Меню Рубрики

Что такое окисляемость перманганатная в анализе воды

Согласовать время доставки оборудования на объект

ФИЛЬТРУЮЩИЕ СРЕДЫ И РЕАГЕНТЫ

ОБОРУДОВАНИЕ И РАСХОДНИКИ В ПРОДАЖЕ

Компрессор для систем напорной аэрации воды

КАРТА АНАЛИЗОВ ВОДЫ ПО ДМИТРОВСКОМУ РАЙОНУ

Перманганатная окисляемость – показатель содержания в воде органических и минеральных веществ, удерживающих преобразование железа из двухвалентного в трехвалентное, которое может быть окислено кислородом, и позволяющий судить о загрязнении воды в целом. Именно ее определение предусмотрено действующими нормативными документами (ПНД Ф 14.2:4.154-99, ИСО 8467).

Также перманганатная окисляемость является единственным показателем химического потребления кислорода (ХПК), регламентирующим качество питьевой воды. Согласно СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения» ПДК питьевой воды по перманганатной окисляемости составляет 5,0-7,0 мг/л.

Важность этого параметра столь велика, что он в одиночку способен определить конфигурацию фильтров для коттеджей, в которых происходит удаление железа из воды. Логика подсказывает, что чем меньше показатель – тем лучше, ведь тогда можно использовать не требующие эксплуатационных расходов безреагентные фильтры для коттеджей. Что ж, логика чертовски права: окисляемость 1-2 единицы – прекрасно, 5-6 – терпимо, 8-10 – очень плохо, ну а если ещё больше – катастрофа!

Высокий показатель перманганатной окисляемости свидетельствует, как правило, о присутствии среди органических веществ (гуминовые кислоты, растительная органика, антропогенные «подарочки» и т.д.) значительной доли железобактерий. Эти самые бактерии знамениты своим «выдающимся» свойством удерживать растворённое двухвалентное железо в стабильной форме, в разы увеличивая время необходимое для его окисления. Удаление железа из воды, основанное на его окислении в аэрационной колонне, в данной ситуации будет не эффективным.

В таких случаях используются реагентные фильтры, позволяющие порционно вводить мощные окислители (озон, перманганат калия, гипохлорит натрия и т.п.). Установка таких фильтров и регулярная замена реагентов, безусловно, в разы дороже.

Единственным рациональным решением, позволяющим избежать этой проблемы, является изменение места и глубины бурения. Переход на более глубокие грунтовые водные слои.

Для отбора проб используются бутыли из полимерного материала или стекла. Определение следует проводить как можно скорее.

Если проба не может быть проанализирована сразу же после отбора, то для предотвращения биохимического окисления органических соединений пробу необходимо подкислить до рН менее 2, для чего на 1 л воды добавляют 10 мл серной кислоты (1:3).

Максимальный рекомендуемый срок хранения проб для данного анализа зависит от способа консервации пробы. При использовании стеклянных бутылей максимально рекомендуемый срок хранения подкисленной пробы — 2 суток при условии ее охлаждения до 2–5 °С и хранения в темном месте. При отборе проб в полимерные бутыли их допускается хранить до 1 мес. при условии замораживания до минус 20 °С.

ГОСТ Р 55684-2013 Вода питьевая. Метод определения перманганатной окисляемости

источник

Пермаганатная окисляемость характеризует соджержание в воде органических и минеральных веществ, удерживающих преобразование железа из двухвалентного в трехвалентное, которое может быть окислено кислородом. Т.е. пермаганатная окисляемость определяет именно то количество кислорода, которое спасет положение, причем из расчета на один литр исходной воды. Чем ниже окисляемость, тем меньше расходов и усилий на преобразование воды в пригодную. 1-2 единицы — вполне хороший показатель пермагантаной окисляемости, 4-6 — в пределах нормы, а выше — уже непреемлемый показатель.

Не знаете, как понизить окисляемость воды ? — Вам нужен многофункциональный фильтр, подробнее здесь или у онлайн консультанта.

От пермаганатной окисляемости зависит состав системы водоподготовки и водочистки всего дома. Даже если химический состав в двух скважинах по содержанию железа и органики одинаков, показатели пермаганатной окисляемости могут сильно разнится, что сделает возможным, или невозможным установку безреагентных фильтров в одном из домов.

Как правило высокий показатель пермаганатной окисляемости говорит о содержании в воде определенных биологическихз веществ именуемых железобактериями (гуминовые кислоты, растительная органика, органика антропогенная и т.д.). Они активно удерждивают двухвалентное железо в стабильной форме.

Источником повышенной загрязненности воды железобактериями является в большинстве случаев человеческая деятельность, а проще говоря, слив отходов. Поверхностные воды имеют более высокую окисляемость по сравнению с подземными, она насыщенна органикой с почвы и опадающей в воду органикой. На окисляемость влияет водообмен между водоемами и грунтовыми водам. Она имеет выраженную сезонность. Вода равнинных рек как правило имеет окисляемость 5-12 мг О2 /дм 3 , рек с болотным питанием — десятки миллиграммов на 1 дм 3 . Подземные воды имеют в среднем окисляемость на уровне от сотых до десятых долей миллиграма О2 /дм 3 . ПДК питьевой воды по перманганатной окисляемости согласно СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников» составляет 5,0-7,0 мг/дм 3 .

Различают несколько видов окисляемости воды: перманганатную, бихроматную, иодатную. Наиболее высокая степень окисления достигается бихроматным методом. В практике водоочистки для природных малозагрязненных вод определяют перманганатную окисляемость, а в более загрязненных водах — как правило, бихроматную окисляемость (ХПК — «химическое потребление кислорода»).

В таких случаях используются реагентные фильтры, позволяющие порционно вводить мощные окислители (озон, перманганат калия, гидрохлорит натрия и т.п.). Установка таких фильтров и регулярная замена реагентов, безусловно, в разы дороже. Обычная аэрация в таких случая практически неэффективна.

Единственным рациолнальным решением, позволяющим избежать этой проблемы, является изменение места и глубины бурения. Переход на более глубокие грунтовые водные слои.

С точки зрения влияния на состояние челковека, то при высокой пермаганатной окисляемости наиболее опасны для человека крупные органические соединения, которые на 90% являются канцерогенами или мутагенами. Опасны хлорорганические соединения, образующиеся при кипячении хлорированной воды, т.к. они являются сильными канцерогенами, мутагенами и токсинами. Остальные 10% крупной органики в лучшем случае нейтральны в отношении организма. Полезных для человека крупных органических соединений, растворенных в воде, всего 2-3 (это ферменты, необходимые в очень малых дозах). Воздействие органики начинается непосредственно после питья. В зависимости от дозы это может быть 18-20 дней или, если доза большая, 8-12 месяцев. И исходя из логики наличие железобактерий препятствует удалению железа из воды. О Влиянии железа на организм человека можно проичтать в этой статье.

источник

Расшифровка показателей анализа воды

После завершения исследования заказчик получает на руки «Протокол исследования воды». В приведённой ниже статье вкратце дана информация о каждом параметре, но, если вы хотите узнать больше, приходите, наши технологи ответят на все ваши вопросы.

Водородный показатель (pH) (Норматив качества по СанПин 2.1.4107401, в пределах 6 – 9 единиц pH)

Водородный показатель воды (pH) — это кислотно-щелочной баланс воды, который определяется концентрацией водородных ионов. Обычно выражается через рН — отрицательный логарифм концентрации ионов водорода. При рН = 7,0 реакция воды нейтральная, при рН 7,0 среда щелочная.

Питьевая вода централизованного водоснабжения и вода из природных источников демонстрируют различный диапазон рН, поскольку она содержит растворенные минералы и газы.

По нормам СанПиН 2.1.4.559-96 рН питьевой воды должен быть в пределах 6,0…9,0

Окисляемость перманганатная (Норматив качества по СанПин 2.1.4107401, не более 5,0 мг О/дм3)

Окисляемость — это величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых перманганатом калия при определенных условиях.

Органические вещества, находящиеся в воде весьма разнообразны по своей природе и химическим свойствам. Их состав формируется как под влиянием внутри водоёмных биохимических процессов, так и за счет поступления поверхностных и подземных вод, атмосферных осадков, промышленных и хозяйственно-бытовых сточных вод.

Повышенной перманганатной окисляемостью отличаются воды в районах нефтегазовых месторождений, торфяников, в сильно заболоченных местностях.

Таким образом о степени органического загрязнения воды можно судить по величине окисляемости воды. Высокая окисляемость или резкие колебания ее (вне сезона) могут указывать на постоянное поступление органических загрязнений в водоем.

Окисляемость природных вод, особенно поверхностных, не является постоянной величиной. Повышенная окисляемость воды свидетельствует о загрязнении источника. Внезапное повышение окисляемости воды служит признаком загрязнения ее бытовыми стоками; поэтому величина окисляемости — важная гигиеническая характеристика воды.

Железо общее (Норматив качества по СанПин 2.1.4107401, не более 0,3 мг/дм3)

Железо может встречаться в природных водах в следующих видах:

— Истинно растворённом виде (двухвалентное железо, прозрачная бесцветная вода)

— Нерастворённом виде (трёхвалентное железо, прозрачная вода с коричневато-бурым осадком или ярко выраженными хлопьями);
— Коллоидном состоянии или тонкодисперсной взвеси (окрашенная желтовато-коричневая опалесцирующая вода, осадок не выпадает даже при длительном отстаивании);
— Железоорганика — соли железа и гуминовых и фульвокислот (прозрачная желтовато-коричневая вода).

Повышенное содержание железа наблюдается в болотных водах, в которых оно находится в виде комплексов с солями гуминовых кислот — гуматами.

— Железобактерии (коричневая слизь на водопроводных трубах);

Содержащая железо вода (особенно подземная) изначально прозрачная и чистая на вид. Однако даже при непродолжительном контакте с кислородом воздуха железо окисляется, придавая воде желтовато-бурую окраску. Уже при концентрациях железа выше 0,3 мг/дм3 такая вода способна вызвать появление ржавых потеков на сантехнике и пятен на белье при стирке. При содержании железа выше 1 мг/дм3 вода становится мутной, окрашивается в желто-бурый цвет, у нее ощущается характерный металлический привкус. Все это делает такую воду практически неприемлемой как для технического, так и для питьевого применения.

В небольших количествах железо необходимо организму человека – оно входит в состав гемоглобина и придает крови красный цвет.

Но слишком высокие концентрации железа в воде для человека вредны. Содержание железа в воде выше 1-2 мг/дм3 значительно ухудшает органолептические свойства, придавая ей неприятный вяжущий вкус. Железо увеличивает показатели цветности и мутности воды.

Переизбыток железа приводит к зуду, сухости и высыпаниям на коже; повышается вероятность развития аллергических реакций, возникновение язвенной болезни желудка и двенадцатиперстной кишки, заболевания сосудов и сердечно-сосудистой системы в целом.

Нитрат — ион (Норматив качества по СанПин 2.1.4107401, не более 45 мг/дм3)

Нитраты — это соли азотной кислоты. В воде эти соли легко распадаются на ионы и существуют в «свободной» форме: в виде нитрат-ионов

Нитраты находятся в почве, воде и растениях. Большая часть нитратов в окружающей среде образуется от разложения растений и животных отходов. Люди также используют нитраты в виде удобрений.

Сами по себе нитраты не опасные, но в организме они превращаются в нитриты, а те, в свою очередь, взаимодействуют с гемоглобином, образуя стойкое соединение – метгемоглобин. Как известно, гемоглобин переносит кислород, а вот метгемоглобин такой способностью не обладает. В итоге ткани начинают испытывать кислородное голодание, развивается заболевание – нитратная метгемоглобинемия.

При длительном употреблении питьевой воды и пищевых продуктов, содержащих значительные количества нитратов (от 45 мг/дм3 и выше по азоту), резко возрастает концентрация метгемоглобина в крови. Крайне тяжело протекают метгемоглобинемии у грудных детей (прежде всего, искусственно вскармливаемых молочными смесями, приготовленными на воде с повышенным порядка 200 мг/дм3 содержанием нитратов) и у людей, страдающих сердечно-сосудистыми заболеваниями.

Следует знать, что нитраты не удалятся из воды путем кипячения, фактически термическая обработка концентрирует нитрат, за счет испарения воды.

Марганец (Норматив качества по СанПин 2.1.4107401, не более 0,1 мг/дм3)

Марганец является верным спутником растворенного двухвалентного железа. Если его много, то воду от него необходимо очищать, т.к. вода делается непригодной для питья, а также бытового и промышленного использования.

При превышении норм содержания марганца органолептические свойства воды ухудшаются. Избыток марганца вызывает окраску и вяжущий привкус.

Переизбыток марганца может грозить заболеваниями печени, почек, тонкого кишечника, костей, желез внутренней секреции и головного мозга, оказывает токсический и мутагенный эффект на организм человека.

Повышенное содержание марганца и железа является одной из причин неприятного вкуса и запаха воды, ее цветности и мутности. Окислы этих металлов оставляют несмываемые пятна на сантехническом оборудовании и санитарном фаянсе, а ржавчина может является основной причиной выхода из строя бытовой техники.

Содержание марганца в питьевой воде напрямую зависит от деятельности расположенных поблизости промышленных предприятий.

Мутность (по каолину) (Норматив качества по СанПин 2.1.4107401, не более 1,5 мг/дм3)

Мутность (прозрачность, содержание взвешенных веществ) характеризует наличие в воде частиц песка, глины, илистых частиц, планктона, водорослей и других механических примесей, которые попадают в нее в результате размыва дна и берегов реки, с дождевыми и талами водами, со сточными водами и т.п. Мутность воды подземных источников, как правило, невелика и обуславливается взвесью гидроксида железа. В поверхностных водах мутность чаще обусловлена присутствием фито- и зоопланктона, глинистых или илистых частиц, поэтому величина зависит от времени паводка (межени) и меняется в течение года.

Мутность влияет на внешний вид воды. Кроме того, она мешает дезинфекции,

т.к. создает не только благоприятную среду для развития бактерий, но и своеобразный

барьер при проведении процедуры обеззараживания.

Цветность воды (Норматив качества по СанПин 2.1.4107401, не более 20 градусов).

Показатель качества воды, характеризующий интенсивность окраски воды и обусловленный содержанием окрашенных соединений; выражается в градусах платинокобальтовой шкалы.

Цветность подземных вод вызывается соединениями железа, реже — гумусовыми веществами (грунтовка, торфяники, мерзлотные воды); цветность поверхностных — цветением водоемов.

Количество этих веществ зависит от геологических условий, водоносных горизонтов, характера почв, наличия болот и торфяников в бассейне реки и т.п. Сточные воды некоторых предприятий также могут создавать довольно интенсивную окраску воды.

Высокая цветность воды ухудшает ее органолептические свойства

Запах (Норматив качества по СанПин 2.1.4107401, не более 2 баллов).

Вода может иметь определенный, не всегда приятный, запах, который приобретает из-за содержащихся в ней различных органических веществ, представляющих собой продукты жизнедеятельности или распада микроорганизмов и водорослей, а также присутствием в воде растворенных газов — хлора, аммиака, сероводорода, меркаптанов или органических и хлорорганических загрязнений.

Различают природные запахи: ароматический, болотный, гнилостный, древесный, землистый, плесневый, рыбный, травянистый, неопределённый и сероводородный.

Запахи искусственного происхождения называют по определяющим их веществам: фенольный, хлор фенольный, нефтяной, смолистый и так далее.

Интенсивность запаха измеряется органолептически по пятибалльной шкале:
0 баллов — запах и привкус не обнаруживается
1 балл — очень слабые запах или привкус (обнаруживает только опытный исследователь)
2 балла — слабые запах или привкус, привлекающие внимание неспециалиста
3 балла — заметные запах или привкус, легко обнаруживаемые и являющиеся причиной жалоб
4 балла — отчётливые запах или привкус, которые могут заставить воздержаться от употребления воды
5 баллов — настолько сильные запах или привкус, что вода для питья совершенно непригодна.

Вкус (Норматив качества по СанПин 2.1.4107401, не более 2 баллов).

Вкус воды различается по характеру и интенсивности, определяется наличием в воде растворенных веществ.

Существует 4 основных вида вкуса: горький, сладкий, соленый, кислый. Другие ощущения вкусовые называются привкусами (щелочной, металлический, вяжущий и т.п.).

Интенсивность вкуса и привкуса определяют при 20оС и оценивают по пятибалльной системе:

0 баллов — Вкус и привкус не ощущаются

1 балл — Вкус и привкус не ощущаются потребителем, но обнаруживаются при лабораторном исследовании

2 балла — Вкус и привкус замечаются потребителем, если обратить на это его внимание

3 балла — Вкус и привкус легко замечаются и вызывают неодобрительный отзыв о воде

4 балла — Вкус и привкус обращают на себя внимание и заставляют воздержаться от питья

5 баллов — Вкус и привкус настолько сильные, что делают воду непригодной к употреблению

Кремнекислота (в пересчёте на кремний) (Норматив качества по СанПин 2.1.4107401, не более 10 мг/дм3)

Кремний в воде находится не в чистом виде, а в форме различных соединений, которые при нагревании воды могут образовывать белёсую плёнку на поверхности воды и рыхлые хлопья, т.е. соединения кремния являются источником образования силикатных накипей, поэтому в случае подготовки питьевой воды для промышленного сектора, для питательной воды паровых котлов очистка воды от кремния является обязательной.

В то же время кремний является для человека незаменимым микроэлементом; его можно обнаружить и в крови, и в мышечной и костной ткани. По сути, он является строительным материалом, необходимым для образования и роста соединительной ткани человеческого организма (суставов, костей, кожи и т.д.). Также он помогает усвоению поступивших в организм минеральных элементов, способствует улучшению обмена веществ и транспортировке сигналов по нервным волокнам.

Кремний попадает в организм человека вместе с пищей и водой, причем этот элемент легче усваивается именно из жидкости.

Зарубежными руководящими документами (директивы ВОЗ, USEPA, ЕС) содержание кремния в питьевой воде не нормируется. Это вызвано отсутствием данных о токсичности данного элемента и его негативном влиянии на организм человека.

Жесткость общая (Норматив качества по СанПин 2.1.4107401, не более 7,0 мг-экв/л)

Жесткость воды – содержание в ней растворенных солей кальция и магния. Суммарное содержание этих солей называют общей жесткостью.

Общая жесткость воды подразделяется на карбонатную, обусловленную концентрацией гидрокарбонатов (и карбонатов при рН 8,3) кальция и магния, и некарбонатную — концентрацию в воде кальциевых и магниевых солей сильных кислот.

Поскольку при кипячении воды гидрокарбонаты переходят в карбонаты и выпадают в осадок, карбонатную жесткость называют временной или устранимой.

Остающаяся после кипячения жесткость называется постоянной. Результаты определения жесткости воды выражают в мг-экв/дм3 (в настоящее время чаще применяют градусы жесткости оЖ численно равные мг-экв/дм3). Временная или карбонатная жесткость может доходить до 70-80% общей жесткости воды.

Жесткость воды формируется в результате растворения горных пород, содержащих кальций и магний. Преобладает кальциевая жесткость, обусловленная растворением известняка и мела, однако в районах, где больше доломита, чем известняка, может преобладать и магниевая жесткость.

В зависимости от жёсткости вода бывает:

— очень мягкая вода до 1,5 мг-экв/л

— мягкая вода от 1,5 до 4 мг-экв/л

— вода средней жесткости от 4 до 8 мг-экв/л

— жесткая вода от 8 до 12 мг-экв/л

— очень жесткая вода более 12 мг-экв/л

Жесткая вода просто неприятна на вкус, в ней излишне много кальция. Постоянное употребление внутрь воды с повышенной жесткостью приводит к снижению моторики желудка, к накоплению солей в организме, и, в конечном итоге, к заболеванию суставов (артриты, полиартриты) и образованию камней в почках и желчных путях.

Очень мягкая вода не менее опасная, чем излишне жесткая. Самая активная — это мягкая вода. Мягкая вода способна вымывать из костей кальций. У человека может развиться рахит, если пить такую воду с детства, у взрослого человека становятся ломкие кости. Есть еще одно отрицательное свойство мягкой воды. Она, проходя через пищеварительный тракт, не только вымывает минеральные вещества, но и полезные органические вещества, в том числе и полезные бактерии. Вода должна быть жесткостью не менее 1,5-2 мг-экв/л.

Использование воды с большой жесткостью для хозяйственных целей также нежелательно. Жесткая вода образует налет на сантехнических приборах и арматуре, образует накипные отложения в водонагревательных системах и приборах. В первом приближении это заметно на стенках, например, чайника.

При хозяйственно-бытовом использовании жесткой воды значительно увеличивается расход моющих средств и мыла вследствие образования осадка кальциевых и магниевых солей жирных кислот, замедляется процесс приготовления пищи (мяса, овощей и др.), что нежелательно в пищевой промышленности.

В системах водоснабжения — жесткая вода приводит к быстрому износу водонагревательной технике (бойлеров, батарей центрального водоснабжения и др.). Соли жесткости (гидрокарбонаты Ca и Mg), отлагаясь на внутренних стенках труб, и образуя накипные отложения в водонагревательных и охлаждающих системах, приводят к занижению проходного сечения, уменьшают теплоотдачу. Не допускается использовать воду с высокой карбонатной жесткостью в системах оборотного водоснабжения.

Сдать воду на химический анализ можно в нашу лабораторию.

источник

Химическое обозначение: перманганатная окисляемость (ПО).

Синонимы: окисляемость.

Описание: интегральный показатель, который характеризует содержание в воде восстановителей (например железа (II)) и органических веществ, которые полностью или частично окисляются ионом перманганата в условиях кислой или щелочной среды и при нагревании. Перманганатная окисляемость выражается в мг кислорода на 1 литр воды, что условно можно интерпретировать как количество кислорода, которое требуется для окисления веществ в воде.

Методы определения: обратное титрование.

Методики, используемые в Испытательном центре МГУ для определения перманганатной окисляемости в природных средах

Нормативный документ на методику Метод определения Оборудование
Вода
ПНД Ф 14.1:2:4.154 обратное титрование вспомогательное оборудование
Почва
Перманганатная окисляемость не определяется в почве — её можно определить только в водной вытяжке, но этот параметр не будет нести какой-либо информации

Распространённость: иперманганатная окисляемость обусловлена наличием в воде большой группы веществ и элементов. При этом нужно помнить, что перманганат — не самый сильный окислитель, поэтому часть органического вещества может быть не учтена. Вклад в этот параметр вносят не только соединения, опасные для здоровья, но также полезные или нейтральные, например:

  • глюкоза или сахароза;
  • аскорбиновая кислота (витамин C);
  • полисахариды.

Обнаружение значений окисляемости, превышающих предельно допустимые, само по себе не даёт информации о составе воды, но даёт повод провести расширенные исследования для выявления причины превышения. К опасным веществам, вызывающим превышения окисляемости, относятся:

  • ПАВ (моющие средства);
  • продукты жизнедеятельности организмов;
  • канцерогены;
  • органические кислоты.

Перманганатная окисляемость нормируется только в питьевой воде, аналогичный параметр для природных вод водоемов и сточных вод — химическое потребление кислорода (ХПК). При его определении использую более сильный окислитель бихромат и агрессивные условия.

Предельно допустимая концентрация (ПДК) перманганатной окисляемости в различных водных объектах

Нормирование ПДК, мг/л
Бутилированная вода первой категории
СанПиН 2.1.4.1116-02
0–3,0
Бутилированная вода высшей категории
СанПиН 2.1.4.1116-02
0–2,0
Вода систем централизованного водоснабжения
СанПиН 2.1.4.1074-01
0–5,0
Водные объекты рыбохозяйственного значения
Приказ Минсельхоза РФ № 552
0–40
Объекты рекреационного водопользования
СанПиН 2.1.5.980-00
Вода плавательных бассейнов
СанПиН 2.1.2.1188-03
Хозяйственно-бытовые стоки
Постановление Правительства РФ № 644
Ливневые стоки
Постановление Правительства РФ № 644

Поскольку перманганатная окисляемость — интегральный параметр, сам по себе он не несёт вреда или пользы для здоровья человека. Его основная задача — предоставление возможности оперативно заметить отклонения от нормы и провести развернутый анализ группы органических веществ и восстановителей или принять решение об установке фильтров. Также этот показатель помогает оперативно контролировать качество водопроводной и бутилированной воды и соблюдение правил технологических процессов.

Ионный обмен. Используется, как правило, в сочетании с ионным обменом для других компонентов в воде, например железа: органические вещества способны образовывать хорошо растворимые комплексные соединения с железом. Это усложняет процедуру обезжелезивания. В таких случаях используют смеси ионообменных смол, которые сорбируют и органические вещества, и железо.

Дозирование окислителей. Эффективно показатель перманганатной окисляемости снижает добавление в воду окислительных агентов: к ним относятся гипохлорит (часто применяется для дезинфекции и защиты от микробиологического загрязнения воды), перекись водорода и др. Также помогает озонирование воды. Такой подход может применяться для решения комплекса проблем — обеззараживания и снижения содержания органического вещества.

Не все окислительные агенты безопасны для здоровья даже в остаточных количествах. Перед применением убедитесь, что вещество не нанесет вред вашему организму.

Угольные фильтры. Угольные фильтры обладают средней эффективностью фильтрации в отношении органических веществ. Они наиболее эффективны в сочетании с предварительным дозированием окислителей.

Обратный осмос. Вместе с другими веществами обратный осмос убирает из воды органику, поэтому он может применяться для снижения как самой перманганатной окисляемости как сам по себе, так и в сочетании с другими методами очистки.

Перманганатная окисляемость характеризует суммарное количество органических веществ, которых должно содержаться как можно меньше в питьевой воде. Повышенные значения этого параметра говорят о необходимости проведения более расширенных исследований и поиска источника загрязнения. Причиной превышения в колодезной воде может быть ее загрязнение (рекомендуется чистка), в воде из скважины — подмес грунтовых вод и выход из строя гидроизоляции, в водопроводе — некачественные коммуникации или сбой в системе фильтрации водоканала.

источник

Содержание органики в воде отражает показатель перманганатная окисляемость . Если концентрация ПМО в воде превышает 5 мг/л, то это означает, что необходима очистка воды от органики.

Органические вещества по своей сути посторонние в составе воды. Они имеют различное происхождение и пути поступления. Чаще всего в воде они представлены растворёнными кислотами из торфяных почв. Об этом можно судить по интенсивности цвета воды от желтоватого до бурого. Появление органики в воде возможно и в результате жизнедеятельности живых организмов и растений, а так же процессов их разложения.

Чтобы получить бесплатный расчет водоочистной системы (с ценами)
(3-4 варианта, которые гарантированно очистят вашу воду ) :

  • Пришлите результаты анализа воды на электронную почту info@kr-company.ru с пояснением, в каких объёмах нужна очищенная вода;
  • Или позвоните по телефону 8 (800) 222 80 97
  • ЛибоЗакажите анализ воды в нашей аккредитованной лаборатории.

Органические вещества могут быть не только вредными или неприятными, но и опасными для здоровья. Они нарушают работу эндокринной системы. К тому же эти примеси могут содержать различные болезнетворные бактерии и вирусы, а так же токсичные вещества — диоксины. Отравление диоксинами приводит к тому, что подавляется иммунитет и нарушается нормальный процесс деления клеток. А значит органические загрязнения могут значительно способствовать возникновению онкологических заболеваний.

Однако негативное влияние высокого уровня перманганатной окисляемости обуславливается не только этим. Зачастую органика мешает протеканию процессов очистки воды от других примесей. Например, она связывает на молекулярном уровне растворённые вещества, такие как железо и марганец. К тому же для окисления органические продукты первыми потребляют кислород из воды, тем самым для окисления железа или марганца его уже практически не остаётся. Повышенное значение показателя перманганатной окисляемости воде из скважины указывает на присутствие органики.

Вещества органического происхождения не дают долгое время окисляться двухвалентному железу и марганцу. Это опасно тем, что из растворённых форм они переходят в нерастворённую, уже пройдя систему очистки воды . Таким образом тяжёлые металлы могут выпадать в осадок как в бытовой технике, так и в организме человека.

Способы очистки воды от органики зависят от её концентрации в воде. Норматив содержания таких примесей – 5 мг/л.

В колодце присутствие органических загрязнений часто бывает превышено. Особенно в жаркое летнее время. Их накоплению способствует наличие кислот в почве.

Другой способ попадания органических веществ в колодец – стоки поверхностных вод или окружающие грунты. Наиболее благоприятной средой для размножения микроводорослей и бактерий обычно становятся верхние слои воды в колодце. Попадание мелкого мусора, насекомых, листьев и пыльцы растений – всё это так же служит источником органических веществ в воде. Разлагаясь, они увеличивают потребление кислорода и значение перманганатной окисляемости.

Выведение органики из воды способствует более активному удалению из неё других примесей. В этом случае для колодезной воды используют фильтры комплексной очистки. Специально подобранная фильтрующая среда удаляет растворённые и взвешенные органические вещества при значениях ПМО до 20 мг-О2/л. Регенерация фильтров производится солевым раствором.

При значениях окисляемости более 20 мг-О2/л в исходную воду необходимо дозировать раствор коагулянта. Этот процесс способствует выведению органических загрязнений из воды тем, что связывает их молекулы между собой и они слипаются в крупные хлопья. Концентрация и объём коагулирующего раствора подбирается индивидуально по значениям ПМО.

Если по каким-то причинам обслуживание фильтра комплексной очистки затруднительно, компания «Комплексные решения» предлагает вариант очистки воды с использованием накопительных баков. Ручная или автоматическая дозация коагулянта способствует быстрому слипанию органики в хлопья и выпадению их в осадок. Вместе с этим из воды устраняются излишки связанного с органикой железа и марганца. Далее из накопительного бака вода подаётся насосной станцией на промывную Титановую мембрану. Органические вещества в виде хлопьев задерживаются на её поверхности и сбрасываются в канализацию при обратной промывке.

Наличие органики в скважинах – редкое явление, так как там слишком мало кислорода. В то же время, в скважинах, глубина которых не превышает 10 метров – это вполне возможно. Особенность этих источников такова, что поступление органических веществ в воду перекрывается водоупорными пластами глин. Однако состав залегающих грунтовых слоёв может быть разнообразным. Для неглубоких скважин характерно поступление органики с водой из гумусовых почв. С осадками и стоками органические вещества также могут попадать в неё с поверхности земли. Глубокие скважины в этом отношении наиболее защищены. Единственной проблемой здесь может быть нарушение структуры залегания грунтов вследствие вмешательства человека или природного фактора. В этом случае следы органических соединений могут означать поступление из вышележащих слоёв, либо соседних, где производится сброс хозяйственно-бытовых отходов.

Очистить воду от органики можно с помощью фильтров комплексной очистки, а так же дозацией коагулянта.

источник

Это самый древний метод определения окисляемости. Основан на окислении проб воды перманганатом калия в кислом растворе (метод Кубеля). На примере окисления фенола процесс можно изобразить схемой:

Итак, берут точно отмеренное количество КMnO4 и проводят окисление. Затем избыток перманганата связывают щавелевой кислотой:

Затем избыток щавелевой кислоты оттитровывают перманганатом калия до слабо-розовой окраски.

Этот метод используется главным образом при анализе питьевых и слабо загрязненных поверхностных вод с окисляемостью БПК.

На самом деле теоретически рассчитать БПК весьма не просто, т.к. доля органического вещества, идущего на образование клеток, зависит от многих факторов: от природы питательной среды, от возраста культуры клетки и др.

Существует два метода экспериментального определения БПК:

Метод разбавления заключается в том, что за процессом биохимического окисления органических веществ следят по убыли количества кислорода, введенного в склянку с пробой, в процессе инкубации этой пробы. Для этого измеряют содержание кислорода в пробе на 3,5,10 и т.д. день.

Название метода происходит из того, что исследуемую воду разбавляют чистой, не содержащей органических примесей, водой так, чтобы содержащегося в ней кислорода хватило для полного окисления всех органических веществ. Для этого используют результаты предварительного определения ХПК, условно принимая, что БПК » ½ ХПК. Так находят ориентировочное БПК (БПКориент.).

В воде содержится около 9 мг/л О2. Чтобы после инкубации можно было с достаточной точностью определить оставшийся кислород, его должно остаться не менее 4 ÷ 5 мг/л. Следовательно, БПКориент. делят на [9 – (4 ÷ 5)], т.е. на 5 или 4 и находят необходимую степень разбавления.

После разбавления воду разливают по склянкам и в одной из них определяют содержание О2. Остальные склянки инкубируют в темноте без доступа кислорода. Определив содержание О2 в определенный день, по убыли кислорода находят БПК. В зависимости от продолжительности инкубации проб при определении БПК различают БПК5 (биохимическое потребление кислорода за 5 суток) и БПКполн. (полное биохимическое потребление кислорода).

Определение БПК5 в поверхностных водах используется с целью оценки содержания биохимически окисляемых органических веществ, условий обитания гидробионтов и в качестве интегрального показателя загрязненности воды (см. табл.). Величины БПК5 используются также при контроле эффективности работы очистных сооружений.

Таблица.Величины БПК5 в водоемах с различной степенью загрязненности

Степень загрязнения (классы водоемов) БПК5, мг O2/дм 3
Очень чистые 0,5-1,0
Чистые 1,1-1,9
Умеренно загрязненные 2,0-2,9
Загрязненные 3,0-3,9
Грязные 4,0-10,0
Очень грязные >10,0

Установлено, что при загрязнении водоемов бытовыми стокам с относительно постоянным составом и свойствам в конце пятого дня инкубации наступает 70%-ное окисление органических веществ, которые могут быть окислены биохимически. Поэтому раньше было оправдано определение БПК5 = 70% от БПКполн.. Сейчас, когда в водные объекты с промышленными сточными водами попадают вещества, трудно поддающиеся биохимическому окислению, или вещества, тормозящие биохимическое окисление органических примесей, определение БПК5 теряет смысл, т.к. иногда к 5 суткам процесс биохимического окисления только начинается (лаг-фаза может быть обусловлена постепенной адаптацией микроорганизмов к токсикантам). Поэтому службы мониторинга переходят от определения БПК5 к определению БПКполн..

Полным биохимическим потреблением кислорода (БПКполн.) считается количество кислорода, требуемое для окисления органических примесей до начала процессов нитрификации. Количество кислорода, расходуемое для окисления аммонийного азота до нитритов и нитратов, при определении БПК не учитывается. Для бытовых сточных вод (без существенной примеси производственных) определяют БПК20, считая, что эта величина близка к БПКполн.

Для более корректного определения БПКполн содержание кислорода в склянках с пробой определяют на 5, 7, 10 и т.д. день. Когда изменение содержания кислорода прекратится, определяют общий расход кислорода и величину БПКполн. Для предотвращения расходования кислорода на окисление аммонийного азота в этом случае в пробы добавляют инигибитор – подавитель нитрификации.

Второй метод заключается в том, что за процессом биохимического окисления наблюдают по убыли содержания органических веществ в пробе. Мерой содержания органических веществ служит ХПК, поэтому БПК определяют по разности между результатами определения ХПК до и после инкубации.

При биохимическом разложении органических веществ они частично окисляются до СО2 и Н2О, а частично превращаются в биомассу. Если количество органических веществ в начале биохимического окисления выразить тем количеством кислорода, которое требуется для полного его окисления, т.е. значением ХПК жидкой и твердой фаз в начале инкубации (ХПКн.ж.+ХПКн.т.), а содержание органических веществ в конце процесса (неокислившихся и превратившихся в биомассу) также представить в виде необходимого на их окисление кислорода (ХПКк.ж.+ХПКк.т.), то разность и будет равна БПК:

Для подавления нитрификации также вводят ингибитор (например, этилентиокарбамид).

Если в начале и в конце инкубации определять ХПК отдельно для жидкой и твердой фаз, то можно рассчитать следующие показатели, характеризующие способность исследуемой воды к самоочищению:

А = ХПКк.ж./ХПКн.ж. — выражает какая часть присутствующих в пробе органических веществ вообще не подвергается биохимическому окислению.

Б = – характеризует количество биомассы, которая образуется в процессе биохимического окисления (прирост биомассы).

В = БПКt/ХПКн.ж. – характеризует относительное количество биохимически мягких веществ.

Время t выбирают по кривой БПК – время (см. рис.2), выделив наиболее круто поднимающийся участок.

Г = – характеризует относительное количество биохимически жестких органических веществ.

Сумма показателей А+Б+В+Г = 1.

Понятия «биохимически мягкий» и «биохимически жесткий» тесно связаны со скоростью биохимического окисления. Процесс биохимического окисления протекает в соответствии с закономерностями реакций I порядка, т.е. скорость окисления пропорциональна количеству оставшегося неокисленного вещества:

; (1)

где k1 – константа скорости биохимического окисления.

Для чистых водоемов k1 » 0,05;

Для бытовых сточных вод и загрязненных ими водоемов k1 » 0,1;

Кроме ур. (1) k1 можно найти по результатам определения БПК в 2 последовательных срока кратных друг другу.

(формула кратных сроков). (2)

Зная k1 и БПК5 можно рассчитать БПКполн. и БПК в любой день, если кинетика БПК аппроксимируется уравнением I порядка:

(из уравнения I порядка) (3)

(формула кратных сроков). (4)

Время для окисления половины органических веществ называется периодом полураспада: . (5)

Для бытовых сточных вод оно равно суток.

По формуле (1) можно доказать, что БПК5 для бытовых сточных вод и загрязненных ими природных вод составляет 70% от БПКполн..

С помощью константы скорости биохимического окисления k1 можно классифицировать органические вещества по способности к биохимическому окислению.

· К легкоокисляющимся (биохимически мягким) веществам относят формальдегид, низшие алифатические спирты, фенол, фурфурол и др., имеющие k1 = 1,4÷0,3 сут -1 .

· Среднее положение занимают крезолы, нафтолы, ксиленолы, резорцин, пирокатехин, анионоактивные ПАВ и др. с k1 = 0,3÷0,05 сут -1 .

· Медленно разрушаются «биологически жесткие» вещества, такие как гидрохинон, сульфонол, неионогенные ПАВ, гумифицированные отложения и др. с k1 = 0,03÷0,002 сут -1 .

Дата добавления: 2016-10-30 ; просмотров: 1615 | Нарушение авторских прав

источник

Перманганатная окисляемость питьевой воды – это показатель количества органических и минеральных веществ, содержащихся в жидкости, и окисляемых самым сильным окислителем. Исчисляется в миллиграммах кислорода, расходуемого на окисление этих элементов. Исходя из вида используемого окислителя, выделяют следующие типы окисляемости:

Наивысшая степень окисления производится иодатным и бихроматным методом. Определение перманганатной окисляемости воды – наиболее распространенный способ очистки малозагрязненных природных источников. Заключается в кипячении анализируемой жидкости в течение 10 минут с добавлением в раствор перманганата калия. Для более загрязненных вод, с отходами деятельности человека, применяют бихроматный метод. С его помощью определяют состояние водоемов, поверхностных стоков и степень их очистки. Сопоставление результатов обеих методов позволяет судить о концентрации присутствующих в жидкости микроорганизмов.

лаборатория нашей компании при МГУ имени М.В. Ломоносова

Перманганатная окисляемость является удобным показателем, с помощью которого можно комплексно оценить степень загрязнения жидкости бактериями. Органические загрязнители очень различаются по своей природе и химическим характеристикам. Они формируются под воздействием атмосферных осадков, биологических процессов, поступлением поверхностных, подземных и сточных вод.

Значения этого параметра могут варьироваться. У поверхностных вод они выше, поэтому горные реки имеют показатель 2-3 мг О2/дм 3 , равнинные – 5-12 О2/дм 3 , болота – десятки миллиграммов на 1 дм 3 . Подземные воды – от сотых до десятых долей миллиграмма. Исключением являются источники, находящиеся в местах нефтегазовых месторождений.

Если Вам нужен достоверный комплексный анализ жидкости, обращайтесь в компанию «ДОМИАТО». Наши квалифицированные сотрудники возьмут пробу и исследуют воду в лабораторных условиях с использованием специального оборудования. Мы предлагаем несколько видов исследований: химический и бактериологический. На основании их результатов мы поможем подобрать эффективную систему водоочистки или фильтрации и доставим ее в кратчайшие сроки по Москве и в Московской области. Все монтажные работы будут выполнены быстро и качественно.

Определение перманганатной окисляемости питьевой воды на профессиональном оборудовании в лаборатории компании «ДОМИАТО». Низкие цены, оперативность и высокий уровень сервиса.

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями Статьи 437 Гражданского кодекса Российской Федерации. Для получения подробной информации о наличии и стоимости указанных товаров и (или) услуг, пожалуйста, обращайтесь к менеджерам отдела клиентского обслуживания с помощью специальной формы связи или по телефону.

источник

Содержание органики в воде отражает показатель перманганатная окисляемость . Если концентрация ПМО в воде превышает 5 мг/л, то это означает, что необходима очистка воды от органики.

Органические вещества по своей сути посторонние в составе воды. Они имеют различное происхождение и пути поступления. Чаще всего в воде они представлены растворёнными кислотами из торфяных почв. Об этом можно судить по интенсивности цвета воды от желтоватого до бурого. Появление органики в воде возможно и в результате жизнедеятельности живых организмов и растений, а так же процессов их разложения.

Чтобы получить бесплатный расчет водоочистной системы (с ценами)
(3-4 варианта, которые гарантированно очистят вашу воду ) :

  • Пришлите результаты анализа воды на электронную почту info@kr-company.ru с пояснением, в каких объёмах нужна очищенная вода;
  • Или позвоните по телефону 8 (800) 222 80 97
  • ЛибоЗакажите анализ воды в нашей аккредитованной лаборатории.

Органические вещества могут быть не только вредными или неприятными, но и опасными для здоровья. Они нарушают работу эндокринной системы. К тому же эти примеси могут содержать различные болезнетворные бактерии и вирусы, а так же токсичные вещества — диоксины. Отравление диоксинами приводит к тому, что подавляется иммунитет и нарушается нормальный процесс деления клеток. А значит органические загрязнения могут значительно способствовать возникновению онкологических заболеваний.

Однако негативное влияние высокого уровня перманганатной окисляемости обуславливается не только этим. Зачастую органика мешает протеканию процессов очистки воды от других примесей. Например, она связывает на молекулярном уровне растворённые вещества, такие как железо и марганец. К тому же для окисления органические продукты первыми потребляют кислород из воды, тем самым для окисления железа или марганца его уже практически не остаётся. Повышенное значение показателя перманганатной окисляемости воде из скважины указывает на присутствие органики.

Вещества органического происхождения не дают долгое время окисляться двухвалентному железу и марганцу. Это опасно тем, что из растворённых форм они переходят в нерастворённую, уже пройдя систему очистки воды . Таким образом тяжёлые металлы могут выпадать в осадок как в бытовой технике, так и в организме человека.

Способы очистки воды от органики зависят от её концентрации в воде. Норматив содержания таких примесей – 5 мг/л.

В колодце присутствие органических загрязнений часто бывает превышено. Особенно в жаркое летнее время. Их накоплению способствует наличие кислот в почве.

Другой способ попадания органических веществ в колодец – стоки поверхностных вод или окружающие грунты. Наиболее благоприятной средой для размножения микроводорослей и бактерий обычно становятся верхние слои воды в колодце. Попадание мелкого мусора, насекомых, листьев и пыльцы растений – всё это так же служит источником органических веществ в воде. Разлагаясь, они увеличивают потребление кислорода и значение перманганатной окисляемости.

Выведение органики из воды способствует более активному удалению из неё других примесей. В этом случае для колодезной воды используют фильтры комплексной очистки. Специально подобранная фильтрующая среда удаляет растворённые и взвешенные органические вещества при значениях ПМО до 20 мг-О2/л. Регенерация фильтров производится солевым раствором.

При значениях окисляемости более 20 мг-О2/л в исходную воду необходимо дозировать раствор коагулянта. Этот процесс способствует выведению органических загрязнений из воды тем, что связывает их молекулы между собой и они слипаются в крупные хлопья. Концентрация и объём коагулирующего раствора подбирается индивидуально по значениям ПМО.

Если по каким-то причинам обслуживание фильтра комплексной очистки затруднительно, компания «Комплексные решения» предлагает вариант очистки воды с использованием накопительных баков. Ручная или автоматическая дозация коагулянта способствует быстрому слипанию органики в хлопья и выпадению их в осадок. Вместе с этим из воды устраняются излишки связанного с органикой железа и марганца. Далее из накопительного бака вода подаётся насосной станцией на промывную Титановую мембрану. Органические вещества в виде хлопьев задерживаются на её поверхности и сбрасываются в канализацию при обратной промывке.

Наличие органики в скважинах – редкое явление, так как там слишком мало кислорода. В то же время, в скважинах, глубина которых не превышает 10 метров – это вполне возможно. Особенность этих источников такова, что поступление органических веществ в воду перекрывается водоупорными пластами глин. Однако состав залегающих грунтовых слоёв может быть разнообразным. Для неглубоких скважин характерно поступление органики с водой из гумусовых почв. С осадками и стоками органические вещества также могут попадать в неё с поверхности земли. Глубокие скважины в этом отношении наиболее защищены. Единственной проблемой здесь может быть нарушение структуры залегания грунтов вследствие вмешательства человека или природного фактора. В этом случае следы органических соединений могут означать поступление из вышележащих слоёв, либо соседних, где производится сброс хозяйственно-бытовых отходов.

Очистить воду от органики можно с помощью фильтров комплексной очистки, а так же дозацией коагулянта.

источник

Обусловлена наличием органических веществ и легко окисляекмых неорганических веществ (Fe 2+ , SO3 — , H2S и т.д.).

Это количество кислорода эквивалентное количеству, расходуемого перманганата калия. Методика определения показателя основана на окислении веществ, присутствующих в сточной воде, 0,01%-м раствором перманганата калия в сернокислой среде ( мг. О2/л. H2O).

Бихроматное потребление кислорода (ХПК).

Методика потребления ХПК основана на окислении веществ, присутствующих в сточных водах, 0,25%-м раствором бихромата калия (K2Cr2O7) при кипячении в течение 2 часов в 50%-м растворе (по объему) H2SO4 (мг/л).

БПК – биохимическое потребление кислорода

Степень загрязнения сточных вод органическими примесями, способными разлагаться биоорганизмами с потреблением кислорода. Количество кислорода, израсходованное за определенный промежуток времени на аэробное разложение органических веществ, мг/л. При определении БПК методом разбавления и продолжительностью инкубации 5 суток при температуре 20 С 0 в отсутствии света. Кроме БПК5 , можно определить БПК при продолжительности инкубации 20 сутокБПК20 или независимо от времени — БПКполн.

12. содержание растворенного кислорода

13. содержание хлоридов

14. содержание свободного хлора

15. содержание фосфатов

16. содержание фторидов

Жесткость воды

Характеризует содержание в ней хлоридов, сульфатов и гидрокарбонатов кальция и магния. Различают:

— карбонатную жесткость, обусловленную присутствием в воде гидрокарбонатов Са и Mg,

— некарбонатную, вызываемую присутствием в воде хлоридов и сульфатов Са и Mg.

Суммарное содержание в воде всех солей кальция и магния составляет общую жесткость. Ее определяют комплексонометрическим методом, карбонатную титрованием соляной кислотой в присутствии метилового оранжевого, некарбонатную четкость по разности результатов этих определений.

По содержанию сульфатов судят о минеральном составе воды: их повышенное количество свидетельствует о попадании коммунально-бытовые стоки морских вод или промышленных сточных вод.

Определение концентрации хлоридов позволяет контролировать постоянство солевого состава сточной воды. В процессе очистки ее солевой состав практически не меняется, снижается лишь содержание органических веществ, поэтому легкое увеличение концентрации хлоридов свидетельствует о сбоях и работе очистных сооружений или попадании в сточные воды посторонних загрязняющих веществ.

Для нормального функционирования биохимической очистки требуется, чтобы содержание фосфатов в сточных водах было не ниже 3 мг/л в пересчете на Р2О5, так как фосфор необходим для микроорганизмов. Определение фосфатов в сточных водах позволяет корректировать содержание фосфора и при необходимости дополнительно подавать необходимое количество его соединений на сооружения биологической очистки.

Контроль работы очистных сооружений и качества очищенных вод наряду с определением основных показателей, общих для всех видов стоков, предусматривает и определение загрязняющих веществ, специфических для каждого отдельного производства:

22. содержание тяжелых металлов

25. содержание нефтяных углеводородов

Для успешного контроля их содержания в сточных водах все чаще находят применение современные физико-химические методы анализа, в том числе:

— хроматография, включая газовую, жидкостную и тонкослойную;

— электрохимические методы анализа;

Хроматография – метод разделения соединений, основанный на распределении вещества между двумя фазами: неподвижной с большой поверхностью и подвижной, протекающей через неподвижную фазу. Компоненты смеси селективно задерживаются стационарной фазой, причем площади пиков хроматограммы пропорциональны концентрациям соответствующих компонентов. Методом газожидкостной хроматографии в сточных водах определяют органические кислоты с длиной углеродных цепей С2 — C5, спирты, альдегиды, сложные эфиры, фенолы и другие органические соединения. Метод тонкослойной хроматографии позволяет определять в сточных водах нефтепродукты, побочные продукты синтеза изопрена, фенолы.

Полярография — это электрохимический метод анализа, в основе которого лежит зависимость между потенциалом поляризуемого рабочего электрода и силой тока, протекающего через раствор. Анализ полярограммы позволяет сделать вывод о том, катионы из числа определяемых и в каких концентрациях присутствуют в растворе. Нижний предел концентраций составляет 6 моль/л. К преимуществам полярографии следует отнести возможность определения ряда ионов, присутствующих в растворе, без их предварительного разделения и возможность осуществления практически неограниченного количества повторных в одной и той же пробе. Метод полярографии успешно используется для определения содержания в сточных водах тяжелых металлов, в том числе свинца, кадмия, ртути, меди, цинка, кобальта, никеля, титана, хрома, марганца. Кроме металлов полярографическим методом в сточных водах определяют ПАВ, ароматические углеводороды, нитраты.

Ионометрия – анализ, основанный на использовании ионселективных электродов, представляющих собой электрохимические полуэлементы, для которых разность потенциалов на границе раздела фаз электродный материал электролит зависит от активности определяемого иона в исследуемой среде. В настоящее время предложено несколько десятков типов ионселективных электродов для обнаружения К + , Na + , Ca 2+ , Cu 2+ , Cd 2+ , Pb 2+ , CN — , Br — , Cl — , F — , N0 и др. В анализе вод их используют для определения фтора, нитратов.

Колориметрия – метод анализа, основанный на сравнении качественного и количественного изменения световых потоков при их прохождении через исследуемый и стандартный растворы. Определяемый компонент с помощью химической реакции переводят в окрашенное соединение, после чего измеряют интенсивность окраски полученного раствора.

Систематический анализ состава сточных вод, сбрасываемых промышленными предприятиями и предприятиями коммунального хозяйства, необходим для проверки эффективности работы очистных сооружений, оценки воздействия сбрасываемых сточных вод на водоприемники, разработки мероприятий по совершенствованию работы очистных сооружений и для осуществления дополнительных мер по охране водных объектов. Контроль за работой очистных сооружений и сбросом сточных вод имеет целью прекращение или предупреждение загрязнения водоемов и водотоков неочищенными и недостаточно очищенными сточными водами.

Тема № 11 Основные методы очистки атмосферного воздуха в производстве химических волокон. аппаратурное оформление

Методы очистки атмосферы определяются природой загрязнителей. Ряд современных технологических процессов связан с измельчением веществ. При этом часть материалов переходит в пыль, которая вредна для здоровья и наносит значительный материальный ущерб вследствие потери ценных продуктов.

Пыль, осевшая в индустриальных городах, преимущественно содержит 20 % оксида железа, 15 % оксида кремния и 5 % сажи. Промышленная пыль включает также оксиды различных металлов и неметаллов, многие из которых токсичны. Это оксиды марганца, свинца, молибдена, ванадия, сурьмы, мышьяка, теллура. Пыль и аэрозоли не только затрудняют дыхание, но и приводят к климатическим изменениям, поскольку отражают солнечное излучение и затрудняют отвод тепла от Земли.

Принципы работы пылеулавливающих аппаратов основаны на использовании различных механизмов осаждения частиц: гравитационном осаждении, осаждении под действием центробежной силы, диффузионном осаждении, электрическом (ионизационом) осаждении и некоторых других. По способу улавливания пыли аппараты бывают сухой, мокрой и электрической очистки.

Основной критерий выбора типа оборудования: физико-химические свойства пыли, степень очистки, параметры газового потока (скорость поступления). Для газов, содержащих горючие и ядовитые примеси, лучше использовать аппараты мокрой очистки.

Основным направлением защиты атмосферы от загрязнений является создание малоотходных технологий с замкнутыми циклами производства и комплексным использованием сырья.

Очистка — удаление (выделение, улавливание) примесей из различных сред.

Существующие методы очистки можно разделить на две группы: некаталитические (абсорбционные и адсорбционные) и каталитические.

Обезвреживание — обработка примесей до безвредного для людей, животных, растений и в целом для окружающей среды состояния.

Обеззараживание — инактивация (дезактивация) микроорганизмов различных видов, находящихся в газовоздушных выбросах, жидких и твердых средах.

Дезодорация — обработка одорантов (веществ, обладающих запахом), содержащихся в воздухе, воде или твердых средах, с целью устранения или снижения интенсивности запахов.

Очистка газов от диоксида углерода:

1. Абсорбция водой. Способ прост и дешев, однако эффективность очистки мала, так как максимальная поглотительная способность воды — 8 кг СО2 на 100 кг воды.

2. Поглощение растворами этаноламинов: В качестве поглотителя обычно применяют моноэтаноламин, хотя триэтаноламин обладает большей реакционной способностью.

3. Холодный метанол является хорошим поглотителем СО2 при 35 °С.

4. Очистка цеолитами. Молекулы СО2 очень малы: 3,1А, поэтому для извлечения СО2 из природного газа и удаления продуктов жизнедеятельности (влаги и СО2) в современных экологически изолированных системах (космические корабли, подводные лодки и т. д.) используются молекулярные сита.

Очистка газов от оксида углерода:

· Дожигание на Pt/Pd-катализаторе.

· Конверсия (адсорбционный метод).

Очистка газов от оксидов азота.

В химической промышленности очистка от оксидов азота на 80 % осуществляется за счет превращений на катализатора:

1. Окислительные методы основаны на реакции окисления оксидов азота с последующим поглощением водой:

· Окисление озоном в жидкой фазе.

· Окисление кислородом при высокой температуре.

2. Восстановительные методы основаны на восстановлении оксидов азота до нейтральных продуктов в присутствии катализаторов или под действием высоких температур в присутствии восстановителей.

· Адсорбция оксидов азота водяными растворами щелочей и СаСО3.

· Адсорбция оксидов азота твердыми сорбентами (бурые угли, торф, силикагели).

Очистка газов от диоксида серы SO2:

1. Аммиачные методы очистки. Они основаны на взаимодействии SO2 с водным раствором сульфита аммония.

Образовавшийся бисульфит легко разлагается кислотой.

2. Метод нейтрализации SO2, обеспечивает высокую степень очистки газов.

3. Каталитические методы. Основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности катализаторов:

· пиролюзитный метод — окисление SO2 кислородом в жидкой фазе в присутствии катализатора — пиролюзита (МпО2); метод может использоваться для получения серной кислоты.

· озонокаталитический метод — разновидность пиролюзитного метода и отличается от него тем, что окисление Мп 2+ в Мп 3+ осуществляют в озоновоздушной смеси.

Эффективность очистки зависит от множества факторов: парциальных давлений SO2 и О2 в очищаемой газовой смеси; температуры отходящих газов; наличия и свойств твердых и газообразных компонентов; объема очищаемых газов; наличия и доступности компонентов; требуемой степени очистки газа.

После проведенной очистки газ поступает в атмосферу и рассеивается, при этом загрязнение воздушной среды в приземном слое не должно превышать ПДК.

Промышленная очистка это очистка газа с целью последующей утилизации или возврата в производство отделенного от газа или превращенного в безвредное состояние продукта. Этот вид очистки является необходимой стадией технологического процесса, при этом технологическое оборудование связано друг с другом материальными потоками с соответствующей обвязкой аппаратов. В качестве пыле-, газоулавливающего оборудования могут использоваться разгрузочные циклоны, пылеосадительные камеры, фильтры, адсорберы, скрубберы и т.д.

Санитарная очистка— это очистка газа от остаточного содержания в газе загрязняющего вещества, при которой обеспечивается соблюдение установленных для последнего ПДК в воздухе населенных мест или производственных помещений. Санитарная очистка газовоздушных выбросов производится перед поступлением отходящих газов в атмосферный воздух, и именно на этой стадии необходимо предусматривать возможность отбора проб газов с целью контроля их на содержание вредных примесей.

Выбор метода очистки отходящих газов зависит от конкретных условий производства и определяется рядом основных факторов:

• объемом и температурой отходящих газов;

• агрегатным состоянием и физико-химическими свойствами примесей;

• концентрацией и составом примесей;

• необходимостью рекуперации или возвращения их в технологический процесс;

• капитальными и эксплуатационными затратами;

• экологической обстановкой в регионе.

Пылеулавливающее оборудование. Пылеулавливающее оборудование в зависимости от способа отделения пыли от газовоздушного потока делится на сухое, когда частицы пыли осаждаются на сухую поверхность, и мокрое, когда отделение частиц пыли производится с использованием жидкостей.

Выбор типа пылеуловителя обусловлен степенью запыленности газа, дисперсностью частиц и требованиями к степени его очистки.

Устройства для гравитационной очистки просты по конструкции, но пригодны главным образом для грубой предварительной очистки газов. Наиболее простыми являются пылеосадительные камеры. Они применяются в основном для предварительной очистки газов от крупной пыли (с размером частиц 100 мкм и более) и одновременно для охлаждения газа. Камера представляет собой пустотелый или с полками короб прямоугольного сечения с бункером внизу для сбора пыли. Площадь сечения камеры значительно больше площади подводящих газоходов, вследствие чего газовый поток движется в камере замедленно — около 0,5 м/с и пыль оседает (рис. 1).

Рис 1. Пылеосадительная камера: а — полая; б — с перегородками

Достоинства пылеосадительной камеры:

1. имеет низкое аэродинамическое сопротивление;

2. проста и выгодна в эксплуатации.

Недостатки — громоздкость, низкая степень очистки.

Эффективность камеры можно довести до 80 — 85 %, если сделать внутри камеры перегородки, увеличивающие время нахождения газа в ней. Обычно пылеосадительные камеры встраивают в газоходы, они изготавливаются из металла, кирпича, бетона и т. д.

Инерционные пылеуловители. В этих аппаратах за счет резкого изменения направления газового потока частицы пыли по инерции ударяются об отражательную поверхность и выпадают на коническое днище пылеуловителя, откуда разгрузочным устройством непрерывно или периодически выводятся из аппарата. Наиболее простые из пылеуловителей этого типа — пылевые коллекторы (мешки), представленные на рис. 2. Они также задерживают только крупные фракции пыли, степень очистки 50 — 70 %.

Рис. 2. Инерционные пылеуловители (пылевые коллекторы): а — с перегородкой; б — с центральной трубой

В более сложных жалюзийных аппаратах улавливаются частицы размером 50 мкм и более. Они предназначены для очистки больших объемов газовоздушных выбросов. Жалюзи состоят из перекрывающих друг друга рядов пластин или колец с зазорами 2-3 мм, причем всей решетке придается некоторая конусность для поддержания постоянства скорости газового потока. Газовый поток, проходя сквозь решетку со скоростью 15 м/с, резко меняет направление. Крупные частицы пыли, ударяясь о наклонные плоскости решетки, по инерции отражаются от последней к оси конуса и осаждаются. Освобожденный от крупнодисперсной пыли газ проходит через решетку и удаляется из аппарата. Часть газового потока в объеме 5-10 % от общего расхода отсасываемого из пространства перед жалюзийной решеткой, содержит основное количество пыли и направляется в ци­клон, где освобождается от пыли и затем присоединяется к основному по­току запыленного газа. Степень очистки газов от пыли размером более 25 мкм составляет примерно 60 % (рис. 3). Основными недостатками жалюзийных пылеуловителей является сложное устройство аппарата и абразивный износ жалюзийных элементов.

Рис. 3. Инерционный жалюзийный пылеуловитель: 1 — инерционный аппарат; 2 — циклон; 3 — жалюзийная решетка

Широко распространенными устройствами для пылеулавливания являются циклоны, действие которых основано на использовании центробежной силы. Пылегазовая смесь тангенциально поступает в устройство через штуцер и приобретает направленное движение вниз по спирали. При этом частицы пыли отбрасываются центробежной силой к стенке циклона, опускаются вниз и собираются в приемном бункере. Из бункера пыль пе­риодически выгружается через затвор. Очищенный воздух выбрасывается через центральную трубу из аппарата.

Эффективность улавливания пыли в циклоне прямо пропорциональна массе частиц и обратно пропорциональна диаметру аппарата. Поэтому вместо одного циклона большого размера целесообразно ставить параллельно несколько циклонов меньших размеров. Такие устройства называются групповыми батарейными циклонами.

Для очистки больших объемов газов с неслипающимися твердыми частицами средней дисперсности можно использовать мультициклоны(рис. 4). В этих аппаратах вращательное движение пылегазового потока организуется с помощью специального направляющего устройства (розетка или винт), расположенного в каждом циклонном элементе. Мультициклоны, состоящие из элементов диаметром 40 — 250 мм, обеспечивают высокую (до 85-90%) степень очистки газов от мелкодисперсных частиц диаметром менее 5 мкм.

Рис. 4 Мультициклон и его элемент

Циклоны являются эффективными пылеулавливающими устройствами, степень очистки которых зависит от размера частиц и может достигать 95 % (при размере частиц более 20 мкм) и 85 % (при размере частиц более 5 мкм).

К недостаткам циклонов всех конструкций относится сравнительно высокое аэродинамическое сопротивление (400 — 700 Па), значительный абразивный износ стенок аппаратов, вероятность вторичного уноса осевшей в пылесборнике пыли за счет перегрузки по газу и неплотностей. Кроме того, циклоны недостаточно эффективно улавливают полидисперсные пыли с диаметром частиц менее 10 мкм и низкой плотностью материала.

Для устранения недостатков циклонов разработаны вихревые пылеуловители(ВПУ), которые также относятся к прямоточным аппаратам центробежного действия. Существует два типа ВПУ — сопловые и лопаточные (5, а, б).

Рис. 5 Вихревые пылеуловители

В аппаратах такого типа запыленный газ входит в камеру 1 через входной патрубок с лопаточным завихрителем 5 типа «розетка» и обтекателем 4. Кольцевое пространство вокруг входного патрубка образовано подпорной шайбой 2, положение и размеры которой обеспечивают безвозвратное осаждение пыли в пылевой бункер. Обтекатель направляет поток запыленного газа к стенкам аппарата и вверх, а струи вторичного воздуха, выходящего из сопла 3 благодаря их тангенциально-наклонному расположению, переводят движение потока во вращательное. Возникающие в потоке воздуха центробежные силы отбрасывают частицы пыли к стенкам аппарата, а оттуда они вместе со спиральным потоком воздуха направляются вниз.

В тех случаях, когда допустимо увлажнение очищаемого газа, применяют гидропылеуловители.В этих аппаратах запыленный поток соприкасается с жидкостью или орошаемыми ею поверхностями. Мокрые пылеуловители отличаются от сухих более высокой эффективностью при сравнительно небольшой стоимости. Они особенно эффективны для очистки газовоздушных выбросов, содержащих пожаро- и взрывоопасные, а также слипающиеся вещества.

Аппараты мокрой очистки можно использовать для очистки газов от мелкодисперсных пылей с размером частиц от 0,1 мкм, а также от газо- и парообразных вредных веществ.

Мокрые пылеуловители подразделяются на пять групп:

2 — мокрые центробежные пылеуловители;

3 — турбулентные пылеуловители;

5 — вентиляторные пылеуловители.

Наиболее простыми и распространенными аппаратами для очистки и охлаждения газов являются полые и насадочные скрубберы.

Рис. 6 Скрубберы: а — полые; 6 – насадочные

Они представляют собой вертикальные цилиндрические колонны, в нижнюю часть которых вводится запыленный газ, а сверху через форсунки подают распыленную жидкость. Очищенный газ отводится из верхней части аппарата, а вода с уловленной пылью в виде шлама собирается внизу скруббера. Степень очистки от пыли с размером частиц более 5 мкм может составлять более 90 %.

Наиболее высокие результаты очистки достигаются при использовании форсунок грубого распыла, образующих капли диаметром 0,5 — 1,0 мм. Для снижения брызгоуноса скорость очищаемого газа в скруббере не должна превышать 1,0 — 1,2 м/с.

Насадочные скрубберы заполняются различными насадочными телами (кольца Рашига, седла Берля, сетка, стекловолокно и т. д.), уложенными на опорной решетке. Одновременно с улавливанием пыли на сложной поверхности насадочных тел может происходить и абсорбция отдельных компонентов газовой смеси. Гидравлическое сопротивление насадочного скруббера зависит от скорости газа (обычно она составляет 0,8 — 1,25 м/с), плотности орошения, высоты насадки, некоторых других параметров и наххшится в пределах 300 — 800 Па.

Центробежные мокрые пылеуловителиявляются самой многочисленной группой разделительных аппаратов самого различного назначения.

Рис. 7. Циклон с водяной пленкой (ЦВП)

Внутренняя стенка корпуса аппарата 3 орошается водой, подаваемой из коллектора 5 через сопло 4, которое установлено под углом 30 0 вниз касательно к внутренней поверхности корпуса. Для предотвращения брызгоуноса распыл воды совпадает с направлением вращения запыленного потока газа. В нижней части аппарата расположен гидрозатвор 6.

Из турбулентных пылеуловителей в последние годы широкую популярность завоевали скрубберы Вентури (рис. 8), высокая эффективность которых позволяет обеспечить очистку газа практически для любой концентрации улавливаемой пыли. Эти аппараты просты в изготовлении, монтаже и эксплуатации, характеризуются небольшими габаритами.

Рис. 9. Скруббер Вентури

В скруббере Вентури запыленный газ через конфузор 3 подается в горловину 2, где вследствие уменьшения живого сечения аппарата скорость потока возрастает до 30 — 200 м/с. Вода подается в зону конфузора. При смешивании с потоком газа она диспергируется на мелкие капли. В горловине 2 и диффузоре 1 частицы пыли, содержащиеся в запыленном воздухе, соединяются с капельками воды, увлажняются, коагулируют и в виде шлама выделяются в сепараторе 4 (каплеуловителе). Вода в скруббер может подаваться различными способами, однако наибольшее ральным подводом жидкости в конфузор.

В качестве каплеуловителей используются почти все известные типы гидромеханических аппаратов для разделения неоднородных систем (сепараторы, циклоны, пенные аппараты, электрофильтры и др.). Чаще всего применяются циклоны самых раз­личных типов.

В промышленности республики широко используются пенные аппараты:

Рис. 10. Пенные аппараты

В этих пылеуловителях запыленный поток воздуха проходит через слой жидкости со скоростью 2-3 м/с (превышает скорость свободного всплывания пузырьков воздуха при барботаже), в результате чего создаются условия для образо­вания слоя высокотурбулизированной пены. Пенные аппараты поставляются двух типов: с провальными решетками (рис. 10, а) и переливной решеткой (рис. 10, б). В аппаратах с провальной решеткой вся жидкость для образования пенного слоя поступает из оросительного устройства 3 на решетки 4, проваливается через ее отверстия на нижнюю решетку, а затем вместе со шламом удаляется из аппарата. Запыленный воздушный по­ток поступает в корпус аппарата 1 снизу, образуя на решетках при взаи­модействии с водой слой пены. Для улавливания брызг воды в верхней части аппарата установлен каплеуловитель 2.

Основным недостатком пенных аппаратов является чувствительность к колебаниям расхода очищаемого газа. При этом оказывается невозможным поддерживать слой пены на всей площади решетки: при расходах газа, меньших оптимальных, пена не может равномерно образовываться на всей поверхности решетки, при больших — слой пены также неравномерен и даже сдувается в некоторых местах. Это приводит к прорыву неочищенных газов, повышенному брызгоуносу и, как следствие, резкому сниже­нию эффективности аппарата.

К вентиляторным пылеуловителямотносятся сухие и мокрые ротоклоны (рис. 11), которые широко используются за рубежом.

Рис. 11. Ротоклон

По существу они представляют собой комбинированные пылеуловители, принцип действия которых основан на осаждении пыли орошаемыми поверхностями, действии инерционных и центробежных сил, распылении воды и т. д. Например, запыленный воздух засасывается по центральной трубе 3 в корпус 2 мокрого ротоклона, при этом частицы пыли отбрасываются на лопатки 1 специального профиля, смоченные водой, подаваемой из рас­пылительных сопел 4. Частицы пыли увлажняются, коагулируют и посту­пают в виде шлама в нижнюю часть аппарата, откуда через трубу 5 уда­ляются в отстойник.

Эффективность мокрых пылеуловителей зависит в большей степени от смачиваемости пыли. При улавливании плохо смачивающейся пыли в орошающую воду вводят ПАВ.

К недостаткам мокрого пылеулавливания относятся: большой расход воды, сложность выделения уловленной пыли из шлама, возможность коррозии оборудования при переработке агрессивных газов, значительное ухудшение условий рассеивания через заводские трубы отходящих газов за счет снижения их температуры. Кроме того, мокрые пылеуловители требуют значительного расхода электроэнергии для подачи и распыления воды.

Фильтрация — представляет наиболее радикальное решение проблемы очистки газов от твердых примесей, обеспечивает степень очистки 99 -99,9 % при умеренных капитальных и эксплуатационных затратах. В связи с возросшими требованиями к степени очистки газов в последние годы четко выявляется тенденция к увеличению доли использования фильтров по сравнению с аппаратами мокрой очистки и электрофильтрами.

Фильтраминазываются устройства, в которых запыленный воздух пропускается через пористые материалы, способные задерживать или осаждать пыль. Очистку от грубой пыли проводят в фильтрах, заполненных коксом, песком, гравием, насадкой различной формы и природы. Для очистки от тонкодисперсной пыли применяют фильтрующие материалы типа бумаги, сетки, нетканых материалов, войлока или ткани различной плотности. Бумагу используют для очистки атмосферного воздуха или же газа с низким содержанием пыли.

В промышленных условиях применяют тканевые, или рукавные, фильтры. Они имеют форму барабана, матерчатых мешков или карманов, работающих параллельно. Частицы пыли, оседая на фильтрующий мате­риал, создают слой с порами, меньшими, чем у фильтрующего материала, поэтому улавливающая способность слоя пыли возрастает, но вместе с этим увеличивается и его аэростатическое сопротивление.

Из аппаратов фильтрующего типа для очистки от пыли наибольшее распространение получили тканевые (рукавные) фильтры (рис. 12).

Рис. 12. Рукавный фильтр

Тканевые рукава изготавливаются из хлопка, шерсти, дакрона, нейлона, полипропилена, тефлона, стекловолокна и других материалов. Часто на ткани наносится силиконовое покрытие с целью повышения изгибоустойчивости, термостойкости, стойкости к усадке, абразивного изнашивания или улучшения регенерации ткани. Выбор фильтрующего материала зависит от условий его эксплуатации. Степень очистки газов от пыли при правильной эксплуатации фильтров может достигать 99,9 %.

Недостатками рукавных фильтров являются трудоемкость ухода за тканью рукавов и большая металлоемкость аппаратов, так как натягива­ние рукавов осуществляется с помощью грузов.

В промышленности для тонкой очистки газов от пыли и токсичных примесей широко используется большое количество конструкций фильтров из пористых материалов. К ним относятся фильтры с полужесткими фильтровальными перегородками из ультратонких полимерных материа­лов (фильтры Петрянова), обладающих термостойкостью, механической прочностью и химической стойкостью. Среди множества конструкций фильтров этого типа наиболее широкое распространение получили рамочные фильтры (рис. 13).

Рис. 13 Рамочный фильтр с тканью ФП

Фильтр собирается из трехсторонних рамок 1 таким образом, чтобы торцевая сторона оказывалась попеременно то справа, то слева. Фильтровальная перегородка 2 укладывается так, как показано на схеме (рис. 13). Воздух проходит в щели между рамками, фильтруется через фильтровальную перегородку и выходит очищенным с другой стороны. Пакет из рамок помещается в корпус 4. Чтобы полотна не соединялись друг с другом под напором воздушного потока, между ними ставят гофрированные сепараторы 3 (рис. 13, а, б, в, г, д). Со стороны входа запыленного потока на корпусе имеется фланец 5 с наклеенной резиновой прокладкой 6. Корпус фильтра изготавливается из фанеры, пластмасс, металла.

Известно много конструкций посадочного фильтра коробчатого типа с насадкой из стекловолокна, шлаковаты и других волокнистых материалов. Толщина насадки 100 мм при плотности набивки 100кг/м 3 и скорости фильтрации 0,1 — 0,3 м/с. Аэродинамическое сопротивление таких фильтров составляет 450 — 900 Па. Коробчатые, или кассетные, фильтры используются обычно для очистки вентиляционных газов при низких температурах (30-40 °С) и небольшой начальной запыленности порядка 0,1 г/м 3 .

Электрофильтры применяются для очистки запыленных газов от наиболее мелких частиц пылей, туманов размером до 0,01 мкм. Промышленные электрофильтры делятся на две группы: одноступенчатые (однозонные), в которых одновременно происходит ионизация и очистка воздуха, и двухступенчатые (двухзонные), в которых ионизация и очистка воздуха проводятся в разных частях аппарата.

По конструкции электрофильтры делятся на пластинчатые и трубчатые, горизонтальные и вертикальные, двупольные и многопольные, одно- и многосекционные, сухие и мокрые.

На рис. 14 представлены схемы трубчатого (а) и пластинчатого (б) электрофильтров.

Рис. 14. Схемы электрофильтров

В корпусе 1 трубчатого электрофильтра расположены осадительные электроды 2 высотой 3 — 6 м, выполненные из труб диаметром 150 — 300 мм. По оси труб натянуты коронирующие электроды 3 диаметром 1,5-2 мм, которые закреплены между рамами 4. Верхняя рама 4 соединена с опорно-проходным изолятором 5. Имеется распределительная решетка 6.

В пластинчатом электрофильтре (рис. 14, б) коронирующие электроды 3 натянуты между параллельными поверхностями осадительных электродов 2. Расстояния составляют 250 — 350 мм. Двумя крайними электродами служат, стенки металлического корпуса. Если напряжение электрического поля между электродами превышает критическое, которое при атмосферном давлении и температуре 15 °С равно 15 кВ/см, то молекулы воздуха, находящегося в аппарате, ионизируются и приобретают положительные и отрицательные заряды. Ионы движутся к противоположно заряженному электроду, встречают на своем пути частицы пыли, передают им свой заряд, а те в свою очередь направляются к электроду. Достигнув его, частицы пыли образуют слой, который удаляют с поверхности электрода при помощи удара, вибрации, отмывки и т. д.

Постоянный электрический ток высокого напряжения (50 — 100 кВ) в электрофильтр подают на коронирующий (обычно отрицательный) и осадительный электроды. Электрофильтры обеспечивают высокую степень очистки. При скоростях газа в трубчатых электрофильтрах от 0,7 до 1,5 м/с, а в пластинчатых от 0,5 до 1,0 м/с можно достичь степени очистки газа, близкой к 100 %. Эти фильтры обладают высокой пропускной спо­собностью. Недостатками электрофильтров являются их высокая стои­мость и сложность в эксплуатации.

Ультразвуковые аппаратыиспользуются для повышения эффективности работы циклонов или рукавных фильтров. Ультразвук со строго определенной частотой приводит к коагуляции и укрупнению частиц пыли. Наиболее распространенными источниками ультразвука являются разного типа сирены. Относительно хороший эффект ультразвуковые пылеуловители дают при высокой концентрации пыли в очищаемом газе. Чтобы увеличить эффективность работы аппарата, в него подают воду. Ультразвуковые установки в комплексе с циклоном применяют для улавливания сажи, тумана различных кислот.

Абсорбция — это процесс поглощения газов или паров из газовых или паровых смесей жидкими поглотителями — абсорбентами. Различают физическую и химическую абсорбцию. При физической абсорбции молекулы поглощаемого вещества (абсорбтива) не вступают с молекулами абсорбента в химическую реакцию. При этом над раствором существует опре­деленное равновесное давление компонента. Процесс абсорбции проходит до тех пор, пока парциальное давление целевого компонента в газовой фа­зе выше равновесного давления над раствором.

При химической абсорбции молекулы абсорбтива вступают в химиче­ское взаимодействие с активными компонентами абсорбента, образуя но­вое химическое соединение. При этом равновесное давление компонента над раствором ничтожно мало по сравнению с физической абсорбцией и возможно полное его извлечение из газовой среды.

Процесс абсорбции является избирательным и обратимым.

Избирательность -это поглощение конкретного целевого компонента (абсорбтива) из смеси при помощи абсорбента определенного типа.Процесс является обратимым, так как поглощенное вещество может быть снова извлечено из абсорбента (десорбция), а абсорбтив снова может быть использован в процессе.

На рис. 15 показана принципиальная схема абсорбционной установ­ки для улавливания целевого компонента из газовой смеси.

Рис. 15. Принципиальная схема абсорбционно-десорбционного процесса

Газовая смесь поступает в абсорбер 1, где контактирует с охлажденным абсорбентом, который избирательно поглощает извлекаемый компонент (абсорбтив). Газ, очищенный от компонента, удаляется, а раствор лообменник 4, нагревается в нем и подается насосом 5 в десорбер 3, где из него извлекается поглощенный компонент путем нагревания поглотителя водяным паром. Освобожденный от целевого компонента поглотитель на­сосом 6 направляется сначала в теплообменник 4, где охлаждается, отда­вая тепло насыщенному абсорбенту, затем через холодильник 2 он снова поступает на орошение абсорбера.

Применяемые абсорбенты должны хорошо растворять извлекаемый газ, иметь минимальное давление паров, чтобы возможно меньше загряз­нять очищаемый газ парами поглотителя, быть дешевым, не вызывать коррозию аппаратуры.

Для очистки газов от диоксида углерода в качестве абсорбентов используются вода, растворы этаноламинов, метанол.

Очистка от сероводорода осуществляется растворами этаноламинов, водными растворами Nа2С03, К2С03, NН3 (с последующим окислением поглощенного Н2S кислородом воздуха с получением элементарной серы).

Для очистки газов от диоксида серы используются аммиачные методы, известковый метод, марганцевый метод.

Для удаления оксида углерода его абсорбируют медно-аммиачными растворами.

Процесс абсорбции протекает на поверхности раздела фаз, поэтому абсорбер должен иметь возможно более развитую поверхность соприкосновения между жидкостью и газом. По способу образования этой поверхности абсорберы можно разделить на поверхностные, насадочные и барботажные. Поверхностные абсорберы малопроизводительны и используются для поглощения только хорошо растворимых газов. Наиболее распространенными универсальными видами являются насадочные абсорберы. Они имеют более развитую поверхность соприкосновения, просты по устройству, надежны. Их широко применяют для очистки газов от оксидов азота, S02, С02, СО, С12 и некоторых других веществ.

Более компактными, но и более сложными по устройству являются барботажные абсорберы, в которых газ барботируется через слой абсорбента, размещенного в колонне на тарелках.

Еще более совершенными являются пенные абсорберы. В этих аппаратах жидкость, взаимодействующая с газом, приводится в состояние пены, что обеспечивает большую поверхность контакта между абсорбентом и газом, а следовательно, и высокую эффективность очистки.

В общем случае в качестве абсорберов могут использоваться любые массообменные аппараты, применяющиеся в химической промышленности.

Адсорбция— основана на избирательном извлечении примесей из газа при помощи адсорбентов — твердых веществ с развитой поверхностью. Адсорбенты должны обладать высокой поглотительной способностью, избирательностью, термической и механической стойкостью, низким со­противлением потоку газа, легкой отдачей адсорбированного вещества. В качестве адсорбентов применяют в основном активные угли, силикагели, синтетические и природные цеолиты.

Активные углипредставляют собой зернистые или порошкообразные углеродные адсорбенты, изготовленные по специальной технологии из каменного угля, торфа, полимеров, косточек кокосовых орехов, древеси­ны и другого сырья. Для очистки газовоздушных выбросов используют газовые и рекуперационные угли.

Газовые угли применяют для улавливания относительно плохо сорби­рующихся веществ с небольшой концентрацией. Если же концентрация целевого компонента в газовом потоке значительна, то в этом случае не­обходимо использовать рекуперационные угли.

Силикагелиявляются минеральными адсорбентами с регулярной структурой пор. Они производятся двух типов: кусковые (зерна неправильной формы) и гранулированные (зерна сферической или овальной формы). Силикагели представляют собой твердые стекловидные или матовые зерна размером 0,2 — 7,0 мм, насыпной плотностью 400 — 900 кг/м 3 . Силикагели используют в основном для осушки воздуха, газов и поглощения паров полярных веществ, на­пример метанола.

Близкими по свойствам к силикагелям являются алюмогели(активный оксид алюминия), которые выпускаются промышленностью в виде гранул цилиндрической формы (диаметром 2,5-5,0мми высотой 3,0-7,0 мм) и в виде шариков (со средним диаметром 3-4 мм).

Цеолиты (молекулярные сита) — это синтетические алюмосиликатные кристаллические вещества, обладающие большой поглотительной способностью и высокой избирательностью даже при весьма низком содержании определенного вещества (адсорбтива) в газе.

По происхождению цеолиты подразделяются на природные и синтетические. К природным цеолитам относятся такие минералы, как клинопти-лолит, морденит, эрионит, шабазит и др. Синтетические цеолиты характеризуются практически идеально однородной микропористой структурой и способностью избирательно адсорбировать молекулы малых размеров при низких концентрациях адсорбируемого компонента.

Адсорбцию осуществляют в основном в адсорберах периодического действия. Очищаемый газ проходит сверху вниз через слой адсорбента. Процесс поглощения адсорбтива начинается с верхнего слоя сорбента, за­тем фронт поглощения постепенно передвигается вниз, захватывая все его слои, и после исчерпания поглотительной способности всех слоев насту­пает «проскок» поглощаемого компонента, показывающий, что аппарат должен быть переключен на процесс десорбции.

Десорбцию ведут обычно острым паром, подаваемым снизу, который выносит из сорбента поглощенный им продукт (адсорбат) и поступает в холодильник-конденсатор, где продукт отделяется от воды.

Адсорберы периодического действия отличаются простотой и надеж­ностью. Недостатками их является периодичность процесса, низкая про­изводительность и относительно небольшая эффективность.

Непрерывные процессы адсорбционной очистки газов осуществляются в кипящем слое адсорбента.

На рис. 16 показана принципиальная схема адсорбционной очистки газов с циркулирующим псевдоожиженным адсорбентом.

Рис. 16. Принципиальная схема адсорбционной очистки газов с циркулирующим псевдоожиженным адсорбентом

Подлежащий очистке газ подается в адсорбер 1 с такой скоростью, чтобы в нем образовывался и поддерживался кипящий слой адсорбента 3, в котором поглощаются целевые компоненты. Какая-то часть адсорбента постоянно опускается в десорбер 2 для регенерации, которая осуществля­ется вытесняющим веществом, подаваемым в нижнюю часть десорбера. В десорбере также поддерживается кипящий слой адсорбента, из него из­влекается адсорбат и выводится из системы. Регенерированный адсорбент снова возвращается в адсорбер 1.

Адсорберы с кипящим слоем сложны по устройству, требуют точного регулирования процесса.

Обезвреживание газовоздушных выбросов.Если концентрация примесей в газовоздушных выбросах незначительна (десятки миллиграммов на кубометр), улавливание их экономически и технически нецелесообразно. В этих случаях необходимо использовать различные приемы обезвреживания.

Одним из современным способов обе­вреживания газовоздушных выбросов с низкими концентрациями органических соединений, диоксида азота, оксида углерода, неприятнопахнущих соединений является каталитический, при котором происходит глубокое их окисление до углекислого газа и воды. Каталитическое обезвреживаниеосновано на каталитических реакциях, в результате которых находящиеся в газе вредные примеси окисляются и превращаются в другие соединения, безвредные или менее вредные, или же легко удаляющиеся из среды. Степень их конверсии может достигать 99,9 %. Принципиальная технологическая схема каталитического обезвреживания газовоздушных выбросов с частичным использованием обезвреженных газов в основном технологическом процессе представлена на рис. 17.

Рис. 17. Принципиальная технологическая схема каталитического обезвреживания газовоздушных выбросов: 1 — каталитический реактор; 2 — венти­лятор; 3 — технологическая установка

Эффективным методом обезвреживания нейтральных газов является каталитическое восстановление оксидов до элементарного состояния.

Каталитический способ обезвреживания газовых смесей обычно реализуют в контактном аппарате со стационарно работающим адиабатическим слоем катализатора и рекуперативным теплообменником, где происходит нагрев исходной смеси теплом прореагировавших газов. Для нагрева смеси до температуры начала реакции окисления при низком содержа­нии горючих веществ требуется либо дополнительный подвод тепла, либо чрезмерно большая поверхность теплообмена, что приводит к удорожанию процесса обезвреживания.

Термический метод обезвреживания получил более широкое распространение, так как некоторые вредные примеси трудно или невозможно полностью нейтрализовать другими методами из-за сложности их состава, низкой концентрации, а также из-за отсутствия эффективных средств улавливания. Он заключается в том, что все органические вещества полностью окисляются кислородом воздуха при высокой температуре до нетоксичных соединений. В результате выделяются минеральные продукты, вода, диоксид углерода, а также теплота, которые требуют дальнейшей их утилизации.

К преимуществам термического метода обезвреживания отходящих газов относятся отсутствие шламового хозяйства, небольшие габариты установок, простота обслуживания, высокая эффективность, возможность обезврежива­ния горючих выбросов сложного состава.

Метод дожига углеводородов получает все большее распространение. Накоплен опыт термического обезвреживания воздуха, содержащего примеси стирола, формальдегида, толуола, бутилацетата и других органических веществ. Степень окисления последних составляет 99 %.

Установки прямого сжигания представляют собой камеру, в которую по самостоятельным каналам подается топливо, очищаемый газ и воздух. Для полного окисления горючих компонентов необходимо тщательное перемешивание смеси.

При всей простоте конструктивного оформления метод прямого сжигания имеет ряд недостатков, главным из которых является необходимость высоких температур, что приводит к повышенным энергозатратам.

Термокаталитическое дожигание органических веществ до диоксида углерода и воды применяют в тех случаях, когда отходящие газы представляют собой многокомпонентную смесь различных органических веществ. В настоящее время разработаны типовые схемы обезвреживания выбросов от сушильных камер путем сжигания паров растворителей на поверхности катализатора. Внедрение схем, предусматривающих последующую утилизацию теплоты, позволяет достичь сокращения расхода теплоносителей не менее чем на 20 % (при сжигании паров с низким содержанием горючего компонента).

Дезодорация газовоздушных выбросов (ГВВ), как правило, проводится для устранения запаха газовых потоков, содержащих примеси органических и неорганических веществ. Концентрация этих примесей в большинстве случаев ниже предельно допустимых значений, т. е. выбросы являются «чистыми» с точки зрения санитарных норм. Однако наличие запаха не позволяет выбрасывать такие отходящие газы в атмосферу без дополнительной обработки.

Для дезодорации и обеззараживания неприятнопахнущих выбросов (НПВ) в промышленности используют все вышеперечисленные методы термического и термокаталитического дожигания, абсорбции, адсорбции, химического и биохимического окисления, а также различные их сочетания. Содержание в ГВВ химических производств одорантов различной химической природы создает определенные трудности при выборе методов дезодорации.

Термические и термокаталитические методы применяются в основном при дезодорации газов, содержащих низкокипящие органические вещества, так как содержание высокомолекулярных и высококипящих органических соединений может привести к закоксовыванию поверхности катализатора продуктами их окисления. Кроме того, при неполном окислении высокомолекулярных веществ могут образовываться новые одоранты, обладающие еще более неприятным запахом, чем исходные вещества.

Перспективным комбинированным методом устранения запахов ГВВ является биосорбционная дезодорация — сочетание адсорбции одорантов различными сорбентами с последующим их биохимическим окислением микроорганизмами, образующими биопленку на поверхности сорбента. В качестве сорбентов используют торф, древесные опилки, шлам от очист­ных установок, компост, песок, камни, кокс, пластмассы, антрацит, активированный уголь и т. д.

Особенно широкое распространение получили биофильтры, снабженные носителем с фиксированными клетками микроорганизмов, в которых периодически производится увлажнение носителя и подпитка микроорганизмов. Преимущества биосорбционного метода — универсальность, незначительные затраты, высокая эффективность.

Дезодорацию путем обычного биохимического окисления можно проводить в различных абсорберах. При биохимической дезодорации примесей в абсорбционной колонне суспензию аэробных бактерий помещают на тарелки либо на элементы насадки, над которыми расположены распыли­тели, подающие питательный раствор и абсорбент.

Абсорбционно-окислительныеметоды дезодорации и обеззараживания основаны на поглощении газов водой или другими поглотителями. Они нашли самое широкое применение на предприятиях химической и микробиологической промышленности. Для этого может использоваться абсорбционное оборудование различных видов, рассмотренное ранее.

Для повышения эффективности абсорбционного метода в качестве абсорбента используют растворы многих окислителей (перманганата калия, оксида водорода, гипохлоритов натрия и кальция, галогенсодержащих со­единений, кислот), а также кислород, озон и некоторые другие. Процесс обеззараживания и дезодорации перманганатом калия или гипохлоритом натрия проводится при рН

Дата добавления: 2016-02-09 ; просмотров: 3313 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Читайте также:  Микробиологический анализ воды в бассейне