Меню Рубрики

Анализ на мутации при раке

Молекулярно-генетические маркеры для выбора тактики лечения и определения прогноза для пациентов с поставленным диагнозом

Мутации генов бывают генеративные (наследственные) и соматические. Последние возникают у человека на протяжении всей жизни и зависят от негативного влияния внешних факторов – стресса, вредных привычек, неправильного образа жизни.

Определить, какая мутация привела к образованию опухоли, поможет анализ крови и опухолевой ткани. ДНК-анализ крови позволяет выявить только наследственные мутации; ДНК-анализ опухолевой ткани позволяет выявить соматические мутации с определением их характера. ДНК-анализ опухолевой ткани необходимо проводить наравне с гистологией для диагностики и назначения терапии.

Лаборатории молекулярной генетики используют много разных методов для выявления генетических изменений, которые имеют терапевтическое значение при лечении рака. Так, для солидных опухолей (так обычно называют опухоли негемопоэтического происхождения) большинство тестов выполняется на образцах опухолевой ткани, зафиксированных парафином.

Основные типы исследований делятся на 3 класса:

Результаты каждого из тестов могут иметь различное клиническое значение, хотя все они могут анализировать одну и ту же мишень в опухолевой ткани. Например, для рака легкого выявление мутаций в гене EGFR позволяет предсказывать чувствительность опухоли к ингибиторам тирозинкиназы EGFR, в то время как число копий ДНК EGFR, уровни экспрессии его мРНК или уровни соответствующего белка имеют небольшую или вовсе нулевую прогностическую ценность.

Генетическая информация передается от одной клетки к другой в форме дезоксирибонуклеиновой кислоты (ДНК). ДНК кодирует переносчик информации — рибонуклеиновую кислоту (мРНК), которая затем транскрибируется в белок. Строительные блоки ДНК включают четыре нуклеотида, включая аденозин (А), цитозин (С), гуанин (G) и тимидин (Т).

Строительными блоками белков являются аминокислоты, которых насчитывается 20. Геном человека состоит примерно из 3 миллиардов нуклеотидов. Из этих 3 миллиардов нуклеотидов только около 5% кодируют гены, которые транслируются в белки внутри клетки. Далее ген делится на экзоны, которые содержат фактическую информацию, используемую при кодировании для синтеза белка, и интроны, которые представляют собой сегменты между экзонами, удаляющиеся до транслирования белка (интроны не содержат кодирующей информации).

Нуклеотиды организованы в трехбуквенные кодовые слова, называемые кодонами. Каждый кодон кодирует одну аминокислоту. Генетический код представляет собой полный набор из 64 трехбуквенных кодов, которые преобразуют кодоны в аминокислоты. Примечательно, что генетический код вырожден; другими словами, поскольку имеется 64 кодона и только 20 аминокислот, более одного кодона могут кодировать одну и ту же аминокислоту.

Некоторые кодоны называются стоп-кодонами, потому что вместо кодирования аминокислоты они сообщают клетке, какая аминокислота является последней в белке. Мутации изменяют нормальную последовательность ДНК. Соматические мутации возникают при раке, но не обнаруживаются в соответствующих нормальных

тканях одного и того же пациента.

Существует несколько видов мутаций, которые приводят к раковым образованиям:

амплификация генов (слияние);

изменение структуры белков.

Точечные мутации (такие, как EGFR L858R при раке легкого) возникают в результате однонуклеотидных замен. Если эти мутации происходят внутри экзонов, они могут быть синонимичными (то есть кодированная аминокислота остается неизменной) или не синонимичными (то есть кодированная аминокислота изменяется).

Инсерции (такие, как вставки экзона 20 HER2 при раке легкого) и делеции (такие, как делеции экзона 19 EGFR при раке легкого) возникают, когда нуклеотиды вставляются или удаляются, соответственно, в кодирующих частях (экзонах) генома.

Области ДНК, которые кодируют гены, могут стать амплифицированными. Другими словами, вместо обычных 2 копий (по одной от каждого родителя) клетки приобретают больше копий (например, амплификация гена HER2 при раке молочной железы). Участки ДНК могут также перестроиться: отрезки ДНК, которые обычно не соседствуют друг с другом, сливаются вместе (например, слияния генов EML4 и ALK при раке легких). Нормальные клетки должны иметь 2 копии гена-мишени. Несколько копий предполагают амплификацию генов.

мРНК соответствующих генов могут присутствовать или отсутствовать при раке. Присутствие в большинстве случаев является сверхэкпрессированным, т.е. присутствует на более высоких уровнях. Мутации также могут быть обнаружены с использованием анализа мРНК. Но, поскольку мРНК гораздо менее стабильны по сравнению с ДНК, они часто оказываются слишком сильно фрагментированными для анализа в клинических образцах. Таким образом, для обнаружения мутаций легче использовать ДНК. Единственным исключением является то, что известные слияния генов легче обнаруживается на уровне мРНК.

Специфические белки при раке могут отсутствовать или присутствовать. Когда они присутствуют, они так же как и мРНК, могут быть «сверхэкспрессированы» (иметь более высокие уровни, чем обычно). Однако показатели белка могут быть или не быть клинически значимыми. Например, при раке легких мутации ДНК EGFR, но не уровни белка EGFR по IHC, предсказывают чувствительность к ингибиторам тирозинкиназы EGFR.

Центр Инновационных Биотехнологий Аллель предлагает широкий спектр молекулярно-генетических исследований, направленных на выявление соматических изменений в ДНК при раковых заболеваниях.

Заполните форму на сайте или позвоните нам по номеру: +7 (495) 780-92-96, чтобы узнать подробнее, как проводится исследование, уточнить стоимость и сроки проведения анализов.

источник

Поскольку препараты становятся более целенаправленными, новые анализы при раке кишечника играют важную роль в эффективном лечении заболевания.

Для диагностики рака толстой кишки (колоректального рака) пациенту приходится пройти через множество анализов.

Без них невозможно узнать тип опухоли и выбрать оптимальную терапию.

В последние годы список анализов при раке кишечника расширился.

Последние достижения в лабораторной диагностике колоректального рака позволяют онкологам прогнозировать, как будет вести себя опухоль у конкретного пациента. Этот подход носит название «персонализированная медицина».

Большинство рекомендаций по лечению требуют такой важной информации, как молекулярно-генетический тип рака, стадия и локализация процесса.

Анализ мутаций в гене KRAS. За рубежом этот лабораторный анализ уже активно назначается пациентам с метастатическим колоректальным раком.

Он определяет мутации в гене под названием KRAS. Статистика показывает, что KRAS мутирует у 40% больных колоректальным раком. Больных, у которых не выявлено таких мутаций, называют носителями гена KRAS «дикого типа».

Анализ на онкотип DX. Этот лабораторный анализ предназначен для пациентов с раком толстой кишки II стадии. Он включает исследование 12 разных генов с целью определить «показатель рецидива» заболевания.

Показатель рецидива (число от 0 до 100) характеризует риск возвращения рака после хирургической операции. Низкий балл означает низкий риск рецидива, и наоборот.

Анализ мутаций в гене KRAS определяет, насколько хорошо опухоль реагирует на ингибиторы EGFR, одну из групп таргетных препаратов.

Исследования показывают, что пациенты с мутацией гена KRAS не реагируют на такие таргетные препараты, как цетуксимаб (Erbitux) и панитумумаб (Vectibix).

Таким образом, если у вас обнаружен ген KRAS «дикого типа», ингибиторы EGFR могут подойти. Если у вас есть мутация KRAS, онколог должен порекомендовать другие методы лечения метастатического колоректального рака.

Анализ на онкотип DX помогает врачу решить, требуется ли вам химиотерапия.

Адъювантная химиотерапия после удаления опухолей кишечника обычно назначается для повышения эффективности лечения при высоком риске рецидива. Раньше врачи принимали во внимание только стадию и локализацию опухоли.

Новый анализ на онкотип DX дает онкологу бесценную информацию для решения о проведении адъювантной химиотерапии. Он подскажет, у каких пациентов с колоректальным раком II стадии высокий риск рецидива. Таким образом, простой анализ указывает подходящих кандидатов для химиотерапии.

Пациенты с низким риском могут избежать химиотерапии и ее побочных эффектов.

Эти современные анализы при раке кишечника требуют наличия опухолевых клеток. Выполняются они на образце ткани, удаленном во время операции.

В клиниках США полученные образцы отправляются вашим врачом в компанию, которая разработала конкретный анализ. Результаты могут быть готовы через несколько дней или недель, в зависимости от специфики исследования.

Лабораторные анализы на онкотип DX и мутации гена KRAS не могут сказать, вернется ли болезнь, и какое лечение будет самым лучшим. Здесь нужно учитывать многие факторы.

Цель этих исследований — предоставить дополнительную информацию о конкретной опухоли, чтобы помочь вам и вашим врачам в принятии объективного решения о терапии.

Константин Моканов: магистр фармации и профессиональный медицинский переводчик

источник

Неотъемлемой частью традиционного лечения онкологии является воздействие на весь организм с помощью химиотерапевтических препаратов. Однако клинический эффект от этого лечения не всегда бывает достаточно высок. Это случается из-за сложного механизма возникновения рака и индивидуальных различий организмов пациентов, их ответа на лечение и количество осложнений. Чтобы повысить эффективность лечения в целом, в мире начали уделять все больше внимания индивидуализации лечения.

Индивидуальному подбору лечения в онкологии стали придавать большое значение вслед за развитием и внедрением в широкую клиническую практику таргетных препаратов, а генетический анализ помогает их правильно подобрать.

Индивидуальное лечение – это, прежде всего, точное лечение конкретной опухоли. Почему лечение должно проводиться точно, обьяснять нет необходимости. Поэтому получение большего количества полезных сведений об организме дает надежду на жизнь: 76% онкопациентов имеют те или иные варианты генных мутаций. Генетические анализы помогут найти эту мишень, исключить неэффективное лечение, чтобы не потерять самое продуктивное для лечения время. А также снизить физическое и психологическое бремя пациента и его родных.

Генетические анализы при онкологии — это анализы, определяющие мутации генов, устанавливающих последовательности ДНК и РНК. Каждая опухоль имеет свой индивидуальный генетический профиль. Генетический анализ помогает подобрать препараты таргетной терапии, именно те, которые подойдут конкретно для вашей формы опухоли. И помогут сделать выбор в пользу более эффективного лечения. Например, у пациентов с немелкоклеточным раком легких при наличии мутации EGFR эффективность лечения Гефитинибом составляет 71,2%, а химиотерапии Карбоплатин+Паклитаксел 47,3%. При отрицательном значении EGFR эффективность Гефитиниба 1,1%, то есть препарат не эффективен. Анализ этой мутации напрямую дает понять, какое лечение лучше предпочесть.

С помощью генетических анализов можно точно подобрать наиболее эффективный препарат, что позволит избежать потери времени и бесполезных нагрузок на организм.

  • Больным на поздних стадиях онкологии.

Подбор эффективной таргетной терапии может значительно продлить жизнь пациентов с поздними стадиями, лечение которых традиционными методами уже не представляется возможным.

  • Больным с редкими видами рака или же с онкологией неизвестного происхождения.

В таких случаях подбор стандартного лечения представляет большую сложность, а генетические анализы позволяют подобрать точное лечение даже без определения конкретного вида рака.

  • Больным, ситуация которых не поддается лечению традиционными методами.

Это хороший выбор для пациентов, которые уже исчерпали возможности традиционного лечения, потому что генетические анализы позволяют выявить целый ряд дополнительных препаратов, которые можно применять.

  • Больным с рецидивами. Генетические анализы при рецидивах рекомендуется проверять повторно, потому что генные мутации могут измениться. И тогда по новым генетическим анализам будут подбираться новые препараты таргетной терапии.

В Китае, стране с высокими показателями по заболеваемости онкологией, индивидуализация лечения получила широкое признание, а генетические анализы для подбора таргетной терапии прочно вошли в клиническую практику. В Харбине генетические анализы проводятся на базе отделения онкологии Хэйлунцзянской центральной больницы «Нункэн»

Наиболее информативно пройти полный комплекс генетических анализов – это секвентирование второго поколения, проводимое с помощью высокоплотного нейтронного потока. Технология генетических анализов второго поколения позволяет за один раз проверить 468 важных опухолевых генов, можно выявить все типы всех генетических участков, имеющих отношение к опухоли, обнаружить особые типы ее генных мутаций.

Определяются разрешенные FDA лекарственные мишени, мишени для экспериментальных лекарств.

  • Гены, определяющие пути лекарств к мишеням — более 200 генов
  • Гены, восстанавливающие ДНК — более 50 генов

Лучевая и химиотерапия, ингибиторы PARP, иммуная терапия

  • Показательные наследственные гены — около 25 генов

Имеющие отношение к некоторым мишеням и эффективности химиотерапии.

  • Другие высокочастотные мутирующие гены

Имеющие отношение к прогнозам, диагностике.

Из-за большого количества больных, китайские специалисты – онкологи традиционно пошли дальше своих коллег из других стран в развитии и применении таргетной терапии.

Исследования таргетной терапии в различных вариациях ее применения привели к интересным результатам. Разные таргетные препараты действуют на соответствующие мутации генов. Но сами генные мутации, как оказалось, далеко не так жестко привязаны к определеному виду рака.

Например, у пациента с раком печени после проведения полного комплекса генетических анализов была выявлена мутация, при которой высокий эффект показывает препарат Иресса, предназначенный для рака легкого. Лечение этого пациента препаратом для рака легкого привело к регрессу опухоли печени! Этот и другие подобные случаи придали совершенно новый смысл определению генетических мутаций.

В настоящее время проверка полного комплекса генетических анализов позволяет расширить список препаратов таргетной терапии теми лекарствами, которые изначально не предусматривались для использования, что существенно увеличивает клиническую эффективность лечения.

Генетические анализы определяются по тканям опухоли (это предпочтительнее! подойдет опухолевый материал после операции или после пункционной биопсии) или по крови (кровь из вены).

Для более точного определения генных мутаций, особенно при рецидивах, рекомендуется проводить повторную биопсию с забором нового опухолевого материала. Если биопсия практически невозможна или рискованна, тогда анализ проводят по венозной крови.

Результат готов через 7 дней. Заключение содержит не только результат, но и конкретные рекомендации с названиями подходящих препаратов.

источник

Рак — заболевание, которое ежегодно уносит миллионы жизней, уступая среди причин смертности только сердечно-сосудистым патологиям. Ученые и врачи-онкологи уже давно ведут с ним борьбу, постоянно внедряя новые средства, которые помогают сохранить жизни всё большего числа пациентов. За последние десятилетия поле сражения сильно сместилось с гистологического и клеточного уровня на молекулярно-генетический.

Читайте также:  Где сдавать анализы на онкологию

Если раньше было лишь известно, что при раке меняется внешний вид и поведение клеток, то теперь ученые стремятся разобраться в процессах на уровне генов и отдельных молекул. Это стало возможным с развитием молекулярной биологии, и на этом поприще достигнуты немалые успехи.

Каждая клетка человеческого организма содержит около 30 тысяч генов. Среди них есть те, которые контролируют рост и размножение клетки, ее продолжительность жизни, отвечают за «починку» поврежденной ДНК.

Рак развивается из-за мутаций, в результате которых эти гены начинают работать неправильно. Генетические дефекты возникают случайно или при воздействии внешних факторов: курения, ультрафиолетового излучения, канцерогенов в пище и окружающей среде. Некоторые мутации (наследственные) человек получает от родителей, другие (приобретенные) — в течение жизни.

Каждый рак уникален, несет собственный набор мутаций. И эти различия могут сильно влиять на прогноз, чувствительность раковых клеток к тем или иным лекарственным препаратам. Выяснить это помогают специальные генетические анализы.

Генетические исследования в онкологии помогают решать важные задачи:

  • Обнаружить наследственные мутации и оценить риск развития рака, своевременно принять профилактические меры.
  • Разобраться, есть ли у человека генетические дефекты, связанные с повышенным риском онкологических заболеваний, которые он может передать своим детям.
  • Составить «молекулярно-генетический портрет» опухоли и выяснить, к каким препаратам она чувствительна.

Все генетические исследования на мутации, связанные с раком, можно разделить на две большие группы: те, которые проводят у здоровых людей, чтобы выявить риски, и те, которые проводят у онкологических больных, чтобы изучить опухолевые клетки и подобрать правильное лечение. Для каждой группы есть свои показания.

Обычно такие исследования назначают при поздних стадиях онкологических заболеваний, когда стандартные методы лечения не помогают. Эти анализы применяют для диагностики заболевания, подбора персонализированной терапии и оценки прогноза.

Наиболее распространенные исследования из этой группы:

  • При меланоме: исследования мутация в гене BRAF.
  • При немелкоклеточном раке легкого: гены EGFR, BRAF, ALK.
  • При раке толстой и прямой кишки: ген KRAS.
  • При раке молочной железы: ген HER2.
  • При раке яичников: гены BRCA1, BRCA2.

Эти мутации будут встречаться только в опухолевых клетках. В остальных, здоровых, тканях организма указанные гены будут функционировать нормально.

Наследственные мутации человек получает от родителей. Они присутствуют в половых клетках, а значит, их получат все клетки тела человека. В настоящее время с помощью генетического теста можно определить повышенный риск развития следующих типов рака:

  • яичников;
  • молочной железы;
  • щитовидной железы;
  • толстой кишки;
  • поджелудочной железы;
  • простаты;
  • желудка;
  • почки.

Кроме того, генетические исследования помогают оценить риск меланомы, сарком — злокачественных опухолей из соединительной ткани.

Эксперты из Американского общества клинической онкологии (American Society of Clinical Oncology) рекомендуют рассмотреть возможность проведения генетических исследований на наследственные мутации людям, у которых в семье часто встречались определенные типы злокачественных опухолей, если такой диагноз был установлен у близких родственников. Правильное решение о необходимости обследования помогут принять онколог, клинический генетик.

Генетические тесты показывают, в каких генах произошли изменения, связанные с повышенным риском рака. Выделяют две группы генов, в которых могут возникать такие мутации.

Протоонкогены кодируют белки, активирующие деление клеток. В норме они должны «включаться» лишь в определенное время. Если в протоонкогене возникает мутация, либо он становится чрезмерно активным (например, из-за увеличения количества копий), он превращается в онкоген, и нормальная клетка становится опухолевой.

Распространенные примеры онкогенов — EGFR и HER2. Эти белки-рецепторы встроены в клеточную мембрану. При активации они запускают цепочку биохимических реакций, в результате чего клетка начинает активно, бесконтрольно размножаться. Все мутации в протоонкогенах — приобретенные, они не наследуются.

Гены-супрессоры опухолей ограничивают размножение клеток, восстанавливают поврежденную ДНК, отвечают за «смерть» отработавших своё клеток. Рак возникает из-за того, что в результате мутаций эти гены перестают справляться со своей функцией. Например, гены BRCA1 и BRCA2 отвечают за репарацию ДНК. При наследственных мутациях в них у женщин повышен риск того, что будет диагностирован рак молочной железы, яичников.

Европейская клиника сотрудничает с ведущими зарубежными лабораториями. Они применяют современные технологии секвенирования, которые помогают быстро изучить ДНК человека и выявить изменения в сотнях генов:

  • замену оснований — «букв» генетического кода;
  • делеции — утрату участка хромосомы;
  • инсерции — «лишние» вставки ДНК в хромосомах;
  • изменение числа копий определенного гена;
  • фьюжн-мутации — слияние генов, в результате которого образуется новый, гибридный ген;
  • микросателлитную нестабильность;
  • мутационную нагрузку опухоли.

Генетические тесты могут нести некоторые негативные эффекты. Когда здоровый человек узнаёт, что у него мутация, связанная с повышенным риском рака, это может стать сильным эмоциональным потрясением. Врач порекомендует рассказать об этом членам семьи, чтобы они тоже знали о рисках, и это может сделать семейную атмосферу более напряженной. Сам по себе генетический анализ стоит недешево. Если его проводят у онкологического больного для подбора персонализированной терапии, рекомендованные по результатам исследования препараты тоже могут оказаться очень дорогими.

Если речь идет о наследственных мутациях, для анализа достаточно сдать кровь из вены. Для составления «молекулярно-генетического портрета» рака чаще всего нужен биоптат — образец ткани злокачественной опухоли. Существует и более современная методика — жидкостная биопсия, когда исследуют ДНК опухолевых клеток, циркулирующую в крови.

Точность обнаружения мутаций с помощью современных генетических исследований составляет почти 95%.

Для того чтобы анализ показал достоверный результат, врач-онколог должен правильно провести биопсию, соблюдать технику фиксации (специальной обработки) ткани. Организация, которая отправляет материал в лабораторию, должна соблюдать правила транспортировки. В противном случае провести исследование не получится.

Если анализ на наследственные мутации показал отрицательный результат, это значит, что у человека нет генетических дефектов, повышающих риск развития тех или иных злокачественных опухолей. Но это не значит, что он никогда не заболеет раком. Просто его риски несколько ниже. Аналогично положительный результат не говорит о том, что у пациента обязательно будет диагностировано онкологическое заболевание. У него повышены риски, и, возможно, потребуются некоторые профилактические мероприятия.

Иногда результат исследования на наследственные мутации сомнителен. В таких случаях многие онкологи и клинические генетики предпочитают считать, что риск рака всё же повышен, и рекомендуют некоторые меры профилактики. В ряде случаев ситуацию помогают прояснить анализы близких родственников.

Иногда обнаруживают неизвестные изменения в генах. Непонятно, то ли это вариант нормы, то ли нейтральная мутация, то ли она повышает риск рака.

Если анализ проводится у онкологического пациента для подбора эффективного лечения, лаборатория высылает лечащему врачу отчет, в котором указывает:

  • обнаруженные мутации;
  • список научных публикаций, в которых эти мутации фигурируют;
  • препараты, одобренные для лечения рака с такими генетическими дефектами;
  • препараты, которые в настоящее время не одобрены для лечения данного типа рака, но успешно применяются для борьбы с другими злокачественными опухолями с аналогичными мутациями.

На основе этой информации онколог принимает решение по поводу дальнейшего лечения.

В Европейской клинике есть всё для того, чтобы, при необходимости, назначить онкологическому пациенту персонализированную терапию, замедлить прогрессирование болезни и продлить жизнь. Мы применяем все препараты последних поколений, зарегистрированные на территории России, и сотрудничаем с ведущими европейскими, американскими лабораториями, которые проводят генетические исследования в онкологии.

Мы знаем, как помочь, если в другой клинике сказали, что больше ничего нельзя сделать, или лечение, назначенное ранее, перестало помогать. Свяжитесь с нами.

источник

Успехи современной клинической онкологии неоспоримы. Все более сложные операции, новые препараты, эффективные методы обезболивания и устранения мучительных симптомов. Мы в нашем блоге достаточно рассказывали о том, как сегодня можно продлить и облегчить жизнь пациентам даже на последних стадиях болезни.

Но, тем не менее, тысячи онкологических больных во всем мире ежедневно узнают, что опухоль, которая вчера поддавалась определенному лечению — сегодня снова растет или дает метастазы. Врачи регулярно оказываются в тупике: все положенные лекарства и методы лечения перепробованы, и эффективных для данного пациента — не осталось.

Однако даже из этого тупика можно найти выход. С развитием генетики и молекулярной биологии в руках онкологов оказался новый способ изучить опухоль, чтобы найти в ней уязвимые места.

Для этого используют тестирование — определение особенностей ДНК раковых клеток. Метод сложный технически, дорогой, требует специфических знаний от врача.

Исследование занимает 3 недели, стоит от 250 до 670 т.р. В результате врач получает отчет в 30 страниц сложной информации, которой он еще должен уметь воспользоваться. Но пациентам, которые уже было перестали надеяться, это дает дополнительное время жизни.

Мы в «Медицине 24/7» регулярно прибегаем к исследованию, чтобы лечить человека тогда, когда «все перепробовали — больше ничего не сделать». И пациенты, которым, казалось, ничем больше не помочь — продолжают жить. Одни — два месяца вместо двух недель, а другие — годы вместо пары месяцев.

Сегодня мы хотим рассказать о том, как делается тестирование, в каких случаях оно может помочь пациенту и какие знания дает врачу.

«Порядочные» клетки живут, не мешая другим. Используют строго отведенное количество ресурсов, достойно выполняют свои биологические функции, а в положенное время — умирают, уступая место следующим поколениям (этот процесс называется апоптозом). Каждые 7–10 лет тело человека полностью обновляется.

Для этого все соматические клетки (те, из которых состоит организм), кроме эритроцитов, беспрестанно делятся.

Перед делением клетка запасается «копией» наследственной генетической информации, которая находится в ее ядре. Нити ДНК, «свернутые» в хромосомы внутри ядра — реплицируются, удваиваются. И уже после этого клетка делится, спокойно раздавая каждой из дочерних клеток по идентичному набору хромосом. Из одной клетки получается две абсолютно таких же, и вместе со своим генетическим багажом каждая из них получает «знания» о том, как ей надо жить, какую функцию выполнять и сколько раз в жизни делиться.

Иногда в процессе деления получаются сбои — мутации. То нить ДНК порвется, то скопируется с ошибкой, то участки хромосом перемешаются. Влиять на это может сотня факторов: от стресса и табачного дыма до воздействия радиации.

1. Замена пары оснований ( polymorphism, SNP): один нуклеотид — «буква» генетического кода — меняется на другой. Нарушается и структура белка, закодированного этой последовательностью нуклеотидов.

2. Хромосомные аберрации.

Делеция — утрата участка хромосомы. Происходят обрыва концевого участка или разрыва ДНК сразу в двух местах. Всё — этот ген в хромосоме больше не экспрессируется.

Оторванные «кусочки» ДНК могут встроиться в соседнюю хромосому — получится инсерция (или инверсия, если вставка произойдет в обратной последовательности). Иногда между хромосомами происходит «взаимный обмен» участками ДНК — транслокация. Итог один: экспрессируются «лишние» гены.

Мутации изменяют не только структуру участка ДНК, но и порядок этих участков

3. Слияние генов — ген «собирается» из частей других генов и экспрессируется (срабатывает) как одно целое. Белок при экспрессии такого химерного гена тоже получается необычный, гибридный, с вредными свойствами.

Два гена «склеились» при транслокации и образовали химерный ген (вызывает лейкоз)

Нам повезло, что в ДНК полно не слишком значимых участков, которые не кодируют ничего. Многие мутации происходят в этих областях — и оказываются незначительными, не имеют влияния на дальнейшую работу клеток. И такая клетка с небольшим отличием от «эталона» продолжает нормально жить и делиться.

За 70 лет в теле человека происходит 100 трлн клеточных делений. Это 1,4 трлн делений в год — достаточно случаев, чтобы со временем накопить «критическую массу» ошибок в ДНК, или чтобы очередной сбой попасть в участок ДНК, кодирующий важное. Получится небезобидная мутация, которой клетка станет злокачественной (малигнизируется).

Злокачественную клетку от нормальной отличает нарушение клеточного цикла.

Клеточный цикл (жизнь клетки от деления до деления/гибели) строго регулируется работой специальных белков: киназы, циклины, факторы роста и транскрипционные факторы — в каждой живой клетке их десятки, и у каждого своя узкоспециальная, но важная функция.

Они передают сигналы между клетками многоклеточного организма, активируют друг друга, запускают процесс деления и контролируют его корректность, поддерживают правильную активацию генов, выполнение клеткой своих функций, «проверяют» целостность генома, «командуют» клетке начать апоптоз, если ей пора умирать,

Каждый этап клеточного цикла контролируется

И каждый из этих белков закодирован в определенном участке ДНК — гене. Если такой ген подвергнется вредной мутации — он «воспроизведет» соответствующий неправильно. А «неправильный» нарушит работу клеточного цикла, и с ним — поведение всей клетки.

Например, «ломается» ген пролиферации (разрастания массы клеток) — и «мутанты» начинают делиться больше положенного, «давят» здоровые клетки.

Таких значимых генов, изменения в которых могут привести к канцерогенезу (возникновению рака) — две больших группы.

Протоонкогены — «нормальные» гены, которые могут стать онкогенами усиления или изменения их функций. Гены, экспрессия которых может привести к малигнизации клетки и развитию новообразования, называются онкогены. Если в протоонкогене произойдет вредная мутация, он становится онкогеном и может вызвать опухоль.

Читайте также:  Где сделать анализы на рак

Из тех, что наиболее хорошо изучены и у всех на слуху:

  • EGFR, ALK, BRAF — немелкоклеточный рак легкого;
  • BRAF — меланома;
  • HER2 — рак молочной железы (РМЖ);
  • KRAS — колоректальный рак.

Причем, мутации этих генов бывают обнаружены при нескольких видах опухолей. Например, повышенная экспрессия HER2 обнаруживается не только при РМЖ, но и при раке легкого и желудка.

Мутация в протоонкогене белка BRAF приводит к неконтролируемому росту опухоли.

опухоли (антионкогены) — напротив, могут подавить рост опухолевых клеток или участвуют в репарации (починке) поврежденной ДНК. А вот инактивация в результате мутации — резко увеличивает вероятность появления злокачественной опухоли.

  • мутации BRCA1, BRCA2 — рак молочных желез, яичников;
  • мутации p53 — до 50% различных видов раковых опухолей, саркомы;

В норме действуют защитные механизмы против развития мутировавших клеток. Дефект в опухоли «выключает» их

Всего изучено влияние нескольких десятков протоонкогенов и опухолевых супрессоров на канцерогенез.

Зачем столько сложностей и как они продлевают жизнь пациентам

Каждая найденная в протоонкогене или мутация — это причина «суперспособностей» раковой клетки, типа пренебрежения к апоптозу и умения скрываться от иммунитета. Но одновременно — это и ее потенциально слабое место.

Зная, в чем причина особенностей механизма работы опухоли — можно найти вещество, которое этот механизм «заклинит», прервет цепь патологических реакций в клетке. , специфические мутации в опухоли — указывают мишень, по которой врачи «бьют» лекарством. Этот принцип позволил разработать таргетную терапию.

Таргетная терапия — название целой ветви эффективной лекарственной терапии рака — родилось именно от английского слова мишень (target). Таргетные препараты действуют «прицельно» на раковые клетки — потому что мутации в соответствующих генах есть только у них. У здоровых клеток таких мутаций нет — и на них препараты не действуют.

На рисунке ниже — механизм действия таргетного препарата Иматиниб на клетки опухоли с мутацией «филадельфийская хромосома»: слитый ген . Эта мутация приводит к тому, что в клетке прекращает срабатывать механизм апоптоза — накапливаются ошибки в геноме, клетка перерождается в раковую.

Иматиниб связывается с активным участком молекулы белка , и блокирует его способность взаимодействовать с остальными молекулами в цепочках сигнальных путей.

Так что таргетные препараты имеют 2 важных преимущества перед классической химиотерапией.

Более высокая эффективность. Прицельное действие на опухолевые клетки позволяет добиться лучшего «ответа» опухоли на лечение. Например, по сравнению с классическим лечением, добавление таргетного препарата Трастузумаб вместе с химиотерапией при РМЖ с гиперэкспрессией HER2 заметно увеличило частоту «ответов» — 81% против 73%, и частоту полной морфологической ремиссии (исчезновение опухоли) — 43% против 23%

Меньше побочных эффектов. Классические химиопрепараты — с цитотоксическим действием. По сути, токсические вещества, чтобы убить или, по крайней мере, замедлить рост раковых клеток. Сильнее всего они действуют на клетки, которые быстро делятся. Именно поэтому от нее, например, выпадают волосы: это тоже вид активно делящихся клеток, и они «попадают под раздачу». такого не слишком прицельного действия, химиотерапевтические препараты дают серьезные побочные эффекты: страдают и ЖКТ, и другие органы.

В практике «Медицины 24/7» мы чаще всего назначаем таргетные препараты в составе комплексного лечения: сочетаем и химиотерапию, и таргет, и иммунотерапию.

Так же, как уникален код ДНК у каждого человека — неповторимы и опухоли. Ведь они «рождены» из собственных клеток организма. Не существует опухолей с одинаковыми свойствами. Поэтому создать универсальную «таблетку» от рака — принципиально невозможно. Рак — слишком индивидуальное заболевание.

Но и лечение для него должно быть соответствующее — индивидуально подобранное для конкретного пациента — на основе того, что мы определяем мутации в его опухолевых клетках.
В совсем недалеком прошлом злокачественные опухоли можно было классифицировать только по гистологии, то есть в зависимости от того, в каком органе они возникли, и как выглядели раковые клетки под микроскопом.

Чтобы эффективно использовать таргетную терапию, этого мало. Врач должен знать, какие мутации есть в опухолевых клетках у конкретного пациента, присутствуют ли в них биомаркеры-«мишени» для того или иного препарата. Персонализированная медицина, как она есть.

Для этого мы и применяем исследования. Чтобы найти «мишени», по которым нужно прицельно бить таргетными и иммунотреапевтическими препаратами — нужно определить, из каких генов собрана ДНК опухоли, и какие гены в ней — «сломаны». В результате:

  • узнаем чувствительность опухоли к препаратам;
  • выясним, есть ли у опухоли устойчивость к определенным лекарствам;
  • обнаружим генетические особенности, которые дают гиперчувствительность к препаратам;
  • подберем новое лечение, если опухоль перестала отвечать на стандартную терапию;
  • обнаружим опухоль/метастаз на очень ранней стадии — по обрывкам ее ДНК в крови;
  • можем прогнозировать благоприятное или агрессивное течение заболевания.

Образцом выступает чаще всего ткань опухоли, либо взятая во время операции по удалению первичного очага, либо биопсия — микроскопический кусочек опухоли берут специальной тонкой длинной иглой.

Можно поискать ДНК опухолевых клеток в крови — тогда нужна так называемая жидкостная биопсия, две пробирки с кровью по 8,5 мл.

При биопсии мы часто сталкиваемся с тем, что многие пациенты боятся вообще трогать опухоль — опасаются, что ее это спровоцирует на рост. На сегодня не доступны исследования, которые бы показали такую взаимосвязь. Конечно, биопсию надо выполнять правильно. У нас чаще всего врачи при заборе биоптата помечают место входа иглы: либо делают маленькую татуировочку (есть и такой инструмент ), либо скобку (хирургическую) ставят. Если потом понадобится операция, они иссекают весь этот ход, где была игла — от кожи до опухоли — так мы делаем шанс распространения раковых клеток за пределы опухоли еще меньше.

Далее образцы отправляются в лабораторию исследований.

Там из образца выделяют опухолевую ДНК и секвенируют ее. То есть — «прочитывают» последовательность «букв»-нуклеотидов. А затем сравнивают с диагностической панелью, отобранной из базы библиотек — уже расшифрованных геномов тысяч других людей. Панель подбирают под каждого пациента — с учетом анамнеза и клинических данных. Все это, разумеется, делают автоматические секвенаторы и компьютер.

И если 20 лет назад «чтение» генома занимало месяцы, требовало медленной и сложной расшифровки, то сегодня в лаборатории, с которой мы сотрудничаем, делают анализ за несколько рабочих дней.

Причем применяют сразу несколько методов: секвенирования нового поколения (NGS), секвенирование по Сэнгеру и метод флуоресцентной гибридизации (FISH). Вместе они позволяют прочесть всю последовательность ДНК опухоли, выяснить драйверные мутации — то есть те, которые запустили злокачественный процесс и теперь могут быть мишенью для таргетной терапии — и даже визуализировать весь кариотип (хромосомный набор).

Под стрелкой слева — слияние красного и зеленого сигнала — свидетельство о слияния генетического материала хромосом 9 и 22 с образованием химерной филадельфийской хромосомы.

Кроме того, в полном исследовании обязательно определяют микросателлитную нестабильность (MSI, microsatellite instability) — нарушение в работе механизма репарации ДНК, которые приводят к быстрому накоплению мутаций в клетках. Этот фактор позволяет делать прогноз по поводу дальнейшего течения заболевания.

Специальные программы обрабатывают полученные результаты и составляют рекомендации автоматически. Но затем эти рекомендации обязательно вручную курируются командой экспертов. В анализе участвуют генетики, биоинформатики, , иммунологи и химиотерапевты. На этом этапе обязательно происходят уточнения и дополнения.

В зависимости от запроса, такое исследование может занимать от 5 до 15 рабочих дней: одному пациенту нужно просто определить тип опухоли и уточнить рекомендованную терапию — достаточно проверить наличие базового набора из 20 мутаций ДНК по рекомендациям мировых онкологических ассоциаций. А другому, с редким диагнозом или резистентностью к стандартному лечению — нужно составить «молекулярный паспорт» опухоли, а для этого — секвенировать 400 генов.

В итоге, в первой части отчета прописаны все найденные мутации в опухоли пациента, и таргетные препараты, которые будут наиболее эффективны в данном случае. Указана таргетная терапия, одобренная для данного типа опухолей с обнаруженными мутациями, и таргетная терапия, которая одобрена для лечения других типов рака с теми же мутациями. У нас в практике были случаи, когда назначались препараты именно второго порядка, — и хорошо действовали.

Далее сотрудники лаборатории проводят огромную работу по мониторингу научных исследований, которые могут быть значимы в случае с данным пациентом.

Во второй части отчета находится обзор существующих на тот момент исследований с подробными данными о частоте встречаемости данной мутации, о действии разных препаратов и о возможности использовать тот или иной вид таргетной терапии при выявленных мутациях. Это помогает составить хотя бы приблизительный прогноз для пациента.

В третьей части отчета собраны актуальные клинические исследования, в которых пациент может принять участие, чтобы получить экспериментальное лечение. Это самый последний запасной способ, но знать о нем все подробности — полезно для спокойствия пациента.

В итоге, из этого отчета врач получает максимально полный профиль злокачественной опухоли. У него есть информация что именно лечим, какую конкретно поломку в клетке. Есть самое «свежее» понимание, какие препараты сегодня уже одобрены или доступны для использования в рамках клинических исследований.

Отчет получается довольно увесистым — 30 страниц захватывающего чтения

Тем, у кого развилась резистентность опухоли или непереносимость ко всем препаратам из стандартного протокола лечения. Ситуация, когда «все перепробовали — не помогло».

В принципе, нынешние стандарты лечения, особенно европейские и американские протоколы (NCCN), которые мы применяем в «Медицине 24/7», обладают хорошим терапевтическим потенциалом — не зря они считаются «золотым стандартом» лечения в онкологии.

По этим стандартам, сначала назначают препараты линии терапии — те, что статистически лучше всего помогают при данном диагнозе. Смотрят динамику. Если опухоль не реагирует на лечение или — что хуже — прогрессирует — переходят к препаратам линии — тем, что по результатам исследований давали чуть менее успешное лечение. Если эти препараты тоже перестают помогать — идем к линии, Многим пациентам длины этой «цепи» хватает до конца жизни.

Но регулярно, к сожалению, врачи оказываются в тупике: в ситуации, когда все линии «протокольной» терапии закончились, а пациент жив и прогрессирует. Коварство раковых опухолей — в их изменчивости. Они очень быстро мутируют дальше, и приспосабливаются к любым условиям, к любым препаратам. Для пациента это означает развитие резистентности — все препараты, прописанные в протоколах лечения, перестали действовать на его опухоль.

Нужно продолжать лечение — а у врача закончились «инструменты», предписанные официальными стандартами лечения. Есть другие препараты, есть право назначить их , вне стандартных линий терапии. Но как узнать, какое лекарство выбрать?

В этом случае исследование и дает нам понимание, какой препарат будет эффективен против данной опухоли, именно с этим набором мутаций. Назначение такого препарата позволяет выиграть главный для онкопациента ресурс — время.

Опухоли неоднородны. Они состоят из разных клеток, которые могут отличаться весьма значительно. И, например, в 80% клеток опухоли мутация определенного гена присутствует, а 20% клеток поделились с другим распределением хромосом — и остались немутировавшими. Да, мы назначаем препарат по результатам теста, и против 80% опухолевых клеток он сработает эффективно, но для оставшихся 20% нужно будет придумывать другое лечение.

Некоторые виды рака гетерогенны, например, РМЖ. А некоторые опухоли, такие как саркомы, напоминают по структуре винегрет. Это затрудняет и диагностику, и лечение: нельзя заранее узнать, в какой части опухоли какие клетки, сколько их видов, как сильно они отличаются. И нельзя, грубо говоря, взять 10 образцов из разных мест опухоли — по ним придется сделать 10 отдельных генетических исследований.

До 30% таргетных и иммунопрепаратов в России назначается без соответствующего обоснования — без исследований генетики опухоли. И часть этих лекарств оказывается пустой тратой средств бюджета и денег пациента, потому что назначать таргетное лечение без понимания генетики опухоли — это рулетка: зарегистрировано более 600 препаратов. Например, для рака молочной железы есть пять протоколов лечения, в зависимости от мутации гена HER2/Neu.

В западной медицине определение генетического профиля опухоли уже становится стандартом лечения. Для российских онкопациентов тестирования — все еще редкий случай, к сожалению — для бюджетной медицины это пока дорого. Но есть надежда, что все изменится к лучшему. Если сейчас оно стоит 600 тыс. руб., то 5 лет назад стоило больше миллиона — технология становится все проще и совершеннее, а, значит, популярнее и доступнее. Здесь время работает на нас.

Большинство онкологов в России НЕ используют тесты. Потому что не имеют достаточного опыта работы с ними и специфических знаний. Не получится просто открыть отчет и «списать» оттуда лечение. Нужно принимать во внимание множество факторов, понимать, как все эти многочисленные мутации влияют друг на друга, на рост опухоли, на потенциальную индивидуальную переносимость пациентом препарата

Поэтому мало просо сделать генетический тест, нужно уметь понять результаты и сделать верные выводы. Мы с коллегами чаще всего сначала изучаем отчет сами (бывает, приходится посидеть над ним дома, в тишине после работы) — а потом еще и собираем консилиум, принимаем коллегиальное решение.

Читайте также:  Где сдавать анализы на рак

Необходимо продумывать комбинации из таргетных препаратов, уметь сочетать их химиотерапевтическими лекарствами, предусматривать возможные побочные эффекты таких «коктейлей». Это довольно сложная задача — и врач должен быть очень мотивирован постоянно учиться.

Но хорошие истории пациентов, честно говоря, всегда мотивируют лучше всего.

Сейчас у нас есть пациентка, 48 лет, с рецидивирующей глиобластомой (агрессивная опухоль мозга). К нам она попала после того, как прошла две линии терапии в государственном онкоцентре. Там все делали правильно, проводили лучевую терапию и назначали таргетный препарат, но опухоль все равно вернулась. Женщине отвели полгода жизни.

Мы предложили ей полное тестирование. Да, оно стоит 600 тыс. рублей, сокращенный вариант, за 250, в ее случае не подошел — нужно было расширенное тестирование, с максимально полным набором мутаций.

Но по результатам обследования назначили ей препарат, который предназначен обычно для лечения немелкоклеточного рака легкого. Он эффективен против опухолей с мутацией EGRF — у нашей пациентки глиобластома была именно с этой мутацией.

Женщина ходит к нам лечиться и наблюдаться уже 4 года. Это в 5 раз дольше, чем при стандартной терапии. Причем, она самостоятельна, живет эти 4 года обычной жизнью, ходит на работу и собирается дождаться внуков.

Так что, хоть нам в «Медицине 24/7» и приходится все время держать мозги в тонусе, разбираться в новых и новых исследованиях генетических мутаций — результаты определенно того стоят.

Материал подготовлен кандидатом медицинских наук, врачом-онкологом, заместителем главного врача по лечебной работе клиники «Медицина 24/7» Антоном Александровичем Ивановым по материалам открытых источников.

источник

Три эксперта в области онкологии о раке, наследственности и генетическом тестировании

Онкологические заболевания ежегодно уносят миллионы жизней. Среди причин смерти рак занимает второе место после сердечно-сосудистых заболеваний, а по сопровождающему его страху — определённо первое. Такая ситуация сложилась из-за представления, что рак сложно диагностировать и практически невозможно предотвратить.

Однако каждый десятый случай заболеваемости раком — это проявление мутаций, заложенных в наших генах с самого рождения. Современная наука позволяет их отловить и значительно уменьшить риск возникновения заболевания.

Эксперты в области онкологии рассказывают, что такое рак, как сильно на нас влияет наследственность, кому показано генетическое тестирование в качестве меры профилактики и как оно может помочь, если рак уже обнаружен.

Рак — это, по сути, генетическое заболевание. Мутации, вызывающие онкологические заболевания, либо наследуются, и тогда они есть во всех клетках организма, либо появляются в какой-то ткани или конкретной клетке. Человек может унаследовать от родителей определённую мутацию в гене, который защищает от рака, или мутацию которая сама по себе может привести к раку.

Ненаследственные мутации возникают в изначально здоровых клетках. Они возникают под воздействием внешних канцерогенных факторов, например, курения или ультрафиолетового излучения.

В основном рак развивается у людей в зрелом возрасте: процесс возникновения и накопления мутаций может занимать не один десяток лет. Этот путь люди проходят гораздо быстрее, если уже при рождении они унаследовали поломку. Поэтому при опухолевых синдромах рак возникает в гораздо более молодом возрасте.

Прошлой весной вышла замечательная статья в Science — о случайных ошибках, которые возникают в ходе удвоения молекул ДНК и являются основным источником появления онкогенных мутаций. При таких видах рака, как рак простаты, их вклад может достигать 95%.

Чаще всего причиной возникновения рака являются именно ненаследственные мутации: когда никаких генетических поломок человек не унаследовал, но в течение жизни в клетках накапливаются ошибки, которые рано или поздно приводят к возникновению опухоли. Дальнейшее накопление этих поломок уже внутри опухоли может сделать её более злокачественной или привести к возникновению новых свойств.

Несмотря на то, что в большинстве случаев онкологические заболевания возникают из-за случайных мутаций, надо очень серьёзно относиться к наследственному фактору. Если человек знает об имеющихся у него унаследованных мутациях, он сможет предотвратить развитие конкретного заболевания, риск возникновения которого у него очень велик.

Есть опухоли с ярко выраженным наследственным фактором. Это, например, рак молочной железы и рак яичников. До 10% случаев заболеваемости этими видами рака связаны с мутациями в генах BRCA1 и BRCA2. Самый распространенный среди нашего мужского населения вид рака — рак лёгкого — в основной массе вызывается внешними факторами, а конкретнее — курением.

Но если предположить, что внешние причины исчезли, то роль наследственности стала бы примерно такой же, как и у рака молочной железы. То есть, в относительном соотношении для рака лёгкого наследственные мутации видны довольно слабо, но в абсолютных числах это всё же вполне существенно.

Кроме того, наследственный компонент довольно значительно проявляет себя в раке желудка и поджелудочной железы, колоректальном раке, опухолях головного мозга.

Большая часть онкологических заболеваний возникает за счёт сочетания случайных событий на клеточном уровне и внешних факторов. Однако в 5-10% случаев предопределяющую роль в возникновении рака играет наследственность.

Представим себе, что одна из онкогенных мутаций появилась в половой клетке, которой повезло стать человеком. Каждая из примерно 40 триллионов клеток этого человека (а также его потомков) будет содержать мутацию. Следовательно, каждой клетке нужно будет накопить меньше мутаций, чтобы стать раковой, а риск заболеть определённым видом рака у носителя мутации будет существенно выше.

Повышенный риск развития рака передаётся из поколения в поколение вместе с мутацией и называется наследственным опухолевым синдромом. Опухолевые синдромы встречаются достаточно часто — у 2-4% людей, и вызывают 5-10% случаев рака.

Анджелина Джоли сделала профилактические операции, поскольку три её близких родственницы умерли от рака молочных желез и яичников (источник: fs.kinomania.ru)

Благодаря Анджелине Джоли самым известным опухолевым синдромом стал наследственный рак молочной железы и яичников, который вызывается мутациями в генах BRCA1 и BRCA2. У женщин с этим синдромом риск заболеть раком молочной железы составляет 45-87%, в то время как средняя вероятность этого заболевания гораздо ниже — 5,6%. Увеличивается вероятность развития рака и в других органах: яичниках (с 1 до 35%), поджелудочной, а у мужчин еще и предстательной железе.

Наследственные формы есть практически у любого онкологического заболевания. Известны опухолевые синдромы, которые вызывают рак желудка, кишечника, мозга, кожи, щитовидной железы, матки и другие, менее распространённые типы опухолей.

Знать о том, что у вас или и у ваших родственников есть наследственный опухолевый синдром, может быть очень полезно для того, чтобы снизить риск развития рака, диагностировать его на ранней стадии, и эффективнее лечить заболевание.

Носительство синдрома можно определить с помощью генетического теста, а на то, что вам стоит сдать тест, укажут следующие особенности семейной истории.

  • Несколько случаев одного вида рака в семье;
  • Заболевания в раннем для данного показания возрасте (для большинства показаний – раньше 50 лет);
  • Единичный случай определенного вида рака (например, рак яичников);
  • Рак в каждом из парных органов;
  • Больше одного типа рака у родственника.

Если для вашей семьи характерно что-либо из вышеперечисленного, вам следует проконсультироваться у врача-генетика, который определит, есть ли медицинские показания для того, чтобы сдавать генетический тест. Носителям наследственных опухолевых синдромов следует проходить тщательный скрининг на онкологические заболевания для того, чтобы обнаружить рак на ранней стадии. А в некоторых случаях риск развития рака можно существенно снизить с помощью превентивных операций и лекарственной профилактики.

Несмотря на то, что наследственные опухолевые синдромы встречаются очень часто, западные национальные системы здравоохранения пока не ввели генетическое тестирование на носительство мутаций в широкую практику. Тесты рекомендуется сдавать лишь при наличии определённой семейной истории, указывающей на определённый синдром, и только в том случае, если известно, что тестирование может принести человеку пользу.

К сожалению, такой консервативный подход пропускает множество носителей синдромов: слишком мало людей и врачей подозревает о существовании наследственных форм рака; высокий риск заболевания далеко не всегда проявляется в семейной истории; многие пациенты не знают о заболеваниях своих родственников, даже когда есть, кого спросить.

Всё это — проявление современной медицинской этики, которая гласит, что знать человеку стоит только то, что принесет ему больше пользы, чем вреда.

Причём право судить о том, что такое польза, что такое вред, и как они соотносятся друг с другом, врачи оставляют исключительно себе. Медицинское знание — такое же вмешательство в мирскую жизнь, как таблетки и операции, и поэтому меру знания должны определять профессионалы в светлых одеждах, а то как бы чего не вышло.

Я, как и мои коллеги, считаю, что право на знание о собственном здоровье принадлежит людям, а не врачебному сообществу. Мы делаем генетический тест на наследственные опухолевые синдромы, чтобы те, кто хочет узнать о своих рисках развития рака, могли реализовать это право, и взять на себя ответственность за собственную жизнь и здоровье.

В процессе развития рака клетки изменяются и теряют свой первоначальный генетический «вид», унаследованный от родителей. Поэтому, чтобы использовать молекулярные особенности рака для лечения, недостаточно исследовать только наследственные мутации. Чтобы узнать слабые места опухоли, нужно провести молекулярное тестирование образцов, полученных в результате биопсии или операции.

Нестабильность генома позволяет опухоли копить генетические нарушения, которые могут быть выгодными для самой опухоли. К ним относятся мутации в онкогенах — генах, которые регулируют деление клеток. Такие мутации могут многократно повышать активность белков, делать их нечувствительными к тормозящим сигналам или вызывать повышенную выработку ферментов. Это приводит к неконтролируемому делению клеток, а впоследствии и к метастазированию.

Некоторые мутации имеют известные эффекты: мы знаем, как именно они меняют структуру белков. Это даёт возможность разработать лекарственные молекулы, которые будут действовать только на опухолевые клетки, и при этом не будут уничтожать нормальные клетки организма. Такие препараты называют таргетными. Чтобы современная таргетная терапия работала, нужно до назначения лечения знать, какие мутации есть в опухоли.

Эти мутации могут различаться даже в пределах одного типа рака (нозологии) у разных пациентов, и даже в опухоли одного пациента. Поэтому для некоторых лекарств молекулярно-генетическое тестирование рекомендовано в инструкции к препарату.

Определение молекулярных изменений опухоли (молекулярное профилирование) — важное звено в цепочке принятия клинических решений, а его значимость будет только расти со временем.

На сегодняшний день в мире проводится более 30 000 исследований противоопухолевой терапии. По разным данным, до половины из них используют молекулярные биомаркеры для включения больных в исследование или для наблюдения в ходе лечения.

Но что даст пациенту молекулярное профилирование? Где его место в клинической практике сегодня? Хотя для ряда лекарств тестирование является обязательным, это всего лишь «надводная часть айсберга» современных возможностей молекулярного тестирования. Результаты исследований подтверждают влияние различных мутаций на эффективность лекарств, а некоторые из них можно встретить в рекомендациях международных клинических сообществ.

Однако известно ещё не менее 50 дополнительных генов и биомаркеров, анализ которых может быть полезным в выборе лекарственной терапии (Chakravarty et al., JCO PO 2017). Их определение требует использования современных методов генетического анализа, таких как высокопроизводительное секвенирование (NGS). Секвенирование позволяет обнаружить не только распространенные мутации, но «прочитать» полную последовательность клинически значимых генов. Это позволяет выявить все возможные генетические изменения.

На этапе анализа результатов используются специальные биоинформатические методы, которые помогают выявить отклонения от нормального генома даже если важное изменение встречается в небольшом проценте клеток. Интерпретация полученного результата должна опираться на принципы доказательной медицины, так как не всегда ожидаемый биологический эффект подтверждается в клинических исследованиях.

Из-за сложности процесса проведения исследований и интерпретации результатов молекулярное профилирование пока не стало «золотым стандартом» в клинической онкологии.

Однако есть ситуации, в которых этот анализ может существенно повлиять на выбор лечения:

К сожалению, даже на фоне правильно подобранного лечения заболевание может прогрессировать, и не всегда есть выбор альтернативной терапии в рамках стандартов для данного онкологического заболевания. В этом случае молекулярное профилирование может выявить «мишени» для экспериментальной терапии, в том числе в рамках клинических исследований (например TAPUR).

Некоторые виды рака, например, немелкоклеточный рак лёгкого или меланома, известны множеством генетических изменений, многие из которых могут быть мишенями для таргетной терапии. В таком случае молекулярное профилирование может не только расширить выбор возможных вариантов лечения, но и помочь расставить приоритеты при выборе препаратов.

Молекулярное исследование в таких случаях помогает на начальном этапе определить более полный спектр возможных вариантов лечения.

Молекулярное профилирование и персонализация лечения требуют сотрудничества специалистов из нескольких областей: молекулярной биологии, биоинформатики и клинической онкологии.

Поэтому такое исследование, как правило, стоит дороже обычных лабораторных тестов, а его ценность в каждом конкретном случае может определить только специалист.

источник