Меню Рубрики

Химический анализ воды подземных вод

Наиболее востребованным в настоящее время является химический анализ воды из скважины, колодца или водопроводной воды. Благодаря химическому анализу воды, проведенному в нашей лаборатории, можно получить сведения о концентрации в воде железа , марганца , солей жёсткости , вредоносных соединений. Наряду с этим можно сделать бактериологический анализ воды , который определит, есть ли в воде бактерии.

Сокращенный химический анализ воды проводится по 7-ми показателям,
рекомендованным СанПиН 2.1.4.1074-01

Показатель Ед. Измерения СанПиН 2.1.4.1074-01
1. Водородный показатель pН ед. рН 6-9
2. Мутность мг/дм³ 2,6
3. Цветность градусы 20
4. Жесткость мг-экв/л 7
5. Окисляемость перманганатная мгО/дм³ 5,0
6. Железо общ. мг/дм³ 0,3
7. Марганец мг/дм³ 0,1

  1. Воду необходимо отбирать в чистую пластиковую бутыль объёмом 1,5-2,0 литра. Пластиковую бутыль желательно использовать из-под простой питьевой воды. Категорически не допускается использование пластмассовых бутылей, в которых до этого были лимонады, квас, пиво или другие цветные и ароматизированные напитки.
  2. Перед набором необходимо открыть кран и пролить воду в течение 5-10 минут. Это необходимо для удаления из труб застоявшейся воды.
  3. Бутылку и пробку перед набором воды необходимо несколько раз ополоснуть той водой, которую нужно набирать. При этом использовать моющие средства нельзя.
  4. Воду старайтесь наливать тонкой струйкой, по стенке бутылки. Такой способ позволит не допустить насыщение воды кислородом вследствие чего может произойти окисление двухвалентного железа в трёхвалентное железо.
  5. Воду нужно налить по горлышко и плотно завернуть пробкой. Наличие воздуха под пробкой нежелательно.
  6. Если нет возможности сразу привезти воду на анализ, её необходимо убрать в холодильник. Замораживание воды запрещается. Время хранения воды в холодильнике не должно превышать 48 часов.

В прописи анализов исходной воды необходимо указать тип источника водоснабжения

Поверхностный (река, озеро, море, водохранилище, пруд, условно включаются также безнапорные скважины, колодцы, ключи и каптажи), напорный артезианский и тип системы оборотного водоснабжения.

Из подземных источников водоснабжения пробы должны отбираться в течение 1 года: в каждый характерный в данном климатическом районе период по две пробы. Интервал отбора — не менее 24 часов

Если вода поверхностная, то необходимы 12 анализов разовых проб, отбираемых ежемесячно, за год, предшествующий году проектирования.

источник

Для оценки возможности использования воды из Вашей скважины, колодца или водопровода в питьевых целях необходимо выполнить химический и бактериологический анализ состава воды. Химический анализ воды необходим для подбора оптимальных схем систем водоподготовки, фильтров и оборудования для различных технологических процессов.

На самом деле мест, где сделать анализ воды в городе Москва и Московской области, достаточно. Это могут сделать местные СЭС, различные испытательные центры, коммерческие и заводские лаборатории. Крайне желательно наличие у них Аккредитационного Аттестата на право деятельности.

  • Анализа воды из артезианских скважин – 2500 рублей
  • Анализа воды из колодцев и мелких скважин – 2500 рублей
  • Микробиологического анализа воды – 1000 рублей

Пробу на анализ воды следует отбирать после 2-3 недельной эксплуатации колодца или скважины. К этому времени состав подземных вод, нарушенный при проведении строительных или буровых работ, восстанавливается к исходному виду.

Состав и свойства подземных вод неглубокого залегания претерпевают значительные сезонные изменения. Поэтому для большей достоверности заключения о питьевых свойствах Вашей воды целесообразно отбирать пробы для анализа в наиболее опасные периоды для их загрязнения, а именно, апрель-май, сентябрь-октябрь и делать это периодически, хотя бы один раз в год.

Для химического анализа вода отбирается в пластиковой бутылке только из-под простой питьевой воды или минеральной объемом не менее 1,5 л

  1. Перед отбором пробы следует прокачать скважину в течение 1-2 часов;
  2. Промыть бутылку и пробку не менее 5 раз той водой, которая подлежит экспертизе. Нельзя мыть бутылку содой и другими моющими средствами;
  3. Бутылку заполнить полностью водой и легким нажатием с боков удалить остатки воздуха, затем плотно закрыть пробкой и завернуть в бумагу или темный пакет;
  4. Если пробу, после отбора, невозможно сразу отправить на анализ в лабораторию или офис компании ООО «Вода-СТ», то ее следует хранить в холодильнике не более 36 часов.
  1. Проба отбирается в стеклянную тару, предварительно вымытую и стерилизованную вместе с пробкой;
  2. При взятии пробы из шланга или крана последние следует тщательно обжечь спиртовой горелкой или факелом (конец пинцета обмотать ватой, пропитанной спиртом и зажечь);
  3. После этого пустить воду сильной струей в течение 5-10 минут, заполнить емкость объемом не менее 500 г, но не до самого верха и плотно закрыть.

Все пробы следует снабдить сопроводительными запиской с указанием:

  • места отбора (деревня, участок и.т.п.);
  • источника воды (водопровод, колодец, скважина, бутилированная и т.п.);
  • даты и время отбора (число, часы, минуты).

Некоторые варианты анализов воды приведены ниже.

  1. рН
  2. Мутность
  3. Цветность
  4. Запах
  5. Привкус
  6. Общая жесткость
  7. Окисляемость (перманганатная)
  8. Железо общее
  9. Железо (2+)
  10. Марганец
  11. Фториды
  12. Общее солесодержание
  13. Сероводород

По Вашему желанию или предписанию компетентных контролирующих органов возможно проведение химического анализа по расширенному числу показателей. В данных случаях количество воды, порядок отбора проб и стоимость, согласовываются со специалистами ООО «Вода-СТ» или соответствующей лаборатории.

  1. Температура
  2. рН
  3. Мутность
  4. Цветность
  5. Запах
  6. Привкус
  7. Общая жесткость
  8. Карбонатная жесткость
  9. Окисляемость (перманганатная)
  10. Железо общее
  11. Железо 2+ (растворенное)
  12. Железо 3+ (окисленное)
  13. Железо органическое
  14. Марганец
  15. Сульфиды и сероводород
  16. Фториды
  17. Хлориды
  18. Нитраты
  19. Нитриты
  20. Фосфаты (ортофосфаты)
  21. Сульфаты
  22. Общее солесодержание
  23. Щелочность общая
  24. Гидрокарбонаты, (карбонаты)
  25. Хлор остаточный (свободный)
  26. Хлор остаточный (связанный)
  27. Взвешенные вещества
  28. Сухой остаток
  29. Кислород растворенныйv
  30. Электропроводность
  31. Азот аммонийный
  32. Кремний
  33. Кальций
  34. Магний
  35. Натрий
  36. Калий
  37. Литий
  38. Медь
  39. Цинк
  40. Свинец
  41. Кадмий
  42. Кобальт
  43. Никель
  44. Хром общий
  45. Хром (6+)
  46. Хром (3+)
  47. Алюминий
  48. Алюминий остаточный
  49. Серебро
  50. Стронций
  51. Барий
  52. Бром
  53. Мышьяк
  54. Молибден
  55. Йод и Йодиды
  56. Ртуть
  57. Титан
  58. Селен
  59. Ванадий
  60. Олово
  61. Нефтепродукты (суммарно)
  62. ХПК
  63. Фенол
  64. БПК-5
  65. СПАВ (общие)
  66. Поверхностно-активные в-ва (ПАВ), анионные
  67. Полифосфаты (конденсир.)
  68. Цианиды
  69. Фосфор общий
  70. Азот органический
  71. Азот общий
  72. Хлорорганические соединения
  73. Ацетон
  74. Формальдегид
  75. Эфирорастворимые в-ва (масла, мазут)
  76. Общее микробное число
  77. Общие колиформные бактерии

Место нахождения объекта отбора воды: Сказка, Истринский (скважина)

источник

Формула Курлова, название воды. Графические изображения химического состава подземных вод.

1. Пересчет результатов химических анализов.Для выяснения количественных соотношений между ионами данные химических анализов, выполненные химической лабораторией, должны быть представлены в миллиграмм-эквивалентной форме, т.к. ионы в растворе реагируют между собой в эквивалентных количествах.

Пересчет из ионной формы, выраженной в мг/л в моль-экв, осуществляется делением числа кг каждого иона на его эквивалентный вес (ионный вес, деленный на валентность) или умножением на пересчетный коэффициент. Наиболее просто находить моль-экв.. пользуясь пересчетной таблицей.

=Na моль-экв. или

Na(мг/л)* К=Na моль- экв,.

где Кпересчетный коэффициент.

2.Пересчет результатов анализов. Пересчет результатов анализов заканчивается выражением его в процентах моль-эквивалентов. Для этого принимают каждую из вычисленных сумм мг/экв. катионов и анионов за 100% и по формулам

А – 100%

x = = Cl%

определяют процентное содержание каждого из катионов и анионов в отдельности. Все данные записывают в соответствующую ведомость химических анализов.

Ведомость химических анализов.

Содержание воды.

мг/л моль-экв/л моль-экв% Катионы Сумма Анионы Сумма

1. Вычисление видов жесткости. Жесткость воды обуславливается присутствием в воде ионов кальция,железа, алюминия, марганца, бария, стронция. Для вод , используемых в хозяйственных и технических целях, жесткость воды не учитывать нельзя. Жесткая вода требует больше мыла для получения пены, в ней медленнее развариваются овощи, мясо, образуется накипь на стенках труб и паровых котлов, что уменьшает теплоотдачу и требует большего потребления тепла. Различают жесткость воды общую, временную (устранимую, карбонатную) и постоянную (неустранимую, остаточную).

Общая жесткость определяется суммарным содержанием в воде иона Ca** и Mg**, так как содержание других элементов в воде ничтожно мало. Величина карбонатной жесткости соответствует количеству иона НСО .

Эта величина является расчетной и определяется по количеству ионов Са** Мg**, связанных с ионами НСО и СО (т.е. из расчетов, выполненных в первой части задания, берут количество ионов НСО и СО в моль-эквивалентной форме – это и есть карбонатная жесткость).

Временную жесткость определяют ионы Са** и Мg**, осаживающиеся при кипячении воды в виде карбонатов вследствие разрушения гидрокарбонат – иона.

Постоянную жесткость определяют ионы Са** и Мg**, остающиеся в воде после кипячения. Это есть разность между общей карбонатной жесткостью (в моль-экв).

Жесткость воды О.А.Алекин рекомендует следующее подразделение подземных вод по степени жесткости.

Классификация подземных вод по величине жесткости.

моль/экв немецкие градусы Очень мягкая Мягкая Ум. жесткая Жесткая Очень жесткая до 1,5 1.3 — 3.0 3.0 – 6.0 6.0 – 9.0 более 9.0 до 4.2 4.2 – 8.4 8.4 – 16.8 16.8 – 25.8 более 25.2

Для питьевых целей большей частью используются подземные воды с общей жесткостью до 7 моль-экв/л (около 20 нем. град.), но в некоторых местностях для питья потребляются и более жесткие воды.

2. Для наглядного изображения химического состава можно применять запись в виде формулы Курлова. Эта запись имеет структуру в виде дроби. В числителе в убывающем порядке (по абсолютному содержанию в % экв) записываются анионы, а в знаменателе в таком же порядке – катионы. Слева от дроби в кг/л становится газовый состав (СО , N , О , Н , S и др.) наличие специфических элементов (Fe, Al, Cu , As, N , Br, D, F и др.). Справа от дроби указывают температуру воды в С, активную реакцию рН, расход источника или дебит скважины, м /сутки.

Читайте также:  Анализ на качество сточных вод

[CO ] Fe F M рН 6.3 Т G 25 D150

В наименование состава воды включаются анионы и катионы, содержание которых превышает 25%-экв, название включает и специфические элементы, а также газовый состав.

Основные ионы Курлов М.Г. предлагает назвать в убывающем порядке, причем, первыми называются анионы, а вторыми , в таком же порядке – катионы. В приведенном примере название состава воды, выраженной формулой Курлова, будет борная, углекислая, железистая, фтористая, хлоридно- сульфатная натриево-магниевое.

Как видно из указанного примера, основные ионы определяют химический состав воды, а газовый и специфические элементы – специфическое содержание. При составлении химического названия воды необходимо соблюдать элементарные правила русского языка, согласно которым основное прилагательное пишется полностью а прилагательное, указывающее на второстепенное свойство предмета, пишется сокращенно. Если в химическом составе воды преобладают анионы хлоридный и сульфатный, причем сульфатного больше, чем хлоридного, то воду следует называть хлоридно-сульфатной, а не сульфатно-хлоридной.

Приведем два примера. Химический состав вод изображен в виде формул Курлова, причем скобками второстепенные ионы отделены от главных.

Здесь мы имеем пресную, гидрокарбонатную магниево-кальциевую воду с повышенным содержанием сульфатов. По классификации О. А. Алекина, данная вода принадлежит к гидрокарбонатному классу, группе кальция и магния и второму типу (CII Ca , Mg 0.4).

Вода солоноватая, сульфатно-хлоридная магниево-натриевая.

Как установлено, ионная форма свойственна в полной ме­ре лишь водам низкой минерализации. При увеличении кон­центрации растворенных солей между ионами усиливается взаимодействие, причем развивается процесс, обратный дис­социации, т. е. ассоциация. В растворе образуются ассоцииро­ванные пары: нейтральные ( СаSО4 0 , МgSО4 0 , СаСО3 0 ) или несущие заряд (Mg(HCO3)2 Са(НСО3)2 + ).Ввиду сложности химического состава природных раство­ров во многих случаях нельзя предугадать, какие соли в каком порядке будут выпадать из данного раствора, так как на ход кристаллизации влияет температура и другие фак­торы. Поэтому наши пересчеты из ионной в солевую форму принято называть гипотетическими. При оценке питьевых, ле­чебных, технических и других качеств воды полезно принимать во внимание не только абсолютное содержание отдельных ионов, но

и предполагаемые ассоциации анионов с катионами (соли). Изображение химического состава вод в виде солей следует рассматривать как очень удобную рабочую гипотезу, позволяющую лучше разобраться в химических свой­ствах и происхождении природных вод.Пересчет из ионной формы в солевую производится в со­ответствии с растворимостью солей. В первую очередь комби­нируются малорастворимые, а затем все более и более растворимые.

Простейшим для изображения единичных анализов является график-прямоугольник химического состава воды. График строится в виде двух прямоугольников, на одном из которых в масштабе нанесены %-эквиваленты анионов, на другом %-эквивалента катионов в последовательности, определяемой правилом Фрезениуса, т.е. в порядке их химической активности: К*, Na*, Mg**, Fe, Mg, H, NO , Cl, Br, I, SO, НCO, CO, OH. .

Графически изображать единичные анализы можно также с помощью круглой диаграммой Н.И.Толстихина.

Горизонтальной линией круг делится на две части. В верхней части по секторам откладываются в масштабе катионы слева направо в обратном порядке , чем на прямоугольной диаграмме, а в нижней — в таком же порядке анионы. Диаметр круга в масштабе отвечает минерализации воды, точно также и ширина прямоугольной диаграммы в масштабе соответствует величине минерализации воды.

Классификация Алекина О.А. сочетает принцип преобладающего иона и соотношение между ионами. За основу взято шесть главных иона (3 катиона, 3 аниона), содержание которых выражено в моль- эквивалентах:

По преобладающему аниону воды подразделяются на три класса: гидрокарбонатные и карбонатные (НСО + СО ), запись в виде символа (С); сульфатные (SO ) символическая запись (S) и хлоридные (Сl) – символическая запись такая же. По преобладающему катиону классы подразделяются на группы Са , Мg ,Na + K .

Каждая группа по соотношению между ионами подразделяются на три типа. Всего выделено четыре типа:

I) НСО > Са+Мg. Воды маломинерализованные, характерен избыток ионов НСО над суммой ионов щелочноземельных материалов.

II) НСО

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8342 — | 7961 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Химический, микробиологический анализы воды из скважин, и центрального водоснабжения, с примером допустимых показателей

Вода – это источник энергии и жизни человека, поэтому на всех этапах строительства, начиная с изысканий, обязательно проводят анализ воды из скважин, колодцев и водоемов, находящихся непосредственно на территории объекта. Состав воды подвержен постоянному воздействию внешних факторов, ведь не исключено, что ранее около водоема, скважины или колодца располагались промышленные предприятия, захоронения тяжелых металлов или несанкционированная свалка отходов. Определить годность воды к использованию в бытовых условиях может своевременный анализ воды.

Исследования помогают установить химический состав и свойства воды и выявить концентрацию всех вредных примесей. Это необходимо для обеспечения любого объекта строительства качественной питьевой водой, а также для расчетов и выбора подходящего очистительного и распределительного оборудования. От состава и свойств воды зависит расчетный срок службы прокладываемых коммуникаций и здоровье людей, использующих ее для питьевых или бытовых нужд. Именно по этой причине одним из основных этапов геоизысканий является обязательное проведение различных анализов воды из скважины, которое назначается застройщиками любых объектов, в том числе и промышленных.

Емкости, используемые для анализа воды

При этом стоит учесть, что подобные лабораторные исследования рекомендуется проводить систематически, так как химический состав воды подвержен изменениям под действием внешней среды.
Выделяют 3 основных вида показателей:

  • Физические показатели, которые позволяют оценить основные свойства воды, а именно ее вкус, цвет, мутность, температурные данные, запах и информацию о взвешенных частицах в составе.
  • Химические показатели. Они позволяют охарактеризовать состав воды за счет оценки концентрации основных ионов. Также в процессе исследования определяют основные показатели жесткости, уровень pH, число общей минерализации и содержание отдельных ионов, отвечающих за качество воды, фтора, железа, калия и т. д. Стоит отметить, что избыток железа влияет на цвет воды и вызывает образование осадка в трубах, который может негативно влиять на сантехническое оборудование и трубы. В то время как избыток меди влияет на вкусовые качества.
  • Бактериологические показатели также отвечают за качество воды и позволяют своевременно определить заражение различными микроорганизмами. Чаще всего бактерии попадают в жидкость под воздействием внешних факторов и человеческой жизнедеятельности. Например, заражение может произойти при попадании сточных вод, при контакте воды с животными и при загрязнении различными промышленными отходами.

Показатели качества воды определяются:

  • химическим анализом;
  • органолептическим исследованием, в результате которого определяется жесткость и наличие железа;
  • токсическим анализом, направленным на определение наличия опасных веществ;
  • микробиологическим исследованием, позволяющим определить содержание бактерий в скважине, водоеме или колодце.

Результаты проверки указывают на количество определенных веществ в разных единицах измерения. При знании норм можно самостоятельно оценить основные показатели. Если все в норме, то жидкость можно считать чистой и пригодной к использованию. В противном случае нужно проводить дополнительную фильтрацию. Обычно в результатах указывают предельно допустимую концентрацию (ПДК) примесей. Этот показатель говорит, что количество определенного вещества не несет негативного воздействия. ПДК прописываются в нормативных документах.

Исследование производят для установления точного химического состава воды, а также для оценки основных свойств. Характер исследования может отличаться в зависимости от поставленных задач. Химический анализ воды подразделяют на общий и специальный. Во время общего анализа воды определяется ее общая характеристика, необходимая для ее классификации, а также для получения информации о содержании отдельных солей и ионов. Данные результаты имеют широкое назначение.

Согласно СанПиН 2.1.4.559-96, на сегодняшний день в результате исследования воды обязательно устанавливают концентрацию ионов кальция, магния, натрия, которые наряду с другими составляют основу шестикомпонентного анализа, также позволяющего определить содержание железа и уровень pH. Исследование не включает в себя определение газового состава.

Краткое описание основных исследуемых в процессе химического анализа показателей:

  • Водородный коэффициент (pH) зависит от концентрации ионов.
  • Жесткость воды определяют исходя из концентрации в ней солей кальция и магния.
  • Щелочность базируется содержанием гидроксидов, анионов слабых кислот, бикарбонатов и карбонатов.
  • Хлориды связаны с присутствием в жидкости обычной соли. При наличии с хлоридами азотсодержащих веществ есть угроза загрязнения централизованного водоснабжения бытовыми отходами.
  • Сульфаты могут вызывать проблемы пищеварительной системы.
  • Элементы, содержащие азот, показывают присутствие в жидкости животной органики. К ним относится аммиак, нитриты, нитраты.
  • Фтор и йод. Оба вещества несут негативные последствия как при избытке, так и при дефиците. Первое вещество может вызвать рахит, заболевания зубов и крови. Второе – проблемы щитовидной железы.
  • Железо в составе воды может находиться в растворенном, не растворенном, коллоидном состоянии, а также в виде органических примесей и бактерий.
  • Марганец вместе с железом оставляют желтые потеки труб, аналогичные следы остаются и на чистом белье, а также вызывают характерный привкус. Это пагубно действует на печень.
  • Сероводород можно встретить в подземных водах, проводя анализ колодезной воды. Вещество относится к ядам, серьезно влияющим на здоровье людей. В воде, используемой для бытовых и питьевых нужд, присутствие сероводорода крайне опасно и запрещено.
  • Хлор – наиболее распространенное средство санитарной обработки водопроводной воды. Вещество оказывает пагубное воздействие на организм и является одной из причин генетических мутаций, тяжелых отравлений, онкологических болезней. Однако в воде часто наблюдается остаточный хлор, используемый для ее обеззараживания, в безопасной концентрации.
  • Натрий и калий – следствие растворения коренных пород.
Читайте также:  Анализ на кислород питательной воды

Среди специальных анализов подземных вод важное место занимают:

  • Санитарный, направленный на определения уровня жесткости и кислотности, содержания солей и ионов NH4, NO2, NO3. Анализ выявляют в целях определения пригодности воды для питья и бытового использования и уровня ее загрязненности.
  • Бальнеологический анализ – кроме главных ионов, позволяет выявить уровень газовых компонентов, радиоактивность, число сульфатов, железо, мышьяк, литий и ряд иных показателей качества. Он считается наиболее полным и применяется для нормирования целебных источников минеральной воды, установленных требованиям ГОСТ Р 54316-2011, расположенных , например, в Карловых Варах, Ессентуках, Железноводске, Трускавце.
  • Технический анализ производят для того, чтобы оценить коррозионные и агрессивные свойства воды, а также определить ее пригодность для использования в нефтедобыче, для питания паровых котельных установок или в иной технической сфере.
  • Поисковый анализ питьевой воды используют наряду с техническим анализом для поиска агрессивных примесей и оценки способов ее дальнейшего использования.

Анализы воды из скважины проводят как в стационарных лабораторных условиях, так и с использованием полевых лабораторных установок непосредственно на объекте строительства. В полевых условиях часто используют исследовательские лаборатории и передвижные конструкции для анализа, разработанные учеными А. А. Резниковым (ПЛАВ), И. Ю. Соколовой и другими. Данный вид оборудования обычно состоит из упакованных смонтированных комплектов оборудования, посуды и реактивов, которые предназначены для исследований объемным, колориметрическим и нефелометрическим методами.

Химическая экспертиза воды имеет широкий спектр действия и применяется для:

  • анализа питьевой воды;
  • определения чистоты промышленных источников;
  • подбора фильтров на производстве.

Для точности результатов рекомендуют соблюдать следующие требования:

  • Емкость для пробы воды на анализ должна быть стерильной. Объем тары – 500 гр. Простерилизовать посуду может лаборатория, проводящая исследование, но процедуру несложно провести и дома. Для этой цели пробирку необходимо простерилизовать кипятком или паром. Также можно подержать емкость 10-15 мин в духовке или над открытым огнем.
  • Перед забором нужно продезинфицировать кран открытым пламенем и обтереть спиртом. После этих манипуляций нужно спустить воду на полной мощности в течение 5-7 мин. Запрещается притрагиваться к крышке и горловине тары.
  • Жидкость необходимо оградить от тепла и прямых солнечных лучей, так как такое воздействие способно нарушить качество, и результаты будут недостоверными. Лучше во время перевозки поместить пробирку в холодное место.
  • Образец нужно передать в лабораторию и приступить к определениям максимум через 3 часа после забора.

К образцу прилагают документацию, содержащую информацию о виде источника (колодец, скважина, природный водоем и т. д.), место пробы, правильную дату и время забора, а также точный юридический адрес источника.

Изображение результатов химического анализа

Качество воды из скважины и ее состав можно определить несколькими методиками. Каждая из них устанавливает определенный показатель. Химический состав воды из скважины, водоема или колодца обычно изображают в ионной, процент-эквивалентной или эквивалентной форме. Ионная форма позволяет выразить химический состав питьевой воды в виде отдельных ионов, содержащихся в ней. Они выражаются в миллиграммах (мг) или же в граммах (гр), изредка данные могут быть предоставлены как отношение к массе и объему исследуемой жидкости.

Вода в процессе визуального исследования

Сегодня все сертифицированные лаборатории, куда доставляются пробы, предоставляют результаты гидрохимических исследований в ионной форме, которая является основным изображением состава воды. Ионная форма считается основной и используется для дальнейших переходов. Если надо выполнить перевод результатов, изображенных в виде отношения к единице объема, к составу, отнесенному к единице массы, количество отдельных ионов нужно поделить на плотность, а в случае обратного перехода — помножить.

Эквивалентная форма изображения результатов и получила значительное распространение. Она дает развернутое представление о свойствах воды, позволяет определить содержание ионов и установить происхождение вод. Форма используется в аналитических целях и позволяет контролировать результаты.

Чистая водопроводная вода

Эквивалент иона представляет собой частное от деления ионной массы на валентность иона. В качестве примера можно рассмотреть содержание иона натрия в эквивалентном виде иона: Na+ = 23/1, а эквивалент иона С = 35,5/1, из этого следует вывод, что на 23 единицы массы иона Na+ приходится 35,5 единицы иона, выраженных в эквивалентах. Исходя из этого, нужно отметить, что для перехода от ионной формы к эквивалентному изображению результатов нужно разделить количество иона, выраженное в миллиграммах (мг) или граммах (гр), на величину эквивалента иона.

Вода с избыточным содержанием железа и меди

Процент-эквивалентная форма позволяет более наглядно показать ионно-солевой состав, соотношение между ионами, а также определяет черты сходства вод с различной величиной минерализации, что делает данную форму наиболее распространенной. Но изображение содержания солей в составе исследуемых жидкостей только в одной из вышеперечисленных форм не дает возможности установить абсолютное содержание ионов в воде. По этой причине желательно предоставить результаты исследований, изобразив их в эквивалентной и ионной формах.

источник

Анализ «Минимальный» включает базовый набор из 18 показателей, характеризующих качество воды: обобщённые показатели (в т. ч. жёсткость, минерализацию, перманганатную окисляемость) и базовый список катионов и анионов.

Исследование не предполагает анализ содержания в воде тяжёлых металлов, органических загрязнителей и канцерогенов, а также ксенобиотиков.

Как правило, набор «Минимальный» не используется для подтверждения качества источников централизованного водоснабжения, но подходит для источников нецентрализованного водоснабжения.

Для исследования питьевой воды рекомендуется набор «Оптимальный»

  • подходит для колодцев, скважин, родников в случае, если ранее уже осуществлялся более расширенный анализ воды из Вашего источника;
  • позволяет оценить качество фильтров и очистных систем, которые Вы уже используете;
  • позволяет подобрать обезжелезивающие фильтры и умягчители и по составу анионов установить необходимость использования систем обратного осмоса;
  • обладает высокой точностью, подтверждённой Межлабораторными Сличительными Испытаниями и поверками.
  • не подходит для подтверждения полной безопасности для здоровья и подбора комплексной водоподготовки (лучше выбрать более развёрнутые варианты исследований).
Определяемый показатель Нормативный документ на методику
Органолептические показатели
Запах при 20 °C ГОСТ Р 57164-2016
Цветность ГОСТ 31868-2012 Метод Б (Cr-Co)
Мутность Методика определения выбирается лабораторией
Обобщённые показатели
Жесткость общая РД 52.24.395-2017
Перманганатная окисляемость / Перманганатный индекс ПНД Ф 14.1:2:4.154-99 (издание 2012 г.)
Водородный показатель (pH) / pH РД 52.24.495-2017
Сухой остаток / Минерализация (плотный остаток) ПНД Ф 14.1:2:4.261-2010 (издание 2015 г.)
Удельная электропроводность РД 52.24.495-2005
Общая щелочность ГОСТ 31957-2012 Метод А.2 Способ 1
Свободная щелочность ГОСТ 31957-2012 Метод А.2
Неорганические соединения
Гидрокарбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Карбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Нитрат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фторид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Элементы
Железо ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кальций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Магний ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Марганец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)

Не нашли нужные показатели?

Анализ проводится с использованием передовых методик и техник анализа, в том числе фотометрии, ионной хроматографии, атомной абсорбции и потенциометрии, что обеспечивает высокую точность и низкие уровни риска получения недостоверных результатов.

Углублённый физико-химический анализ воды по 30 показателям, который включает в себя полный набор обобщённых показателей (в т. ч. жёсткость, минерализацию, перманганатную окисляемость) и содержит базовый перечень тяжёлых металлов и металлоидов (в т. ч. кадмий, мышьяк); не включает разделение опасных органических компонентов.

Оптимален для оценки качества источников централизованного водоснабжения, так как анализируется, в том числе, алюминий — компонент очистки воды, способный попадать в водопроводную воду на станциях очистки Водоканала. По сравнению с набором «Минимальный» даёт более полное представление о качестве воды и её безопасности для здоровья.

Для исследования питьевой воды рекомендуется набор «Оптимальный»

  • подходит для проверки широкого спектра источников воды, контроль качества воды в которых осуществляется как минимум раз в год;
  • включает определение концентраций тяжёлых металлов и металлоидов;
  • позволяет подобрать систему очистки воды от широкого перечня загрязнителей;
  • позволяет оценить качество фильтров и очистных систем, которые Вы уже используете;
  • обладает высокой точностью, подтверждённой Межлабораторными Сличительными Испытаниями и поверками.
  • не подходит для подтверждения полной безопасности для здоровья (лучше обратить внимание на наборы «Расширенный» или «Максимальный»).
Определяемый показатель Нормативный документ на методику
Органолептические показатели
Запах при 20 °C ГОСТ Р 57164-2016
Цветность ГОСТ 31868-2012 Метод Б (Cr-Co)
Мутность Методика определения выбирается лабораторией
Обобщённые показатели
Жесткость общая РД 52.24.395-2017
Перманганатная окисляемость / Перманганатный индекс ПНД Ф 14.1:2:4.154-99 (издание 2012 г.)
Водородный показатель (pH) / pH РД 52.24.495-2017
Сухой остаток / Минерализация (плотный остаток) ПНД Ф 14.1:2:4.261-2010 (издание 2015 г.)
Удельная электропроводность РД 52.24.495-2005
Общая щелочность ГОСТ 31957-2012 Метод А.2 Способ 1
Свободная щелочность ГОСТ 31957-2012 Метод А.2
Неорганические соединения
Бромид-ион ПНД Ф 14.1.175-2000 (издание 2014 г.)
Гидрокарбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Ионы аммония / Аммиак и ионы аммония ПНД Ф 14.1:2:4.276-2013 (издание 2013 г.)
Карбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Нитрат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Нитрит-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фосфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фторид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Хлорид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Элементы
Алюминий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Железо ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кадмий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Калий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кальций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Магний ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Марганец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Мышьяк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Натрий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Свинец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Читайте также:  Анализ на кальций в воде

Не нашли нужные показатели?

Анализ проводится с использованием передовых методик и техник анализа, в том числе фотометрии, ионной хроматографии, атомной абсорбции и потенциометрии, масс-спектрометрии и флуоресцентного анализа, что обеспечивает высокую точность и низкие уровни риска получения недостоверных результатов.

Развёрнутый физико-химический и органолептический анализ воды по 48 показателям включает в себя полный набор обобщённых показателей (в т. ч. жёсткость, минерализацию, перманганатную окисляемость), полный перечень тяжёлых металлов и металлоидов (в т. ч. ртуть, свинец, кадмий, мышьяк), а также анализ сероводорода и нефтепродуктов; не включает разделение опасных органических компонентов.

Подходит для оценки безопасности воды из всех источников, в том числе расположенных в районах с неблагоприятной экологической обстановкой.

Для исследования питьевой воды рекомендуется набор «Оптимальный»

  • отлично подходит для проверки любых источников водоснабжения;
  • включает определение концентраций полного набора тяжёлых металлов и металлоидов;
  • включает анализ на нефтепродукты и сероводород;
  • позволяет подобрать систему очистки воды от исчерпывающего перечня загрязнителей;
  • позволяет принять решение об установке аэратора в составе водоподготовки;
  • позволяет оценить качество фильтров и очистных систем, которые Вы уже используете;
  • обладает высокой точностью, подтверждённой Межлабораторными Сличительными Испытаниями и поверками.
  • требует использования консерванта для сероводорода и дополнительной тары для нефтепродуктов во время отбора проб.
Определяемый показатель Нормативный документ на методику
Органолептические показатели
Запах при 20 °C ГОСТ Р 57164-2016
Цветность ГОСТ 31868-2012 Метод Б (Cr-Co)
Мутность Методика определения выбирается лабораторией
Обобщённые показатели
Жесткость общая РД 52.24.395-2017
Перманганатная окисляемость / Перманганатный индекс ПНД Ф 14.1:2:4.154-99 (издание 2012 г.)
Водородный показатель (pH) / pH РД 52.24.495-2017
Сероводород ПНД Ф 14.1:2:4.178-02 (издание 2010 г.)
Сухой остаток / Минерализация (плотный остаток) ПНД Ф 14.1:2:4.261-2010 (издание 2015 г.)
Удельная электропроводность РД 52.24.495-2005
Общая щелочность ГОСТ 31957-2012 Метод А.2 Способ 1
Нефтепродукты Методика определения выбирается лабораторией
Кремнекислота (в пересчете на кремний) ПНД Ф 14.1:2:4.215-06 (издание 2011 г.)
Свободная щелочность ГОСТ 31957-2012 Метод А.2
Неорганические соединения
Бромид-ион ПНД Ф 14.1.175-2000 (издание 2014 г.)
Гидрокарбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Ионы аммония / Аммиак и ионы аммония ПНД Ф 14.1:2:4.276-2013 (издание 2013 г.)
Карбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Нитрат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Нитрит-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфид-ион ПНД Ф 14.1:2:4.178-02 (издание 2010 г.)
Фосфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фторид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Хлорид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Элементы
Алюминий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Барий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Бериллий Методика определения выбирается лабораторией
Бор / Ионы бората ГОСТ 31949-2012
Ванадий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Железо ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кадмий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Калий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кальций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кобальт ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Литий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Магний ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Марганец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Медь ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Молибден ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Мышьяк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Натрий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Никель ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Свинец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Серебро ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Стронций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Хром ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Цинк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Ртуть Методика определения выбирается лабораторией

Не нашли нужные показатели?

Анализ проводится с использованием передовых методик и техник анализа, в том числе фотометрии, ионной хроматографии, атомной абсорбции и потенциометрии, масс-спектрометрии и флуоресцентного анализа, спектрофотомерии, жидкостно-жидкостной экстракции, что обеспечивает высокую точность и низкие уровни риска получения недостоверных результатов.

Наиболее подробный физико-химический и органолептический анализ воды по 56 важным показателям согласно СанПиН 2.1.4.1074 включает в себя полный набор обобщённых показателей (в т. ч. жёсткость, минерализацию, перманганатную окисляемость, щёлочности, pH), полный перечень тяжёлых металлов и металлоидов (в т. ч. ртуть, свинец, кадмий, мышьяк), анализ сероводорода и нефтепродуктов; а также опасных органических компонентов, в том числе канцерогенов и ксенобиотиков.

Для проведения это анализа задействуется практически весь парк аналитического оборудования МГУ. Набор пользуется большой популярностью среди ТСЖ и строительных организаций.

2,5 л (пластик) + 0,2 л (стекло)

Для исследования питьевой воды рекомендуется набор «Оптимальный»

  • учитывает основные требования СанПиН 2.1.4.1074 в полном объёме и гарантирует безопасность для жизни и здоровья потребителей;
  • вместе с этим анализом Испытательный Центр МГУ проводит микробиологические исследования бесплатно;
  • включает анализ на опасные, канцерогенные вещества и ксенобиотики;
  • включает анализ на нефтепродукты и сероводород;
  • включает в себя полный набор тяжёлых металлов и металлоидов;
  • позволяет подобрать систему очистки Вашей воды от полного перечня загрязнителей;
  • позволяет принять решение об установке аэратора в составе водоподготовки;
  • позволяет оценить качество фильтров и очистных систем, которые Вы уже используете;
  • обладает высокой точностью, подтверждённой Межлабораторными Сличительными Испытаниями и поверками.
  • требует использования консерванта для сероводорода и дополнительной тары для нефтепродуктов;
  • аналитические работы занимают относительно много времени – до 5 рабочих дней.
Определяемый показатель Нормативный документ на методику
Органолептические показатели
Запах при 20 °C ГОСТ Р 57164-2016
Цветность ГОСТ 31868-2012 Метод Б (Cr-Co)
Мутность Методика определения выбирается лабораторией
Обобщённые показатели
Жесткость общая РД 52.24.395-2017
Перманганатная окисляемость / Перманганатный индекс ПНД Ф 14.1:2:4.154-99 (издание 2012 г.)
Водородный показатель (pH) / pH РД 52.24.495-2017
Общий хлор / Остаточный активный хлор / Сумма свободного и связанного хлора (хлораминов) ПНД Ф 14.1:2:4.113-97 (издание 2018 г.)
Сероводород ПНД Ф 14.1:2:4.178-02 (издание 2010 г.)
Сухой остаток / Минерализация (плотный остаток) ПНД Ф 14.1:2:4.261-2010 (издание 2015 г.)
Удельная электропроводность РД 52.24.495-2005
Общая щелочность ГОСТ 31957-2012 Метод А.2 Способ 1
Нефтепродукты Методика определения выбирается лабораторией
Кремнекислота (в пересчете на кремний) ПНД Ф 14.1:2:4.215-06 (издание 2011 г.)
Неорганические соединения
Бромид-ион ПНД Ф 14.1.175-2000 (издание 2014 г.)
Ионы аммония / Аммиак и ионы аммония ПНД Ф 14.1:2:4.276-2013 (издание 2013 г.)
Нитрат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Нитрит-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфид-ион ПНД Ф 14.1:2:4.178-02 (издание 2010 г.)
Фосфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фторид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Хлорид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Элементы
Алюминий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Барий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Бериллий Методика определения выбирается лабораторией
Бор / Ионы бората ГОСТ 31949-2012
Ванадий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Железо ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кадмий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Калий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кальций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кобальт ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Литий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Магний ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Марганец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Медь ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Молибден ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Мышьяк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Натрий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Никель ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Свинец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Селен ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Серебро ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Стронций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Титан ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Хром ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Цинк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Ртуть Методика определения выбирается лабораторией
Органические соединения
АПАВ ПНД Ф 14.1:2:4.158-2000 (издание 2014 г.)
Формальдегид ПНД Ф 14.2:4.227-2006 (издание 2018 г.)
Летучие органические соединения (ВТЕХ)
Бензол ПНД Ф 14.1:2:3.171-2000 (издание 2017 г.)
о-Ксилол ПНД Ф 14.1:2:3.171-2000 (издание 2017 г.)
Толуол ПНД Ф 14.1:2:3.171-2000 (издание 2017 г.)
м-,п- Ксилолы ПНД Ф 14.1:2:3.171-2000 (издание 2017 г.)
Полиароматические углеводороды (ПАУ)
Бенз(a)пирен ПНД Ф 14.1:2:4.70-96 (издание 2012 г.)
Фенолы и фенолпроизводные
Фенол Методика определения выбирается лабораторией

Не нашли нужные показатели?

Анализ проводится с использованием передовых методик и техник анализа, в том числе фотометрии, ионной хроматографии, атомной абсорбции и потенциометрии, масс-спектрометрии и флуоресцентного анализа, жидкостной хроматографии, газовой хроматографии, спектрофотомерии, жидкостно-жидкостной и твердофазной экстракции, что обеспечивает высокую точность и низкие уровни риска получения недостоверных результатов.

источник

Лаборатория имеет широкую область компетенций, что позволяет комплексно решать задачи, связанные с оценкой и анализом воды в Москве и Московской области. Современное оборудование, опытный персонал, а так же использование передовых аттестованных методик, обеспечивают низкие пределы обнаружения веществ. Все полученные результаты исследования воды, нормируются в соответствии с действующими ГОСТ и СанПиН.

  • Анализ воды из скважин, колодцев, водопроводной.
  • Анализ по 25 показателям
  • Требуется 1.5 литра воды
  • Сделаем за 3 рабочих дня
  • Анализ по 35 показателям
  • Требуется 2 литра воды
  • Сделаем за 5 рабочих дней
  • Анализ на тяжелые металлы

Выезд Специалиста для отбора проб воды в пределах г. Москвы 1500 руб. , Московская область + 40 руб. за 1 км.

Так же, ВЫ можете самостоятельно отобрать пробы, согласно рекомендациям и сдать их в Пункт приема проб, либо заказать «Выезд курьера» для отобранных проб воды в пределах г.Москвы — БЕСПЛАТНО!

На все протоколы выполненных исследований выдается Экспертное заключение лаборатории о качестве и составе воды. Все исследуемые показатели нормируются в соответствии с действующими нормативно правовыми актами Российской Федерации.

Цены на исследования в нашей лаборатории являются минимальными. Все анализы проводим в собственной испытательной лаборатории.

источник