Меню Рубрики

Реактивы для анализа воды на нитриты

Определить по внешнему виду содержание нитратов в овощах и фруктах трудно или вообще невозможно. У вегетирующих (с листьями и стеблями) растений по интенсивности зеленой окраски листьев и черешков, особенно нижних ярусов, можно лишь ориентировочно судить: чем она темнее, тем больше нитратов в них содержится. При осмотре клубней картофеля, корнеплодов, плодов, ягод это сделать еще труднее. Агробиологи советуют при покупке овощей и фруктов выбирать не самые красивые плоды. В блестящих, как будто искусственных плодах нитратов, как правило, предостаточно. Замечено, что корнеплоды моркови одного сорта, но имеющие более яркую окраску, содержат нитратов меньше, чем корнеплоды, окрашенные менее интенсивно. Зеленые стручки фасоли содержат нитратов больше, чем желтые. Сходная зависимость между окраской и содержанием нитратов наблюдается у сортов сладкого перца. В арбузах и дынях много нитратов под коркой и в незрелых плодах. В сочных перезревших арбузах наличие нитратов легко определить по пустотам в мякоти, из которых выпадают семена.

В аналитической химии известно несколько методов качественного определения нитратов и нитритов в растворе.

1. На часовое стекло поместить три капли раствора дифениламина, пять капель концентрированной серной кислоты и несколько капель исследуемого раствора. В присутствии нитрат- и нитрит-ионов появляется темно-синее окрашивание.

2. К 10 мл исследуемого раствора прибавить 1 мл раствора, состоящего из 10%-го раствора реактива Грисса в 12%-й уксусной кислоте, и нагреть до 70–80 °С на водяной бане. Появление розового окрашивания свидетельствует о наличии нитрит-ионов.

Приготовление реактива Грисса. Реактив состоит из двух растворов.

Первый – растворить 0,5 г сульфаниловой кислоты при нагревании в 50 мл 30%-го раствора уксусной кислоты.

Второй – прокипятить 0,4 г a-нафтиламина в 100 мл дистиллированной воды. К бесцветному раствору, слитому с сине-фиолетового осадка, прилить 6 мл 80%-го раствора уксусной кислоты.

Перед применением оба раствора смешать в равных объемах.

3. К 10 мл исследуемого раствора прилить 10–15 капель щелочи, добавить 25–50 мг цинковой пыли, полученную смесь нагреть. Нитраты восстанавливаются до аммиака, который обнаруживается по покраснению фенолфталеиновой бумаги, смоченной в дистиллированной воде и внесенной в пары исследуемого раствора.

4. Оригинальные методы для определения нитратов и нитритов предложены А.Л.Рычковым (1-й Московский медицинский институт имени И.М.Семашко). Для их проведения можно воспользоваться аптечными препаратами: риванолом (этакридина лактат), физиологическим раствором (0,9%-й раствор хлорида натрия в дистиллированной воде), антипирином (1-фенил-2,3-диметилпиразолон-5).

Р и в а н о л ь н а я р е а к ц и я. К 1 мл исследуемого раствора прибавляют 1 мл физиологического раствора и смешивают с 1 мл риванольного раствора (таблетку риванола растворяют при нагревании в 200 мл 8%-й соляной кислоты). Если появится бледно-розовая окраска, значит, уровень нитратов и нитритов в питьевой воде недопустим.

А н т и п и р и н о в а я р е а к ц и я. Антипирин в присутствии 50 мг/л нитритов образует нитропроизводное, окрашенное в салатовый цвет. Если в растворе присутствуют следы дихромата калия, то чувствительность реакции сильно возрастает, и при содержании нитритов более 1,6 мг/л появляется розовая окраска.

Для проведения этого анализа 1 мл питьевой воды смешивают с 1 мл физиологического раствора (концентрация нитритов при таком разведении уменьшается вдвое), добавляют 1 мл раствора антипирина (1 таблетку антипирина растворяют в 50 мл 8%-й соляной кислоты) и быстро 2 капли 1%-го раствора дихромата калия. Смесь нагревают до появления признаков кипения. Если в течение 5 мин раствор становится бледно-розовым, то в нем содержится более 1,6 мг/л нитрит-ионов, а в анализируемой питьевой воде их вдвое больше. В этом случае содержание нитрит-ионов превышает предельно допустимую концентрацию.

Количественное определение суммарного содержания нитратов и нитритов проводят с помощью реактива Грисса, переведя предварительно нитраты в нитриты цинковой пылью в кислой среде при рН = 3. Затем 10 капель исследуемого раствора подкисляют 10 каплями уксусной кислоты и прибавляют 8–10 капель реактива Грисса. Через 5–10 мин появляется розовое или красное окрашивание.

Для определения количественного содержания нитрит-ионов используют серию стандартных растворов. Сначала готовят основной раствор, содержащий 1000 мг нитратов в литре. С этой целью 1,645 г нитрата калия, высушенного до постоянной массы при температуре 105 °С, растворяют в 1 л дистиллированной воды в мерной колбе. Из основного раствора готовят рабочие стандартные растворы (в день проведения анализа) с содержанием 100, 50, 25 и 10 мг/л разбавлением его соответственно в 10, 20, 40 и 100 раз. При проведении анализа с градуировочным раствором проводят те же операции, что и с анализируемой пробой. Затем интенсивность окраски исследуемого образца сравнивают с окраской эталонных растворов визуально или на фотоэлектроколориметре (табл.).

Ориентировочное содержание нитритов

При массовых анализах растений на содержание нитратов используют потенциометрический метод, который позволяет определить различные физико-химические величины и проводить количественный анализ путем измерения электродвижущей силы элемента. Этот метод основан на применении нитратселективного электрода, позволяющего быстро и точно проводить анализы вытяжек из свежего и сухого растительного материала. Метод хорош не только благодаря высокой точности, но и универсальности применения, в том числе и для растительной продукции, имеющей ярко окрашенный сок, мешающий распознаванию нитратов колориметрическими методами.

Нитратселективный электрод относится к ионоселективным электродам с жидкой мембраной, обладающей свойствами полупроницаемости и повышенной избирательности по отношению к определенному типу ионов. Это свойство позволяет определять активность анализируемого иона по результатам одного измерения, т. е. прямым потенциометрическим методом.

Жидкие мембраны изготавливают на базе ионообменного раствора в соответствующем растворителе. Этим раствором пропитывают стеклянный фильтр или синтетическую пористую пластинку (тефлон, поливинилхлорид и т. д.). К растворителю предъявляют следующие требования:

  • не смешиваться с водой;
  • обладать высокой вязкостью, чтобы не вытекать из мембраны;
  • иметь пониженную упругость пара, чтобы не улетучиваться;
  • иметь относительно высокую диэлектрическую постоянную, чтобы ассоциация ионов не выходила за разумные пределы.

Ионообменный раствор образует с исследуемым ионом диссоциирующее в той или иной степени ионное соединение или же связывает исследуемые ионы в комплекс, устойчивый в данном растворителе.

На рисунке представлена схема устройства ионо(нитрат)селективного электрода. Мембрана нитратселективного электрода содержит положительно заряженный комплексный ион переходного металла (Ni 2+ , Fe 2+ ) с хелатными группами о-фенантролина.

Рис. Схема ионоселективного электрода с жидкой мембраной:

1 – внутренний электрод сравнения (хлорсеребряный); 2 – исследуемый раствор; 3 – ионообменный раствор; 4 – пластиковый корпус устройства; 5 – жидкая мембрана, приготовленная из пористой диафрагмы, пропитанной ионообменным раствором

Предложены и другие жидкостные нитрат-электроды, полученные на основе растворов нитрата диметилгексилдецилбензиламмония в деканоле, нитратов тетраоктиламмония и полимерных ионообменных систем.

Однако для различных практических применений, особенно в почвоведении и агрохимии, отдают предпочтение пленочному нитрат-электроду на основе тетрадециламмоний нитрата в дибутилфталате.

Л и т е р а т у р а

Логинов Н.Я., Воскресенский А.Г., Солодкин И.С. Аналитическая химия. М.: Просвещение, 1975;
Корыта И., Дворжак И., Богачкова В. Электрохимия. М.: Мир, 1975;
Никольский Б.П., Матерова Е.А. Ионоселективные электроды. Л.: Химия, 1980.

М.Д.Трухина,
Московский педагогический
государственный университет

источник

ПНД Ф 14.1:2:4.3-95
Количественный химический анализ вод. Методика измерений массовой концентрации нитрит-ионов в питьевых, поверхностных и сточных водах фотометрическим методом с реактивом Грисса

Купить ПНД Ф 14.1:2:4.3-95 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль»

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Документ устанавливает методику измерений массовой концентрации нитрит-ионов в питьевых, поверхностных и сточных водах фотометрическим методом с реактивом Грисса

2 Приписанные характеристики показателей точности измерений

3 Средства измерений, вспомогательное оборудование, реактивы и материалы

5 Требования безопасности, охраны окружающей среды

6 Требования к квалификации операторов

7 Требования к условиям измерений

8 Подготовка к выполнению измерений

10 Обработка результатов измерений

11 Оформление результатов измерений

12 Контроль точности результатов измерений

13 Проверка приемлемости результатов, полученных в двух лабораториях

Приложение А (информационное). Таблица А.1 — Бюджет неопределенности измерений

Приложение Б. Приготовление градуировочных растворов из натрия азотистокислого

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ
В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

И.о. директора ФБУ «Федеральный

центр анализа и оценки техногенного

_______________ С.А. Хахалин

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВОЙ
КОНЦЕНТРАЦИИ НИТРИТ-ИОНОВ В ПИТЬЕВЫХ,
ПОВЕРХНОСТНЫХ И СТОЧНЫХ ВОДАХ
ФОТОМЕТРИЧЕСКИМ МЕТОДОМ
С РЕАКТИВОМ ГРИССА

Методика допущена для целей государственного
экологического контроля

Методика рассмотрена и одобрена федеральным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия (ФБУ «ФЦАО»).

Главный инженер ФБУ «ФЦАО», к.х.н.

«Федеральный центр анализа и оценки техногенного воздействия» (ФБУ «ФЦАО»)

Настоящий документ устанавливает методику измерений массовой концентрации нитрит-ионов в питьевых, поверхностных и сточных водах фотометрическим методом с реактивом Грисса.

Диапазон измерений от 0,02 до 3 мг/дм 3 .

Если массовая концентрация нитрит-ионов в анализируемой пробе превышает 0,6 мг/дм 3 , то пробу необходимо разбавлять.

Определению мешают мутность и взвешенные вещества. Трехвалентное железо, двухвалентная ртуть, серебро, висмут, трехвалентная сурьма, свинец, трехвалентное золото, хлорплатинаты и метаванадаты мешают определению, так как выпадают в осадок. В анализируемой пробе не должны присутствовать сильные окислители или восстановители. Определению мешает также окраска воды и трихлорамин, двухвалентная медь занижает результаты вследствие вызываемого ею каталитического распада диазотированной сульфаниловой кислоты. Мешающие влияния устраняются в соответствии с п. 9.1.

Значения показателя точности измерений 1 — расширенной относительной неопределенности измерений при коэффициенте охвата 2 приведены в таблице 1. Бюджет неопределенности измерений приведен в Приложении А.

Таблица 1 — Диапазон измерений, показатели неопределенности измерений

Диапазоны определяемых концентраций, мг/дм 3

Суммарная стандартная относительная неопределенность, u, %

Расширенная относительная неопределенность 2 , U при коэффициенте охвата k = 2, %

Значения показателя точности методики используют при:

— оформлении результатов измерений, выдаваемых лабораторией;

— оценке качества проведения испытаний в лаборатории;

— оценке возможности использования настоящей методики в конкретной лаборатории.

1 В соответствии с ГОСТ Р 8.563-2009 (п. 3.4) в качестве показателя точности измерений использованы показатели неопределенности измерений).

2 Соответствует характеристике погрешности при доверительной вероятности Р = 0,95.

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы.

Фотоэлектро колориметр или спектрофотометр любого типа, позволяющий измерять оптическую плотность при λ = 520 нм.

Кюветы с длиной поглощающего слоя 10 или 20 мм.

Весы лабораторные специального класса точности с ценой деления не более 0,1 мг, наибольшим пределом взвешивания не более 210 г по ГОСТ Р 53228-2008.

Колбы мерные, наливные 2-50-2, 2-100-2, 2-1000-2 по ГОСТ 1770-74.

Пипетки 4(5)-2-1, 4(5)-2-2, 6(7)-2-5, 6(7)-2-10, 3-2-1, 3-2-5, 3-2-10 по ГОСТ 29227-91.

Государственные стандартные образцы (ГСО) состава водного раствора нитрит-ионов с массовой концентрацией 1 мг/см 3 и относительной погрешностью аттестованных значений массовых концентраций не более 1 % при Р = 0,95.

Шкаф сушильный лабораторный с температурой нагрева до 130 °С.

Фильтры бумажные беззольные по ТУ 6-09-1678-95.

1 Допускается использование других средств измерений утвержденных типов, обеспечивающих измерения с установленной точностью.

2 Допускается использование другого оборудования с метрологическими и техническими характеристиками, аналогичными указанным.

3 Средства измерений должны быть поверены в установленные сроки.

Квасцы алюмокалиевые (алюминий калий сернокислый) по ГОСТ 4329-77.

Кислота уксусная ледяная по ГОСТ 61-75.

Реактив Грисса по ТУ 6-09-3569-86.

Калия гидрокись (едкое кали) по ГОСТ 24363-80

или натрия гидрокись (едкий натр) по ГОСТ 4328-77.

Марганец сернокислый, 5-ти водный по ТУ 6-09-4007-82.

Калий марганцевокислый по ГОСТ 20490-75.

Аммоний щавелевокислый 1-водный по ГОСТ 5712-78.

Вода бидистиллированная по ТУ 6-09-2502-77.

1 Все реактивы, используемые для измерений, должны быть квалификации ч.д.а. или х.ч.

2 Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных.

Определение основано на способности нитритов диазотировать сульфаниловую кислоту с образованием красно-фиолетового диазосоединения с α-нафтиламином. Интенсивность окраски пропорциональна массовой концентрации нитритов. Протекание реакции в значительной степени зависит от pH среды. Оптическую плотность раствора измеряют при λ = 520 нм.

При выполнении измерений необходимо соблюдать следующие требования техники безопасности.

5.1 При выполнении измерений необходимо соблюдать требования техники безопасности при работе о химическими реактивами по ГОСТ 12.1.007-76.

5.2 Электробезопасность при работе с электроустановками по ГОСТ Р 12.1.019-2009.

5.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004-90.

5.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

5.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88.

Выполнение измерений может производить химик-аналитик, владеющий техникой фотометрического анализа, изучивший инструкцию по эксплуатации спектрофотометра или фотоколориметра и получивший удовлетворительные результаты при выполнении контроля процедуры измерений.

Измерения проводятся в следующих условиях:

— температура окружающего воздуха (20 ± 5) °С;

— относительная влажность не более 80 % при t = 25 °C;

— атмосферное давление (84 — 106) кПа (630 — 800 мм рт.ст);

— частота переменного тока (50 ± 1) Гц;

— напряжение в сети (220 ± 22) В.

При подготовке к выполнению измерений должны быть проведены следующие работы: подготовка посуды для отбора проб, отбор и хранение проб, подготовка прибора к работе, приготовление вспомогательных и градуировочных растворов, установление и контроль стабильности градуировочной характеристики.

Бутыли для отбора и хранения проб воды обезжиривают раствором СМС, промывают водой, обрабатывают хромовой смесью, промывают водопроводной водой, затем 3 — 4 раза дистиллированной водой.

Отбор проб питьевых вод производится в соответствии с требованиями ГОСТ Р 51593-2000 «Вода питьевая. Отбор проб».

Отбор проб поверхностных и сточных вод производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб», ПНД Ф 12.15.1-08 «Методические указания по отбору проб для анализа сточных вод».

Пробы воды (объем не менее 500 см 3 ) отбирают в емкости из полимерного материала или стекла, предварительно ополоснутые отбираемой водой.

Читайте также:  Сдать анализ на околоплодные воды

Если анализ производят в день отбора пробы, то консервирование не производится.

В том случае, если пробы не могут быть проанализированы сразу, их хранят при температуре 3 — 4 °С не более 24 часов или консервируют добавлением 2 — 4 см 3 хлороформа на 1 дм 3 воды. Законсервированные пробы хранят не более двух суток.

Для доставки в лабораторию сосуды с пробками упаковываются в тару, обеспечивающую сохранение и предохраняющую от резких перепадов температуры. При отборе проб составляют сопроводительный документ по форме, в котором указывают:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

Подготовку прибора к работе и оптимизацию условий измерения проводят в соответствии с рабочей инструкцией по эксплуатации прибора.

8.4.1 Вода дистиллированная, не содержащая нитритов

Воду готовят одним из следующих способов:

а) 1 дм 3 дистиллированной воды подкисляют 5 см 3 раствора серной кислоты (1:3), добавляют 50 см 3 бромной воды и кипятят (желательно с обратным холодильником) в течение 1 часа до полного удаления брома.

б) К 1 дм 3 дистиллированной воды добавляют 1 см 3 концентрированной серной кислоты и 0,2 см 3 48 %-ного раствора тетрагидрата сульфата марганца. Добавляют 1 — 3 см 3 0,04 %-ного раствора перманганата калия до появления постоянной розовой окраски. Через 15 минут раствор обесцвечивают, прибавляя по каплям 0,09 %-ный раствор моногидрата оксалата аммония.

в) К 1 дм 3 дистиллированной воды добавляют один кристалл перманганата калия и один кристалл едкой щелочи (КОН или NaOH) и производят повторную дистилляцию.

8.4.2 Бром, насыщенный водный раствор (бромная вода)

Бром по каплям при непрерывном перемешивании прибавляют к воде до появления нерастворяющейся капли на дне склянки. (Работу проводят в вытяжном шкафу). Реактив хранят в склянке из темного стекла в вытяжном шкафу.

8.4.3 Серная кислота, водный раствор (1:3)

Смешивают один объем серной кислоты, ρ = 1,84 г/см 3 с тремя объемами воды, осторожно приливая кислоту к воде.

8.4.4 Тетрагидрат сульфата марганца, 48 %-ный раствор

48 г соли тетрагидрата сульфата марганца растворяют в 52 см 3 дистиллированной воды.

8.4.5 Калий марганцевокислый, 0,04 %-ный раствор

0,4 г калия марганцевокислого растворяют в 1 дм 3 дистиллированной воды.

8.4.6 Аммоний щавелевокислый, 0,09 %-ный раствор

0,9 г моногидрата оксалата аммония растворяют в 1 дм 3 дистиллированной воды.

8.4.7 Сульфат алюминия-калия, 12,5 %-ный раствор

12,5 г алюмокалиевых квасцов растворяют в 87,5 см 3 воды при температуре 60 °С.

8.4.8 Алюминий гидроксид, суспензия для коагуляции

125 г сульфата алюминия-калия AlK(SO4)2∙12Н2O растворяют в 1 дм 3 воды, нагревают до 60 °С и постепенно прибавляют 55 см 3 25 %-ного раствора аммиака при постоянном перемешивании. После отстаивания в течение 1 ч осадок переносят в большой стакан и промывают декантацией бидистиллированной водой до исчезновения в промывной воде реакции на хлориды, аммиак, нитриты, нитраты.

8.4.9 Ацетат натрия, 2М водный раствор

27,2 г уксуснокислого натрия растворяют в 100 см 3 дистиллированной воды.

Растворяют 6,0 г сульфаниловой кислоты в 750 см 3 горячей дистиллированной воды. К полученному раствору прибавляют 250 см 3 ледяной уксусной кислоты.

Смешивают 0,600 г гидрохлорида α-нафтиламина с 1 см 3 концентрированной соляной кислоты (или 0,480 г основания α-нафтиламина смешивают с 1,4 см 3 концентрированной соляной кислоты) и разбавляют дистиллированной водой до 100 см 3 .

Растворяют 1,2 г α-нафтиламина в дистиллированной воде, прибавляют 50 см 3 ледяной уксусной кислоты и доводят объем дистиллированной водой до 200 см 3 . При образовании мути раствор фильтруют через хлопчатобумажную ткань, промытую дистиллированной водой. Раствор сохраняется 2 — 3 месяца.

8.4.12 Реактив Грисса, 10 %-ный раствор

10 г реактива Грисса, взвешенного с погрешностью не более 0,1 г, растворяют в 100 см 3 12 %-ного раствора уксусной кислоты.

8.4.13 Уксусная кислота, 12 %-ный раствор

25 см 3 ледяной уксусной кислоты разбавляют дистиллированной водой до 200 см 3 .

8.4.14 Приготовление из ГСО 3 основного градуировочного

раствора нитрит-иона с массовой концентрацией 0,1 мг/см 3 .

Раствор готовят в соответствии с прилагаемой к ГСО инструкцией. 1 см 3 раствора должен содержать 0,1 мг нитрит-иона.

Раствор устойчив в течение месяца.

3 Приготовление градуировочных растворов из натрия азотистокислого приведено в Приложении Б.

8.4.15 Приготовление рабочего градуировочного раствора нитрит-иона с массовой концентрацией 0,001 мг/см 3 .

Раствор готовят из основного градуировочного раствора соответствующим разбавлением. 1 см 3 раствора должен содержать 0,001 мг нитрит-иона.

Раствор готовят вдень проведения измерений.

Для построения градуировочного графика необходимо приготовить образцы для градуировки определяемого компонента с массовой концентрацией от 0,002 до 0,06 мг/дм 3 . Условия измерений, процедура выполнения измерений должны соответствовать п.п. 7, 9.

Состав и количество образцов для градуировки для построения градуировочного графика приведены в таблице 2.

Неопределенность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,5 %.

Таблица 2 — Состав и количество образцов для градуировки

Массовая концентрация нитрит-ионов в градуировочных растворах, мг/дм 3

Аликвотная часть рабочего градуировочного раствора, с массовой концентрацией 0,001 мг/см 3 , помещаемого в мерную колбу вместимостью 50 см 3 , см 3

Разбавляют каждый раствор до метки дистиллированной водой и перемешивают. Далее раствор проводят через весь ход анализа по п. 9.2.

Анализ образцов для градуировки проводят в порядке возрастания их массовой концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных.

При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс — величину массовой концентрации вещества в мг/дм 3 .

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал, а также при смене партий реактивов, после поверки или ремонта прибора. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в табл. 2).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

где X — результат контрольного измерения массовой концентрации нитрит-ионов в образце для градуировки;

С — аттестованное значение массовой концентрации нитрит-ионов;

u1(ТОЕ) — стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности, %.

Значения u1(ТОЕ) приведены в Приложении А.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

9.1.1 Мешающее влияние взвешенных веществ, мутности и окраски воды частично устраняется фильтрованием пробы через бумажный фильтр «синяя лента».

Если мутность фильтрованием не устраняется и поверхностные или сточные воды содержат коллоидные вещества, пробу необходимо осветлить путем коагулирования с гидрооксидом алюминия. Для этого к 100 см 3 пробы прибавляют около 0,5 г активированного угля, 1,0 см 3 12,5 % раствора сульфата алюминия и калия (KAI(SО4)∙12H2О) и раствор аммиака до получения pH — 5,8. После взбалтывания дают осадку осесть до полного осветления пробы. Фильтруют через сухой плотный фильтр («синяя лента»).

Осветление можно также проводить, взбалтывая 100 см 3 пробы с 2 см 3 суспензии гидроокида алюминия.

9.1.2 Влияние ионов металлов устраняется в ходе измерений (см. п. 9.2).

9.1.3 Окраску воды устраняют способом, описанным в п. 9.1.1.

Анализируемую воду нейтрализуют до pH = 7, и, если появится осадок или муть, фильтруют через мембранный фильтр № 1 (разбавление учитывают при расчете результата определения).

В коническую колбу вместимостью 100 см 3 помещают 50 см 3 анализируемой воды (или фильтрата после отделения осадка, или меньший объем, но разбавленный до 50 см 3 дистиллированной водой). В отобранном объеме должно содержаться не более 60 мкг NО2. Прибавляют 1,0 см 3 раствора сульфаниловой кислоты (п. 8.4.10) и тщательно перемешивают. Дают постоять 5 мин, затем приливают 1,0 см 3 раствора α-нафтиламина (п. 8.4.11) и 1,0 см 3 ацетата натрия (п. 8.4.9) (раствор ацетата натрия добавляется лишь в том случае, если раствор α-нафтиламина готовят с добавлением соляной кислоты) или добавляют 2,0 см 3 готового реактива Грисса, смесь перемешивают. Через 40 минут определяют оптическую плотность при λ = 520 нм.

Одновременно проводят холостой опыт с 50 см 3 дистиллированной воды и полученный в холостом опыте раствор используют в качестве сравнительного раствора при измерении оптической плотности. Результат определения находят по градуировочному графику.

Массовую концентрацию нитрит-ионов, X (мг/дм 3 ) рассчитывают по формуле:

где: С — массовая концентрация нитрит-ионов, найденная по графику, мг/дм 3 ;

50 — объем, до которого разбавлена проба, см 3 ;

V — объем пробы, взятой для определения, см 3 .

При необходимости за результат измерений Хср принимают среднее арифметическое значение двух параллельных определений Х1 и Х2

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в Таблице 3.

Таблица 3 — Значения предела повторяемости при вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

При невыполнении условия (4) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6-2002.

Результат измерений в документах, предусматривающих его использование, может быть представлен в виде: X ± = 0,01∙UX, мг/дм 3 , где X — результат измерений массовой концентрации, установленный по п. 10, мг/дм 3 ;

U — значение показателя точности измерений (расширенная неопределенность измерений с коэффициентом охвата 2).

Значение U приведено в таблице 1.

Допускается результат измерений в документах, выдаваемых лабораторией, представлять в виде: X ± = 0,01UлX, мг/дм 3 , Р = 0,95, при условии Uл 3 .

Процедуру измерений признают удовлетворительной, при выполнении условия:

При невыполнении условия (7) контрольную процедуру повторяют. При повторном невыполнении условия (7) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры Kк с нормативом контроля K.

Результат контрольной процедуры Kк рассчитывают по формуле:

где Сср — результат измерений массовой концентрации нитрит-ионов в образце для контроля — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4);

С — аттестованное значение массовой концентрации нитрит-ионов в образце для контроля.

Норматив контроля K рассчитывают по формуле

где σI(TOE) — стандартное отклонение промежуточной прецизионности, соответствующие массовой концентрации нитрит-ионов в образце для контроля, мг/дм 3 .

Процедуру измерений признают удовлетворительной, при выполнении условия:

При невыполнении условия (10) контрольную процедуру повторяют. При повторном невыполнении условия (10) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата измерений, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4.

Таблица 4 — Диапазон измерений, значения пределов воспроизводимости при вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно разделу 5 ГОСТ Р ИСО 5725-6-2002.

Бюджет неопределенности измерений

Таблица А.1 — Бюджет неопределенности измерений

Стандартная относительная неопределенность 4 , %

Приготовление градуировочных растворов, u1, %

Степень чистоты реактивов и дистиллированной воды, u2, %

Подготовка проб к анализу, u3, %

Стандартное отклонение результатов измерений, полученных в условиях повторяемости 5 , ur (σr), %

Стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности 5 , uI(TOE) (σI(TOE)), %

Стандартное отклонение измерений полученных в условиях воспроизводимости, uR (σR), %

Суммарная стандартная относительная неопределенность, uс, %

Расширенная относительная неопределенность, (Uотн) при k = 2, %

1 Оценка (неопределенности) типа А получена путем статистического анализа ряда наблюдений.

2 Оценка (неопределенности) типа В получена способами, отличными от статистического анализа ряда наблюдений.

4 Соответствует характеристике относительной погрешности при доверительной вероятности Р = 0,95.

5 Согласно ГОСТ Р ИСО 5725-3-2002 учтено при расчете стандартного отклонения результатов измерений, получаемых в условиях воспроизводимости.

Приготовление градуировочных растворов из натрия азотистокислого

Б.1 Натрий азотистокислый, основной градуировочный раствор

0,150 г азотистокислого натрия, высушенного при 105 °С, растворяют в мерной колбе вместимостью 1 дм 3 в небольшом количестве дистиллированной воды и доводят раствор до метки.

1 см 3 раствора содержит 0,1 мг нитрит-ионов. Раствор консервируют 1 см 3 хлороформа, хранят в склянке темного стекла в холодном месте.

Б.2 Натрий азотистокислый, рабочий градуировочный раствор (I)

100 см 3 основного стандартного раствора помещают в мерную колбу вместимостью 1 дм 3 и доводят до метки дистиллированной водой.

1 см 3 раствора содержит 0,01 мг нитрит-ионов. Раствор готовят в день проведения измерений.

Б.3 Натрий азотистокислый, рабочий градуировочный раствор (II)

100 см 3 рабочего раствора (1) помещают в мерную колбу вместимостью 1 дм 3 и доводят до метки дистиллированной водой.

1 см 3 раствора содержит 0,001 мг нитрит-ионов. Раствор готовят в день проведения измерений.

2 Приписанные характеристики показателей точности измерений. 1

3 Средства измерений, вспомогательное оборудование, реактивы и материалы.. 2

3.1 Средства измерений, стандартные образцы.. 2

3.2 Вспомогательное оборудование и материалы.. 2

5 Требования безопасности, охраны окружающей среды.. 3

6 Требования к квалификации операторов. 3

7 Требования к условиям измерений. 3

8 Подготовка к выполнению измерений. 4

8.1 Подготовка посуды для отбора проб. 4

8.2 Отбор и хранение проб. 4

8.3 Подготовка прибора к работе. 4

8.4 Приготовление растворов для анализа. 4

8.5 Построение градуировочного графика. 6

8.6 Контроль стабильности градуировочной характеристики. 6

9.1 Устранение мешающих влияний. 7

10 Обработка результатов измерений. 8

11 Оформление результатов измерений. 8

12 Контроль точности результатов измерений. 8

12.2 Оперативный контроль процедуры измерений с использованием метода добавок. 9

12.3 Оперативный контроль процедуры измерений с использованием образцов для контроля. 9

13 Проверка приемлемости результатов, полученных в двух лабораториях. 10

Приложение А (информационное). Бюджет неопределенности измерений. 10

Приложение Б. Приготовление градуировочных растворов из натрия азотистокислого. 11

источник

Предельно допустимая концентрация (ПДК) нитритов (NO2 – ) в питье­вой воде водоемов 3,3 мг/л, нитратов (NO3 – ) — 45 мг/л.

Качественное определение нитратов и нитритов. На часовое или предметное стекло поместите 3 капли раствора дифениламина, приготов­ленного на концентрированной серной кислоте (Осторожно!),и 1-2 кап­ли исследуемой воды. В присутствии нитрат- и нитрит-ионов появляется синее окрашивание, интенсивность которого зависит от их концентрации.

Читайте также:  Сдать анализ воды на биохимию

Раздельное определение нитратов и нитритов следует начинать с об­наружения нитритов, которые мешают определению нитратов.

Определение нитритов. К 5 мл исследуемой воды прибавить 0,5 мл реактива Грисса (Осторожно! Реактив содержит вредные вещества. Работать в вытяжном шкафу, используя пипетку с грушей) и на­греть до 70-80° С на водяной бане (в качестве бани можно использовать химический стакан на электроплитке). Появление розового окрашивания той или иной интенсивности свидетельствует о наличии нитрит-ионов в пробе.

Определение нитратов. Если в воде были обнаружены нитриты, то их предварительно нужно удалить. Для этого в пробирку берут 5 мл ана­лизируемой воды, прибавляют несколько кристалликов хлорида аммония и нагревают над газовой горелкой в течение 10-15 минут.

После этого присутствие нитратов можно определить раствором ди­фениламина, как описано выше, либо следующим способом.

К 3 мл исследуемого раствора прилить 2 мл 20%-ного раствора щело­чи, добавить 10-15 мг цинковой пыли, смесь осторожно нагреть (можно на водяной бане). Нитраты восстанавливаются до аммиака, который обнаруживается по покраснению фенолфталеиновой бумаги или по посинению красной лакмусовой, смоченной дистиллированной водой и внесенной в пары исследуемого раствора.

Качественное определение нитрит-ионов с приближенной количественной оценкой. В про­бирку диаметром 13-14 мм нали­вают 10 мл исследуемой воды, при­бавляют 1 мл реактива Грисса (ТБ!) и нагревают до 70-80° С на водяной бане. Через 10 мин. по­явившуюся окраску сравнивают со шкалой (табл. 8.10).

Количественное определение нитритов. Для приготовления шкалы готовят основной стандартный раствор (0,15 г нитрита натрия раство­ряют в 100 мл дистиллированной воды), содержащий 1 мг нитрит-ионов в мл раствора; рабочий раствор готовят разбавлением основного раствора в 1000 раз. С целью повышения точности эту операцию целесообразно выполнить в два приема — сначала разбавить раствор в 50 раз, а затем еще в 20 раз. Для этого 2 мл основного стандартного раствора переносят пипеткой в мерную колбу на 100 мл, доводят объем до метки дистиллиро­ванной водой, перемешивают. Затем из полученного раствора берут 5 мл в другую мерную колбу на 100 мл, так же доводят объем до метки и перемешивают. 1 мл полученного раствора содержит 1 мкг нитрит-ионов. В 10 мерных колб на 50 мл вносят рабочий раствор в соответствии с табл. 8.11 и доводят объем до метки дистиллированной водой.

Из каждой колбы взять по 5 мл раствора в 10 пронумерованных проби­рок, в 11-ю — 5 мл исследуемой воды, добавить в каждую по 0,5 мл реак­тива Грисса (ТБ!), перемешать и нагреть на водяной бане при 50-60°С. Через 10-15 минут интенсивность появившейся розовой окраски пробы сравнить со шкалой стандартных растворов.

Количественное определение суммарного содержания нитратов и нитритов. Определение проводят с реактивом Грисса (ТБ!) по вышеопи­санной методике, предварительно переведя нитраты в нитриты цинковой пылью в кислой среде при рН=3. Для перевода нитратов в нитриты к 10 мл исследуемой воды прибавляют 10-15 мг цинковой пыли и добавляют по каплям 0,1 н. раствор серной кислоты, доводя рН до 3, контролируя его значение по универсальной индикаторной бумаге. Через 10-15 минут ото­брать пипеткой 5 мл прозрачного раствора в пробирку и провести анализ.

Количественное определение нитратов. В фарфоровую чашку по­мещают 10 мл исследуемой воды, прибавляют 1 мл 0,5% раствора салицилата натрия или салициловой кислоты и выпаривают досуха на водяной бане. После охлаждения сухой остаток увлажняют 1 мл концентрирован­ной серной кислоты, тщательно растирают стеклянной палочкой и остав­ляют на 10 мин. Затем добавляют 5-10 мл дистиллированной воды и ко­личественно переносят в мерную колбу на 50 мл, прибавляют 7 мл 10М гидроксида натрия (Осторожно!), доводят объем дистиллированной во­дой до метки и перемешивают.

5 мл раствора наливают в пробирку и сравнивают его окраску с конт­рольной шкалой. За результат анализа следует принимать значение кон­центрации нитрат-анионов (в мг/л) того образца шкалы, который более всего соответствует окраске полученного раствора.

Если в лаборатории имеется фотоколориметр, раствор помещают в кювету, измеряют его оптическую плотность, значение концентрации нит­рат-анионов определяют по предварительно построенному градуировочному графику.

Если окраска содержимого пробирки окажется интенсивнее крайнего образца шкалы (5 мг/л) или значение оптической плотности выходит за пределы градуировочного графика, анализируемую воду разбавляют в 5 раз дистиллированной водой и определение повторяют. При вычислении результатов учитывают степень разбавления пробы.

Для приготовления шкалы готовят основной стандартный раствор, растворяя дистиллированной водой 0,032 г нитрата калия в мерной колбе на 200 мл (0,1 мг нитратов/мл), и рабочий раствор разведением основного в 10 раз (0,01 мг/мл). Затем в фарфоровые чашки вносят 0,1, 2, 5, 10, 15,20 и 25 мл рабочего раствора (что соответствует содержанию нитратов 0; 0,2; 0,4; 1,0; 2,0; 3,0; 4,0 и 5,0 мг/л), добавляют по 1 мл раствора салицилата натрия, выпаривают досуха. Далее проводят те же операции, что и с исследуемой пробой.

Определение нитратов и нитритов в воде по методу АЛ.Рычкова.

Для определения нитратов и нитритов по этому методу необходи­мы следующие медицинские препараты (их можно приобрести в аптеке): риванол (этакридина лактат), антипирин, оксафенамид, стрептоцид, гид­рокарбонат натрия (питьевая сода), физиологический раствор (0,9% ра­створ хлорида натрия в дистиллированной воде), а также соляная кислота и дихромат калия.

В питьевой воде должно содержаться не более 3,3 мг/л нитрит- и 45 мг/л нитрат-ионов.

Определение нитритов. Для контроля нитритов можно воспользовать­ся одним из трех методов, пределы обнаружения у которых составляют 1,3; 1,6 и 2 мг/л нитрит-ионов.

Риванольная реакция. К 1 мл исследуемой воды прибавляют 1 мл физиологического раствора и смешивают с 1 мл риванольного раствора (таблетку растворяют при нагревании в 200 мл 8%-ной соляной кислоты). Если появится бледная розовая окраска, значит, уровень нитритов в пить­евой воде недопустим.

Антипириновая реакция. 1 мл питьевой воды смешивают с 1 мл фи­зиологического раствора (концентрация нитритов при таком разведении падает вдвое), 1 мл раствора антипирина (одна таблетка в 50 мл 8%-ной соляной кислоты) и быстро прибавляют две капли 1%-ного раствора дих­ромата калия. Смесь нагревают до появления признаков кипения. Если в течение 5 мин. раствор становится бледно-розовым, то значит, что в нем содержится более 1,6 мг/л нитрит-ионов, а в пробе питьевой воды соот­ветственно вдвое больше (выше 3,2 мг/л). В этом случае содержание нит­рит-ионов превышает предельно допустимую концентрацию.

Домашняя модификация метода Грисса. Метод Грисса довольно трудоемок, но этот метод санитарно-гигиенического контроля можно вполне повторить на кухне, не используя быстроокисляющиеся реактивы и спе­циальную аппаратуру

К 1 мл солянокислого раствора стрептоцида (таблетка 0,5 г в 50 мл 8%-ной соляной кислоты) прибавляют 1 мл анализируемой воды, предва­рительно разбавленной вдвое дистиллированной водой или физраствором, и ставят на 2 мин. в холодильник. Затем в смесь понемногу присыпают гидрокарбонат натрия, пока не перестанут выделяться пузырьки газа. Здесь главное не переборщить с содой, так как ее избыток мешает цветной ре­акции. Поэтому следует добавлять ее по крупинкам. После того, как кис­лота нейтрализована, остается прибавить 1 мл холодного раствора оксафенамида в 10%-ный раствор гидрокарбоната натрия (в 100 мл физра­створа растворяют 20 таблеток по 0,5 г гидрокарбоната натрия и 1 таб­летку оксафенамида). Если в течение 5 мин. смесь приобретает бледно-желтую окраску, вода не пригодна к употреблению.

Определение нитратов (риванольная реакция). К 1 мл исследуе­мой воды прибавляют 2,2 мл физиологического раствора. Затем отбира­ют 2 мл приготовленного раствора, добавляют 1 мл солянокислого ра­створа риванола и немного порошка цинка (на кончике ножа). Если в течение 3-5 мин. желтая окраска риванола исчезнет и раствор окрасится в бледно-розовый цвет, то содержание нитратов в питьевой воде превыша­ет ПДК.

8.2.3.7. Хлориды [37, 38]

Концентрация хлоридов в водоемах-источниках водоснабжения допус­кается до 350 мг/л.

В поверхностных водах количество хлоридов зависит от характера пород, слагающих бассейны, и варьирует в значительных пределах — от десятых долей до тысячи миллиграммов на литр. В реках северной части России хлоридов обычно немного, не более 10 мг/л, в южных районах эта величина повышается до десятков и сотен мг/л. Много хлоридов попада­ет в водоемы со сбросами хозяйственно-бытовых и промышленных сточ­ных вод. Этот показатель весьма важен при оценке санитарного состоя­ния водоема.

Качественное определение с приближенной количественной оцен­кой. В пробирку отбирают 5 мл исследуемой воды и добавляют 3 капли 10%-ного раствора нитрата серебра. Приблизительное содержание хло­ридов определяют по осадку или помутнению (табл. 8.12).

Количественное определение хлоридов. Хлориды определяют тит­рованием пробы анализируемой воды нитратом серебра в присутствии хромата калия как индикатора. Нитрат серебра дает с хлорид-ионами белый осадок, а с хроматом калия — кирпично-красный осадок хромата серебра. Из образовавшихся осадков меньшей растворимостью облада­ет хлорид серебра. Поэтому лишь после того, как хлорид-ионы будут свя­заны, начинается образование красного хромата серебра. Появление слабо-оранжевой окраски свидетельствует о конце реакции. Титрование можно проводить в нейтральной или слабощелочной среде. Кислую анализируе­мую воду нейтрализуют гидрокарбонатом натрия.

В коническую колбу помещают 100 мл исследуемой воды, прибавляют 1 мл 5%-ного раствора хромата калия и титруют 0,05 н. раствором нитра­та серебра при постоянном взбалтывании до появления слабо-красного окрашивания.

Содержание хлоридов (X) в мг/л вычисляют по формуле:

где 1,773 — масса хлорид-ионов (мг), эквивалентная 1 мл точно 0,05 н. раствора нитрата серебра;

V — объем раствора нитрата серебра, затраченного на титрование, мл. Техника безопасности! После работы обязательно вымыть руки.

8.2.3.8. Сульфаты [37, 38]

Концентрация сульфатов в воде водо­емов-источников водоснабжения допус­кается до 500 мг/л.

Содержание сульфатов в природных, поверхностных и подземных водах обус­ловлено выщелачиванием горных пород, биохимическими процессами и др. В се­верных водоемах сульфатов обычно не­ много; в южных районах, где воды бо­лее минерализованы, содержание содер­жание сульфатов увеличивается. Суль­фаты попадают в водоемы также со сбросами сточных вод.

Качественное определение с приближенной количественной оцен­кой. В пробирку вносят 10 мл исследуемой воды, 0,5 мл раствора соляной кислоты (1:5) и 2 мл 5%-ного раствора хлорида бария, перемешивают. По характеру выпавшего осадка определяют ориентировочное содержание сульфатов: при отсутствии мути — концентрация сульфат-ионов менее 5 мг/л; при слабой мути, появляющейся не сразу, а через несколько мин.. -5-10 мг/л; при слабой мути, появляющейся сразу после добавления хлорида бария, — 10-100 мг/л; сильная, быстро оседающая муть свидетельствует о достаточно высоком содержании сульфат-ионов (более 100 мг/л).

Количественные методы определения сульфат-ионов

1. Турбидиметрическое определение — определение сульфат-ионов в виде сульфата бария в кислой среде с помощью стабилизирующего реак­тива, в качестве которого можно использовать 0,5%-раствор желатина.

Сначала готовят шкалу стандартных растворов. Для этого в 12 прону­мерованных колб на 50 мл отбирают пипеткой определенные объемы ос­новного стандартного раствора в соответствии с табл. 8.13, доводят объем в каждой из колб до 50 мл дистиллированной водой и перемешивают.

Затем в 12 пронумерованных пробирок отбирают по 5 мл раствора из соответствующей колбы, а в 13-ю — 5 мл исследуемой воды. Во все пробир­ки прибавляют по 2 капли соляной кислоты 1:1, по 3 мл раствора желатина и тщательно перемешивают. Пробирки просматривают сверху на черном фоне и определяют концентрацию сульфат-ионов, сравнивая интенсивность по­мутнения пробы и шкалы стандартных растворов (табл. 8.14).

Приготовление основного стандартного раствора

0,091 г безводного сульфата калия растворяют в дистиллированной воде в мерной колбе на 100 мл (в 1 мл содержится 0,5 мг сульфатов).

2. Гравиметрическое определение — осаждение сульфатов в кислой среде хлоридом бария в виде сульфата бария. Метод применим в широ­ком диапазоне концентраций.

200 мл исследуемой воды помещают в химический стакан, прибавляют 2-3 капли индикатора метилового оранжевого и соляную кислоту до розовой окраски раствора. Смесь нагревают до кипения и упаривают до 50 мл. В горячий раствор при помешивании вносят 10 мл горячего 5%-ного раствора хлорида бария. После осветления раствора проверяют полноту осаждения, прибавляя 1-2 капли 5%-ного раствора хлорида ба­рия (отсутствие мути свидетельствует о полном осаждении сульфатов), и оставляют на сутки для «созревания» (при созревании происходит укруп­нение кристаллов сульфата бария, что необходимо для уменьшения по­терь при фильтровании). Затем приступают к отделению осадка от ра­створа. Для этого лучше использовать мелкопористый обеззоленный фильтр «синяя лента». Фильтр складывают вчетверо, вставляют в сухую и чистую воронку, расправляют, плотно прижимают к стенкам воронки и смачивают дистиллированной водой. Затем воронку с фильтром помеща­ют в кольцо штатива и, подставив под воронку чистый стакан, декантиру­ют (сливают) по стеклянной палочке жидкость на фильтр, стараясь не взмучивать раствор. Когда жидкость над осадком будет отделена, при­ступают к промыванию осадка. Для этого осадок в стакане промывают декантацией 2-3 раза небольшими порциями (15-20 мл) промывной жид­кости (100 мл дистиллированной воды, подкисленной 2 мл серной кислоты 1:3). Затем новыми порциями промывной жидкости переносят осадок на фильтр. Осадок на фильтре промывают 1%-ным раствором нитрата ам­мония до отрицательной реакции на хлорид-ион в промывной воде (по нит­рату серебра).

После этого воронку вместе с фильтром помещают в сушильный шкаф для высушивания (не следует пересушивать, иначе фильтр будет ломать­ся). Подсушенный осадок вместе с фильтром помещают в предваритель­но прокаленный и взвешенный тигель, ставят его в фарфоровый треуголь­ник и небольшим пламенем горелки обугливают фильтр, не допуская вос­пламенения. Затем тигель при помощи тигельных щипцов переносят в му­фельную печь и прокаливают при 700-800° С в течение часа, охлаждают в эксикаторе и взвешивают.

Расчет проводят по формуле:

– концентрация сульфат-иона, мг/л;

m1 — масса тигля с осадком, г;

m2 — масса пустого тигля, г;

V — объем воды, взятой для анализа, мл;

0,41 — коэффициент для пересчета сульфата бария на сульфат-ион.

8.2.3.9. Исследование качества воды водоемов методом автогра­фии на фотобумаге [27]

Окислительно-восстановительные условия в почвах и илах оказывают заметное влияние на развитие растительного и животного населения этих субстратов.

В окислительной (аэробной) среде, достаточно увлажненной и содер­жащей свободный кислород, процессы минерализации органических ос­татков протекают быстро. При этом образуются полностью окисленные соединения, служащие пищей для растений, например нитраты, фосфаты, анионы многих других микроэлементов.

При малом содержании кислорода в субстрате развиваются восста­новительные (анаэробные) процессы. В этих условиях разложение остат­ков замедляется; в среде накапливаются восстановители, отрицательно влияющие на развитие растений. Однако временное состояние восста­новленности в почвах имеет и полезную сторону. Становятся подвижны­ми многие ранее не доступные растениям элементы — железо, марганец, а также ионы многих других микроэлементов. Происходит накопление аммонийных солей в почве, повышается активность многих почвенных ферментов (дегидрогеназ, пероксидаз и др.).

Читайте также:  Сдать анализ воды в минске

Таким образом, чередование аэро- и анаэробиозных условий в почве необходимо для нормального существования организмов, использующих почву как среду обитания. Длительный же анаэробиоз (как и аэробиоз) для них нежелателен.

Разложение органических остатков в почвах и илах происходит в ос­новном благодаря деятельности микроорганизмов, групповой состав ко­торых зависит от уровня окисленности среды. В связи с этим микроорга­низмы могут служить биоиндикаторами окислительно-восстановитель­ных условий в указанных субстратах.

В окисленных средах преобладают аэробы, для развития которых не­обходим кислород. В средах, где кислорода мало и содержатся восстано­вители (молекулярный водород, сероводород, закисные формы металлов), преимущественно развиваются анаэробы, для которых присутствие кис­лорода не обязательно или даже вредно. Анаэробы активны по отноше­нию к среде, потому что продукты их жизнедеятельности содержат вос­становители, накопление которых делает среду все более восстановлен­ной.

Количественное определение аэробов и анаэробов в субстратах воз­можно, но методически довольно сложно и выполняется, как правило, в специальных микробиологических лабораториях. Для оценки уровня окис­ленности (восстановленности) среды имеются более доступные методы. В частности, уровень восстановленности почвы, донных отложений и дру­гих субстратов можно ориентировочно определять с помощью апплика­ционного метода — автографии на фотобумаге.

Метод основан на восстановлении бромистого серебра, находящегося в эмульсии засвеченной фотобумаги, восстановленными веществами изу­чаемого субстрата. При этом в эмульсионном слое фотобумаги образует­ся множество частиц металлического серебра в виде черных и бурых пятен. Интенсивность окраски пятен тем больше, чем выше восстановленность среды в местах соприкосновения фотоэмульсии с почвой.

Поскольку восстановительные условия в придонных субстратах со­здаются во многом благодаря деятельности анаэробов, фотобумага тем самым регистрирует уровень активности этих микроорганизмов в грун­те. Аэробы цвета фотобумаги не изменяют, она остается практически белой.

Таким образом, одновременно определяется и уровень восстановлен­ности среды, и уровень активности анаэробных микроорганизмов в иссле­дуемом субстрате.

Восстановленные и окисленные участки на фотобумаге четко разли­чаются по цвету. Более темные пятна свидетельствуют о высокой кон­центрации восстановленных веществ — продуктов жизнедеятельности анаэробов. Слабоокрашенная поверхность на фотобумаге соответствует тем местам субстрата, где преобладают окислительные условия.

На отпечатках, называемых аппликациями, или автографиями, и полу­чаемых при исследовании почв, распределение окисленных и восстанов­ленных зон носит в основном очаговый характер. Черные восстановлен­ные участки фотобумаги, как правило, соответствуют скоплениям про­дуктов жизнедеятельности микроорганизмов вокруг мертвых органичес­ких остатков (например, соломы), где условия для развития анаэробов оказались благоприятными. Автографии илов обычно окрашены более равномерно.

Следует отметить, что исследования на искусственных средах с чис­тыми культурами анаэробных микроорганизмов показали, что различные их экологические группы создают разный уровень восстановленности среды. Так, сульфатредуцирующие бактерии, основу выделений которых составляет сероводород, окрашивают фотобумагу в черный или густо­коричневый цвет. Менее густая коричневая окраска пятен наблюдается в культурах клостридий, выделяющих метан, водород, ацетон и др. Еще сла­бее окраска фотобумаги в культурах плектридий.

Эти факты можно объяснить большой активностью сероводорода как восстановителя благодаря его хорошей растворимости (по сравнению, например, с молекулярным водородом или метаном) в воде.

Разумеется, в природных образцах почвы или ила потемнение фотобу­маги есть суммарный результат деятельности всех групп анаэробов, жи­вущих в них.

Аппликационный метод дает хорошие результаты при экологической диагностике почв техногенных территорий и при изучении состояния во­доемов по донным отложениям.

Промышленные выбросы в большинстве своем ядовиты для почвен­ных микроорганизмов. Так, например, выбросы, содержащие соединения азота, угнетающе действуют на процессы аммонификации и нитрифика­ции, способствуют созданию в почвах анаэробных условий, которые можно выявить с помощью фотоаппликаций.

В загрязненных прудах, озерах и реках, потерявших способность к са­моочищению, вода обеднена кислородом, а донные отложения представ­ляют собой ядовитый, сильно восстановленный субстрат, непригодный для жизни донных животных (например, червей, личинок комаров, поде­нок, ручейников).

При обследовании водоема аппликационный метод дает возможность выявить наиболее загрязненные его участки и выяснить причины загряз­нения.

Перед отбором проб необходимо провести визуальное изучение объекта исследования (участка реки, пруда и т. п.), определить и отметить на карте-схеме объекта наиболее загрязненные участки (выходы стоков заводов и ферм, отстойники и т. п.), относительно чистые и чистые (про­зрачная вода без запаха и пленок и т. п.).

Изучается водная и прибрежная растительность; при необходимости делается их гербарий. Отмечая на карте-схеме участки отбора, надо помнить одно правило: от частоты точек отбора зависят точность иссле­дования и объективность оценки экологического состояния объекта. Из одной намеченной точки отбора рекомендуется брать не менее 2-3 об­разцов на расстоянии 20-30 см друг от друга.

Усредненный образец ила помещается в целый плотный полиэтилено­вый пакет, в который заливается около 100 мл воды из обследуемого водоема. Пакет с образцом перевязывается, к нему прикрепляется эти­кетка (ее можно вложить в верхнюю часть пакета выше завязки), в которой указываются: дата и место отбора пробы, примерная глубина взятия образца, а также фамилия исследователя.

Пробы ила в зависимости от целей и задач исследования отбирают черпаком из поверхностного слоя непосредственно с берега или с лодки.

Техника определения уровня восстановленности субстрата с помощью автографии на фотобумаге состоит в следующем.

1. Образцы ила или почвы, взятые накануне, но не более чем за сутки до начала опыта, помещают в литровые или пол-литровые химические стаканы (или банки). Образцы почвы заливают дистиллированной водой, а илов — водой из исследуемого водоема до их полного насыщения. Для заполнения водой всех пор субстрата образцам дают выдержку около одного часа. Донные отложения должны быть покрыты примерно санти­метровым слоем воды.

2. Фотобумагу (глянцевую, тонкую, нормальную) нарезают в виде по­лос размером 4×9 см и после нумерации в соответствии с номерами об­разцов помещают вертикально во влажные образцы. Для этого торцом металлической линейки или ножом с широким лезвием делают в образце щель глубиной около 8,5 см и шириной 4-5 см, опускают в нее полоску фотобумаги, а затем ножом или линейкой прижимают субстрат к фотобу­маге. Не рекомендуется держать фотобумагу на свету более 15-20 ми­нут. Этого времени вполне хватит для се нарезки, маркировки и установ­ки в изучаемый субстрат.

3. После 72-часовой экспозиции фотобумагу извлекают из субстрата, быстро промывают в обычной, а затем дистиллированной воде, закрепля­ют в течение 5 минут в 25%-ном растворе гипосульфита и снова промы­вают.

4. Высушивают полоски на фильтровальной бумаге так, чтобы эмуль­сионный слой был сверху.

Чтобы результаты эксперимента с разными образцами можно было сравнивать, желательно пользоваться фотобумагой из одной и той же партии и закладывать ее в образцы на одно и то же время. Если образцы почвы или донных отложений взяты без нарушения их структуры, фото­бумага покажет кроме уровня восстановленности (густота окраски) еще и распределение восстановленных зон в образце.

8.2.4. Дополнительные методы

8.2.4.1. Вкус и привкус воды [37]

Вкус и привкус воды, обнаруживаемые непосредственно в воде (или для водоемов хозяйственно-питьевого назначения после хлорирования), не должны превышать 2 баллов.

Вкус и привкусы оценивают как качественно, так и количественно по интенсивности в баллах. Различают четыре вида вкуса: соленый, горький, сладкий и кислый. Остальные вкусовые ощущения называют привкуса­ми: хлорный, рыбный, металлический и т.п. Интенсивность вкуса и при­вкуса определяют по 5-балльной шкале так же, как и запах.

Вкус и привкус определяют в сырой воде при комнатной температуре и 60°С. В воде открытых водоемов и источников сомнительных в сани­тарном отношении вкус воды устанавливают только после ее кипячения.

При исследовании в рот набирают 10-15 мл воды, держат несколько минут (не проглатывать!) и определяют характер и интенсивность при­вкуса.

8.2.4.2. Осадок [37]

Осадок характеризуют по следующим параметрам: нет, незначитель­ный, заметный, большой. При очень большом осадке указывают толщину слоя в мм. По качеству осадок определяют как хлопьевидный, илистый, песчаный и т.п. с указанием цвета — серый, бурый, черный и др. Осадок в воде водоемов отмечают через 1 ч. после взбалтывания пробы, в воде подземных источников — через 24 ч.

В период выпадения осадка качественно описывают осветление — не­заметное, слабое, сильное, вода прозрачна.

8.2.4.3. Щелочность [37]

Под щелочностью понимают способность некоторых компонентов, со­держащихся в воде, связывать эквивалентное количество сильной кисло­ты. Щелочность создают все катионы, которые в воде были уравновеше­ны гидроксид-ионами, анионами слабых кислот (например, карбонаты, гидрокарбонаты). Щелочность определяется количеством сильной кис­лоты, необходимой для замещения этих ионов. Расход кислоты эквива­лентен их общему содержанию в воде и выражает общую щелочность воды.

В обычных природных водах щелочность зависит в основном от присут­ствия гидрокарбонатов щелочноземельных металлов, в меньшей степени щелочных. В этом случае значение рН воды не превышает 8,3. Раствори­мые карбонаты и гидрокарбонаты повышают значение рН более 8,3.

Титриметрическое определение щелочности основано на титро­вании воды сильной кислотой. Количество раствора, необходимое для достижения рН 8,3, эквивалентно свободной щелочности, а для дости­жения рН 4,5 — общей щелочности. При рН меньше 4,5 ее щелочность равна нулю.

Конечную точку при титровании находят визуально. Щелочность, осо­бенно свободную, следует определять не позднее чем через 24 ч. после отбора пробы. Результаты выражают в ммолях эквивалентов на 1 л, что соответствует числу миллилитров 0,1 М раствора соляной кислоты, из­расходованной на титрование 100 мл исследуемой воды.

При визуальном определении мешает интенсивная окраска воды. Ее устраняют, прибавляя активированный уголь и фильтруя пробы. Мутные воды фильтруют через бумажный мелкопористый фильтр. Для более точ­ного определения щелочности предварительно вытесняют свободный уг­лекислый газ, продувая воздух, так как высокие концентрации диоксида углерода мешают обнаружить переход окраски при титровании.

1. Раствор соляной кислоты (0,1 M), который можно приготовить не из фиксанала, а из приблизительной концентрации с последующим определением поправочного коэффициента к 0,1 М раствору НС1 по карбонату натрия. Поправочный коэффициент К рассчитывают по формуле:

где V — объем 0,1 н. раствора соляной кислоты, израсходованной на титрование 20 мл 0,1 н. раствора карбоната натрия.

2. Фенолфталеин, 0,5% раствор. В 50 мл 96%-ного этилового спирта растворяют 0.5 г фенолфталеина и разбавляют 50 мл дистиллированной воды, добавляют по каплям 0,01 М раствор гидроксида натрия до появле­ния заметной розовой окраски.

3. Метиловый оранжевый, 0,05% водный раствор.

Свободная щелочность. Ход определения. Отмеряют 100 мл иссле­дуемой воды (при высокой щелочности берут меньший объем и разбавля­ют до 100 мл прокипяченной и охлажденной дистиллированной водой), при­бавляют 2 капли 0,5% фенолфталеина и титруют на белом фоне 0,1 М раствором соляной кислоты до полного обесцвечивания.

Общая щелочность. Отмеривают 100 мл пробы, прибавляют 2 капли метилоранжа, затем продувают воздух в течение 2-3 мин. и титру­ют 0,1 М раствором соляной кислоты на белом фоне до начала перехода окраски метилового оранжевого из желтой в оранжевую. Вновь продува­ют воздух 2-3 мин., и если возвращается первоначальная окраска, то дотитровывают. Титрование считают законченным, если после продувания воздуха окраска раствора не меняется.

Расчет свободной (С) и общей (Об) щелочности (ммоль эквивалентов в литре) производят по формулам:

где А — объем 0,1 М раствора соляной кислоты, израсходованной на титрование по фенолфталеину, мл;

К — поправочный коэффициент к 0,1 М раствору НСl;

V — объем пробы воды, взятый для анализа, мл.

где В — объем 0,1 М раствора соляной кислоты, израсходованной на титрование по метиловому оранжевому, мл;

К — поправочный коэффициент к 0,1 М раствору НСl;

V — объем пробы воды, взятый для анализа, мл.

Общая и свободная щелочность находятся в зависимости от ко­личественного соотношения гидрокарбонат-, карбонат- и гидроксид-ионов. По величине свободной и общей щелочности можно косвенно вычислить количество этих ионов.

Расчет основан на предположении, что щелочность вызывается в ос­новном ионными формами диоксида углерода и в меньшей степени гидроксид-ионами. Расчет дает приблизительные результаты. В зависимости от соотношения свободной (С) и общей (Об) щелочности возможны сле­дующие случаи расчета.

Величина свободной щелочности равна концентрации карбонат-ионов (ммоль-экв./л). Умножая значение свободной щелочности на 30 (эквива­лент карбонат-иона), получаем содержание карбонат-ионов (мг/л).

Величина общей щелочности равна величине концентрации гидрокар­бонат-ионов (ммоль-экв./л). Умножая значение общей щелочности на 61 (эквивалент гидрокарбонат-иона), получаем содержание гидрокарбонат-ионов (мг/л) (табл.8.15).

8.2.4.4. Кислотность[37, 38]

Кислотностью называется содержание в воде веществ, вступающих в реакцию с гидроксид-ионами. Расход гидроксида выражает общую кис­лотность воды. В обычных природных водах кислотность в большинстве случаев зависит только от содержания свободного углекислого газа. Ес­тественную часть кислотности создают также гуминовые и другие сла­бые органические кислоты. В этих случаях рН воды не бывает ниже 4,5.

В загрязненных водоемах может содержаться большое количество сильных кислот или солей за счет сброса промышленных сточных вод. В этих случаях рН может быть ниже 4,5. Часть общей кислотности, снижа­ющей рН ниже 4,5, называется свободной.

Кислотность воды определяют титрованием раствором сильной щело­чи. Количество титрованного раствора, израсходованного до получения рН 4,5, соответствует свободной кислотности; количество же, израсходо­ванное до получения рН 8,3, — общей. Если рН > 8,3, то се кислотность равна 0. Для определения кислотности воду титруют 0,1 М раствором NaOH. Конец титрования определяют визуально. Кислотность выражают в ммоль эквивалентов на 1 л. Определению мешает свободный хлор. Его устраняют добавлением тиосульфата натрия.

Свободная кислотность. Она определяется, если рН пробы 8,3, то ее кислотность равна 0. Для определения кислотности воду титруют 0,1 М раствором NaOH. Конец титрования определяют визуально. Кислотность выражают в ммоль эквивалентов на 1 л. Определению мешает свободный хлор. Его устраняют добавлением тиосульфата натрия.

Свободная кислотность. Она определяется, если рН пробы

источник