоканалов и потребителями, относящихся в большей степени к сфере хозяйственных отношений, нежели к экологии.

Учитывая то обстоятельство, что контролирующая организация вправе предупреждать абонента не позднее, чем за 15 минут до начала отбора проб воды для анализа, которых часто бывает недостаточно даже для того, чтобы представитель абонента дошёл до точки пробоотбора, в интересах любого предприятия держать ситуацию с составом сбрасываемых вод всегда под контролем. Для этого желательно выполнять следующие действия:

  • всегда обеспечивать участие представителя в процедуре пробоотбора воды, осуществляемого контролирующей организацией;
  • в случаях, вызывающих сомнение в объективности результатов анализа, производить параллельный отбор стоков для проведения их исследования в альтернативной лаборатории;
  • независимо от организаций водопроводно – канализационного хозяйства самостоятельно осуществлять регулярный контроль путём отбора проб сбрасываемых жидкостей с последующим проведением лабораторного анализа.

Вид отбора проб для химического анализа может быть разовым или серийным. В случае с промышленными стоками предприятий используется серийный отбор. Это обусловлено тем, что состав примесей, содержащихся в промышленных сбросах, может изменяться в течение короткого времени и подлежит регулярному контролю. В процессе анализа серии проб выявляются изменения содержания в них контролируемых веществ с учётом времени и места отбора каждой пробы. Серийный отбор проб позволяет получить результаты, наиболее точно характеризующие состояние обследуемого объекта.

Сама отобранная проба может быть простой или смешанной. Простая проба представляет собой выборку, произведённую в определённом месте в определённое время. Такая проба характеризует состав промышленного стока в данное время в конкретном месте. Смешанные пробы получают смешением нескольких простых, взятых в одном и том же месте в разное время, либо в разных местах в одно время. В первом случае выборка является усреднённой по времени, во втором – усреднённой по объёму. Смешанные пробы подразделяются на несколько видов:

  • среднесуточные;
  • среднесменные;
  • среднепропорциональные.

Средние за сутки или за смену пробы представляют собой смесь выборок равного объёма, взятых через равные промежутки времени в течение требуемого периода. Среднепропорциональная проба также состоит из смеси выборок, взятых через одинаковые временные промежутки, но объём каждой из проб пропорционален величине расхода стока в момент пробоотбора.

Пробоотбор производится в рамках программ контроля качества, включающих в себя проверку соответствия определённых показателей качества воды установленным нормативам. Такими программами должны руководствоваться государственные контролирующие органы. В случае необходимости разрабатываются программы, целью которых является выяснение и исследование причин загрязнения объекта. Необходимость в этом возникает в тех ситуациях, когда отсутствует идентификация вещества или источника загрязнения.

В то время как контролирующие органы реализуют программы государственного контроля, субъекты промышленного производства, являющегося потенциальным источником загрязнения должны иметь свои планы производственного контроля сброса сточных вод. Разработка планов производственного контроля производится на основании требований, продиктованных условиями водопользования, разрешения на осуществление сбросов или действующего договора на предоставление услуг водоотведения, либо договора на услуги водоснабжения и водоотведения. Такие документы должны быть согласованы с организациями, осуществляющими контроль в этой области.

Планы – графики мероприятий по осуществлению контроля промышленных сбросов, обычно включает следующие данные:

  • план — схема промышленного объекта с нанесёнными на нём коммуникациями водоотведения, на которых обозначены точки пробоотбора;
  • перечень веществ, наличие и концентрация которых в сточных водах подлежит контролю;
  • значение качественных показателей, которым должны соответствовать промышленные стоки;
  • перечень технических средств и методик, используемых в процессе контроля;
  • информация о лаборатории, которая осуществляет пробоотбор, исследования и измерения.

Важным моментом при формировании программы контроля является определение точек пробоотбора. При решении этого вопроса учитываются различные факторы, которые должны обеспечить объективность результатов измерения, а также безопасность и удобство персонала, выполняющего процедуру отбора. Оборудование мест отбора проб, обеспечивающее доступ работников организаций водопроводно – канализационного хозяйства и государственных контролирующих органов должно выполняться владельцами стоков. При необходимости пробоотбор оборудуется средствами малой механизации для подъёма выборки и погрузки в транспортные средства для перевозки к месту обследования.

Для осуществления ручного пробоотбора промышленных стоков применяется специализированная посуда и приспособления, позволяющие производить отбор в различных условиях – из колодцев разной глубины, из русла коллекторов и т.п.

Маятниковый стакан

Благодаря шарнирному креплению с держателем, стакан постоянно находится в вертикальном положении, независимо от угла наклона держателя, что позволяет брать пробы в труднодоступных местах без риска пролить выборку.

Телескопический шток

На конце штока могут быть установлены различные инструменты, для чего шток оборудован удобной защёлкой. Выдвигающиеся трубки штока не вращаются друг относительно друга, благодаря чему уменьшается вероятность выплёскивания воды из стакана.

Отбор проб при помощи маятникового стакана, закреплённого на телескопическом штоке Черпак, изготовленный из политетрафторэтилена (ПТФЕ)

Материал устойчив к воздействию практически всех химических веществ. Шток выполнен из стального стержня, покрытого ПТФЕ. Учитывая тот факт, что промышленные стоки предприятий могут представлять собой растворы или взвеси агрессивных веществ, материал посуды для отбора проб должен обладать повышенной химической устойчивостью.

Однако какими бы удобными инструментами не были снабжены сотрудники, выполняющие ручной пробоотбор, безусловными преимуществами обладают автоматические устройства, выполняющие основную часть рутинной работы взятия проб. Ведущий мировой производитель автоматических пробоотборников, немецкая компания MAXX Mess- und Probenahmetechnik GmbH, предлагает стационарные и портативные системы.

Двухслойный корпус из нержавеющей стали с 40 – миллиметровым зазором для обеспечения изоляции. Управление и программирование микропроцессорной системы осуществляется посредством плёночной клавиатуры. В наличии имеется возможность осуществления связи с внешними устройствами по локальной компьютерной сети, web интерфейсу, каналам сотовой связи. Варианты использования наборов полиэтиленовой и стеклянной тары различных ёмкостей для хранения проб перед процедурами пробоподготовки и анализа.

К положительным качествам автоматических пробоотборников MAXX Mess- und Probenahmetechnik можно отнести следующие их свойства:

  • возможность автоматического отбора проб строго в соответствии с запрограммированным алгоритмом, с точным соблюдением времени и объёма выемки;
  • осуществление пробоотбора с требуемой глубины потока, насосы стандартных моделей обладают возможностью подъёма взятой пробы на высоту до 8 метров, опционально предел может быть увеличен до 15 метров;
  • наличие каналов связи с внешним расходомером, что очень важно для определения объёма выемки при отборе среднепропорциональных проб.

Серия SP 5B, оснащённая вакуумной или перистальтической системой всасывания, вид спереди

Корпус станции пробоотбора изготовлен из полиэтилена. Стенки устройства двухслойные, между ними находится изолирующий зазор шириной 50 мм. Система имеет память объёмом 100 МБ FIFO, сохраняющая события в той последовательности, в какой они происходили. Станция вмещает в себя различные варианты наборов тары для хранения взятых проб воды. Пробоотборник рассчитан на работу при температуре окружающего воздуха от -20°С до +50°С. Температура жидкости, забираемой для анализа может находиться в пределах от 0°С до +40°С.

Наибольший эффект применения пробоотборников автоматического действия достигается при их использовании для серийных отборов. Например, необходимость в течение одной смены осуществлять многократные выемки в строго заданное время в одном или нескольких местах сброса вынуждает использовать нескольких сотрудников, работающих в напряжённом режиме. При этом достаточно вероятные, даже одиночные ошибки персонала (пресловутый «человеческий фактор») могут пустить насмарку всю серию измерений.

Вероятность сбоя автоматической системы MAXX практически равна нулю. Точность выполнения запрограммированных операций выполняется с прославленной немецкой аккуратностью, что обеспечивает абсолютную достоверность образцов для лабораторного исследования.

Автоматическая система пробоотбора серии SP 5S, вид спереди

Станция размещена в двухслойном корпусе из нержавеющей стали с зазором в 40 миллиметров. Отсек для хранения тары позволяет использовать требуемый набор посуды для хранения.

Система TP 5P, оборудованная вакуумным всасывателем

Система обеспечивает термостатический контроль взятых проб, обеспечиваемый использованием изолированной ёмкости с двойными стенками, специальных охлаждаемых боксов либо применением компрессорного охладителя, питающегося от аккумулятора 12 Вольт. Микропроцессорная система управления оснащена «спящим» режимом для экономии энергии аккумуляторной батареи. Управление системы обеспечивается мультиязычным интерфейсом, выбор языка осуществляется пользователем.

TP 5W с вакуумным всасывателем, вариант, предназначенный для крепления на стене

Система имеет 12 встроенных программ выполнения операций пробоотбора. Имеется возможность индивидуальной настройки пользователем каждой из программ под специфику конкретных задач. Сохранность встроенного программного кода гарантируется в течение не менее 5 лет с момента исчезновения напряжения питания. Установка времени между отборами проб устанавливается от 1 минуты до 100 часов. Интервал задания значений составляет 1 минуту.

P 6L Портативная система с вакуумным всасывателем

12 пользовательских программ с возможностью настройки и редактирования. Корпус комбинированный, выполнен из акрилонитрилбутадиенстирола (ABS) и полипропилена (PP) с изолирующим зазором 22 – 33 миллиметра.

источник