Меню Рубрики

Анализ котловой воды на судне

Основные показатели качества воды котельных установок. Ведение журнала водоконтроля и производство анализа воды котельных установок

Показатели качества воды. Воду, находящуюся постоянно в природном круговороте, условно делят на атмосферную, поверхностную, подземную (грунтовую) и морскую. Каждая из этих видов воды имеет свои качественные показатели, от которых зависит возможность ее использования в тех или иных целях. В судовой энергетике применение воды сводится обычно к роли теплоносителя и с этой точки зрения предпочтительнее среда с минимальной минерализацией. Однако обычная пресная вода (поверхностная) всегда содержит примеси солей и растворенные газы.

По химическому составу примеси природных вод делят на минеральные и органические.

Минеральные примеси обусловливаются содержанием в воде различных солей, кислот, оснований, находящихся преимущественно в диссоциированной форме, т. е. в виде катионов и анионов. К этой же группе примесей относятся и растворенные газы N2,О2, СО2, NH3, CH4, H2S.

Органические примеси состоят из гумусовых веществ, вымываемых из почв, а также органических веществ различных типов, поступающих из всевозможных стоков (сельскохозяйственных, промышленных).

Природные воды характеризуются высоким содержанием катионов Na+, К+, Са+, Mg+ со следами NH+, Fe2+, Мп2+, Cu2+, Zn2+, Ni2+, Al3+. Среди анионов в составе примесей основными являются НСО3, Сl-, SO2-4, HsiO-3, NO3, CO2-3. При этом натрий и калий практически не образуют труднорастворимых соединений, в то время как кальций и магний являются важнейшими примесями в процессе загрязнения теплопередающих поверхностей. Они вступают в реакцию с анионами и образуют соли с низкими коэффициентами растворимости.

В судовых условиях различают воду следующих видов:

загрязненную нефтепродуктами (сточную, льяльную).

Для котлов питательной водой служат конденсаты пара, отработавшего в главном турбоагрегате, турбогенераторах, турбоприводных насосах, подогревателях и других потребителях пара. Во время работы котла имеют место неизбежные потери воды и пара через неплотности в арматуре и трубопроводах, на сажеобдувочные устройства, на форсунки, с продувками котла и пр. Для восполнения этих утечек используют добавочную воду, в качестве которой используют дистилляты от испарителей или запасы пресной воды. Для приготовления дистиллята применяют забортную воду. Котловой водой называется вода, находящаяся внутри котла (во всех его элементах).

Рассмотренные виды воды существенно различаются по качеству, которое оценивают по таким показателям, как жесткость, содержание хлоридов, щелочность, фосфатное число, концентрация водородных ионов, содержание кислорода, масла и других нефтепродуктов и различных примесей.

Жесткость — это одна из основных характеристик качества воды. Самым распространенным показателем является общая жесткость ЖO — сумма всех растворимых в воде солей кальция (кальциевая жесткость) и магния (магниевая жесткость), выраженная в миллиграмм-эквивалентах на литр (мг-экв/л).

Для пересчета выраженных в единице мг/л концентраций кальция и магния в единице мг-экв/л их значения делят на эквивалентные массы этих катионов, т. е. используют следующие соотношения: 1 мг-экв/л жесткости = 20,04 мг/л Са+2 , 1 мг-экв/л жесткости = 12,16 мг/л Mg2+, где 20,04 и 12,16 — эквивалентные массы кальция и магния.

Таким образом, общая жесткость может быть представлена суммой карбонатной ЖKи некарбонатной ЖНК составляющих или кальциевой ЖСа и магниевой ЖMg жесткостью: ЖO= ЖK + ЖНК = ЖСа + ЖMg.

С повышением общей минерализации воды возрастает магниевая составляющая, а кальциевая уменьшается. Например, вода в Неве содержит около 0,44 мг-экв/л Са2+ и 0,1 мг-экв/л Mg2+, а для воды Средиземного моря эти показатели соответственно 3,3 и 223 мг-экв/л.

Карбонатная жесткость обусловливается присутствием в воде бикарбонатов кальция и магния: Са(НСО3)2 и Mg(HCО3)2. Карбонатную жесткость иногда называют временной, так как в процессе работы котла она уменьшается. Это вызывается тем, что бикарбонаты при нагреве воды разлагаются и образуют нерастворимые соли, которые скапливаются на поверхности нагрева (накипь). Например, растворенный в воде бикарбонат кальция при нагревании и кипении воды распадается на карбонат кальция СаСОз и угольную кислоту НСОз. Карбонат кальция выпадает в осадок.

Некарбонатная жесткость обусловливается другими солями кальция и магния, которые при нагреве воды химически не изменяются и остаются растворенными. Эти соли жесткости выпадают лишь в зоне испарения, когда концентрация их превысит предел растворимости. К этой группе относятся соли, образующиеся в результате взаимодействия Са и Mg с сильными кислотами (хлориды, сульфаты, силикаты, нитраты). Некарбонатную жесткость иногда называют постоянной (остаточной).

Хлориды — это соли соляной кислоты. Наиболее распространенной солью является хлорид натрия NaCl. Вследствие хорошей растворимости в воде (26,4 % при 15 °С; 28,4 % при 100 °С) хлорид натрия является основной составляющей солености воды, т. е., говоря о содержании хлоридов в воде, имеют в виду ее соленость. Выражается соленость через концентрацию NaCl или хлор-иона и измеряется единицей мг/л. Однако следует иметь в виду, что есть и отдельный показатель — общее солесодержание, под которым подразумевается суммарная концентрация (мг/кг) в воде молекулярно-дисперсных веществ.

При использовании пресной береговой воды в качестве добавочной происходит приток хлористых солей (наряду с другими) в котловую воду в большей степени, чем при использовании для этой цели дистиллята, в котором содержание хлоридов не превышает 5-10 мг/л. Таким образом, одним из источников увеличения хлоридов в котловой воде является добавочная вода.

Для охлаждения конденсаторов СЭУ морских судов используют морскую забортную воду. Ее характерной особенностью является высокое общее солесодержание (до 35 000 мг/л). Основными составляющими солесодержания являются хлористые соли СаСl2, MgCl2, NaCl. Через неплотности в соединениях конденсатора часть морской воды может поступать в конденсат пара, вследствие чего ухудшается качество питательной воды, а значит, и качество котловой воды (в частности, возрастает содержание хлоридов).

Щелочность, являющаяся одним из важнейших показателей качества котловой воды, представляет собой сумму миллинормальных концентраций всех анионов слабых кислот и ионов гидроксила. Она обусловливается прежде всего присутствием в воде ионов ОН-, СO2-3, НСО3, РО3-4.

В зависимости от того, какой вид ионов присутствует в воде, щелочность называют соответственно гидратной ЩГ(OH-), карбонатной ЩК(СO2-3), бикарбонатной ЩБК(НСО3), фосфатной ЩФ(РО3-4). Общая щелочность равна их сумме: ЩО= ЩГ+ ЩК+ ЩБК+ ЩФ.

Оценивается щелочность содержанием щелочных солей, пересчитанных на NaOH. Эта величина называется щелочным числом и выражается в мг/л NaOH.

В судовой документации (особенно судов зарубежной постройки) иногда щелочность выражается содержанием ионов водорода, т. е. используется водородный показатель рН. Для котловой воды рН ? 9,0 -10. Водородный показатель рН является наиболее достоверным показателем коррозионной активности воды.

При определении щелочности судовой лабораторией водоконтроля результаты получаются в нормальных единицах измерения — мг-экв/л. В нормативных документах указываются объемные единицы измерения — мг/л. Для перехода от единицы мг-экв/л к мг/л при определении показателя щелочности воды используют коэффициент 40, соответствующий химическому эквиваленту NaOH, т. е. результат анализа умножают на 40.

Фосфатное число котловой воды контролируют при поддержании фосфатно-нитратного водного режима. Фосфаты — это растворенные в воде соли фосфорной кислоты. В котловой воде должен быть всегда избыток фосфатных ионов РО3-4, что исключает выпадение в осадок накипеобразующих соединений кальция и магния. Следовательно, это приводит к предотвращению образования накипи.

Содержание фосфатов определяется обычно количеством ионов РО3-4 или выражается в виде окисла Р2О5 и измеряется в единице мг/л. Перейти от РО3-4 к Р2О5 можно расчетным путем.

Для поддержания фосфатно-нитратного водного режима в котловую воду вводят нитраты в виде натриевой селитры NaNO3 Нитраты образуют на поверхности металла, т. е. на внутренних стенках котла, защитную пленку, которая препятствует развитию коррозии. Нитрат натрия не принимает участия во внутрикотловых процессах, и его количество в котловой воде уменьшается в процессе работы вследствие уноса паром и продувания котла.

Содержание нитратов в котловой воде выражается нитратным числом в мг/л NaNО3. Его значение обычно составляет около 50 % щелочного числа котловой воды.

При исследовании влияния качества воды на внутрикотловые процессы для оценки качественного и количественного составов воды используют показатели ее электропроводности.

Накипеобразование на поверхностях нагрева. В процессе работы котла в котловой воде протекают различные физико-химические процессы, обусловливающие разрушение одних соединений и образование других. Это приводит к возникновению веществ с различной степенью растворимости. Труднорастворимые вещества выделяются из воды в виде осадка, образующего при определенных условиях накипь или шлам.

Накипью называют плотные отложения, возникающие на поверхности нагрева. К шламу относятся выпадающие вещества в виде подвижного осадка, которые могут также образовывать вторичную накипь, прикипая к поверхности труб.

Образование осадка в виде накипи или шлама происходит при наличии пересыщенного раствора, т. е. высокой концентрации солей. Испарение котловой воды, подача питательной и добавочной воды с более высокой минерализацией создают благоприятные условия для этого процесса. Произведение концентраций находящихся в растворе ионов труднорастворимого вещества называется произведением растворимости, т.е.

где СКТ ,САН — концентрация соответственно катиона и аниона труднорастворимого соединения.

Произведение концентраций при данной температуре является постоянной величиной и, если СКТСАН > ПР, происходит выпадение осадка (твердой фазы). Образующиеся в толще воды кристаллические частицы осаждаются на поверхности нагрева в виде слоя накипи или остаются во взвешенном состоянии как подвижный шлам.

Накипь может появиться в результате увеличения концентрации одного из ионов, образующих труднорастворимые соединения, что является следствием химических процессов.

Таким образом, низкое содержание Са в воде еще не означает, что не будет кальциевых отложений.

Наибольшее влияние на процесс накипеобразования оказывают катионы Са2+ и Mg2+ и анионы С2-3, ОН-, SO2-4, SiO2-3. Определенные сочетания этих катионов и анионов в виде солей представляют собой труднорастворимые вещества. Накипеобразующими соединениями, например, являются: карбонат кальция и магния (СаСО3, MgCO3), гидрат магния (Mg(OH)2), сульфат кальция (CaSO4), силикаты кальция и магния СаSiO3, MgSiO3).

Карбонат кальция образуется в результате нагрева из бикарбоната:

Повышение концентрации в воде углекислоты СО2 может смещать равновесие реакции влево, т. е. ведет к образованию бикарбоната. Однако для котловой воды, где идет процесс кипения и СО2 удаляется, наиболее характерен переход Са(НСО3)2 в карбонат СаСО3.

Аналогичная реакция идет и с бикарбонатом магния при нагревании:

При нагревании воды с высокой щелочностью происходит гидролиз карбоната магния с образованием труднорастворимого соединения гидроокиси магния:

MgCO3 + 2Н2О > Mg(OH)2 + H2CO3.

Карбонаты кальция образуют в котле карбонатную накипь. С повышением щелочности воды они осаждаются в грубодисперсном состоянии и входят в состав шлама.

Соединение Mg(OH)2 находится в воде преимущественно в виде шлама и может образовывать вторичную накипь (прикипание осаждающегося шлама).

Силикаты CaSiO3 и MgSiO3 в природной воде находятся в коллоидальной форме в небольшом количестве. Однако в случае образования силикатной накипи на поверхности нагрева слой загрязнения становится прочным, трудноудаляемым.

Одной из причин образования насыщенных растворов и выпадения осадка является понижение растворимости некоторых соединений при повышении температуры воды. Такие соединения имеют отрицательный коэффициент растворимости. К ним относятся СаСО3, CaSO4, Mg(OH)2, CaSiO4, MgSiO3.

Вторичную накипь могут образовывать продукты коррозии металла, заносимые в котел с питательной водой.

  • 1. Журнал водоконтроля (в дальнейшем — журнал) является официальным документом отражающим действия обслуживающего персонала по выполнению установленного водного режима судовой котельной установки.
  • 2. Журнал ведётся лицом, в заведовании которого находятся котлы. Вести его надлежит на всех судах, оборудованных паровыми котлами (главными, вспомогательными, утилизационными) с рабочим давлением пара ),07 МПа и более.
  • 3. Все записи в журнале производятся чернилами чётко и разборчиво. Подчистка текста, исправление его вменением написанных букв (цифр) запрещается. При необходимости внесения в текст записи исправления, они записываются в конце страницы. Текст, подлежащий исправлению должен быть зачёркнут тонкой линией так, чтобы удержание его было легко читаемо, а в конце страницы исправление или дополнение должно быть специально оговорено и скреплено подписью лица, производившего его.
  • 4. Главный (старший) механик обязан еженедельно проверять ведение журнала и удостоверять записи в нём своей подписью.

По приходу в порт ведение журнала проверяется механико-судовой службой судовладельца. Результаты проверки записываются в разделе «Замечания лиц, проверяющих ведение водного режима».

  • 5. Все листы журнала водоконтроля должны быть пронумерованы, и скреплены подписью капитана и судовой печатью.
  • 6. Законченный журнал хранится на судне в течение года, а затем, после оформления соответствующего акта, уничтожается.
  • 7. Все записи в журнале должны производиться сразу после выполнения химанализа или после снятия замеров и удостоверяться подписью лица, производившего анализ или замер.
  • 8. При составлении рейсового донесения по технической эксплуатации главный (старший) механик должен отметить случаи нарушения установленного водного режима котлов с указанием причин, вызвавших эти нарушения, и меры, принятые для предупреждения подобных случаев в дальнейшем.

Судовой обслуживающий персонал должен быть хорошо знаком с практическими методами определения качества воды и их характеристик и уметь пользоваться средствами водоконтроля для определения всех вышеперечисленных показателей, характеризующих качество котловой и питательной воды.

Определение жесткости воды с помощью трилона Б. Этот метод основан на том, что трилон Б реагирует с солями кальция и магния, содержащимися в воде.

Момент окончания реакции определяют по изменению окраски индикатора.

В колбу наливают 100 мл испытуемой воды, вводят туда 5 мл аммиачного, буферного раствора, щепотку индикатора кислотного хромтемносинего и, интенсивно перемешивая, медленно титруют пробу трилоном Б до изменения розовой окраски раствора в синевато-сиреневую.

Пример: На титрование 100 мл пробы воды пошло 12 мл трилона Б

Определение щелочности воды (по фенолфталеину). Этот метод основан на нейтрализации кислотой котловой воды, которая содержит щелочи, окрашивающие фенолфталеин в малиново-красный цвет. Реакция кончается в момент добавки последней капли кислоты, когда малиновая окраска исчезает и вода принимает свою первоначальную окраску (до введения в нее фенолфталеина).

В колбу наливают 100 мл испытуемой воды, туда же вводят 2-3 капли фенолфталеина, вода окрашивается в малиново-красный цвет. Затем по каплям пробу воды титруют раствором серной кислоты до исчезновения окраски.

Пример: На титрование 100 мл котловой воды пошло 5 мл кислоты.

Щелочность воды равна = 5 мг экв/л.

Щелочное число котловой воды равняется количеству миллилитров кислоты, затраченному на титрование 100 мл котловой воды, умноженному на 40.

Пример: На титрование 100 мл котловой воды пошло 5 мл кислоты.

Щелочное число воды = 5×40 = 200 мг/л.

Определение содержания хлоридов в воде. Метод основан на способности солей ртути давать с хлор-ионом малодиссоциированное соединение (НСЦ) и связывании избытка ионов ртути (Hg2+) дифенилкарбазоном в комплексные соединения, окрашенные в розово-фиолетовый цвет.

Концентрацию хлор-иона от 0,1 до 10 мг/л определяют с помощью 0,0025Н раствора азотнокислой ртути, а концентрации хлор-иона от 10 мг и выше — с помощью ее децинормального раствора.

Конденсат — в колбу наливают 100 мл конденсата и добавляют щепотку индикатора — вода синеет. Потом по каплям наливают раствор азотной кислоты до перехода синей окраски в желтую и еще 10 капель этой кислоты.

Затем медленно, сильно взбалтывая, титруют 0,0025Н раствором азотнокислой ртути до перехода желтой окраски в розово-фиолетовый.

Содержание хлоридов численно равно количеству миллилитров раствора азотнокислой ртути, пошедшему на титрование 100 мл пробы, умноженному на 0,08875 и на 10.

Пример: на титрование 100 мл конденсата пошло 0,25 мл раствора азотнокислой ртути. Содержание хлоридов равно:

А = 0,25×0,8875 = 0,22 мг/л хлор-иона.

Котловая вода. В колбу наливают 10 мл котловой воды и добавляют 90 мл дистиллята, к пробе добавляют щепотку индикаторной смеси, вода окрашивается в синий цвет, затем по капле добавляют: раствор азотной кислоты до перехода синей окраски в желтую и еще 10 капель этой кислоты. Затем медленно титруют 0,1Н раствором азотнокислой ртути и сильно взбалтывают до перехода желтой окраски в розово-фиолетовую.

Содержание хлоридов численно равно количеству мл раствора азотнокислой ртути, пошедшему на титрование 10 мл котловой воды, умноженному на 3,55 и на 100. Если на титрование взято 100 мл испытуемой воды, то результат анализа умножают на 10.

Пример: на титрование 10 мл пробы котловой воды пошло 4,2 мл 0,1Н раствора азотнокислой ртути. Содержание хлоридов равно:

А = 4,2×355 = 1491 мг/л хлор-иона.

Пример: на титрование 100 мл испытуемой пробы пошло 3,8 0,1Н раствора азотнокислой ртути. Содержание хлоридов равно:

А = 3,8×35,5 = 134,9 мг/л хлор-иона.

Определение содержания фосфатов и нитратов в воде. Содержание фосфатов и содержание нитратов измеряют в компараторе путем сравнения окраски испытуемой пробы с окраской эталонных пленок.

Определение фосфатов основано на образовании растворимого соединения окрашенного в интенсивно-желтый цвет.

В пробирку отбирают 210 мл пробы котловой воды и добавляют 2 мл реактива на фосфаты. Раствор тщательно перемешивают и сравнивают окраску со стандартными пленками.

Читайте также:  Сколько нужно воды для анализа скважины

Пример: окраска пробы соответствует окраске пленки 50 мг/л Р04′ 3. Содержание фосфатов в пробе котловой воде равно 50 мг/л Р04 3.

Содержание нитратов измеряется в компараторе путем сравнения испытуемой пробы с окраской эталонных пленок.

В градуированную пробирку отбирают 146 мл пробы котловой воды до метки и перемешивают, затем добавляют 2 мл реактива на нитраты и еще раз перемешивают.

Прибавляют ложечку цинковой стружки или порошка, пробирку закрывают пробкой и содержимое тщательно перемешивают и оставляют на 5-10 мин.

Содержимое пробирки приобретает окраску красного цвета, которую сравнивают с эталонной окраской в компараторе — при подборе окраски с эталонной будет составлять содержание нитратов в котловой воде.

Результаты анализов котловой воды дают информацию о том, что происходит в котле, конденсатной и питательной системах и какие меры необходимо принять по корректировке водного режима.

Если результаты анализов показывают повышенное содержание хлоридов, больше чем обычно, следует увеличить частоту продувания котла до тех пор пока концентрация и содержание хлоридов не станет нормальной. В варианте высокого содержания хлоридов в котловой воде необходимо уменьшить пар производительность котла и допускается частичная смена воды в котле. Необходимо определить источник загрязнения котловой воды и устранить.

При повышенном щелочном числе в котловой воде следствием может быть:

  • — передозировки в котле химических реагентов;
  • — использование для анализов реактивов нестандартной концентрации;
  • — использование добавочной питательной воды из цементированного танка.

При определения пониженного щелочного числа причинами могут быть:

  • — поступление в котел примесей, срабатывающих часть щелочи для осаждения магния (при этом снижается содержание фосфатов);
  • — потеря воды из котла в результате продувки.

Соблюдение установленных норм водного режима паровых котлов на каждом судне должно регулярно контролироваться также при помощи специальных указывающих и регистрирующих приборов такие как соленомеры, кислородомеры и рН-метры.

источник

Глава 3 ВОДНЫЕ РЕЖИМЫ ПАРОВЫХ КОТЛОВ И СИСТЕМ ОХЛАЖДЕНИЯ ДВС


3.1. ПОКАЗАТЕЛИ КАЧЕСТВА ВОДЫ В СУДОВЫХ КОТЛАХ

Применяемая в судовых паровых котлах вода подразделяется [23, 79]: на котловую — находится внутри котла при его работе или бездействии; питательную — подается в котел (состоит из конденсата и добавочной воды); конденсат (вода) — получается в результате конденсации пара; добавочную — используется для восполнения утечек пара, конденсата и котловой воды (добавочной водой служит принимаемая пресная вода и дистиллят, вырабатываемый в судовых опреснителях); продувочную — удаляется из котла при его верхнем и нижнем продувании; береговую (пресная вода) — принимается с берега в танки судна; дистиллят — продукт однократного испарения забортной или береговой воды в судовых опреснителях с последующей конденсацией образовавшегося пара; умягченную — получается в результате химической обработки воды для удаления накипеобразующих солей; забортную (морская или речная вода) — применяется для питания опреснительных установок и охлаждения конденсаторов и теплообменных аппаратов.

Основные показатели качества воды следующие [ 23]:

Общее солесодержание — характеризует содержание в воде всех растворенных веществ, измеряется в миллиграммах на литр (мг/л).

Сухой остаток — характеризует содержание в воде всех растворенных веществ, кроме газов, не летучих при температуре 105 . 110 °С, измеряется в миллиграммах на литр (мг/л).

Взвешенные вещества — характеризуют содержание грубодисперсных примесей в воде (размер частиц более 0,1 мм), измеряются в миллиграммах на литр (мг/л).

Содержание ионов хлора — характеризует содержание ионов хлора в воде; определяется содержанием хлористых солей (NaCl, MgCl2 и др.) и оценивается по содержанию в воде хлор-иона СГ в миллиграммах на литр (мг/л). Для оценки солености используются также градусы Брандта (°Бр); 1 °Бр примерно соответствует 6 мг/л.

Жесткость — содержание в воде растворенных солей кальция и магния, выраженное в миллиграмм-эквивалентах на литр воды (мг-экв/л).

Соли жесткости являются веществами, непосредственно образующими накипь. Установлены следующие виды жесткости воды:

карбонатная (временная) жесткость — соответствует содержанию в воде бикарбонатов кальция и магния Са (НС03 )2 и Mg(HC03 )2;

некарбонатная (постоянная) жесткость — соответствует содержанию в воде солей кальция и магния, не связанных с угольной кислотой, т. е. CaS04, MgS04, СаС12, MgCl2;

общая жесткость — определяется суммарной концентрацией в воде всех ионов Са2+ и Mg2+ временной и постоянной жесткости.

Щелочность воды — определяется суммарной концентрацией карбонатных СОГ, бикарбонатных НС03′, гидроксильных ОН и других анионов слабых кислот, выражается в миллиграмм-эквивалентах на литр воды (мг-экв/л). Щелочность природной воды характеризуется содержанием в ней бикарбонатов щелочно-земельных металлов и численно равна ее карбонатной жесткости. Щелочность котловой воды характеризуется содержанием в ней едкого натра NaOH, соды, тринатрийфосфата и других щелочных веществ, выражается в миллиграмм-эквивалентах на литр (мг-экв/л) или в условных единицах, называемых щелочным числом. Щелочное число (Ащ) котловой воды — соответствует такому содержанию в ней щелочей, которое эквивалентно содержанию едкого натра в миллиграммах на литр, т. е. оно численно равно произведению щелочности котловой воды, определяемой по результатам анализа, и переводного коэффициента к =40.

Фосфатное число — содержание растворимых в воде фосфорных кислот — иона фосфата Р04” или окисла Р2О5, выражается в миллиграммах на литр (мг/л).

Нитратное число — содержание в котловой воде солей азотной кислоты (нитратов), выраженное в миллиграммах нитрата натрия NaN03 на литр воды (мг/л).

Содержание масла и нефтепродуктов — характеризует содержание в воде масла и нефтепродуктов в растворенном, эмульгированном и взвешенном виде, выражается в миллиграммах на литр воды (мг/л).

Содержание растворенного кислорода — характеризует содержание в воде свободного кислорода в миллиграммах на литр (мг/л). Растворимость кислорода в воде понижается с повышением температуры и практически равна нулю в кипящей воде при атмосферном давлении.

Концентрация водородных ионов (показатель pH) — характеризует кислотность или щелочность котловой воды. При pH = 7 вода имеет нейтральные свойства, при pH > 7 — щелочную среду и при pH U 2+, выражается в миллиграммах на литр (мг/л).

Окислы железа и меди попадают в котел с питательной водой и являются продуктом коррозии и эрозии трубопроводов, питательных насосов, теплых ящиков, конденсаторов и теплообменников с медными и латунными трубками и т. д. Окислы железа и меди являются основными компонентами внутренних отложений на поверхностях нагрева

с большой тепловой нагрузкой и интенсивным выпариванием при без-накипном режиме работы котла.

Морская забортная вода имеет высокое солесодержание (табл. 3.1). Протечки морской воды через неплотности в теплообменных аппаратах могут резко ухудшить качество питательной воды. Поэтому содержание ионов хлора (хлоридов) в конденсате, дистилляте и других видах пресной воды необходимо постоянно контролировать. Соотношение между содержанием хлор-ионов и солей в морской воде является примерно постоянным, что позволяет, контролируя хлориды, оценить общую соленость конденсата или пресной воды. Часто береговая пресная вода используется в качестве добавочной. Поэтому важно знать характеристики пресных вод, принимаемых судами в различных морских портах (табл. 3.2).

источник

Качественные показатели воды в котле в процессе работы ухудшаются. С питательной водой в котел вносится дополнительное количество химических и механических примесей. Испаряющаяся вода уходит к потребителям в виде пара, оставляя основную часть солей в котле, что вызывает образование накипи и шлама.

Задачей обработки котловой воды является преобразование накипеобразующих веществ в шлам, который удаляется при продувании котла. Основными накипеобразователями являются соли кальция и магния, а для обработки воды используют преимущественно фосфаты натрия.

Эффективное осаждение накипеобразующих солей кальция происходит при введении тринатрийфосфата. При этом необходимо контролировать щелочность воды.

Поддерживая концентрацию ионов фосфата и щелочность котловой воды в определенных пределах, можно в значительной степени защитить поверхность металла от накипи. Например, для вспомогательных котлов с рабочим давлением пара до 2 МПа фосфатное число рекомендуется поддерживать в пределах 10-30 мг/л РО 3 4, а щелочное число 150-200 мг/л NaOH. Эти значения рекомендуются при фосфатно-нитратном режиме. Сущность такого режима заключается в обработке воды наряду с фосфатами натриевой селитрой, которая предотвращает агрессивное воздействие на металл избыточной щелочи. При использовании только тринатрийфосфата вода приобретает щелочную реакцию, и щелочность воды постепенно увеличивается.

Увеличение щелочности в результате гидролиза наиболее характерно для котлов с рабочим движением пара в пароводяном барабане выше 2 МПа.

В последние годы в практике эксплуатации котлов для обработки котловой воды применяют препарат ТХ. В его составе около 60 % (по массе) динатрийфосфата примерно 6 % NaOH, также комплексоны (трилон Б) и полимерные добавки. Использование в составе препарата двухзамещенного фосфорнокислого натрия вместо Na3РО4 вызвано стремлением предотвратить появление избыточной щелочности.

Полимерные добавки выполняют роль флокулянта и ускоряют процесс осаждения в шлам накипеобразующих солей жесткости. Трилон Б представляет собой двухзамещенную натриевую соль этилендиаминтетрауксусной кислоты, которая связывает накипеобразующие ионы Са и Mg. При избытке трилона Б в котловой воде идет растворение отложений и создаются условия для образования прочной окисной пленки, состоящей из магнетита Fe3O4.

В последнее время во всех пароходствах в большей или меньшей степени в практике эксплуатации котельных установок применяют зарубежные химические вещества для обработки воды и очистки поверхностей нагрева. В качестве примера таких препаратов могут быть названы следующие:

  • AGK-100 — специальная смесь активных веществ в жидкой форме, предназначенная для предотвращения образования накипи, отложений и коррозии как в котлах, так и в паропроводах; препарат применяют для обработки котловой и питательной воды во вспомогательных и утилизационных котлах низкого давления, вводят в магистраль после питательного насоса или в теплый ящик; дозировка препарата должна производиться непрерывно с помощью дозировочного насоса и дозирующего бачка, первоначальная дозировка 5 л на 1 т воды, в дальнейшем суточный расход обычно 1-2 л;
  • перолин БВТ-274 — препарат (сухое вещество), препятствующий образованию накипи и коррозии поверхности нагрева; предназначен для водообработки в котлах с рабочим давлением не выше 1,4 МПа; предварительная дозировка 220 г на 1 т воды; в дальнейшем необходимо ориентироваться на значение щелочного числа, которое в этом случае должно поддерживаться в пределах 250-360 мг/л;
  • рохэм Уан Шот БВТ — жидкая смесь реагентов, имеющая высокую концентрацию щелочи; используют для обработки воды в котлах низкого давления; первоначальная дозировка 1 л на 1т воды, в процессе эксплуатации вводят в зависимости от фактических значений показателей качества;
  • веком BWT QC-3 — темно-коричневая жидкость, полученная на основе нейтрализированных органических кислот и предназначенная для обработки воды в котлах с рабочим давлением до 5 МПа; оказывает комплексное воздействие на качественные показатели котловой воды, защищая металл от кислородной и щелочной коррозии, предотвращая образование накипи и шлама; наилучшие результаты дает непрерывная дозировка препарата с помощью дозировочного насоса; начальная дозировка составляет 0,75 л на 1 т воды в котле, чем обеспечивается щелочность 100-200 мг/л; содержание хлоридов надо поддерживать не выше 200 мг/л; при работе с препаратом необходимо предотвращать попадание его на кожу рук и лица, защищать глаза;
  • веком BWT QC-4 — активный поглотитель кислорода, обычно используемый в сочетании с препаратом QC-3; эффективно удаляет кислород в открытых системах питания и препятствует коррозии поверхностей нагрева, частично уносится с паром и способствует образованию защитной пленки на стенках труб конденсатно-питательных магистралей: при этом водородный показатель конденсата поддерживается в пределах 9-10; начальная дозировка 0,2 л на 1 т котловой воды, при нормальных условиях эксплуатации расход препарата около 0,4 л/сут; критерием оценки необходимого количества препарата для обработки котловой воды является значение рН; меры предосторожности должны быть такими же, как при работе с препаратом QC-3.

Водный режим котлов для судов каждой серии разрабатывает бассейновая теплотехническая лаборатория пароходства на основании результатов теплотехнических испытаний, требований Правил технической эксплуатации судовых технических средств с учетом рекомендаций завода — строителя котлов. Водный режим корректируют в зависимости от условий эксплуатации котла по предписанию теплотехнической лаборатории или по согласованию с ее представителем. За соблюдение водного режима несут ответственность старший и котельный механики.

Соблюдение установленных норм водного режима котлов на каждом судне следует регулярно контролировать при помощи специальных приборов и путем периодических химических анализов средствами судовой лаборатории водоконтроля. Объем и периодичность контроля определяются для каждого судна водным режимом. Рекомендации по объему контроля качества питательной и котловой воды содержатся также в ПТЭ.

Качество воды на судах контролируют с помощью лабораторий водоконтроля ЭЛВК-5 (усовершенствованная модель ЛВК-4), КЛВК-1, СКЛАВ-1. Лаборатория ЭЛВК-5 позволяет определить следующие показатели: жесткость общую и карбонатную, мг-экв/л; содержание хлоридов, мг/л; щелочность котловой воды, мг-экв/л; фосфатное и нитратное числа котловой воды, мг/л.

Для установок, имеющих высокие параметры пара, этих показателей недостаточно. Для главных котлов необходимо определять содержание кислорода, растворенного в воде, и во всех установках следует периодически проверять воду на содержание нефтепродуктов.

Кроме указанных приборов, на судах используют экспресс-методы определения отдельных показателей с помощью наборов препаратов, поставляемых зарубежными фирмами.

источник

Введение…………………………………………………………………………………. 4
Общие указания по выполнению лабораторных работ ………………………………………. 5
Задачи и средства водоконтроля на судах…………………………………………………….…….6
Лабораторная работа № 1. Определение общей жесткости воды……………………………….. 8
Лабораторная работа № 2. Определение щелочности котловой воды………………………. . 12
Лабораторная работа № З. Определение содержания хлоридов ……………………………. .16
Лабораторная работа № 4. Определение фосфатного числа …………………………………. . 20
Лабораторная работа № 5. Определение нитратного числа…………………………………. .24
Лабораторная работа № б. Определение содержания нефтепродуктов
в питательной воде………………………………………………………………………………….. 27
Регулирование параметров качества воды при работе парогенератора………………………… 29
Вопросы и задачи для самоконтроля……………………………………………………………… 32
Литература ………………………………………………………………………………………….. .34
Приложение № 1. Описание лаборатории СКЛАВ-1…………………………………………… 35
Приложение № 2. (Таблицы 1-12)………………………………………………………….. …….. 36

Судовые энергетические установки (СЭУ) требуют квалифицированного и своевременного технического обслуживания. Главной на паротурбинных судах и вспомогательной на танкерах с дизельной энергетической установках является пароэнергетическая система, техническая эксплуатация которой не возможна без проведения водоконтроля и водообработки.

Современные технологии водообработки предусматривают комплекс мероприятий позволяющих снизить уровень накипеобразования и коррозии металла до рационального предела, соответствующего ресурсу теплоэнергетического оборудования.
Поэтому каждый инженер-судомеханик должен уметь определять показатели качества воды и корректировать технологии водообработки в соответствии с инструкциями по обслуживанию СЭУ.

Цель лабораторного практикума по курсу “Технология использования топлива, воды и смазки на судах”, — ознакомить курсантов на базе существующих отечественных и зарубежных средств водоконтроля с методиками проведения текущих химических анализов и эксплуатационной оценкой показателей качества воды при соответствующем водно-химическом режиме парогенератора.

ОБЩИЕ УКАЗАНИЯ ПО ВЬПОЛНЕНИЮ

ЛАБОРАТОРНЫХ РАБОТ


Спецификалюбой химической лаборатории в первую очередь предполагает ознакомление курсантов с инструкцией по технике безопасности. Основные положения инструкции — меры предосторожности при работе с кислотными, щелочными и другого характера растворами, стеклом; правила пользования электропиборами, меры предосторожности при их эксплуатации и пр. — курсанты должны неукоснительно соблюдать.

Приступая к работе, курсанты должны четко представлять себе цель и задачи лабораторного практикума. В этом им поможет предварительная проработка теоретического материала курса по учебной литературе, конспектам лекций; методические разработки раскрывают вопросы в практическом их приложении.

Ознакомившись с теоретическими основами работы, техникой и методикой её и, получив допуск от преподавателя, курсанты приступают к выполнению соответствующей лабораторной работы.

Полученные в ходе анализа данные оформляются по форме протокола лабораторной работы, приложенного к методическому руководству.

После выполнения всех лабораторных работ, предусмотренных рабочей программой курса, курсанты пишут отчет по разделу >, который должен содержать обоснование теоретической и практической сущности полученных результатов.

Результаты химического анализа котловой воды, полученные с помощью судовой лаборатории СКЛАВ- 1 и экспресс-лабораторий, рекомендованных иностранными фирмами, в отчете должны быть сведены в таблицы и сопоставлены с нормируемыми показателями для данного типа котлов, после чего должен быть сделан вывод о необходимых мероприятиях по корректировке параметров качества воды при работе парогенератора.

При подготовке к защите отчетов курсантам свои знания следует проверять по контрольным вопросам, приведенным в конце данного пособия, используя рекомендуемую литературу.

ЗАДАЧИ И СРЕДСТВА ВОДОКОНТРОЛЯ НА СУДАХ


Вода, питающая котел, по своему качественному и количественному составу нестабильна, поэтому для обеспечения надежной работы СЭУ в течение всего срока ее эксплуатации необходима обработка котловой воды. Проводимый с этой целью на судах комплекс мероприятий позволяет с одной стороны предотвратить процессы накипеобразования на внутренних поверхностях парогенераторной системы, с другой — защитить элементы котельной установки от коррозии и разрушений и, таким образом, продлить межремонтные сроки СЭУ
К основным задачам водообработки в любых энергетических установках относятся:
• обеспечение чистых, свободных от накипей теплообразующих поверхностей с водяной стороны в парогенерирующих установках и системах охлаждения,
• обеспечение эффективного производства пара в котлах без выпадения осадков и образования пены,
• предотвращение потерь металла из-за химической и электрохимической коррозии,
• предотвращение образования отложений в паровых и конденсатных системах,
• снижение потерь тепла вследствие чрезмерных продувок котлов
При использовании отечественных химических реагентов для обеспечения водно- химических режимов (ВРХ) рекомендованы фосфатно-нитратный режим для главных и вспомогательных котлов с давлением до 6 МПа, фосфатно-коррекционный с давлением, превышающим 6 МПа и фосфатно-щелочной для котлов низких параметров.
Совокупность химических процессов, протекающих при этом в парогенераторе, должна обеспечивать концентрацию РО — иона в растворе и с этой она целью постоянно контролируется и регламентируется нормами (табл. З), установленными правилами технической эксплуатации паровых котлов (ПТЭ).
Для осуществления фосфатных режимов рекомендован тринатрийфосфат
Na3РО4 * 12 Н2О с целью эффективного осаждения накипеобразующих солей кальция в щелочной среде. Наряду с тринатрийфосфатом с целью предотвращения агрессивного воздействия на металл избыточной щелочи в котловую воду вводится натриевая селитра NaNО3 (фосфатно-нитратный режим) .
В результате химического анализа получают информацию, включающую такие характеристики воды, как: общая жесткость и карбонатная; щелочность котловой воды; содержание хлоридов, фосфатов, нитратные числа; процентное содержание взвесей; содержание кислорода в питательной воде; количество нефтепродуктов; значение РН; проводимость.
Определение основных показателей качества воды основано на методах нитрования и калориметрии, содержание нефтепродуктов в технологических судовых водах определяют методом экстрагирования.
В настоящее время количество судозаходов в отечественные порты резко сократилось, возникли значительные трудности со своевременной доставкой на суда отечественных химических реагентов, в связи с этим многими судовладельцами было принято решение о переводе ведения ВРХ химическими реагентами таких известных фирм, как “Unitor”, “Drew Ameroid Marine”, “Perolin Marine”, “Nalfleet” и др.
Химические средства для водоподготовки,предлагаемые вышеназванными фирмами предназначены для обработки воды котлов всех типов и охлаждающей воды для дизелей Например, фирмой “Unitor” предлагается ввод в конденсатно-питательный тракт следующих химических реагентов фирмы для поддержания фосфатно-щелочного режима по программе координированной водообоработки:
Охуgеn Control— для защиты от коррозии котла, трубопроводов пара, конденсата и питательной воды, для удаления кислорода из воды и нейтрализации СО2, для пассивации металла.
Condensate Control— для нейтрализации кислотных загрязнений в системах конденсата и питательной воды, для обеспечения щелочного состояния этих систем.
Alkalinity Control для обеспечения требуемых щелочных условий в котле.
Hardness Control— для поддержания оптимального фосфатного уровня в котле
Boiler Coagulant— для предотвращения образования накипи и для свертывания небольших количеств нефтепродуктов, проникающих через конденсатно-питательный тракт в котловую воду.
Аналогичным назначениям отвечают химические реактивы других фирм, например, фирмы “Drew Ameroid Marine
AGK-100— многофункциональная жидкая присадка, контролирующая накипньте и шламовые отложения, условия коррозии по водяной стороне в котлах низкого давления (до 3-х МПа). Этот продукт заменяет целую программу обработки воды в указанных системах.
LIQUID COAGULANT средство для обработки шлама и масляных загрязнений с целью противодействия их прилипанию к поверхностям теплопередачи.
SLCC-A — для ингибирования углекислотной коррозии в конденсатной системе.
GC — для регуляции значения РH в судовых котлах всех типов.
AMERZINE— для связывания растворенного кислорода в котлах всех типов, способствует образованию защитных пленок из оксидов железа и меди
ADJUNGT-В— средство для фосфатирования котловой воды как высокого так и низкого давления.
Для проведения химических анализов рекомендованы экспресс-лаборатрии Spectrapac 310, Spectrapac 311, Spectrapac 312 .

Читайте также:  Сколько делается анализ на воду

источник

При фосфатно-нитратном режиме

Цель работы: Определить качественные показатели котловой воды (остаточная жесткость, щелочное число, хлориды, фосфатное число, нитратное число) на основании произведенного анализа дать рекомендации по ведению фосфатно-нитратного режима.

Краткие теоретические сведения

Для главных и вспомогательных котлов с давлением до 6 МПа применяется фосфатно-нитратный режим внутрикотловой обработки воды. При этом режиме в котел вводится раствор тринатрийфосфата. Тринатрийфосфат гидролизуется, в результате гидролиза образуется щелочь. Соли магния реагируют со щелочью и выпадают в твердую фазу в виде гидроокисимагния, соли кальциевой жесткости – в виде гидроксилапатита.

При введении в воду котлов повышенного давления одного тринатрийфосфата проблема щелочной коррозии не снимается. Гидролиз тринатрийфосфата, реакция перевода солей временной кальциевой жесткости в гидроксилапатит, попадание морской воды в цикл приводят к высоким значениям рН котловой воды (рН=11) и образованию в котловой воде свободной щелочи. Для защиты котельного металла от щелочной коррозии в котел вводится нитрат натрия NaNO3 или нитрат калия KNO3. Нитратное число должно соответствовать 50% фактического значения щелочного числа.

Защита котла от кислородной коррозии обеспечивается, если котловая вода будет иметь рН=10, что соответствует щелочному числу Щ=15мг/дм 3 NaOH.

При фосфатно-нитратном режиме, если фактическое значение щелочного числа ниже 15мг/дм 3 NaOH, возможна кислородная коррозия металла котла во время его работы.

Защита котла нитратами от щелочной коррозии обеспечивается до давления 6 МПа. Защитная пленка нитратов железа при давлении в котлах более 6МПа начинает терять свою прочность, а при давлении 8 МПа практически не оказывает пассивирующего влияния на металл. Для поддержания требуемого качества котловой воды и удаления продуктов фосфатно-нитратного режима и других вредных веществ осуществляется продувка, которая может быть нижней и верхней.

Назначение продувания котла

При низких давлениях пар не растворяет солей, поэтому при работе котла практически все соли, продукты коррозии и другие примеси, поступившие в котел с питательной водой, остаются в котловой воде. Повышение содержания солей, шлама и других примесей в воде недопустимо.

Соли, взвеси и другие примеси котловой воды способствуют загрязнению пара в результате уноса капель котловой воды с большим содержанием примесей, приводят к набуханию уровня и могут вызвать «вскипание» котла вследствие уменьшения скорости барботажа пара в пароводяном коллекторе, способствует интенсивному накипеобразованию. Для предотвращения роста содержания примесей в котловой воде и поддержания значений технологических показателей качества котловой воды в установленных пределах делается продувание котла.

Продувание котла необходимо делать для того, чтобы в котловой воде поддерживать не выше установленных предельных значений общее солесодержание, щелочность и содержание шлама.

Для удаления шлама делается нижнее продувание. Удаление солей, взвесей, пены производится через верхнее продувание, так как верхний слой в пароводяном коллекторе формируется из воды, выходящей из подъемных труб, которая содержит наибольшее количество примесей. Воронки верхнего продувания устанавливаются так, чтобы удалялся верхний слой и при любом открытии клапанов продувания уровень воды не опускался до опасного предела.

Продувание может быть периодическим и постоянным. Периодическое продувание делается для снижения технологических показателей качества котловой воды до установленных значений.

Постоянное продувание делается верхним. При постоянном продувании поддерживаются значения показателей качества котловой воды в заданных пределах.

Периодическое продувание делается для снижения содержания шлама в котле и для снижения щелочности котловой воды, если она оказалась выше нормы.

Назначение нижней продувки является периодическое удаление из котла выпадающего шлама, а также единовременный вывод больших количеств воды при необходимости резкого изменения ее состава. Если показатели качества котловой воды находятся в пределах норм водно-химического режима, то нижнее продувание котла производится 1 раз в 5-7 дней. На ходу продувание котлов (особенно нижнее) надо выполнять очень осторожно, не допуская сотрясений котла и резкого падения давления пара. Во время продувания прекращается питание котла. Каждое продувание котла отмечается в журнале.

Нормы качества котловой воды

Водный режим парового котла определяется нормами котловой воды, установленными инструкцией завода-изготовителя котла, а при отсутствии таких норм — соответствующей службой судовладельца по каждой серии судов.

Таблица 5.1 — Рекомендуемые рабочие нормы качества

источник

Качественные показатели воды в котле в процессе работы ухудшаются. С питательной водой в котел вносится дополнительное количество химических и механических примесей.

Испаряющаяся вода уходит к потребителям в виде пара, оставляя основную часть солей в котле, что вызывает образование накипи и шлама.

Задачей обработки котловой воды является преобразование накипеобразующих веществ в шлам, который удаляется при продувании котла. Основными накипеобразователями являются соли кальция и магния, а для обработки воды используют преимущественно фосфаты натрия.

Эффективное осаждение накипеобразующих солей кальция происходит при введении тринатрийфосфата. При этом необходимо контролировать щелочность воды.

Поддерживая концентрацию ионов фосфата и щелочность котловой воды в определенных пределах, можно в значительной степени защитить поверхность металла от накипи. Например, для вспомогательных котлов с рабочим давлением пара до 2 МПа фосфатное число рекомендуется поддерживать в пределах 10-30 мг/л РО 3 4, а щелочное число 150-200 мг/л NaOH. Эти значения рекомендуются при фосфатно-нитратном режиме. Сущность такого режима заключается в обработке воды наряду с фосфатами натриевой селитрой, которая предотвращает агрессивное воздействие на металл избыточной щелочи. При использовании только тринатрийфосфата вода приобретает щелочную реакцию, и щелочность воды постепенно увеличивается.

Увеличение щелочности в результате гидролиза наиболее характерно для котлов с рабочим движением пара в пароводяном барабане выше 2 МПа.

В последние годы в практике эксплуатации котлов для обработки котловой воды применяют препарат ТХ. В его составе около 60 % (по массе) динатрийфосфата примерно 6 % NaOH, также комплексоны (трилон Б) и полимерные добавки. Использование в составе препарата двухзамещенного фосфорнокислого натрия вместо Na3РО4 вызвано стремлением предотвратить появление избыточной щелочности.

Полимерные добавки выполняют роль флокулянта и ускоряют процесс осаждения в шлам накипеобразующих солей жесткости. Трилон Б представляет собой двухзамещенную натриевую соль этилендиаминтетрауксусной кислоты, которая связывает накипеобразующие ионы Са и Mg. При избытке трилона Б в котловой воде идет растворение отложений и создаются условия для образования прочной окисной пленки, состоящей из магнетита Fe3O4.

В последнее время во всех пароходствах в большей или меньшей степени в практике эксплуатации котельных установок применяют зарубежные химические вещества для обработки воды и очистки поверхностей нагрева.

В качестве примера таких препаратов могут быть названы следующие:

  • AGK-100 — специальная смесь активных веществ в жидкой форме, предназначенная для предотвращения образования накипи, отложений и коррозии как в котлах, так и в паропроводах; препарат применяют для обработки котловой и питательной воды во вспомогательных и утилизационных котлах низкого давления, вводят в магистраль после питательного насоса или в теплый ящик; дозировка препарата должна производиться непрерывно с помощью дозировочного насоса и дозирующего бачка, первоначальная дозировка 5 л на 1 т воды, в дальнейшем суточный расход обычно 1-2 л;
  • перолин БВТ-274 — препарат (сухое вещество), препятствующий образованию накипи и коррозии поверхности нагрева; предназначен для водообработки в котлах с рабочим давлением не выше 1,4 МПа; предварительная дозировка 220 г на 1 т воды; в дальнейшем необходимо ориентироваться на значение щелочного числа, которое в этом случае должно поддерживаться в пределах 250-360 мг/л;
  • рохэм Уан Шот БВТ — жидкая смесь реагентов, имеющая высокую концентрацию щелочи; используют для обработки воды в котлах низкого давления; первоначальная дозировка 1 л на 1т воды, в процессе эксплуатации вводят в зависимости от фактических значений показателей качества;
  • веком BWT QC-3 — темно-коричневая жидкость, полученная на основе нейтрализированных органических кислот и предназначенная для обработки воды в котлах с рабочим давлением до 5 МПа; оказывает комплексное воздействие на качественные показатели котловой воды, защищая металл от кислородной и щелочной коррозии, предотвращая образование накипи и шлама; наилучшие результаты дает непрерывная дозировка препарата с помощью дозировочного насоса; начальная дозировка составляет 0,75 л на 1 т воды в котле, чем обеспечивается щелочность 100-200 мг/л; содержание хлоридов надо поддерживать не выше 200 мг/л; при работе с препаратом необходимо предотвращать попадание его на кожу рук и лица, защищать глаза;
  • веком BWT QC-4 — активный поглотитель кислорода, обычно используемый в сочетании с препаратом QC-3; эффективно удаляет кислород в открытых системах питания и препятствует коррозии поверхностей нагрева, частично уносится с паром и способствует образованию защитной пленки на стенках труб конденсатно-питательных магистралей: при этом водородный показатель конденсата поддерживается в пределах 9-10; начальная дозировка 0,2 л на 1 т котловой воды, при нормальных условиях эксплуатации расход препарата около 0,4 л/сут; критерием оценки необходимого количества препарата для обработки котловой воды является значение рН; меры предосторожности должны быть такими же, как при работе с препаратом QC-3.

Водный режим котлов для судов каждой серии разрабатывает бассейновая теплотехническая лаборатория пароходства на основании результатов теплотехнических испытаний, требований Правил технической эксплуатации судовых технических средств с учетом рекомендаций завода — строителя котлов. Водный режим корректируют в зависимости от условий эксплуатации котла по предписанию теплотехнической лаборатории или по согласованию с ее представителем. За соблюдение водного режима несут ответственность старший и котельный механики.

Соблюдение установленных норм водного режима котлов на каждом судне следует регулярно контролировать при помощи специальных приборов и путем периодических химических анализов средствами судовой лаборатории водоконтроля. Объем и периодичность контроля определяются для каждого судна водным режимом. Рекомендации по объему контроля качества питательной и котловой воды содержатся также в ПТЭ.

Качество воды на судах контролируют с помощью лабораторий водоконтроля ЭЛВК-5 (усовершенствованная модель ЛВК-4), КЛВК-1, СКЛАВ-1. Лаборатория ЭЛВК-5 позволяет определить следующие показатели: жесткость общую и карбонатную, мг-экв/л; содержание хлоридов, мг/л; щелочность котловой воды, мг-экв/л; фосфатное и нитратное числа котловой воды, мг/л.

Для установок, имеющих высокие параметры пара, этих показателей недостаточно. Для главных котлов необходимо определять содержание кислорода, растворенного в воде, и во всех установках следует периодически проверять воду на содержание нефтепродуктов.

Кроме указанных приборов, на судах используют экспресс-методы определения отдельных показателей с помощью наборов препаратов, поставляемых зарубежными фирмами

источник

Качество подаваемой в котел и находящейся внутри него воды имеет важнейшее значение для надежной и экономичной эксплуатации котла. Требования к качеству воды зависят прежде всего от назначения котлов, а определяющим фактором в этом отношении является рабочее давление.

В судовых условиях различают воду следующих видов:

  • котловую, находящуюся внутри котла при его работе;
  • питательную, подаваемую в котел;
  • конденсат — конденсат отработавшего пара;
  • добавочную — добавляемую к конденсату;
  • продувочную — удаляемую из котла при его верхнем и нижнем продувании;
  • береговую — пресная вода, принимаемая с берега в танки судна и предназначенная для питания котлов;
  • дистиллят — продукт испарения забортной или береговой воды;
  • умягченную — химически обработанную воду (для удаления из нее накипеобразующих солей);
  • катионированную — подвергшуюся фильтрации в специальных катионитовых фильтрах с заменой накипеобразующих солей на более безопасные для эксплуатации котлов;
  • забортную — морскую или речную;

Рассмотренные виды воды существенно различаются по качеству, количественную оценку которого проводят по таким показателям, как содержание хлоридов, жесткость, щелочность, концентрация водородных ионов, содержание кислорода, растворенного (сухого) остатка, содержание масла и других нефтепродуктов, кислот и прочих примесей. Сумма всех содержащихся в воде солей называется общим солесодержанием. Вода содержит различные соли, которые обуславливают ее жесткость или другие свойства.

Качественно об общем солесодержании воды можно судить по наличию в ней растворенных хлористых солей: содержанию хлоридов. Количественной мерой этого показателя является концентрация хлор-иона (Cl — ), которая измеряется в мг/л. Содержание хлоридов позволяет, например, контролировать степень засоления конденсата морской водой при нарушении герметичности конденсаторов. Применяют выражение солености в градусах Брандта (°Бр) — 1 °Бр соответствует 6 мг/л Cl — .

Жесткость — определяется количеством растворенных в воде солей кальция (Са) и магния (Mg). Различают следующие виды жесткости воды: общую, кальциевую, магниевую, карбонатную и некарбонатную.

Кальциевая и магниевая жесткости определяются концентрацией в воде только ионов кальция и магния.

Карбонатная жесткость обуславливается наличием в воде растворенных солей — бикарбонатов кальция (Са(НСО3)) и магния (Mg(HC03)2). При нагревании воды растворенные в ней бикарбонаты распадаются на угольную кислоту НСО и выпадающие из раствора в осадок карбонаты.

Некарбонатная жесткость определяется наличием в воде сульфатов, хлоридов, нитратов и силикатов кальция и магния: CaS04 (гипс), CaCI2, MgCl2, CaSi03. Вызывающие некарбонатную жесткость соли при нагревании воды химически не изменяются и остаются растворенными.

Единицей измерения жесткости служит мг-экв/л, для воды с малой жесткостью (конденсат, дистиллят) жесткость выражают в мкг-экв/л, т. е. в тысячных долях миллиграмм-эквивалента.

Щелочность — характеризуется содержанием в воде NaOH, NaHC03, NaPO, Са(ОН) и др. Общей щелочностью воды называют также содержание в ней анионов ОН 2- , СO3 2- , НСO 3- , РO4 3- . Основной причиной появления щелочности воды является введение в нее перечисленных здесь химических соединений с целью устранения жесткости (умягчения воды).

Читайте также:  Сколько надо воды на анализ

Щелочность воды измеряется в миллиграмм-эквивалентах на литр, также используется щелочное число Az — которое представляет собой сумму свободной и связанной щелочи в котловой воде, а количественно это соответствует содержанию NaOH в мг/л.

Фосфатное число Pz — это избыток тринатрийфосфата в котловой воде, выражаемые количеством фосфатного ангидрита РO4 в мг/л.

Нитратное число Nz — содержание в котловой воде нитрата натрия NaNO3 в мг/л, который вводится для нейтрализации агрессивного действия свободной щелочи. Это позволяет исключить межкристаллитную коррозию и хрупкое разрушение металла в местах вальцовочных соединений при наличии в них пропаривания.

Содержание кислорода в воде характеризует процесс коррозии металла пароводяного тракта котла. Особенно интенсивен процесс коррозии в змеевиках горизонтально расположенных труб утилизационных котлов с искусственной циркуляцией при обычной открытой системе их питания. Кислородосодержание воды измеряются в мг/л.

Содержание масла и других нефтепродуктов в воде, измеряемое в мг/л, является характерным для вспомогательных котлов танкеров. Наличие указанных примесей существенно ухудшает процесс теплообмена и парообразования, что может вызвать опасный перегрев металла поверхностей нагрева.

Показатель концентрации водородных ионов pH позволяет оценить кислотность или щелочность воды. Эта оценка основана на том, что в водных растворах содержатся свободные ионы Н + и ОН — . Кислоты имеют свойство присоединять катионы Н + , а щелочи — анионы ОН — . Для воды при температуре 22°С справедливо ионное произведение [Н + ]х[ОН — ] = 10 -14 .

Вода будет иметь нейтральную реакцию, если концентрации [Н + ] и [ОН — ] равны, т. е. [Н + ]х[Н — ] = 10 -7 .

Если к нейтральной воде добавить щелочь, концентрация ионов [ОН — ] увеличивается, а концентрация ионов [Н + ] уменьшится, так как указанное выше ионное произведение остается неизменным.

Отрицательный десятичный логарифм концентрации ионов водорода слу¬жит мерой кислотности или щелочности воды, он называется показателем pH, pH = -lg[H + ].

Его значения будут равны: pH = 7 для нейтральной воды, pH 7 — щелочная среда. Определять щелочность воды (ее агрессивность) можно с помощью показателей pH, когда pH Водный режим — это такая организация докотловой водоподготовки, внутрикотловой обработки воды и продувки котла, которая обеспечивает минимальную коррозию, допустимую величину уноса солей паром и практически безнакипный режим работы котла.

Так как полностью удалить из питательной воды ионы жесткости и газов практически невозможно, то для обеспечения безнакипного режима работы котла в котел вводят небольшое количество химических веществ, способствующих выделению накипеобразующих ионов Са2 + и Mg2 + в виде соединений, дающих легкоподвижный шлам. Такой метод называется коррекцией. Одновременно в котловой воде поддерживаются условия, исключающие развитие коррозии.

В качестве коррекционного метода внутрикотловой обработки воды в практике эксплуатации котлов применяют рекомендованные режимы в зависимости от давления рабочего пара (таблица 9.10).

При всех видах обработки воды в ней стремятся создать избыток фосфатных ионов РО3 — . При этом исключается выпадание накипеобразующих соединений Са и Mg.

Для образования шламообразующих соединений и защиты от коррозии необходимо, чтобы кроме избытка фосфат ионов, в котловой воде был избыток ионов ОН — . Этот избыток может быть создан в котловой воде введением в нее вместе с фосфатами щелочей типа NaOH, Na2CO3 (фосфатно-щелочной режим).

При фосфатно-щелочном режиме, применяющемся преимущественно для огнетрубных и водотрубных котлов низкого давления с добавочным питанием сырой пресной водой, в котел вводят фосфаты (Na3POx12H2O) и щелочи (NaOHxNa2CO3).

Щелочи и фосфаты вводят раздельно либо вместе в виде антинакипина, содержащего и щелочи и фосфаты в определенном соотношении.

При использовании только тринатрийфосфата может недопустимо повыситься щелочность воды, вследствие чего она станет коррозионно-агрессивной средой. Для предотвращения этого нежелательного явления дополнительно вводят присадку — нитрат натрия NaNO3.

Введение тринатрийфосфата и нитрата натрия называется фосфатно-нитратным режимом обработки воды внутри котла. Присадки вводят непосредственно в пароводяной барабан или сепаратор утилизационного агрегата. Для этого имеется специальная дозаторная установка, из которой подготовленный раствор насосом подается в питательную магистраль котла.

Для поддержания требуемого качества котловой воды и удаления продуктов фосфатно-нитратного режима и других вредных веществ осуществляется продувка, которая может быть нижней и верхней.

Рекомендованные рабочие нормы качества котловой воды приведены в таблице 9.11 для вспомогательных и утилизационных котлов.

Показатели качества Огнетрубный котел Водотрубный с Р = до 2 МПа Водотрубный котел с Р = 2-4 МПа
Жесткость остаточная, мг-экв/л 0,4 0,2 0,05
Общее солесодержание, мг/л 13000 3000 2000
Хлориды, мг/л Cl — 8000 1200 500
Щелочное число, мг/л NaOH 150-200 150-200 100-150
Фосфатное число, мг/л РО 3- 10-30 10-30 20-40
Нитратное число, мг/л NaNO3 75-100 75-100 50-75

Применение фосфата натрия и едкого натрия для осаждения накипеобразователей является обычным в котлах всех видов, однако, как показывает практика эксплуатации котлов, чрезмерное использование фосфатов без продувок, необходимых для удаления шлама, может привести к образованию отложений, порождающих не меньшие трудности, чем отложение накипи. Таким образом, возникают две задачи — предотвращения накипеобразования и уменьшения количества шлама. Современная тенденция заключается в использовании органических полиэлектролитов для обработки накипеобразователей, в частности в котлах низкого давления рабочего пара.

Обработка воды полимерами.
Полимерами называются гигантские молекулы, образованные в результате соединения множества малых простых молекул, часто одного и того же вида. Простые молекулы называются мономерами.

Полиэлектролиты (часто называют флокулянтами) — это высокомолекулярные соединения естественного или синтетического происхождения, которые при растворении в воде образуют ионы.

Полиакрилаты — ионирующие полимеры акриловой кислоты.

Полиамиды — это полимеры, состоящие из мономеров (называемых амидами, относятся к отдельной группе химических веществ).

Для обработки воды используют специальные водорастворимые полимеры для коагуляции, дисперсии и предотвращения образования накипи и шлама.

Одним из наиболее распространенных полимеров, применяемых в процессе водоподготовки, является полиакрилат, используемый в сочетании с едким натром, либо со смесью едкого натра и сульфата натра.

Обработка котельной воды полимерами предотвращает отложения накипи, уменьшает образования шлама, способствует разрыхлению накипи, уже имеющейся на поверхности нагрева котла. Поэтому такую обработку предпочтительно проводить только для очистки котла, иначе могут возникнуть проблемы из-за течи в местах разрыхления накипи, т.е. в местах вальцовки труб.

Такой метод обработки котловой воды используют для большинства вспомогательных котлов, который во многих отношениях превосходит традиционные щелочную и фосфатную обработку.

Обработка котельной воды аминами.
Амины, применяемые для обработки котельной воды, разбиты на две основные группы:

  • нейтрализующие, действие которых подобно действию аммиака. Это летучие вещества, которые используют для нейтрализации С02 в паре, конденсате и питательных средах. Обычно применяют циклогексиламин и морфолин, а также комбинацию этих веществ;
  • пленочные, также проявляющие нейтрализующие свойства. Однако, их основное назначение заключается в защите поверхности металла с помощью молекулярной водоотталкивающей пленки и таким образом происходит предотвращение коррозии металла котла. Обычно в качестве пленочного амина применяют октадециламин.

Антипенные вещества.
Увеличение концентрации растворенных и взвешенных твердых веществ в котловой воде повышает вероятность вспенивания и уноса воды в котлах как низкого, так и высокого давления рабочего пара. Если по условиям эксплуатации нельзя уменьшить содержание примесей, то могут быть использованы антипенные добавки, уменьшающие стабильность водяной пленки вокруг пузырьков пара и способствующие более легкому их разрушению. Обычно в качестве антипенных веществ используют смеси высокомолекулярных органических веществ, называемых полиамидами.

Некоторые химикаты, применяемые для обработки котловой воды, содержат небольшое количество антипенных добавок. Однако в случае значительного количества примесей в воде рекомендуется регулярно дополнительно вводить антипенообразователи с тем, чтобы поддержать в воде некоторый их резерв. Недостаточный запас присадки может вызвать внезапное сильное вспенивание воды в котле.

Таким образом, возможными веществами для водообработки котловой воды могут быть:

  • фосфат натрия — для предотвращения накипеобразования;
  • едкий натр — для предотвращения накипеобразования и уменьшения коррозии;
  • полимеры — для предотвращения образования накипи и шлама;
  • танины (крахмал) — для обработки шлама;
  • гидразин (сульфат натрия) — для удаления кислорода;
  • антипенные вещества — для предотвращения уноса воды;
  • нейтрализующие амины — для нейтрализации СO2;
  • пленочные амины — для защиты пароконденсатных магистралей;

В результате ввода химических веществ в котловую воду в процессе водообработки в барабане котла образуется шлам и посторонние вредные вещества, которые необходимо удалять. Таким образом, для уменьшение концентрации твердых веществ, растворенных в котловой воде, для удаления шлама и продуктов коррозии питательной и конденсатной систем, необходимо регулярно производить продувку котла верхним и нижним продуванием.

Часто на теплоходах к вспомогательным котлам относятся как к «самоварам», которые не требуют специальной водообработки для предотвращения накипеобразования и продувания для удаления шлама. Это заблуждение эксплуатационного персонала. Соблюдение водного режима, а также периодическое вскрытие и чистка котла увеличивает срок его нормальной эксплуатации и службы.

Применение химической водообработки основано на регулярном контроле качества котловой воды. Для котлов всех типов и классов предусматривается ежесуточное взятие проб воды. В случае, когда водный режим нарушен и принимаются меры по его восстановлению, а также при наличии посторонних примесей в котловой воде, пробы берут чаще.

В таблице 9.12 приведены предельные значения характеристик котловой воды, устанавливаемые Британским стандартом BS 1170:1968. В таблице не нашло отражения применение наиболее современной полиакрилатной обработки воды. Регулирование водообработки с использованием полиакрилата основано на измерении только щелочности и содержании хлоридов.

Показатели качества Давление пара в котле 0-1,5 МПа Давление пара в котле 1,5-3,0 МПа Давление пара в котле 3,0-4,0 МПа
Жесткость максимальная по ЭДТК, мг/л СаСO3 Отсутствуют Отсутствуют Отсутствуют
Щелочность по фенофталеину, мг/л СаС03 50-300 150-300 100-150
Содержание хлоридов максимальное, мг/л СаСO3 300 150 100
Содержание фосфатов в пересчете на мг/л СаСO3 30-70 30-70 20-50
Содержание растворенных твердых веществ, мг/л 1500 1000 500
Избыток сульфида или гидразина, мг/л NaO3 50-100 50-100 30-50
мг/л N2H4 0,1-0,3 0,1-0,3 0,1-0,3

Примечание: Перевод содержания хлоридов (в пересчете на мг/л СаСO3) в мг/л NaCl производится умножением на 1,17.

Перевод содержания хлоридов (в пересчете на мг/л СаСO3) в мг/л Сl производится умножением на 0,71.

Перевод щелочности (в пересчете на мг/л СаСО3) в мг/л NaOH производится умножением на 0,8.

Перевод фосфатов (в пересчете на мг/л РO4) в мг/л производится умножением на 0,75.

Судовой обслуживающий персонал должен быть хорошо знаком с практическими методами определения качества воды и их характеристик и уметь пользоваться средствами водоконтроля для определения всех вышеперечисленных показателей, характеризующих качество котловой и питательной воды.

Определение жесткости воды с помощью трилона Б. Этот метод основан на том, что трилон Б реагирует с солями кальция и магния, содержащимися в воде. Момент окончания реакции определяют по изменению окраски индикатора.

В колбу наливают 100 мл испытуемой воды, вводят туда 5 мл аммиачного, буферного раствора, щепотку индикатора кислотного хромтемносинего и, интенсивно перемешивая, медленно титруют пробу трилоном Б до изменения розовой окраски раствора в синевато-сиреневую.

Пример: На титрование 100 мл пробы воды пошло 12 мл трилона Б
Жобщ. = 12×0,1 = 1,2 мг-экв/л.

Определение щелочности воды (по фенолфталеину). Этот метод основан на нейтрализации кислотой котловой воды, которая содержит щелочи, окрашивающие фенолфталеин в малиново-красный цвет. Реакция кончается в момент добавки последней капли кислоты, когда малиновая окраска исчезает и вода принимает свою первоначальную окраску (до введения в нее фенолфталеина).

В колбу наливают 100 мл испытуемой воды, туда же вводят 2-3 капли фенолфталеина, вода окрашивается в малиново-красный цвет. Затем по каплям пробу воды титруют раствором серной кислоты до исчезновения окраски.

Пример: На титрование 100 мл котловой воды пошло 5 мл кислоты. Щелочность воды равна = 5 мг-экв/л.

Щелочное число котловой воды равняется количеству миллилитров кислоты, затраченному на титрование 100 мл котловой воды, умноженному на 40.

Пример: На титрование 100 мл котловой воды пошло 5 мл кислоты.

Щелочное число воды = 5×40 = 200-мг/л.

Определение содержания хлоридов в воде.
Метод основан на способности солей ртути давать с хлор-ионом малодиссоциированное соединение (НС12) и связывании избытка ионов ртути (Hg 2+ ) дифенилкарбазоном в комплексные соединения, окрашенные в розовофиолетовый цвет.

Концентрацию хлор-иона от 0,1 до 10 мг/л определяют с помощью 0,0025Н раствора азотнокислой ртути, а концентрации хлор-иона от 10 мг и выше — с помощью ее децинормального раствора.

Конденсат — в колбу наливают 100 мл конденсата и добавляют щепотку индикатора — вода синеет. Потом по каплям наливают раствор азотной кислоты до перехода синей окраски в желтую и еще 10 капель этой кислоты.

Затем медленно, сильно взбалтывая, титруют 0,0025Н раствором азотнокислой ртути до перехода желтой окраски в розово-фиолетовый.

Содержание хлоридов численно равно количеству миллилитров раствора азотнокислой ртути, пошедшему на титрование 100 мл пробы, умноженному на 0,08875 и на 10.

Пример: на титрование 100 мл конденсата пошло 0,25 мл раствора азотнокислой ртути. Содержание хлоридов равно: А = 0,25×0,8875 = 0,22 мг/л хлор-иона.

Котловая вода. В колбу наливают 10 мл котловой воды и добавляют 90 мл дистиллята, к пробе добавляют щепотку индикаторной смеси, вода окрашивается в синий цвет, затем по капле добавляют: раствор азотной кислоты до перехода синей окраски в желтую и еще 10 капель этой кислоты. Затем медленно титруют 0,1Н раствором азотнокислой ртути и сильно взбалтывают до перехода желтой окраски в розово-фиолетовую.

Содержание хлоридов численно равно количеству мл раствора азотнокислой ртути, пошедшему на титрование 10 мл котловой воды, умноженному на 3,55 и на 100. Если на титрование взято 100 мл испытуемой воды, то результат анализа умножают на 10.

Пример: на титрование 10 мл пробы котловой воды пошло 4,2 мл 0,1Н раствора азотнокислой ртути. Содержание хлоридов равно: А = 4,2×355 = 1491 мг/л хлориона.

Пример: на титрование 100 мл испытуемой пробы пошло 3,8 0,1Н раствора азотнокислой ртути. Содержание хлоридов равно: А = 3,8×35,5 = 134,9 мг/л хлор-иона.

Определение содержания фосфатов и нитратов в воде. Содержание фосфатов и содержание нитратов измеряют в компараторе путем сравнения окраски испытуемой пробы с окраской эталонных пленок.

Определение фосфатов основано на образовании растворимого соединения окрашенного в интенсивно-желтый цвет.

В пробирку отбирают 210 мл пробы котловой воды и добавляют 2 мл реактива на фосфаты. Раствор тщательно перемешивают и сравнивают окраску со стандартными пленками.

Пример: окраска пробы соответствует окраске пленки 50 мг/л РO4 -3 . Содержание фосфатов в пробе котловой воде равно 50 мг/л РO4 -3 .

Содержание нитратов измеряется в компараторе путем сравнения испытуемой пробы с окраской эталонных пленок.

В градуированную пробирку отбирают 146 мл пробы котловой воды до метки и перемешивают, затем добавляют 2 мл реактива на нитраты и еще раз перемешивают. Прибавляют ложечку цинковой стружки или порошка, пробирку закрывают пробкой и содержимое тщательно перемешивают и оставляют на 5-10 мин.

Содержимое пробирки приобретает окраску красного цвета, которую сравнивают с эталонной окраской в компараторе — при подборе окраски с эталонной будет составлять содержание нитратов в котловой воде.

Результаты анализов котловой воды дают информацию о том, что происходит в котле, конденсатной и питательной системах и какие меры необходимо принять по корректировке водного режима.

Если результаты анализов показывают повышенное содержание хлоридов, больше чем обычно, следует увеличить частоту продувания котла до тех пор пока концентрация и содержание хлоридов не станет нормальной. В варианте высокого содержания хлоридов в котловой воде необходимо уменьшить паропроизводительность котла и допускается частичная смена воды в котле.

Необходимо определить источник загрязнения котловой воды и устранить.

При повышенном щелочном числе в котловой воде следствием может быть:

  • передозировки в котле химических реагентов;
  • использование для анализов реактивов нестандартной концентрации;
  • использование добавочной питательной воды из цементированного танка;

При определения пониженного щелочного числа причинами могут быть:

  • поступление в котел примесей, срабатывающих часть щелочи для осаждения магния (при этом снижается содержание фосфатов);
  • потеря воды из котла в результате продувки;

Соблюдение установленных норм водного режима паровых котлов на каждом судне должно регулярно контролироваться также при помощи специальных указывающих и регистрирующих приборов такие как соленомеры, кислородомеры и рН-метры.

источник