Меню Рубрики

Анализ углекислого газа в воде

Углекислый газ – источник углерода для растений, без которого не было бы жизни в воде. Однако слишком высокие концентрации его угнетают жизненные процессы. Углекислый газ оказывает существенное влияние на концентрацию водородных ионов. Кроме того, он является важным фактором круговорота углерода в природе. В реках и озерах концентрация углекислого газа редко превышает 20–30 мг/л. Максимум его бывает в конце зимы.

Присутствие в пресных водоемах растворенного СО2 обусловлено биохимическими процессами окисления органических веществ, содержащихся в водоемах и в почве, а также дыханием водных организмов и выделением его при геохимических процессах.

Содержание углекислоты определяют титрованием 0,1 н раствором NaOH в присутствии фенолфталеина до появления розовой окраски раствора, соответствующей окраске стандартного раствора сравнения, рН которого по фенолфталеину равен 8,4:

– коническая колба на 250 мл;

Для приготовления раствора сравнения в колбу наливают 200 мл дистиллированной воды, прибавляют 0,5 мл 10% раствора едкого натра и 0,2 мл разбавленного (0,1%) раствора фенолфталеина.

Концентрацию растворенного углекислого газа определяют по формуле

х = , (20)

где х — концентрация углекислого газа;
— объем NaOH, пошедший на титрование, соответственно;
N — нормальность раствора NaOH;
V — объем исследуемой воды, взятой на титрование, мл.

Сероводород встречается в основном в подземных водоисточниках, образуясь в результате восстановления и разложения некоторых минеральных солей, в поверхностных водах он почти не встречается, так как легко окисляется. Появление его в поверхностных источниках является следствием протекания гнилостных процессов или сброса сточных вод.

Содержание сероводорода определяют колориметрически, используя реакцию сероводорода с ацетатом или нитратом свинца, в результате которой образуется осадок черного цвета PbS. В щелочной среде осадок растворяется. Интенсивность окрашивания раствора сравнивают со шкалой.

Приблизительно содержание сероводорода определяют с реактивом Каро (Приложение 4). При добавлении реактива Каро окраска раствора изменяется от светло-зеленой до интенсивно синей, в зависимости от концентрации сероводорода.

– щелочной раствор соли свинца (к 5% раствору нитрата или ацетата свинца добавить порциями 10% раствор щелочи до растворения образующегося осадка, затем ввести еще 25 мл);

– стандартный раствор сульфида натрия, содержащий 1 мг H2S/мл, (растворить 0,705 г кристаллического химически чистого сульфида натрия в 1 л дистиллированной воды), раствор нестойкий;

– шкала стандартных растворов. В пробирки добавляют 1, 2, 3, 4 и 5 мл стандартного раствора сульфида натрия. Затем доводят объем до 20 мл щелочным раствором соли свинца.

В пробирку наливают 10 мл исследуемой воды и прибавляют 3 мл реактива Каро. В зависимости от содержания сероводорода в воде окраска изменяется от светло-зеленой до интенсивно-синей. Параллельно к 10 мл дистиллированной воды прибавляют 3 мл реактива Каро и сравнивают полученную окраску с окраской исследуемой воды. Содержание сероводорода определяют по табл.3.2

Приближенное определение сероводорода

Содержание сероводорода, мг/л

При рассматривании сверху отсутствует

При рассматривании сверху светло-зеленая

Через 2 минуты при рассматривании сбоку разницы с контрольной пробиркой нет, сверху зеленоватая

Через 1 минуту при рассматривании сбоку – слабая светло-зеленая

Через ½ мин – светло-зеленая

Содержащийся в воде растворенный кислород поступает из атмосферного воздуха, а также образуется в результате фотосинтеза водорослями органических веществ (углеводов) из неорганических (Н2СО3, H2O). Содержание кислорода в воде уменьшается вследствие протекания процессов окисления органических веществ и потребления его живыми организмами при дыхании.

Определение растворенного в воде кислорода проводят йодометрическим титрованием в присутствии крахмала (метод Винклера). Метод Винклера применим для определения кислорода в природной воде при содержании в воде не более 0,1 мг/л азота нитратов, не более 10 мг/л окисного железа, не более 0,3 мг/л активного хлора и при окисляемости не более 15 мгO2/л.

Метод Винклера представляет собой йодометрическое титрование, когда о концентрации О2 судят по количеству выделившегося йода.

В склянку с пробой вводят раствор сульфата или хлорида Мn (II) и щелочной раствор КI. Мn (II) реагирует с КОН, образуя гидроокись марганца (II) Mn(ОН)2.

2 KOH + MnСl2 ® Мn(ОН)2 ¯ + 2KCl (21)

Это осадок белого цвета, неустойчивое соединение, которое легко окисляется растворенным в воде кислородом до гидроокиси марганца (III) бурого цвета

4 Мn(ОН)2 ¯ + О2 + 2 H2O ® 4 Мn(ОН)3¯ (22)

Осадок H2МnО3 растворяют в соляной или серной кислоте. При этом Мn (III) восстанавливается до Мn (II) и выделяется свободный йод, в количестве, эквивалентном количеству растворенного кислорода:

2 Мn(ОН)3 + 3 H2SO4 ® Mn2(SO4)3 + 3H2O (23)

Mn2(SO4)3 + 2 КI ® 2 MnSO4 + K2SO4 + I2 (24)

Суммарное уравнение (22) и (23):

2 Мn(ОН)3 + 2 H2SO4 + 2 КI ® 2 MnSO4 + K2SO4 + I2 + 3H2O (25)

Выделившийся йод оттитровывают раствором тиосульфата натрия в присутствии крахмала:

I2 + 2 Na2S2O3 ® 2 NaI + Na2S4O6 (26)

– HCl или H2SO4, концентрированная;

– щелочная смесь (70 г КОН и 15 г КI растворяют в дистиллированной воде и доводят общий объем раствора до 1000 мл).

Подготовка к проведению анализа

Калибровка склянок. Склянки взвешивают на технохимических весах сначала пустые, затем заполненные дистиллированной водой. Разность двух взвешиваний равна весу воды в склянке.

Заполнение склянки. Перед заполнением каждая склянка ополаскивается исследуемой пробой. Склянки заполняют доверху, переливая часть пробы. Заполнять осторожно, чтобы исключить попадание пузырьков воздуха. Попавшие в склянку пузырьки удаляют, оставив склянку открытой в течение 1 мин и постукивая по стенкам склянки. При заполнении склянки следует избегать попадания прямых солнечных лучей.

Консервирование пробы. Содержание растворенного кислорода в пробе фиксируют, добавляя в склянки поочередно: 1 мл MnCl2 и 1 мл щелочного раствора KI. Пипетки при этом держат под самой поверхностью воды. Потерянные 2 мл пробы учитывают при последующем расчете. После фиксации склянку закрывают и переворачивают несколько раз.

После этого пробы помещают в темное место для отстаивания осадка. Законсервированная проба может храниться в течение суток.

Количество растворенного кислорода определяют в откалиброванных склянках емкостью 150…200 мл.

После добавления осадителей (MnCl2 и KI) осадок отстаивают (см. консервирование пробы). После отстаивания пробы осадок растворяют, добавляя 1. 3 мл концентрированной серной кислоты (кончик пипетки — под поверхностью раствора). Закрывают склянку пробкой и перемешивают пробу до полного растворения осадка. Затем отбирают аликвоту 25. 100 мл в коническую колбу и титруют раствором тиосульфата натрия до соломенно-желтой окраски.

После этого добавляют 1. 2 мл крахмала (появляется синяя окраска) и продолжают титровать тиосульфатом до полного обесцвечивания. Результат записывают. Повторяют определение 2. 3 раза.

Концентрацию растворенного кислорода рассчитывают по формуле:

O2 = , мг/л (27)

где n — количество тиосульфата, пошедшего на титрование;
N — нормальность тиосульфата;
K — поправка на нормальность тиосульфата;
8 — эквивалентная масса кислорода;
1000 — пересчет на 1л пробы;

V1 — объем титрованной пробы;
V2 — количество утерянной пробы, равное объему реактивов (раствор KI и МnSO4), взятых для осаждения (при титровании всего объема склянки).

источник

Цель работы: изучение методик определения различных форм углекислоты.

Угольная кислота и её соли постоянные компоненты природных вод. Углекислота может находиться в воде в свободной форме и в виде гидрокарбонатов и карбонатов. Содержание свободной угольной кислоты Н2СО3 зависит от концентрации растворенного диоксида углерода. Так как в форме угольной кислоты находится лишь часть растворенного СО2 (около 1 %), то содержание свободной углекислоты в воде характеризуется суммой: Н2СО3 + СО2. При этом расчет ведут не на кислоту, а на СО2. Угольная кислота диссоциирует в водном растворе:

Константы диссоциации для 1 и 2 ступени:

Из уравнений следует, что концентрация свободной угольной кислоты находится в прямой зависимости от концентрации водородных ионов, а концентрация карбонат-ионов – в обратной. При рН — , причем с возрастанием рН увеличивается концентрация НСО3 — ионов и понижается концентрация свободной угольной кислоты. При рН = 8,4 в воде присутствуют практически только гидрокарбонаты (99,7%). При дальнейшем увеличении рН в воде наряду с гидрокарбонат-ионами появляются и карбонат-ионы, которые при рН > 10 становятся преобладающими.

Связанной считается угольная кислота в форме карбонатов, форме гидрокарбонатов она состоит из связанной и полусвязанной кослоты (поровну), так как при кипячении половина гидрокарбонатов переходит в свободную угольную кислоту.

Если в воде находится свободная угольная кислота и НСО3 — —ионы, то количество связанной кислоты равно содержанию полусвязанной. При

рН > 8,4 количество связанной кислоты ( ) будет больше полусвязанной ( ).

При одновременном присутствии в воде ионов HCO3 и СО3 2- определение ведут в одной пробе, нейтрализуя рабочим раствором соляной кислоты щелочность, создаваемую этим ионами. Определение основано на изменении содержания различных форм углекислоты в зависимости от рН. В присутствии кислоты ионы CО3 2- и НСО3 — переходят в свободную угольную кислоту. Карбонаты с соляной кислотой взаимодействуют в две стадии. На первой стадии карбонаты переходят в гидрокарбонаты:

Таким образом, можно считать, что объем кислоты, затраченный на перевод СО3 2 — в НСО3 — , соответствует половине содержащихся в воде карбонатов. Индикатор – фенолфталеин.

Проба, оттитрованная рабочим раствором кислоты в присутствии фенолфталеина, содержит гидрокарбонаты, ранее находившиеся в воде, и гидрокарбонаты, образовавшиеся из карбонатов. Гидрокарбонаты переводят в свободную угольную кислоту последующим титрованием пробы кислотой в присутствии метилового оранжевого.

При расчете содержания СО3 2- -ионов объемов соляной кислоты израсходованной на титрование пробы воды с фенолфталеином, соответственно удваивается. А при расчете количества гидрокарбонатов из объема кислоты, израсходованного на титрование воды в присутствии метилоранжа, вычитается объем, пошедший на титрование с фенолфталеином.

Карбонат – ионы содержатся в щелочных водах. В этом случае, в воде определяют только гидрокарбонаты титрованием кислотой в присутствии метилоранжа.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9360 — | 7421 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Во всех природных водах, имеющих рН ниже 8,3-8,4, присутствует свободная углекислота. Она поступает в воду главным образом как конечный продукт биохимических процессов окисления органических веществ, содержащихся в водоемах и почве. Для артезианских вод особенно характерно повышенное содержание свободной углекислоты. В природных водах, кроме свободной углекислоты, находящейся в виде растворенного в воде газа СО2 и недиссоциированных молекул Н2СО3, содержится «полусвязанная» углекислота (ионы ), а иногда и «связанная» углекислота (ионы ).

Поверхностные природные воды идентичны системе, в которой растворы карбонатов находятся в контакте с атмосферой с определенным парциальным давлением свободной углекислоты, при этом рН растворов определяется углекислотным равновесием. Количественно соотношение между присутствующими в воде углекислыми соединениями определяется уравнениями первой и второй ступеней диссоциации угольной кислоты:

и ,

Соотношение между различными формами соединений угольной кислоты при неизменной температуре зависит от концентрации ионов водорода, т.е. от значения рН. Контакт природных вод с воздухом способствует обмену свободной углекислотой между водой и воздухом. Изменение концентрации углекислоты в воде влечет за собой изменение рН, а, следовательно, происходит изменение концентрации карбонатных ионов.

Существующее углекислотное равновесие может быть выражено суммарно следующими уравнениями:

или

Равновесной концентрации бикарбонат-ионов в воде при данной температуре соответствует равновесная концентрация свободной углекислоты. Если находящееся в воде количество свободной кислоты будет ниже равновесного, то это приведет к дополнительному образованию карбонат-ионов , которые могут перевести в осадок (в виде СаСО3) ионы кальция. И наоборот, избыток фактически присутствующей в воде свободной углекислоты по сравнению с ее равновесной концентрацией делает воду «агрессивной», т.е. способной растворять карбонат кальция.

Количественно агрессивная двуокись углерода определяется расчетом исходя из концентрации свободной и равновесной углекислоты. Расчет проводят для той температуры, до которой предполагается нагревать воду. Для практики достаточно ориентироваться на результаты, полученные при комнатной температуре, т.к. нагрев воды не вызовет появления двуокиси углерода, а, наоборот, приведет к ее снижению

а) Концентрацию равновесной двуокиси углерода в миллиграммах на кубический дециметр воды можно рассчитать по формуле:

,

где и — константы диссоциации угольной кислоты по I и II ступеням; — произведение растворимости СаСО3; , — концентрации ионов, г-ион/дм 3 ; и — коэффициенты активности одно- и двухвалентных ионов; 44 – эквивалент угольной кислоты.

Константы диссоциации угольной кислоты и значения даны в таблице 9.

t воды, °С К1 , 10 -7 К2 , 10 -11 , 10 -9 t воды, °С К1 , 10 -7 К2 , 10 -11 , 10 -9
3,43 3,21 7,05 5,15 6,73 2,37
3,80 3,71 5,91 5,05 7,20 1,83
4,15 4,20 5,22 4,60 7,52 1,35
4,45 4,69 4,80 4,21 7,55 1,02
4,71 5,13 3,93 3,8 7,58 0,74
5,06 6,03 3,03 3,35 7,61 0,47

Значения коэффициентов активности зависят от ионной силы раствора µ, т.е. от концентрации и валентности всех содержащихся в воде ионов. Поэтому для определения коэффициентов активности сначала находят ионную силу раствора µ.

Для определения ионной силы раствора необходимо выразить концентрацию всех ионов в используемых для расчетов единицах — в грамм-ионах на кубический дециметр воды (г-ион/дм 3 ). Для этого надо умножить все значения концентраций ионов, выраженных в миллиграммах на кубический дециметр воды (мг/ дм 3 ), на 10 -3 и разделить на ионную (молекулярную) массу.

Для проведения расчетов необходимо учесть процесс термического разложения бикарбонатов, происходящий при нагревании воды. В условиях нормальной работы водогрейного оборудования вода в процессе нагревания не вскипает, поэтому разложение бикарбонат-ионов происходит без отвода из системы газообразной углекислоты. Отсюда следует, что концентрацию карбонатных ионов, образовавшихся в результате термического разложения бикарбонат-ионов, можно определить по формуле:

,

где и — концентрации ионов, мг/дм 3 ; и — массы ионов, определенные с помощью таблицы Менделеева.

Читайте также:  Анализы для питьевой воды образец

Ионную силу раствора в грамм-ионах на кубический дециметр определяют по формуле:

где Сион – концентрация иона, г-ион/дм 3 ; Zион – валентность иона, найденная по таблице Менделеева.

Коэффициенты активности одновалентных бикарбонат-ионов и двухвалентных ионов кальция находят по таблице 10 или используют формулы:

и

µ , 0,001 0,002 0,005 0,01 0,02 0,05 0,1 0,2
f1 0,97 0,95 0,93 0,90 0,87 0,81 0,76 0,70
f2 0,87 0,82 0,74 0,66 0,58 0,44 0,33 0,24

б) Концентрацию равновесной двуокиси углерода сопоставляют с результатами анализа воды по содержанию свободной углекислоты. Если концентрация свободной углекислоты, определенная аналитически, превышает расчетную равновесную – вода содержит агрессивную двуокись углерода, если она будет меньше – агрессивной двуокиси углерода нет.

Разница в концентрациях свободной и равновесной углекислоты указывает лишь на наличие агрессивной ее формы, но не дает точного представления о содержании в воде агрессивной углекислоты. Наиболее точно ее содержание может быть установлено аналитически по методу Гейера, основанному на увеличении щелочности воды при взаимодействии агрессивной двуокиси углерода с карбонатом кальция (мрамором).

3 Описание лабораторных установок, перечень необходимого оборудования и реактивов.

Дата добавления: 2015-07-02 ; Просмотров: 1824 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Конические колбы объёмом 200 мл, едкий натрий 0,1 N

Колбы с меткой 100-150 мл — 4 шт., фенолфталеин 1%

Мерный цилиндр на 200 мл, соляная кислота 0,1 N

Пипетки 1-2,25-50 мл метилоранжевый 0,1 %

Ход анализа

Способ определения свободной углекислоты сводится к следующему. Исследуемую воду, в которую добавлен фенолфталеин, титруют раствором щелочи определенной концентрации. Пока вся свободная углекислота не будет нейтрализована щелочью, раствор остается бесцветным. Как только свободная углекислота перейдет в бикарбонатную, раствор окрасится в розовый, а при дальнейшем прибавлении щелочи – в красный цвет. Реакция связывания свободной углекислоты протекает по следующей схеме

Если вместо свободной углекислоты в воде присутствует монокарбонатная углекислота, то вода окрашивается в розовый цвет сразу после добавления фенолфталеина. В этом случае титруют не щелочью, а кислотой до тех пор, пока окраска жидкости не ослабеет до бледнорозовой, т.е. монокарбонатная углекислота не перейдет в бикарбонатную:

В колбу с меткой 150 мл наливают исследуемую воду, предварительно несколько раз ополоснув её. Затем добавляют 0,1 мл раствора фенолфталеина и титруют раствором едкого натрия. Количество свободной углекислоты вычисляется по формуле:

где n – число мл едкого натрия, пошедшего на титрование, N – нормальность едкого натрия, V – объем титровавшейся жидкости.

Количество растворенной в воде углекислоты зависит от ее температуры (табл. 5) и рассчитывается аналогично по формуле насыщения кислорода.

Таблица 5. Растворимость двуокиси углерода в дисциллированной воде для влажной атмосферы в пересчете на единицу объема сухих компонентов

воздуха на уровне моря, по Хатчинсону Д.

Температура, ˚С Содержание двуокиси углерода, %
0,03 0,033 0,044
1,00 1,10 1,47
0,96 1,06 1,41
0,93 1,02 1,36
0,89 0,99 1,30
0,86 0,94 1,26
0,83 0,91 1,22
0,80 0,88 1,17
0,78 0,86 1,14
0,75 0,82 1,10
0,72 0,79 1,06
0,70 0,76 1,02
0,67 0,74 0,98
0,65 0,72 0,95
0,63 0,69 0,92
0,61 0,67 0,89
0,59 0,65 0,87
0,57 0,62 0,84
0,55 0,60 0,81
0,54 0,59 0,79
0,52 0,58 0,76
0,51 0,56 0,74
0,49 0,54 0,72
0,48 0,52 0,70
0,46 0,51 0,68
0,45 0,50 0,66
0,44 0,48 0,64
0,42 0,46 0,62
0,41 0,45 0,60
0,40 0,44 0,59
0,39 0,43 0,57
0,38 0,42 0,56

Определение перманганатной окисляемости воды

Колбы конические – 4 шт., серная кислота 25 %

Мерный цилиндр, марганцовокислый калий 0,01 N

Пипетки 5,10 мл щавелевая кислота 0,01 N

Окисляемость воды является косвенным показателем загруженности воды органическими веществами и выражается количеством мг кислорода, идущего на разрушение части органических веществ, заключенных в 1л исследуемой воды в строго определенных условиях. При определении окисляемости разрушается около 30 % всех органических веществ. Определение окисляемости натуральной не фильтрованной воды дает представление как о растворенном, так и взвешенном органическом веществе. Определение же окисляемости фильтрованной воды – только о растворенном.

Окисляемость принято определять методом, основанным на способности марганцовокислого калия окислять органические вещества, отдавая им свой кислород. Окисление в кислой среде, которое особенно энергично протекает при прогревании, приводит к восстановлению марганца до двухвалентного иона:

* — идет на окисление органических веществ.

Марганцовокислый калий добавляется к исследуемой воде в избытке, избыток которого разрушается строго определенным количеством щавелевой кислоты. Количество щавелевой кислоты, оставшейся после восстановления избыточного марганцовокислого калия, определяется титрованием новой порции KMnO4. В конечном счете, чем больше марганцовокислого калия пошло на последнее титрование, тем больше кислорода израсходовалось на окисление органических веществ исследуемой воды. На этом основаны расчеты. Условность определения окисляемости заставляет требовать строгого соблюдения единообразия приемов анализа, в частности, точного десятиминутного кипячения исследуемой воды.

В колбу емкостью 200-300 мл отмерить 100 мл перемешанной исследуемой воды, добавить в нее пипеткой 5 мл 25 % серной кислоты и нагреть на ровном пламени. Как только жидкость закипит, колбу снимают и приливают в нее пипеткой 10 мл 0,01N раствора KMnO4 и снова ставят на нагревательный прибор, поддерживая слабое равномерное кипение жидкости точно 10 минут, считая с момента закипания после прибавления реактива. Для равномерного кипения колба закрывается пробкой. Если во время кипения жидкость совершенно обесцветится или вместо розовой станет светло – бурой, определения повторяют, разбавив исследуемую воду дистиллированной.

Если после кипячения жидкость не обесцветится, то колбу снимают и сразу добавляют 10 или 0,01 N раствора щавелевой кислоты. Жидкость размешивают, после чего она обесцвечивается. Обесцвеченную горячую жидкость титруют при энергичном помешивании. Для титрования используют 0,01 N раствора KMnO4. Титрование продолжают до появления устойчивости, но очень слабой розовой окраски. Сразу после этого приступают к установки титра раствора марганцовокислого калия, для чего в жидкость добавляют 10 мл 0,01 N раствора щавелевой и снова титруют KMnO4 до появления точно такой же слабой розовой окраски. Результаты анализа рассчитывают следующим образом::

где А – число мл 0,01 N раствора KMnO4, пошедшего на титрование избытка щавелевой кислоты, с – число мл 0,01 N раствора KMnO4, пошедшего на титрование для установления титра, V – объем испытуемой воды, N – нормальность раствора.

Все полученные в ходе титрования данные по определению кислорода и диоксида углерода заносятся в соответствующие таблицы полевого дневника. Затем результаты по концентрации кислорода и диоксида углерода пересчитываются на температуру воды водоема при взятии проб по приведенным формулам и таблицам Г.Г. Винберга (табл. 4) и Д. Хадчинсона (табл. 5). Температурная поправка по данным окисляемости НЕ рассчитывается.

Полученные Вами результаты составляют базу обсуждения и сравнения с данными других авторов, работавших в этой области. Если Вы выяснили, что Ваши работы оказываются повторением, то в этом случае Ваши результаты могут рассматриваться как мониторинговые и требуют выяснения возможных причин современного состояния водного объекта, что крайне важно. В случае первичности проведенной Вами работы полученные данные должны быть Вами проанализированы, по возможности объяснены или Вами выдвигается предположение (гипотеза) для объяснения. Полученные результаты могут быть проверены в течение следующего сезона или в лабораторном эксперименте, а также послужить отправной точкой для последующих мониторинговых исследований. В нашей области достаточно слабо изученных водных объектов, которые ждут Вас – пытливых исследователей. В добрый путь!

Рекомендуемый библиографический список

1. Алекин О.А. Основы гидрохимии. – Л.: Гидрометиздат, 1970. – 444 с.

2. Баканина Ф.М., Воротников В.П., Лукина Е.В., Фридман Б.И. Озера Нижегородской области. – Н.Новгород: ВООП, 2001. – 165 с.

3. Бакка С.В., Киселёва Н.Ю. Особо охраняемые природные территории Нижегородской области. – Н. Новгород: Минприроды Ниж. обл., 2008. — 560 с.

4. Богословский Б.Б. Озероведение. – М.: МГУ, 1960. – 325 с.

5. Доманицкий А.П., Дубровина Р.Г., Исаева А.И. Реки и озера Советского Союза. – Л.: Гидрометиздат, 1971. — 103 с.

6. Жизнь пресных вод СССР. Под ред. Жадина В.И. В 4-х т. — М.-Л.: АН СССР.

7. Константинов А.С. Общая гидробиология. – М.: Высшая школа, 1986. – 471 с.

8. Природа Горьковской области. Под ред. Н.В. Кузнецова. – Горький: Вол-го-Вятское кн. изд-во, 1974. – 416 с.

9. Станковская Т.П. К вопросу комплексного использования малых озер. / Вестник НГСХА — Н.Новгород: НГСХА, 2014, с. 270 -274. . (сайт НГСХА).

10. Станковская Т.П. Экологические основы рыбоводства. – Н.Новгород: НГСХА, 2005. – 169 с. (сайт и библиотека НГСХА).

11. Станковская Т.П. Гидробиологические основы прудово-озерного рыбоводства. – Н.Новгород: НГСХА, 2014. – 283 с. (библиотека НГСХА).

12. Унифицированные методы исследования качества вод. – М.: СЭВ, 1983. Часть III. Методы биологического анализа вод, с. 82-91, с. 250-265, с. 323-329.

13. Харитонычев А.Т. Физическая география Горьковской области.- Горький: ГГПИ, 1985. — 96 с.

указанные издания могут быть представлены в Областной библиотеке имени В.И. Ленина, в Интернет, где помимо них можно найти и другие источники, а также карты, атлас Нижегородской области, сведения об отдельных водных объектах области и т.п.;

— в ходе оформления работы при использовании материалов Интернета указывать в библиографическом списке адрес сайта, информацией которого Вы пользовались.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

источник

Многим аквариумистам известны рекомендации по использованию для размножения рыб воды, более мягкой и кислой, по сравнению с аквариумной. Удобно пользоваться для этой цели дистиллированной водой, мягкой и слабокислой, смешивая ее с водой из аквариума. Но оказывается, что при этом жесткость исходной воды уменьшается пропорционально разведению, а рН практически не изменяется. Свойство сохранять значение показателя рН независимо от степени разведения, называется буферностью. В этой статье мы познакомимся с основными компонентами буферных систем аквариумной воды: кислотностью воды — рН , содержанием углекислого газа — СО 2 , карбонатной «жесткостью» — dКН (эта величина показывает содержание в воде гидрокарбонат-ионов НСО 3 — ; в рыбохозяйственной гидрохимии этот параметр называют щелочностью), общей жесткостью – dGН (для упрощения принимается, что ее составляют только ионы кальция – Са ++ ). Обсудим их влияние на химический состав природной и аквариумной воды, собственно буферные свойства, а также механизм воздействия рассматриваемых параметров на организм рыб. Большинство химических реакций, рассматриваемых ниже, являются обратимыми, поэтому вначале важно познакомиться с химическими свойствами обратимых реакций; это удобно сделать на примере воды и показателя рН.

  • 6. СО 2 и физиология дыхания аквариумных рыб
  • 7. Мини-практикум
  • 8. Использованная литература

Вода является хотя и слабым, но все же электролитом, т. е. способна к диссоциации, описываемой уравнением

C химической точки зрения ион водорода Н + всегда является кислотой. Ионы, способные связывать, нейтрализовывать кислоту ( Н + ), являются основаниями. В нашем примере это – гидроксил-ионы ( ОН — ), но в аквариумной практике, как будет показано ниже, доминирующим основанием является гидрокрабонат-ион НСО 3 — , ион карбонатной «жесткости». Обе реакции протекают с вполне измеримыми скоростями, определяемыми концентрацией: скорости химических реакций пропорциональны произведению концентраций реагирующих веществ. Так для обратной реакции диссоциации воды Н + +ОН — >Н 2 О ее скорость выразится следующим образом:

К – коэффициент пропорциональности, называемый константой скорости реакции .
[ ] -квадратные скобки обозначают молярную концентрацию вещества , т.е. количество молей вещества в 1 литре раствора. Моль можно определить как вес в граммах (или объем в литрах — для газов) 6•10 23 частиц (молекул, ионов) вещества — число Авогадро. Число, показывающее вес 6•10 23 частиц в граммах равно числу, показывающему вес одной молекулы в дальтонах.

Так, например, выражение [H 2 O] обозначает молярную концентрацию водного раствора … воды. Молекулярный вес воды составляет 18 дальтон (два атома водорода по 1д, плюс атом кислорода 16д), соответственно 1 моль (1М) Н 2 О – 18 грамм. Тогда 1 литр (1000 грамм) воды содержит 1000:18=55,56 молей воды, т.е. [H 2 O]=55,56М=const .

Поскольку диссоциация – процесс обратимый ( Н 2 О — Н + +ОН — ), то при условии равенства скоростей прямой и обратной реакции ( V пр =V обр ), наступает состояние химического равновесия, при котором продукты реакции и реагирующие вещества находятся в постоянных и определенных соотношениях: К пр [H 2 O] = K обр [H + ][OН — ] . Если константы объединить в одной части уравнения, а реагенты в другой, то получим

К пр /К обр = [H + ][OH — ]/[H 2 O] = К

где К также является постоянной величиной и называется константой равновесия .

Последнее уравнение является математическим выражением т.н. закона действия масс: в состоянии химического равновесия отношение произведений равновесных концентраций реагентов является постоянной величиной. Константа равновесия показывает, при каких пропорциях реагентов наступает химическое равновесие. Зная значение К , можно предсказать направление и глубину протекания химической реакции. Если К>1 , реакция протекает в прямом направлении, если К – в обратном. Используя константу равновесия, с химическими уравнениями можно обращаться как с алгебраическими и производить соответствующие вычисления. Точность их не очень высока, но они относительно просты и наглядны, что позволяет глубже понять смысл рассматриваемых процессов. Численное значение константы равновесия индивидуально и постоянно для каждой обратимой химической реакции. Оно определяется экспериментально, и эти значения приводятся в химических справочниках.

Читайте также:  Анализы натощак или можно пить воду

В нашем примере К = [H + ][OН — ]/[H 2 O] = 1,8•10 -16 . Поскольку [H 2 O] =55,56 =const , то ее можно объединить с К в левой части уравнения. Тогда:

К[H 2 O]=[H + ][OH — ]=(1,8•10 -16 )•(55,56)=1•10 -14 = const. = К w

Преобразованное в такую форму уравнение диссоциации воды называется ионным произведением воды и обозначается К w . Значение К w остается постоянным при любых значениях концентраций Н + и ОН — , т.е. с увеличением концентрации ионов водорода Н + , уменьшается концентрация ионов гидроксила – ОH — и наоборот. Так, например, если [H + ] = 10 -6 , то [OH — ] = K w /[H + ] = (10 -14 )/(10 -6 )=10 -8 . Но К w = (10 -6 ) . (10 -8 ) =10 -14 = const . Из ионного произведения воды следует, что в состоянии равновесия [H + ] = [OH — ] = √ К w = √ 1•10 -14 = 10 -7 М .

Однозначность связи между концентрацией ионов водорода и гидроксила в водном растворе позволяет для характеристики кислотности или щелoчности среды пользоваться одной из этих величин. Принято пользоваться величинoй концентрации ионов водорода Н + . Поскольку величинами порядка 10 -7 оперировавть неудобно, в 1909 году шведский химик К.Серензен предложил использовать для этой цели отрицательный логарифм концентрации водородных ионов Н + и обозначил его рН , от лат. potentia hydrogeni – сила водорода: рН = -lg[H + ] . Тогда выражение [H + ]=10 — 7 можно записать коротко как pH=7 . Т.к. предложенный параметр не имеет единиц измерения, он называется показателем ( рН ). Удобство предложения Серензона вроде бы очевидно, но он подвергался критике современников за непривычную обратную зависимость между концентрацией ионов водорода Н + и значением показателя рН : с увеличением концентрации Н + , т.е. с увеличением кислотности раствора, значение показателя рН уменьшается. Из ионного произведения воды следует, что показатель рН может принимать значения от 0 до 14 с точкой нейтральности рН=7 . Органы вкуса человека начинают различать кислый вкус со значения показателя рН=3,5 и ниже.

Для аквариумистики актуален диапазон рН 4,5-9,5 (ниже будет рассматриваться только он) и традиционно принята следующая шкала с непостоянной ценой деления:

На практике в большинстве случаев гораздо информативнее оказывается более грубая шкала с постоянной ценой деления:

Среды с рН и рН>9,5 являются биологически агрессивными, и их следует считать непригодными для жизни обитателей аквариума. Поскольку показатель рН является логарифмической величиной, то изменение рН на 1 единицу означает изменение концентрации ионов водорода в 10 раз, на 2 – в 100 раз и т.д.. Изменение концентрации Н + вдвое приводит к изменению значения показателя рН лишь на 0,3 единицы.

Многие аквариумные рыбы без особого вреда для здоровья переносят и 100-кратные (т.е. на 2 единицы рН ) изменения кислотности воды. Разводчики харациновых и других т.н. мягководных рыб, перекидывают производителей из общего аквариума (часто со слабощелочной водой) в нерестовик (со слабокислой) и обратно без промежуточной адаптации. Практика также показывает, что большинство обитателей биотопов с кислой водой в неволе лучше чувствует себя в воде с рН 7,0-8,0 . С. Спотт считает рН 7,1-7,8 оптимальным для пресноводного аквариума.

Дистиллированная вода имеет рН 5,5–6,0 , а не ожидаемое рН=7 . Чтобы разобраться с этим парадоксом, необходимо познакомиться с «благородным семейством»: СО 2 и его производными.

Согласно закону Генри содержание газа воздушной смеси в воде пропорционально его доле в воздухе (парциальному давлению) и коэффициенту абсорбции. Воздух содержит до 0,04% СО 2 , что соответствует его концентрации до 0,4 мл/л. Коэффициент абсорбции СО 2 водой=12,7. Тогда 1 литр воды может растворить 0,6 – 0,7 мл СО 2 (мл, а не мг!). Для сравнения, его биологический антипод – кислород, при 20%-ном содержании в атмосфере и коэффициенте абсорбции 0,05 обладает растворимостью 7 мл/л. Сравнение коэффициентов абсорбции показывает, что при прочих равных растворимость СО 2 значительно превышает растворимость кислорода. Попробуем разобраться, за что же такая несправедливость.

В отличие от кислорода и азота, углекислый газ — СО 2 , является не простым веществом, а химическим соединением – оксидом. Как и другие оксиды, он взаимодействует с водой с образованием гидратов оксидов и, как и у других неметаллов, его гидроксидом является кислота (угольная):

В итоге большей относительной растворимостью углекислый газ обязан химическому связыванию его водой, чего не происходит ни с кислородом, ни с азотом. Рассмотрим внимательнее кислотные свойства угольной кислоты, применив закон действия масс и приняв во внимание, что [H 2 O] = const :

СО 2 +Н 2 О=Н + +НСО 3 — ; К 1 = [Н + ][HCO 3 — ]/[CO 2 ] = 4•10 -7
НСО 3 — =Н + +СО 3 — ; К 2 = [H + ][CO 3 — ]/[HCO 3 — ] = 5,6•10 -11

здесь К 1 и К 2 – константы диссоциации угольной кислоты по 1 и 2-ой ступени.

Ионы НСО 3 — называются гидрокарбонатами (в старой литературе бикарбонатами), а ионы СО 3 — — карбонатами. Порядок величин К 1 и К 2 говорит о том, что угольная кислота является весьма слабой кислотой ( К 1 и К 2 ), а сравнение величин К 1 и К 2 – о том, что в ее растворе доминируют гидрокарбонат-ионы ( К 1 >К 2 ).

Из уравнения К 1 можно рассчитать концентрацию ионов водорода Н + :

Если выразить концентрацию Н + через рН , как это в свое время сделали Хендерсон и Хассельбальх для теории буферных растворов, то получим:

рН = рК 1 – lg[CO 2 ]/[HCO 3 — ]
или удобнее
рН = рК 1 + lg[HCO 3 — ]/[CO 2 ]

где, по аналогии с рН , рК 1 = -lgК 1 =-lg4•10 -7 = 6,4 = const . Тогда pH=6,4 + lg[HCO 3 — ]/[CO 2 ] . Последнее уравнение известно как уравнение Хендерсона – Хассельбальха. Из уравнения Хендерсона – Хассельбальха следуют по крайней мере два важных вывода. Во-первых, для анализа величины показателя рН необходимо и достаточно знания концентраций компонентов только СО 2 -системы. Во-вторых, значение показателя рН определяется отношением концентраций [HCO 3 — ]/[CO 2 ] , а не наоборот.

Поскольку содержание [HCO 3 — ] неизвестно, для вычисления концентрации Н + в дистиллированной воде можно воспользоваться принятой в аналитической химии формулой [H + ] = √K 1 [CO 2 ]. Тогда рН = -lg√K 1 [CO 2 ] . Чтобы оценить интересующую нас величину показателя рН , вернемся к единицам измерения. Из закона Генри известно, что концентрация СО 2 в дистиллированной воде составляет 0,6мл/л. Выражение [CO 2 ] означает молярную концентрацию (см. выше) углекислого газа. 1М СО 2 весит 44 грамма, и при нормальных условиях занимает объем 22,4 литра. Тогда для решения задачи необходимо определить, какую долю от 1М, т.е. от 22,4 литров, составляют 0,6 мл. Если концентрация СО 2 выражена не в объемных, а в весовых единицах, т.е. в мг/л, то искомую долю необходимо считать от молярного веса СО 2 – от 44 грамм. Тогда искомая величина составит:

[CO 2 ] = x•10 -3 /22,4 = y•10 -3 /44

где х – объемная (мл/л), у – весовая (мг/л) концентрация СО 2 . Простейшие вычисления дают приблизительную величину 3•10 -5 М СО 2 , или 0,03mM. Тогда

рН = -lg√K 1 [CO 2 ] = -lg√(4•10 -7 )(3•10 -5 ) = -lg√12•10 -12 = -lg(3,5•10 -6 ) = 5,5

что вполне согласуется с измеряемыми значениями.

Из уравнения Хендерсона-Хассельбальха видно, как величина показателя рН зависит от отношения [НСO 3 — ]/[СО 2 ] . Приблизительно можно считать, что если концентрация одного компонента превышает концентрацию другого в 100 раз, то последней можно пренебречь. Тогда при [НСО 3 — ]/[СО 2 ] = 1/100 рН = 4,5 , что можно считать нижним пределом для СО 2 -системы. Меньшие значения показателя рН обусловлены присутствием не угольной, а других минеральных кислот, например серной, соляной. При [НСО 3 — ]/[СО 2 ] = 1/10 , рН = 5,5 . При [НСО 3 — ]/[СО 2 ] = 1 , или [НСО 3 — ] = [СО 2 ] , рН = 6,5 . При [НСО 3 — ]/[СО 2 ] = 10 , рН = 7,5 . При [НСО 3 — ]/[СО 2 ] =100 , рН = 8,5 . Считается, что при рН>8,3 (точка эквивалентности фенолфталеина) свободная углекислота в воде практически отсутствует.

В природе атмосферная влага, насыщаясь СО 2 воздуха и выпадая с осадками, фильтруется через геологическую кору выветривания. Принято считать, что там она, взаимодействуя с минеральной частью коры выветривания, обогащается т.н. типоморфными ионами: Ca ++ , Mg ++ , Na + , SO 4 — , Сl — и формирует свой химический состав.

Однако работами В.И. Вернадского и Б.Б. Полынова показано, что химический состав поверхностных и грунтовых вод регионов с влажным и умеренно влажным климатом формирует в первую очередь почва. Влияние же коры выветривания связано с ее геологическим возрастом, т.е. со степенью выщелоченности. Разлагающиеся растительные остатки поставляют в воду СО 2 , НСО 3 — и зольные элементы в пропорции, соответствующей их содержанию в живом растительном веществе: Cа>Na>Mg . Любопытно, что практически во всем мире питьевая вода, используемая и в аквриумистике, в качестве доминирующего аниона содержит гидрокарбонат-ион НСО 3 — , а из катионов – Ca ++ , Na + , Mg ++ , нередко с некоторой долей Fe . А поверхностные воды влажных тропиков вообще удивительно однообразны по химическому составу, отличаясь лишь степенью разведения. Жесткость таких вод крайне редко достигает значений ( 8 ° dGH ), удерживаясь обычно на уровне до 4 ° dGН . Ввиду того, что в таких водах [CO 2 ]= [HCO 3 — ] , они имеют слабокислую реакцию и значение показателя рН 6,0-6,5 . Обилие листового опада и активно идущее его разрушение при большом количестве осадков могут приводить к весьма высокому содержанию в таких водах СО 2 и гумусовых веществ (фульвокислот) при почти полном отсутствии зольных элементов. Таковы т.н. «черные воды» Амазонии, в которых значение показателя рН может опускаться до 4,5 и дополнительно удерживаться т.н. гуматным буфером.

На содержание СО 2 в природных водах оказывает влияние и их подвижность. Так в проточных водах СО 2 содержится в концентрации 2 – 5 мг/л (до 10), тогда как в стоячих водах болот и прудов эти величины достигают значения 15 – 30 мг/л .

В засушливых и бедных растительностью регионах на формирование ионного состава поверхностных вод заметное влияние оказывает геологический возраст горных пород, слагающих кору выветривания и их химический состав. В них рН и пропорции типоморфных ионов будут отличаться от приведенных выше. В результате формируются воды с заметным содержанием SО 4 — и Сl — , а из катионов могут преобладать Nа + с заметной долей Mg ++ . Возрастает и общее содержание солей – минерализация. В зависимости от содержания гидрокарбонатов, значение показателя рН таких вод колеблется в среднем от рН 7±0,5 до рН 8±0,5 , а жесткость всегда выше 10 ° dGH . В стабильно щелочных водах, при рН>9 , основными катионами всегда будут Mg ++ и Na + с заметным содержанием калия, поскольку Са ++ осаждается в форме известняка. В этом плане особенно интересны воды Великой Африканской рифтовой долины, которая характеризуется т.н. содовым засолением. При этом даже воды таких гигантов, как озера Виктория, Малави и Танганьика отличаются повышенной минерализацией и таким высоким содержанием гидрокарбонатов, что карбонатная «жесткость» в их водах превышает жесткость общую: dKH>dGH.

Содержащиеся в воде СО 2 и его производные – гидрокарбонаты и карбонаты, связаны между собой т.н. углекислотным равновесием:

СО 2 + Н 2 О↔Н + +НСО 3 — ↔2Н + + СО 3 —

В тех регионах, где кора выветривания молодая и содержит известняк ( СаСО 3 ), углекислотное равновесие выражается уравнением

СаСО 3 + СО 2 + Н 2 О = Cа ++ + 2НСО 3 —

Применив к этому уравнению закон действия масс (см. выше) и приняв во внимание, что [H 2 O]=const и [CaCO 3 ]=const (твердая фаза), получаем:

[Ca ++ ][HCO 3 — ] 2 /[CO 2 ] = К СО2

где К СО2 – константа углекислотного равновесия.

Если концентрации действующих веществ выражены в миллимолях (mM,10 -3 М), то К СО2 = 34,3. Из уравнения К СО2 видна неустойчивость гидрокарбонатов: в отсутствие СО 2 , т.е. при [CO 2 ]=0 , уравнение не имеет смысла. При отсутствии углекислого газа гидрокарбонаты разлагаются до СО 2 и подщелачивают воду: НСО 3 — →ОН — +СО 2 . Содержание свободной СО 2 (для «неживой» воды весьма незначительное), которое обеспечивает устойчивость данной концентрации гидрокарбонатов при неизменном рН , называется равновесной углекислотой — [CO 2 ] р . Она связана как с содержанием углекислого газа в воздухе так и с dКН воды: с ростом dКН увеличивается и количество [СО 2 ] р . Содержание СО 2 в природных водах как правило близко к равновесной и именно эта их особенность, а не значения dKH , dGН и рН чаще всего отличает состояние природных вод от аквариумной воды. Решив уравнение К СО2 относительно СО 2 , можно определить концентрацию равновесной углекислоты:

[CO 2 ] р = [Ca ++ ][HCO 3 — ] 2 /К СО2

Поскольку в пресноводной аквариумистике понятия общей жесткости, карбонатной «жесткости» и кислотности являются культовыми, то интересно, что уравнения:

К 1 = [H + ][HCO 3 — ]/[CO 2 ]
и
К СО2 = [Ca ++ ][HCO 3 — ] 2 /[CO 2 ]

объединяют их в одну систему. Разделив К СО2 на К 1 , получим обобщенное уравнение:

Напомним, что [H + ] и рН объединяет обратнопропорциональная зависимость. Тогда последнее уравнение показывает, что параметры: dGH , dKH и рН связаны прямопропорционально. Это значит, что в состоянии, близком к газовому равновесию, увеличение концентрации одного компонента приведет к увеличению концентрации остальных. Данное свойство хорошо заметно при сравнении химического состава природных вод разных регионов: более жесткие воды отличаются более высокими значениями рН и dКН .

Для рыб оптимальное содержание СО 2 составляет 1–5мг/л. Концентрации более 15мг/л опасны для здоровья многих видов аквариумных рыб (см. ниже).

Таким образом, с точки зрения углекислотного равновесия, содержание СО 2 в природных водах всегда близко к [CO 2 ]р .

Аквариумная вода не бывает равновесной по содержанию СО 2 в принципе. Измерение содержания углекислоты с помощью СО 2 -теста позволяет определить общее содержание углекислого газа – [CO 2 ] общ , значение которого, как правило, превышает концентрацию равновесной углекислоты – [CO 2 ] общ >[CO 2 ] р . Это превышение называется неравновесной углекислотой – [CO 2 ] нер . Тогда

Читайте также:  Анализы для определения качества воды
[CO 2 ] нер = [CO 2 ] общ – [CO 2 ] р

Обе формы углекислоты – и равновесная и неравновесная, являются не измеряемыми, а только расчетными параметрами. Именно неравновесный углекислый газ обеспечивает активный фотосинтез водных растений и с другой стороны, может создавать проблемы при содержании отдельных видов рыб. В хорошо сбалансированном аквариуме естественные суточные колебания содержания углекислого газа не приводят к падению его концентрации ниже [CО 2 ] р и не превышают возможностей буфера аквариумной воды. Как будет показано в следующей главе, амплитуда этих колебаний не должна превышать ±0,5[CO 2 ] р . Но при увеличении содержания углекислого газа на более, чем 0,5[CO 2 ] р , динамика заявленных компонентов СО 2 -системы – dGH , dKH и рН , будет сильно отличаться от природной: общая жесткость ( dGH ) в такой ситуации возрастает на фоне падения значений рН и dКН . Именно такая ситуация в корне может отличать аквариумную воду от природной. Происходит повышение dGH в результате растворения известняка грунта. В такой воде могут затрудняться жизненно важные процессы газообмена в организме рыб, в частности – выведение СО 2 , а формирующиеся ответные патологические процессы часто приводят к ошибкам при оценке ситуации (см ниже). В морских рифовых аквариумах такая вода может растворять свежеосажденный СаСО 3 скелета жестких кораллов, в том числе на месте травмы, что может приводить к отслоению тела полипа от скелета и гибели животного при благополучии аквариума по другим параметрам.

При обилии водных растений, на свету возможна ситуация, когда [CO 2 ] общ 2 ]р . В этом случае растения будут влачить жалкое существование, а вода будет склонна к отложению СаСО 3 , особенно на зрелых листьях. Поэтому в аквариумах для выращивания водных растений рекомендуется поддерживать [CO 2 ] нер . Последнее неравенство также характерно для морских вод коралловых рифов. В океанологии данная ситуация описывается т.н. индексом насыщенности вод карбонатом кальция. В такой обстановке фотосинтез симбионтных зооксантелл в телах коралловых полипов еще больше усиливает приведенное неравенство, что в итоге приводит к отложению СаСО 3 и росту скелета полипа. К сожалению, в морской аквариумистике этот параметр применения пока не нашел. Ввиду такого важного значения растворимости известняка СаСО 3 , познакомимся с химией этого процесса подробнее.

Как известно, осаждение из раствора кристаллов любого вещества начинается при его т.н. насыщенных концентрациях, когда вода больше не способна вмещать в себе это вещество. Водный раствор над осадком (твердой фазой) всегда будет насыщен ионами вещества, независимо от его растворимости и будет находиться в состоянии химического равновесия с твердой фазой. Для известняка это выразится уравнением: СаСО 3(тв.) =Са ++ +СО 3 — (р-р) . Применив закон действия масс, получим: [Ca ++ ][CO 3 — ] (р-р) /[CaCO 3 ] (тв.) =К . Поскольку [CaCO 3 ] (тв.) =const (твердая фаза), то тогда [Ca ++ ][CO 3 — ] (р-р) =К . Т.к. последнее уравнение характеризует способность вещества растворяться, то такое произведение насыщенных концентраций ионов трудно растворимых веществ назвали произведением растворимости — ПР (ср. с ионным произведением воды К w ).

ПР СаСО3 = [Ca ++ ][CO 3 — ] = 5•10 -9 . Как и ионное произведение воды, ПР СаСО3 остается постоянным, независимо от изменения концентраций ионов кальция и карбонатов. Тогда при наличии в аквариумном грунте известняка, в воде всегда будут присутствовать карбонат-ионы в количестве, определяемом ПР СаСО3 и общей жесткостью:

В присутствии в воде неравновесного углекислого газа происходит реакция:

которая понижает насыщающую концентрацию карбонат-ионов [СО 3 — ] . В результате в соответствии с произведением растворимости, в воду будут поступать компенсаторные количества СО 3 — из СаСО 3 , т.е. известняк начнет растворяться. Поскольку СО 2 +Н 2 О=Н + +НСО 3 — , смысл приведенного выше уравнения можно сформулировать точнее: СО 3 — +Н + =НСО 3 — . Последнее уравнение говорит о том, что карбонаты, находящиеся в воде в соответствии с ПР СаСО3 , нейтрализуют кислоту ( Н + ), образующуюся при растворении СО 2 , в результате чего рН воды сохраняется неизменным. Таким образом, мы постепенно пришли к тому, с чего начинали разговор:

Растворы называют буферными, если они обладают двумя свойствами:

А: Значение показателя рН растворов не зависит от их концентрации, или от степени их разведения.

Б: При добавлении кислоты ( Н + ), или щелочи ( ОН — ), величина их показателя рН мало изменяется, пока концентрация одного из компонентов буферного раствора не изменится более, чем наполовину.

Указанными свойствами обладают растворы, состоящие из слабой кислоты и ее соли. В аквариумной практике такой кислотой является углекислота, а ее доминирующей солью – гидрокарбонат кальция – Са(НСО 3 ) 2 . С другой стороны, повышение содержания СО 2 выше равновесного эквивалентно добавлению в воду кислоты — Н + , а понижение его концентрации ниже равновесного – равносильно добавлению щелочи — ОН — (разложение гидрокарбонатов — см. выше). Количество кислоты или щелочи, которое необходимо внести в буферный раствор (аквариумную воду), чтобы значение показателя рН изменилось на 1 единицу, называется буферной емкостью. Отсюда следует, что рН аквариумной воды начинает изменяться раньше, чем исчерпывается ее буферная емкость, но по исчерпании буферной емкости, рН изменяется уже эквивалентно количеству внесенной кислоты, или щелочи. В основе работы буферной системы лежит т.н. принцип Ле Шателье: химическое равновесие всегда смещается в сторону, противоположную приложенному воздействию. Рассмотрим свойства А и Б буферных систем.

А. Независимость рН буферных растворов от их концентрации выводится из уравнения Хендерсона-Хассельбальха: рН = рК 1 +lg[HCO 3 — ]/[CO 2 ] . Тогда при разных концентрациях НСО 3 — и СО 2 их отношение [HCO 3 — ]/[CO 2 ] может быть неизменным. Так, например, [HCO 3 — ]/[CО 2 ] = 20/8 = 10/4 = 5/2 = 2,5/1 = 0,5/0,2 = 2,5 , — т.е. разные воды, отличающиеся значением карбонатной «жесткости» dКН и содержанием СО 2 , но содержащие их в одинаковой пропорции, будут иметь одинаковое значение показателя рН (см.также гл.2). Уверенно отличаться такие воды будут по своей буферной емкости: чем выше концентрация компонентов буферной системы, тем больше ее буферная емкость и наоборот.

Аквариумисты сталкиваются с данным свойством буферных систем обычно в периоды весеннего и осеннего паводка, если станции водозабора снабжаются поверхностной, а не артезианской водой. В такие периоды буферная емкость воды может уменьшаться настолько, что некоторые виды рыб не выдерживают традиционной плотной посадки. Тогда начинают появляться истории о загадочных болезнях, выкосивших например, скалярий, или меченосцев и против которых бессильны все лекарства.

Б . Можно говорить о трех буферных системах аквариумной воды, каждая из которых устойчива в своем диапазоне рН :

1 . рН 2 /НСО 3 — гидрокарбонатный буфер

2. рН=8,3 НСО 3 — гидрокарбонатный буфер

3. рН>8,3 НСО 3 — /СО 3 — карбонатный буфер.

Рассмотрим свойсво Б в двух вариантах: вар. Б1 — при возрастании содержания СО 2 и вар. Б2 – при уменьшении его содержания.

Б1 . Концентрация СО 2 увеличивается (плотная посадка, очень старая вода, перекорм).

Кислотные свойства СО 2 проявляются в образовании ионов водорода Н + при взаимодействии его с водой: СО 2 +Н 2 О→Н + +НСО 3 — . Тогда увеличение концентрации СО 2 равносильно увеличению концентрации ионов водорода Н + . Согласно принципа Ле Шателье это приведет к нейтрализации Н + . В этом случае буферные системы работают следующим образом.

Карбонатный буфер 3 : при наличии карбонатного грунта ионы водорода будут поглощаться присутствующими в воде карбонатами: Н + +СО 3 — →НСО 3 — . Следствием этой реакции будет растворение СаСО 3 грунта (см. выше).

Гидрокарбонатный буфер 1 – 2 : по реакции Н + +НСО 3 — →CO 2 ↑+Н 2 О . Стабильность рН будет достигнута за счет уменьшения карбонатной «жесткости» dКН , а удаление образующегося СО 2 – либо за счет фотосинтеза, либо за счет диффузии его в воздух (при надлежащей аэрации).

Если источник избытка СО 2 не будет устранен, то при уменьшении значения dКН вдвое от исходного, рН воды начнет понижаться при сопутствующем падении буферной емкости и увеличении общей жесткости. Когда величина показателя рН уменьшится на 1 единицу, емкость буферной системы будет исчерпана. При значении рН=6,5 содержание оставшихся гидрокарбонатов [HCO 3 — ]=[CO 2 ] , а при рН гидрокарбонаты будут присутствовать лишь в виде следа.

В итоге стабильность рН будет оплачена ценой понижения dКН , увеличения dGH и расходования буферной емкости воды. Такая вода уже будет сильно отличаться от природной (см. выше) и не всякая рыба сможет в ней выжить. В аквариумной практике принято считать нижней границей нормы количество гидрокарбонатов, соответствующее 4° dКН . Можно добавить, что для ряда видов аквариумных рыб (живородки, скалярии, атерины и др.) понижение карбонатной «жесткости» ниже 2° dКН может закончится трагично. Но в то же время, многие мелкие харациновые, расборы, радужницы такую воду переносят.

Б2 . Противоположные процессы – подщелачивание воды вследствие уменьшения содержания СО 2 в аквариуме ниже равновесного — возможны либо при активном фотосинтезе растений, либо при искусственном внесении в воду гидрокарбонатов в виде пищевой соды – NаНСО 3 . Тогда, согласно принципу Ле Шателье, это приведет к следующему противодействию со стороны буферных систем аквариумной воды.

Гидрокарбонатный буфер 1 : стабильность рН будет удерживаться за счет диссоциации гидрокарбонатов: НСО 3 — →Н + +СО 3 — . Тогда вслед за понижением содержания

СО 2 , будет пропорционально понижаться и количество гидрокарбонатов, а значение отношения [НСО 3 — ]/[CO 2 ] сохраняться постоянным (см. свойство А, уравнение Хендерсона-Хассельбальха). При падении содержания углекислоты менее 0,5[CO 2 ] р , значение показателя рН начнет увеличиваться и может возрасти до рН=8,3 . По достижении этого значения, гидрокарбонатный буфер 1 свои возможности исчерпывает, поскольку в такой воде СО 2 практически отсутствует.

Гидрокарбонатный буфер 2 удерживает значение рН=8,3 . Эта цифра следует из формулы [Н + ]=√К 1 К 2 , где К 1 и К 2 – 1 и 2-ая константы диссоциации угольной кислоты (см. выше). Тогда:

рН = -lg√К 1 К 2 = -lg√(4•10 -7 )(5,6•10 -11 ) = 8,3

Т.е. значение рН растворов любых гидрокарбонатов постоянно, не превышает рН=8,3 и является следствием самой химической природы этих веществ.

В отсутствие СО 2 гидрокарбонаты разлагаются по уравнению:

НСО 3 — →СО 2 +ОН — , подщелачивая воду и выделяя СО 2 , который потребляют растения. Но, тот же гидрокарбонат нейтрализует ОН — по схеме: НСО 3 — →СО 3 — +Н + ; и Н + +ОН — →Н 2 О . Поэтому значение показателя рН будет сохраняться стабильным, что отражает суммарное уравнение:

Стабильность рН достигается опять же за счет уменьшения количества гидрокарбонатов, т.е. за счет понижения буферной емкости воды. Однако аквариумный тест dКН это уменьшение не чувствует в силу особенностей самого метода анализа.

Поскольку гидрокарбонат-ион обладает способностью к диссоциации как по кислотному, так и по основному типу, т.е: НСО 3 — →Н + +СО 3 — и НСО 3 — →ОН — +СО 2 , то карбонатная «жесткость» dКН (содержание гидрокарбонатов), также является буферной системой.

Искусственное внесение в воду гидрокарбонатов (обычно в виде пищевой соды) иногда практикуется при содержании цихлид из Великих Африканских озер и в морской аквариумистике. При этом реализуются две стратегии: увеличение буферной емкости аквариумной воды и повышение значения показателя рН до 8,3.

Если количество СО 2 в аквариумной воде будет уменьшаться и далее, то при падении его содержания вдвое, по сравнению с равновесным, рН воды начнет возрастать. По превышении показателем рН значения рН=8,3 , углекислый газ из воды исчезает, и неорганический углерод представлен только гидрокарбонатами и карбонатами.

Карбонатный буфер 3 . По превышении карбонатами концентрации, соответствующей произведению растворимости [CO 3 — ]=ПР СаСО3 /[Cа ++ ] , в воде начнут образовываться кристаллы СаСО 3 . Поскольку основным и единственным потребителем СО 2 в пресноводном аквариуме являются водные растения, то рассматриваемые процессы происходят преимущественно на поверхности зеленого листа. При возрастании рН>8,3 поверхность зрелых листьев начнет покрываться известковой коркой, которая является замечательным субстратом для роста водорослей. Связывая карбонаты СО 3 — , образующийся СаСО 3 также поддерживает стабильность рН . Однако в отсутствие ионов Са ++ (в очень мягкой воде), при активном фотосинтезе рост концентрации карбонатов будет повышать значение показателя рН вследствие гидролиза карбонатов: СО 3 — +Н 2 О→ОН — +НСО 3 — .

При увеличении значения показателя рН на 1 единицу, по сравнению с исходным, буферная емкость воды будет исчерпана, и при продолжающемся падении содержания СО 2 , значение показателя рН может быстро повыситься до рискованного рН>8,5 . В итоге падение содержания СО 2 в аквариумной воде приведет к росту значения показателя рН при некотором уменьшении общей жесткости. В такой воде (также сильно неравновесной, как и в варианте Б1 ) весьма дискомфортно будут себя чувствовать многие мягководные рыбы.

Таким образом карбонатная буферная система воды объединяет в себе традиционные аквариумные гидрохимические параметры: жесткость общую и карбонатную, рН , а также содержание СО 2 . В ряду dGH – pH — dKH – CO 2 самым консервативным параметром является dGH , а самым изменчивым – СО 2 . По степени изменения dGH , pH и особенно dKH по сравнению с отстоянной, проаэрированной водопроводной водой можно судить о степени напряженности процессов дыхания и фотосинтеза в аквариуме. Исчерпание буферной емкости аквариумной воды как в ту, так и в другую сторону, настолько изменяет ее способность поглощать СО 2 , что именно это свойство зачастую превращает ее в сильно неравновесную по содержанию СО 2 и кардинально отличает от природной. Изменение способности аквариумной воды поглощать выдыхаемый рыбами СО 2 , может превышать физиологические возможности организма рыб по его выведению. Поскольку это отражается на здоровье рыбного населения аквариума, то следует познакомиться с особенностями физиологического действия СО 2 на организм рыб.

© Александр Яночкин, 2005 г.
© Аква Лого, 2005 г.

источник