Меню Рубрики

Определение первичной структуры белка гидролиз аминокислотный анализ

Можно выделить следующие этапы выяснения первичной структуры белков и пептидов:

1. Выделение белка в чистом виде и определение его молекулярной массы

2. Определение аминокислотного состава

3. Определение N-концевой аминокислоты

4. Определение С-концевой аминокислоты

5. Определение аминокислотной последовательности

Выделение белка в чистом виде. Как правило, исходный материал содержит много различных белков. В связи с этим возникает проблема выделения из этой смеси интересующего белка в чистом виде. При очистке белков используются методы, которые основаны на разнице:

1.Поверхностного заряда белков

2.Молекулярного размера белков (зависящего от их молекулярной массы)

3.Биологической активности вследствие связывания с субстратами или ингибиторами

Разделение белков по разнице величины поверхностного заряда. Суммарный поверхностный электрический заряд белка при данном значении рН может быть отрицательным, нейтральным или положительным. Для разделения белков с различным зарядом, подобно тому, как это было в случае аминокислот, может быть использован метод ионообменной хроматографии (см. выше). Концентрацию белка в пробирках с элюатом определяют с помощью спектрофотометра по интенсивности поглощения ультрафиолетового света и строят графическую зависимость её от объема вытекшей из хроматографической колонки жидкости.

Разделение белков по молекулярной массе. Если представить молекулы белков в виде шариков различной величины, размер которых зависит от их молекулярной массы, то окажется, что у больших шариков будет большей молекулярная масса или размер молекул. Это означает, что белки можно разделить подобно частичкам в сите — молекулярном сите, образованном гелем. Такой способ часто называют гель-фильтрацией или хроматографией исключения размером. Ниже приводится иллюстрация того, как с помощью гель-фильтрации удается разделить смесь белков различного размера (рис.1.12).

Хроматографическую колонку заполняют набухшим гелем. Частицы геля приготовлены из связанного поперечными сшивками полисахаридного материала и содержат большое количество микропор. Размер микропор подбирают таким образом, чтобы в них проникали меньшие из разделяемых молекул, в то время как большие этого сделать не могли. Смесь разделяемых белков наносят на верхнюю часть колонки и элюируют буферным раствором. Увлекаемые током нисходящей жидкости большие молекулы, не имея возможности проникнуть в поры гелевых частиц, будут двигаться быстрее. Меньшие молекулы проникают в поры и задерживаются там. Если собирать вытекающий из колонки раствор равными порциями в пробирки, то окажется, что в более ранних порциях вытекающей жидкости будут содержаться белки больших размеров, а в более поздних — меньших размеров. Путем подбора размера пор можно добиться разделения самых разных смесей белков.

Рис.1.12. Схематическое изображение разделения белков методом гель-фильтрации

Если учесть, что размер молекулы зависит от молекулярной массы, то оказывается, что разделяя белки методом гель-фильтрации, одновременно можно установить его молекулярную массу.

Рис.1.13. График зависимости молекулярной массы белков от объема выхода их из хроматографической колонки в ходе гель-фильтрации

Объем вытекающего из колонки элюата обратнопропорционален логарифму молекулярной массы белка. Таким образом, достаточно знать объем жидкости, в котором вышел из колонки интересующий белок, чтобы, пользуясь подобным графиком, можно было установить его молекулярную массу (рис.1.13).

Ещё одним методом, который позволяет разделить белки в зависимости от их молекулярной массы, является гель-электрофорез (см. выше).

Ультрацентрифугирование. Если встряхнуть сосуд, заполненный песком с водой, а затем поставить его на ровную поверхность, то песок быстро осядет на дно благодаря силе земного притяжения. С высокомолекулярными веществами, находящимися в растворе, этого не произойдет, так как тепловое (броуновское) движение сохраняет их равномерное распределение в растворе. Оседание макромолекул, подобно песчинкам, произойдет, только если их подвергнуть значительному ускорению.

В 1923 году шведский биохимик Т. Сведберг впервые использовал ультрацентрифугирование. При скорости вращения ротора 80000 об/мин ему удалось показать, что многие белки состоят из субъединиц. Позже ультрацентрифугирование стало незаменимым методом для разделения белков, нуклеиновых кислот и субклеточных частиц.

Рис.1.14. Схематическое изображение зонального ультрацентрифугирования.

Образец наслаивают на градиент сахарозы (слева). После центрифугирования (середина) каждая частица осаждается на уровне, зависящем от его массы. После остановки ротора центрифужную пробирку прокалывают и разделенные частицы (зоны) собирают в пробирки (справа).

Осаждение проводят в растворе химически инертного вещества (сахарозы или CsCl), концентрация которого и, следовательно, плотность увеличивается в направлении от поверхности до дна центрифужной пробирки. Использование таких градиентов плотности значительно усиливает разрешающую способность ультрацентрифуги. Различают зональное препаративное ультрацентрифугирование (рис.1.14) и ультрацентрифугирование в равновесном градиенте плотности (изократное ультрацентрифугирование) (рис.1.15).

Разделение белков по разнице биологической активности вследствие связывания с лигандами. Характерной особенностью белков является их способность прочно связываться с различными молекулами, но нековалентными связями. На этом основан метод разделения белков аффинной хроматографией (рис.1.16).

Рис.1.16. Схематическое изображение принципа иммуноаффинной хроматографии

Антиген — лиганд для выделяемого белка. Антитело — выделяемый белок.

Молекулы веществ, с которыми специфически связываются определенные белки, ковалентно соединяют с частицами инертного матрикса. Тогда они выполняют роль своеобразных «рыболовных крючков», задерживающих необходимый белок. Все остальные белки транзитом проходят через колонку. Задержанный белок затем можно вымыть из колонки с помощью буферного раствора, содержащего в свободном состоянии такие же молекулы, которые выполняли роль «рыболовных крючков», или с помощью какого-нибудь другого реактива, способного нарушить это взаимодействие. Одним из вариантов этого метода является иммуноаффинная хроматография. Тогда антитела к определенному белку присоединяют к частицам сорбента. Они обеспечивают с очень высокой специфичностью задержку в колонке этого белка (рис.1.16).

Определение аминокислотного состава белка.До определения аминокислотной последовательности выделенного белка желательно иметь представление о его аминокислотном составе, то есть знать, какие аминокислоты и в каком количестве входят в состав его молекулы. Для этого проводят полный гидролиз белка с последующим количественным анализом высвободившихся аминокислот. Чаще используют кислотный гидролиз. Полипептид растворяют в 6N НCl в отсутствие кислорода, чтобы предотвратить окисление серусодержащих аминокислот. Смесь нагревают до 100-120 0 С и выдерживают при этой температуре в течение 10-100ч. К сожалению при этом способе гидролиза некоторые аминокислоты (Сер, Три, Тир, Глн, Асн) разрушаются.

Аминокислотный состав полипептидного гидролизата определяют с помощью автоматического аминокислотного анализатора. Прибор разделяет аминокислоты посредством ионообменной хроматографии (см. выше). Их идентифицируют по элюционному объему и количественно учитывают по интенсивности флюоресценции после проведения реакции с дансилхлоридом. Современные аминокислотные анализаторы проводят анализ гидролизата белка в течение 1ч с чувствительностью, которая позволяет определить до 1 пикомоля аминокислоты.

Определение N-концевой аминокислоты.Имеется несколько эффективных подходов, с помощью которых можно идентифицировать N-концевую аминокислоту. 1-Диметиламинонафталин-5-сульфонилхлорид (дансил хлорид) взаимодействует с первичными аминами с образованием дансилированного полипептида. Последующее проведение кислотного гидролиза позволяет высвободить из полипептидной цепи N-концевую аминокислоту в виде дансил-аминокислоты, обладающей интенсивной желтой флюоресценцией (рис.1.17).

Рис.1.17. Этапы определения N-концевой аминокислоты методом дансилирования

Благодаря этому дансил-производное аминокислоты можно идентифицировать хроматографически.

Ещё более популярным методом идентификации N-концевой аминокислоты является разрушение по Эдману (Pehr Edman — автор метода). Фенилизотиоцианат (ФИТЦ, реактив Эдмана) взаимодействует с N-концевой аминогруппой белков в слабо щелочной среде (рис.1.18). В результате образуется фенилтиокарбамильный продукт. Его обрабатывают безводной сильной кислотой, такой как трифторуксусная кислота. При этом тиазолиновое производное N-концевой аминокислоты отщепляется, в то время как остальные пептидные связи не подвергаются гидролизу. Тем самым разрушение по Эдману заключается в отщеплении остатка только N-концевой аминокислоты и сохранении оставшейся части полипептидной цепи.

Рис.1.18. Этапы определения N-концевой аминокислоты методом Эдмана

Тиазолиновое производное аминокислоты избирательно экстрагируют органическим растворителем и превращают в более стабильное фенилтиогидантоиновое производное. Последнее можно идентифицировать сравнением с известными стандартами при проведении тонкослойной хроматографии, электрофореза, высокоэффективной жидкостной хроматографии или газо-жидкостной хроматографии.Наиболее важным преимуществом расщепления по Эдману по сравнению с другими методами определения N-концевой аминокислоты является то, что, проводя повторно с одним и тем же пептидом эту процедуру, каждый раз можно идентифицировать новую N-концевую фенилгидантоин-аминокислоту, выясняя таким образом аминокислотную последовательность.

Идентификация С-концевой аминокислоты. Один из подходов заключается в использовании ферментов — карбоксипептидаз (катализирует отщепление от пептида С-концевой аминокислоты). Карбоксипептидазы, подобно другим ферментам, обладают субстратной специфичностью, то есть они катализируют отщепление определенных аминокислот. Вместе с тем, наличие рядом с С-концевой аминокислотой остатка Про делает невозможной её отщепление под влиянием карбоксипептидазы. В этом случае наиболее надежным считается метод гидразинолиза. Полипептид обрабатывают безводным гидразином при температуре 90 0 С в течение 20-100ч в присутствии ионообменного сорбента (в качестве катализатора). При этом разрушаются все пептидные связи, а из высвобождающихся аминокислот образуются гидразиды. Но С-концевая аминокислота высвобождается как свободная и поэтому её можно идентифицировать хроматографически.

Определение аминокислотной последовательности. Установление концевых аминокислот в исследуемом пептиде позволяет в дальнейшем определить всю его аминокислотную последовательность. Для этого обычно проводят повторное разрушение по Эдману (см. выше) в автоматическом приборе — секвенаторе, который был предложен П. Эдманом и Г. Бэгом. Современный такой прибор определяет 1 аминокислотный остаток в час. Таким способом можно установить последовательность расположения 40-60 остатков аминокислот. Затем накапливаются незавершенные реакции, продукты побочных реакций. Наряду с потерей самого пептида они делают малоинформативной и ненадежной дальнейшую идентификацию аминокислот. Чтобы установить последовательность их расположения в больших полипептидных молекулах, их подвергают расщеплению ферментативным или химическим путем на фрагменты с размерами, достаточными для проведения секвенирования (рис.1.19).

Рис.1.19. Аминокислотную последовательность полипептидной цепи определяют, совмещая перекрывающиеся последовательности фрагментов пептида. В данном случае после расщепления исследуемого пептида трипсином (катализирует разрыв пептидных связей, в образовании которых участвует карбоксильные группы Арг и Лиз), а в другом случае — бромцианом (CNBr) (катализирует разрыв пептидных связей, в образовании которых участвует Мет) были получены два набора пептидных фрагментов. Порядок связывания первых двух фрагментов, образовавшихся в результате действия трипсина, устанавливается на основании того наблюдения, что фрагмент Гли-Ала-Лиз-Лей-Про-Мет (результат расщепления CNBr) имеет последовательность аминокислот на N и С — концах, включающую N и С — концы двух трипсиновых фрагментов. Иными словами, обнаружение накладывающихся участков позволяет установить последовательность расположения пептидных фрагментов, то есть аминокислотную последовательность всего исследуемого пептида.

Исследование последовательности нуклеотидов ДНК — рутинная операция в молекулярной биологии.Этот метод в последнее время вытеснил другие методы исследования первичной структуры белков. Зная последовательность нуклеотидов, можно легко установить последовательность аминокислот (более подробное описание этого метода см. в главе 13).

Метод пептидных карт.Процесс определения аминокислотной последовательности в белке — процедура достаточно длительная. Её можно существенно ускорить в случае выяснения аминокислотной последовательности гомологичного белка[2], если у сравниваемого белка она уже известна. Метод носит название «метод пептидных карт» или «метод отпечатков пальцев». Он включает в себя сочетание хроматографии и электрофореза на бумаге продуктов неполного гидролиза сравниваемых белков. При этом пептидные фрагменты, отличающиеся аминокислотной последовательностью, будут обладать разной подвижностью по сравнению с таковыми у исходного белка (рис.1.21).

Рис.1.21. Сравнение «отпечатков пальцев» (окраска нингидрином) продуктов расщепления трипсином (а) гемоглобина А и (б) гемоглобина S. Пептиды, отличающиеся по подвижности, обведены квадратом. Они включают в себя 98 аминокислот, расположенных на N-конце b-субъединицы гемоглобина. Различие заключается в замене 6-ой аминокислоты (Глю) в составе Hb A на Вал в составе Hb S.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Доказано существование 4 уровней структурной организации белковой молекулы.

Первичная структура белка – последовательность расположения аминокислотных остатков в полипептидной цепи. В белках отдельные аминокислоты связаны друг с другом пептидными связями, возникающими при взаимодействии a-карбоксильных и a-аминогрупп аминокислот:

.

К настоящему времени расшифрована первичная структура десятков тысяч разных белков. Для определения первичной структуры белка методами гидролиза выясняют аминокислотный состав. Затем определяют химическую природу концевых аминокислот. Следующий этап — определение последовательности аминокислот в полипептидной цепи. Для этого используют избирательный частичный (химический и ферментативный) гидролиз.

Методы определения N-концевой аминокислоты

Метод Сэнджера, основанный на реакции с 2,4-динитрофторбензолом (ДНФБ). Образуется окрашенное в желтый цвет 2,4-динитрофенильное производное N-концевой аминокислоты, которую идентифицируют хроматографически.

Фенилтиогидантоиновый метод Эдмана. Фенилизотиоцианат реагирует со свободной a-аминогруппой N-концевой аминокислоты полипептида. Природу фенилтиогидантоина N-концевой аминокислоты устанавливают хроматографически, а укороченный на одну аминокислоту полипептиданализируют далее. Метод Эдмана осуществляют в специальном приборе — секвенаторе (от англ. sequence – последовательность).

Методы определения С-концевой аминокислоты

Ферментативные методы. Обработка полипептида карбоксипептидазой приводит к освобождению С-концевой аминокислоты, которуюустанавливают методом хроматографии.

Химический метод Акабори. Гидразин, вызывая распад пептидных связей, реагирует со всеми аминокислотами, за исключением С-концевой.

Следующий этап — определение последовательности аминокислот в полипептидной цепи. Проводят частичный гидролиз полипептидной цепи на короткие пептидные фрагменты. Избирательно гидролизующие вещества: цианогенбромид CNBr (по остаткам мет), гидроксиламин (по связям между остатками асп и гли), N-бромсукцинамид (по остаткам три). Пепсин ускоряет гидролиз связей, образованных остатками фен, тир и глу, трипсин — арг и лиз, химотрипсин — три, тир и фен.

Возможно применение рентгеноструктурного анализа, а также данных о комплементарной нуклеотидной последовательности ДНК.

Вторичная структура белка – конфигурация полипептидной цепи, т.е. способ упаковки полипептидной цепи в определенную конформацию
(рис. 1). Процесс этот протекает не хаотично, а в соответствии с первичной структурой белка.

а б
Рис. 1. Вторичная структура белка: а — a-спираль, б — b-структура

Стабильность вторичной структуры обеспечивается в основном водородными связями, однако определенный вклад вносят ковалентные связи – пептидные и дисульфидные.

Наиболее вероятным типом строения глобулярных белков считают
a-спираль. Закручивание полипептидной цепи происходит по часовой стрелке. Для каждого белка характерна определенная степень спирализации. Если цепи гемоглобина спирализованы на 75%, то пепсина — всего на 30%.

Тип конфигурации полипептидных цепей, обнаруженных в белках волос, шелка, мышц, получил название b-структуры. Сегменты пептидной цепи располагаются в один слой, образуя фигуру, подобную листу, сложенному в гармошку. Слой может быть образован двумя или большим количеством пептидных цепей.

Способность к образованию водородных связей, являющихся движущей силой при возникновении α- и β-структур в белковой молекуле, присуща разным аминокислотам в неодинаковой степени. Выделяют группу спиралеобразующих аминокислот: ала, глу, глн, лей, лиз, мет и гис. Вал, иле, тре, тир и фен способствуют образованию b-слоев полипептидной цепи. Гли, сер, асп, асн и про имеют отношение к преимущественному возникновению неупорядоченных фрагментов в ее составе.

В природе существуют белки, строение которых не соответствует ни
β-, ни a-структуре (коллаген).

Третичная структура белка – пространственная ориентация полипептидной спирали или способ укладки полипептидной цепи в определенном объеме. Первый белок, третичная структура которого была выяснена рентгеноструктурным анализом — миоглобин кашалота (рис. 2).

Читайте также:  Методы анализа специфических белков сыворотки

В стабилизации пространственной структуры белков, помимо ковалентных связей, основную роль играют нековалентные связи (водородные, электростатические взаимодействия заряженных групп, межмолекулярные ван-дер-ваальсовы силы, гидрофобные взаимодействия и т.д.).

Методами рентгеноструктурного анализа доказано существование уровней структурной организации белковой молекулы, промежуточных между вторичной и третичной структурами. Домен — это компактная глобулярная структурная единица внутри полипептидной цепи (рис. 3). Открыто много белков (в частности, иммуноглобулины), состоящих из разных по структуре и функциям доменов, кодируемых разными генами.

Рис. 2. Третичная структура миоглобина Рис. 3. Глобулярные домены в g-кристаллине (белке хрусталика глаза человека)

По современным представлениям, третичная структура белка после завершения его синтеза формируется самопроизвольно. Основной движущей силой является взаимодействие радикалов аминокислот с молекулами воды. При этом неполярные гидрофобные радикалы аминокислот погружаются внутрь белковой молекулы, а полярные радикалы ориентируются в сторону воды.

Процесс формирования нативной пространственной структуры полипептидной цепи — фолдинг. Из клеток выделены белки, названные шаперонами. Они участвуют в фолдинге (рис. 4). Описан ряд наследственных заболеваний человека, развитие которых связывают с нарушением вследствие мутаций процесса фолдинга (пигментозы, фиброзы и др.).

Рис. 4. Участие шаперонов в фолдинге белков

Все биологические свойства белков связаны с сохранностью их третичной структуры, называемой нативной. Белковая глобула не является абсолютно жесткой: возможны обратимые перемещения частей полипептидной цепи. Эти изменения не нарушают общей конформации молекулы. На конформацию молекулы белка оказывают влияние рН среды, ионная сила раствора, взаимодействие с другими веществами. Любые воздействия, приводящие к нарушению нативной структуры молекулы, сопровождаются частичной или полной потерей белком его биологических свойств.

Четвертичная структура белка — укладка отдельных полипептидных цепей, обладающих первичной, вторичной или третичной структурой, в пространстве, и формирование единого макромолекулярного образования.

Белковую молекулу, состоящую из нескольких полипептидных цепей, называют олигомером, а каждую входящую в него цепь — протомером. Олигомерные белки чаще построены из четного числа протомеров, например, молекула гемоглобина состоит из двух a- и двух b-полипептидных цепей (рис. 5).

Рис. 5. Молекула гемоглобина

Четвертичной структурой обладает около 5% белков, в том числе гемоглобин, иммуноглобулины. Субъединичное строение свойственно многим ферментам, в первую очередь тем, которые выполняют сложные функции. Почти все ДНК- и РНК-полимеразы имеют четвертичную структуру. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза формируют общую надмолекулярную структуру. Биологическую активность белок приобретает только при объединении входящих в его состав протомеров. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной.

Некоторые исследователи признают существование пятого уровня структурной организации белков. Это метаболоны —полифункциональные макромолекулярные комплексы разных ферментов, катализирующих весь путь превращений субстрата (синтетазы высших жирных кислот, пируватдегидрогеназный комплекс, дыхательная цепь).

Белок, выполняющий определенную функцию в живой клетке, может быть представлен несколькими формами — изофункциональными белками, или изобелками. Так, в эритроцитах человека обнаружено несколько форм гемоглобина: HbF характерен для эмбриональной стадии развития человека (фетальный гемоглобин), у взрослого человека преобладают НbА. Все формы гемоглобинов выполняют функцию переноса кислорода из легких в ткани, однако свойства разных гемоглобинов отличаются.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

источник

Уровни структурной организации белков

Первичная структура – строго определенная линейная последовательность аминокислот в полипептидной цепочке.

Стратегические принципы изучения первичной структуры белка претерпевали значительные изменения по мере развития и усовершенствования применяемых методов. Следует отметить три основных этапа в их развитии. Первый этап начинается с классической работы Ф. Сенгера (1953) по установлению аминокислотной последовательности инсулина, второй – с широкого введения в структурный анализ белка автоматического секвенатора (начало 70-х годов 20 века), третий – с разработки скоростных методов анализа нуклеотидной последовательности ДНК (начало 80-х годов 20 века).

Первичная структура белка определяется:

1. Природой входящих в молекулу аминокислот.

2. Относительным количеством каждой аминокислоты.

3. Строго определенной последовательностью аминокислот в полипептидной цепи.

Предварительные исследования перед определением первичной структуры белка

2. Определение молекулярной массы.

3. Определение типа и числа простетических групп (если белок конъюгированный).

4. Определение наличия внутри- или межмолекулярных дисульфидных связей. Обычно одновременно определяют наличие в нативном белке сульфгидрильных групп.

5. Предварительная обработка белков, обладающих 4-й структурой, с целью диссоциации субъединиц, их выделения и последующего изучения.

Стадии определения первичной структуры белков и полипептидов

1. Определение аминокислотного состава (гидролиз, аминокислотный анализатор).

2. Идентификация N- и С-концевых аминокислот.

3. Расщепление полипептидной цепи на фрагменты (трипсин, химотрипсин, бромциан, гидроксиламин и др.).

4. Определение аминокислотной последовательности пептидных фрагментов (секвенатор).

5. Расщепление исходной полипептидной цепи другими способами и установление их аминокислотной последовательности.

6. Установление порядка расположения пептидных фрагментов по перекрывающимся участкам (получение пептидных карт).

Методы определения N-концевых аминокислот

2. Метод Эдмана (реализован в секвенаторе).

3. Реакция с дансилхлоридом.

4. Метод с применением аминопептидазы.

Методы определения С-концевых аминокислот

2. Метод с применением карбоксипептидазы.

3. Метод с применением боргидрида натрия.

Общие закономерности, касающиеся аминокислотной последовательности белков

1. Не существует одной уникальной последовательности или группы частичных последовательностей, общих для всех белков.

2. Белки, выполняющие разные функции, имеют разные последовательности.

3. Белки со схожими функциями имеют похожие последовательности, однако совпадение последовательности проявляется обычно лишь в малой степени.

4. Одинаковые белки, выполняющие одинаковые функции, но выделенные из разных организмов, обычно имеют значительное сходство в последовательности.

5. Одинаковые белки, выполняющие одинаковые функции и выделенные из организмов одного вида, почти всегда обладают совершенно одинаковой последовательностью.

Высшие уровни структуры белков, их биологическая активность тесно связаны и фактически определяются аминокислотной последовательностью. То есть, первичная структура генетически детерминирована и определяет индивидуальные свойства белков, их видовую специфичность, на ее основе формируются все последующие структуры.

Вторичная структура белка – конфигурация полипептидной цепи, образующаяся в результате взаимодействий между её функциональными группами.

Разновидности вторичной структуры:

2. Складчатый лист (?-структура).

Первые две разновидности представляют собой упорядоченное расположение, третья – неупорядоченное.

Супервторичная структура белков.

Сравнение конформаций разных по структуре и функциям белков выявило наличие у них похожих сочетаний элементов вторичной структуры. Такой специфический порядок формирования вторичных структур называют супервторичной структурой. Супервторичная структура формируется за счет межрадикальных взаимодействий.

Разновидности супервторичной структуры белков:

1. Супервторичная структура типа ?-бочонка. Она действительно напоминает бочонок, где каждая ?-структура расположена внутри и связана ?-спиральным участком цепи, находящимся на поверхности. Характерна для некоторых ферментов – триозофосфатизомеразы, пируваткиназы.

2. Структурный мотив «?-спираль – поворот – ?-спираль». Обнаружен во многих ДНК-связывающих белках.

3. Супервторичная структура в виде «цинкового пальца». Характерна также для ДНК-связывающих белков. «Цинковый палец» – фрагмент белка, содержащий около 20 аминокислот, в котором атом цинка связан с радикалами четырех аминокислот: обычно с двумя остатками цистеина и двумя – гистидина.

4. Супервторичная структура в виде «лейциновой застежки-молнии». Объединение протомеров или отдельных белков в комплексы иногда осуществляется с помощью структурных мотивов, называемых «лейциновая застежка-молния». Примером такого соединения белков могут служить гистоны. Это ядерные белки, в состав которых входит большое количество положительно заряженных аминокислот – аргинина и лизина. Молекулы гистонов объединяются в комплексы с помощью «лейциновых застежек», несмотря на то, что все мономеры имеют сильный положительный заряд.

Содержание различных типов вторичных структур в белках.

Содержание типов вторичных структур в разных белках неодинаково.

По наличию ?-спиралей и ?-структур глобулярные белки можно разделить на 4 категории:

1. К первой категории относятся белки, в структуре которых обнаружена только ?-спираль. Это миоглобин, гемоглобин.

2. Ко второй категории относят белки с ?-спиралями и ?-структурами. Характерные сочетания ?-спиралей и ?-структур обнаружены во многих ферментах: лактатдегидрогеназа, фосфоглицераткиназа.

3. В третью категорию включены белки, имеющие только ?-структуру. Сюда относятся: иммуноглобулины, фермент супероксиддисмутаза.

4. В четвертую категорию включены белки, имеющие в своем составе лишь незначительное количество регулярных вторичных структур.

Третичная структура белка – пространственная ориентация полипептидной цепи или способ ее укладки в определенном объеме.

В зависимости от формы третичной структуры различают глобулярные и фибриллярные белки. В глобулярных белках чаще преобладает ?-спираль, фибриллярные белки образуются на основе ?-структуры.

В стабилизации третичной структуры глобулярного белка могут принимать участие:

1. водородные связи спиральной структуры;

2. водородные связи ?-структуры;

3. водородные связи между радикалами боковых цепей;

4. гидрофобные взаимодействия между неполярными группами;

5. электростатические взаимодействия между противоположно заряженными группами;

7. координационные связи ионов металлов.

Четвертичная структура белка – способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой (или различной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярного образования.

Четвертичная структура характерна для белков, состоящих из нескольких субъединиц. Взаимодействие между комплементарными участками субъединиц в четвертичной структуре осуществляется с помощью водородных и ионных связей, ван-дер-ваальсовых сил, гидрофобных взаимодействий. Реже возникают ковалентные связи.

Преимущества субъединичного построения белков по сравнению с одной длинной полипептидной цепью.

Во-первых, наличие субъединичной структуры позволяет «экономить» генетический материал. Для олигомерных белков, состоящих из идентичных субъединиц, резко уменьшается размер структурного гена и, соответственно, длина матричной РНК.

Во-вторых, при сравнительно небольшой величине цепей уменьшается влияние случайных ошибок, которые могут возникнуть в процессе биосинтеза белковых молекул. Кроме того, возможна дополнительная выбраковка «неправильных», ошибочных полипептидов в процессе ассоциации субъединиц в единый комплекс.

В-третьих, наличие субъединичной структуры у многих белков позволяет клетке легко регулировать их активность путем смещения равновесия «ассоциация-диссоциация» в ту или иную сторону.

Наконец, субъединичная структура облегчает и ускоряет процесс молекулярной эволюции. Мутации, приводящие лишь к небольшим конформационным изменениям на уровне третичной структуры за счет многократного усиления этих изменений при переходе к четвертичной структуре, могут способствовать появлению у белка новых свойств.

источник

Первичная структура белков. Гидролиз белков, определение аминокислотного состава. Анализ N- и С-концевых аминокислот.

Синтез белка происходит на рибосомах в виде первичной структуры, т.е. расположенных в определенном количестве и определенной последовательности аминокислот, соединенных пептидными связями, образованными карбоксильной и α-аминогруппами соседних аминокислотных остатков Пептидная связь — жесткая, ковалентная, генетически детерминированная.В структурных формулах изображается в виде одинарной связи: ,однако на самом деле эта связь между углеродом и азотом носит характер частично двойной связи:

Вокруг нее вращение невозможно и все четыре атома лежат в одной плоскости, т.е. компланарны. Вращение же других связей вокруг полипептидного остова достаточно свободно.

Первичная структура открыта в 1898 году профессором казанского университета Данилевским. В 1913 году Эмилем Фишером были синтезированы первые пептиды.

Такая последовательность аминокислот является уникальной для каждого белка и закреплена генетически. При нарушении процесса синтеза первичной структуры белка на рибосоме могут развиваться различные гететические заболевания. Например, при нарушении двух аминокислот в гемоглобине развивается серповидноклеточная анемия.

Для изучения аминокислотного состава белков пользуются сочетанием (или одним из них) кислотного (НСl), щелочного (Ва(ОН)2) и реже ферментативного гидролиза. Установлено, что при гидролизе чистого белка, не содержащею примесей, освобождается 20 различных а-аминокислот. Все другие открытые в тканях животных, растений и микроорганизмов аминокислоты (более 300) существуют в природе в свободном состоянии или в виде коротких пептидов или комплексов с другими органическими веществами.

α-аминокислоты представляют собой производные карбоновых кислот, у которых один водородный атом, у α -углерода, замещен на аминогруппу (-NH2), например: следует подчеркнуть, что все аминокислоты, входящие в состав природных белков являются а-аминокислотами, хотя аминогруппа в свободных аминикарбоновых кислотах может находиться, как увидим ниже, в β, γ, δ, ε -положениях.

9. Вторичная структура белков — α-спирали и β-структуры. Строение и функциональная роль доменов.

Вторичная структура — это пространственное расположение полипептидной цепочки в виде α-спирали или β-складчатости безотносительно к типам боковых радикалов и их конформации. Она стабилизирована водородными связями, которые замыкаются между пептидными, амидными (-N-H) и карбонидными (-C=O) группами, т.е. входят в пептидную единицу, и дисульфидными мостиками между остатками цистеина

Полинг и Кори предложили модель вторичной структуры белка в виде левозакрученной α-спирали, в которой водородные связи замыкаются между каждой первой и четвертой аминокислотой, что позволяет сохранять нативную структуру белка, осуществление им простейших функций, защищать от разрушения. На один виток спирали приходится 3,6 аминокислотных остатка, шаг спирали составляет 0,54 нм. В образовании водородных связей принимают участие все пептидные группы, что обеспечивает максимальную стабильность, снижает гидрофильность и увеличивает гидрофобность белковой молекулы. Альфа-спираль образуется самопроизвольно и является наиболее устойчивой конформацией, отвечающей минимуму свободной энергии

Полинг и Кори предложили и другую упорядоченную структуру — складчатый β-слой. В отличие от конденсированной α-спирали β- слои почти полностью вытянуты и могут располагаться как параллельно , так и антипараллельно

В стабилизации данных структур также принимают участие дисульфидные мостики и водородные связи.

Супервторичная структура — это более высокий уровень организации белковой молекулы, представленный ансамблем взаимодействующих между собой вторичных структур: α-спираль — два антипараллельных участка, взаимодействуют гидрофобными комплементарными поверхностями (по принципу впадина-выступ) αсα, сверхспирализация α-спирали, (βхβ)-элементы в глобулярных белках, представленные двумя параллельными β-цепями, связанные сегментом х, βαβαβ-элементы, представленные двумя сегментами α-спирали, вставленными между тремя параллельными β-цепями.

источник

Определение первичной структуры белков сводится к выяснению порядка расположения аминокислот в полипептидной цепочке. Эту задачу решают с помощью метода секвенирования (от англ. sequence –последовательность).

Принципиально первичную структуру белков можно определять путем непосредственного анализа аминокислотной последовательности или путем расшифровки нуклеотидной последовательности соответствующих генов с помощью генетического кода. Естественно, наибольшую надежность обеспечивает сочетание этих методов.

Собственно секвенирование на его сегодняшнем уровне позволяет определить аминокислотную последовательность в полипептидах, размер которых не превышает несколько десятков аминокислотных остатков. В то же время исследуемые полипептидные фрагменты значительно короче тех природных белков, с которыми приходится иметь дело. Поэтому необходимо предварительное разрезание исходного полипептида на короткие фрагменты. После секвенирования полученных фрагментов их необходимо снова сшить в первоначальной последовательности.

Таким образом, определение первичной последовательности белка сводится к следующим основным этапам:

Читайте также:  Метод определение белков аминокислотный анализ гидролиз

1) расщепление белка на несколько фрагментов длиной, доступной для секвенирования;

2) секвенирование каждого из полученных фрагментов;

3) сборка полной структуры белка из установленных структур его фрагментов.

Исследование первичной структуры белка состоит из следующих стадий:

– определение его молекулярной массы;

– определение удельного аминокислотного состава (АК-состава);

– определение N— и С-концевых аминокислотных остатков;

– расщепление полипептидной цепи на фрагменты;

– разделение полученных фрагментов;

– аминокислотный анализ каждого фрагмента;

– расщепление исходной полипептидной цепи еще одним способом;

– разделение полученных фрагментов;

– аминокислотный анализ каждого фрагмента;

– установление первичной структуры полипептида с учетом перекрывающихся последовательностей фрагментов обоих расщеплений.

Поскольку пока не существует метода, позволяющего установить полную первичную структуру белка на целой молекуле, полипептидную цепь подвергают специфичному расщеплению химическими реагентами или протеолитическими ферментами. Смесь образовавшихся пептидных фрагментов разделяют и для каждого из них определяют аминокислотный состав и аминокислотную последовательность. После того как структура всех фрагментов установлена, необходимо выяснить порядок их расположения в исходной полипептидной цепи. Для этого белок подвергают расщеплению при помощи другого агента и получают второй, отличный от первого набор пептидных фрагментов, которые разделяют и анализируют аналогичным образом.

1. Определение молекулярной массы(нижеперечисленные методы подробно рассмотрены в теме 3):

– по скорости седиментации (метод ультрацентрифугирования);

– электрофорез в ПААГ в диссоциирующих условиях.

2. Определение АК-состава. Анализ аминокислотного состава включает полный кислотный гидролиз исследуемого белка или пептида с помощью 6 н. соляной кислоты и количественное определение всех аминокислот в гидролизате. Гидролиз образца проводится в запаянных ампулах в вакууме при 150°С в течение 6 ч. Количественное определение аминокислот в гидролизате белка или пептида проводится с помощью аминокислотного анализатора.

3. Определение N- и С-аминокислотных остатков. В полипептидной цепи белка с одной стороны расположен аминокислотный остаток, несущий свободную α-аминогруппу (амино- или N-концевой остаток), а с другой – остаток со свободной α-карбоксильной группой (карбоксильный, или С-концевой остаток). Анализ концевых остатков играет важную роль в процессе определения аминокислотной последовательности белка. На первом этапе исследования он дает возможность оценить число полипептидных цепей, составляющих молекулу белка, и степень гомогенности исследуемого препарата. На последующих этапах с помощью анализа N-концевых аминокислотных остатков осуществляется контроль за процессом разделения пептидных фрагментов.

Реакции определения N-концевых аминокислотных остатков:

1) один из первых методов определения N-концевых аминокислотных остатков был предложен Ф. Сенгером в 1945 г. При реакции α- аминогруппы пептида или белка с 2,4-динитрофторбензолом получается динитрофенильное (ДНФ) производное, окрашенное в желтый цвет. Последующий кислотный гидролиз (5,7 н. НСl) приводит к разрыву пептидных связей и образованию ДНФ-производного N-концевой аминокислоты. ДНФ-аминокислота экстрагируется эфиром и идентифицируется хроматографическим методом в присутствии стандартов.

2) метод дансилирования. Наибольшее применение для определения N-концевых остатков в настоящее время находит разработанный в 1963 г. В. Греем и Б. Хартли дансильный метод. Как и метод динитрофенилирования, основан на введении в аминогруппы белка «метки», не удаляющейся при последующем гидролизе. Его первая стадия – реакция дансилхлорида (1-диметиламинонафталин-5-сульфохлорида) с непротонированной а-амино-группой пептида или белка с образованием дансилпептида (ДНС-пептида). На следующей стадии ДНС-пептид гидролизуется (5,7 н. НС1, 105°С, 12 — 16 ч) и освобождается N-концевая α-ДНС-аминокислота. ДНС-аминокислоты обладают интенсивной флуоресценцией в ультрафиолетовой области спектра (365 нм); обычно для их идентификации достаточно 0,1 — 0,5 нмоль вещества.

Имеется ряд методов, с помощью которых можно определять как N-концевой аминокислотный остаток, так и аминокислотную последовательность. К ним относятся деградация по методу Эдмана и ферментативный гидролиз аминопептидазами. Эти методы будут подробно рассмотрены ниже при описании аминокислотной последовательности пептидов.

Реакции определения С-концевых аминокислотных остатков:

1) среди химических методов определения С-концевых аминокислотных остатков заслуживают внимания метод гидразинолиза, предложенный С. Акабори, и оксазолоновый. В первом из них при нагревании пептида или белка с безводным гидразином при 100 — 120°С пептидные связи гидролизуются с образованием гидразидов аминокислот. С-концевая аминокислота остается в виде свободной аминокислоты и может быть выделена из реакционной смеси и идентифицирована (рис. 6).

Рис. 6. Расщепление пептидной связи гидразином

Метод имеет ряд ограничений. При гидразинолизе разрушаются глутамин, аспарагин, цистеин и цистин; аргинин теряет гуанидиновую группировку с образованием орнитина. Гидразиды серина, треонина и глицина лабильны и легко превращаются в свободные аминокислоты, что затрудняет интерпретацию результатов;

2) оксазолоновый метод, часто называемый методом тритиевой метки, основан на способности С-концевого аминокислотного остатка под действием уксусного ангидрида подвергаться циклизации с образованием оксазолона. В щелочных условиях резко увеличивается подвижность атомов водорода в положении 4 оксазолонового кольца и они могут быть легко заменена тритием. Образующиеся в результате последующего кислотного гидролиза тритиированного пептида или белка продукты реакции содержат радиоактивно меченную С-концевую аминокислоту. Хроматографирование гидролизата и измерение радиоактивности позволяют идентифицировать С-концевую аминокислоту пептида или белка;

3) чаще всего для определения С-концевых аминокислотных остатков используют ферментативный гидролиз карбоксипептидазами, позволяющий анализировать также и С-концевую аминокислотную последовательность. Карбоксипептидаза гидролизует только те пептидные связи, которые образованы С-концевой аминокислотой, имеющей свободную α-карбоксильную группу. Поэтому под действием этого фермента от пептида последовательно отщепляются аминокислоты, начиная с С-концевой. Это позволяет определить взаимное расположение чередующихся аминокислотных остатков.

В результате идентификации N— и С-концевых остатков полипептида получают две важных реперных точки для определения его аминокислотной последовательности (первичной структуры).

Дата добавления: 2015-12-22 ; просмотров: 1534 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

В конце 50-х-начале 60-х годов было обнаружено, что последовательность аминокислот в белках детерминирована генетически. Последовательность нуклеотидов в ДНК-веществе наследственности определяет комплементарную последовательность нуклеотидов в РНК, а последняя в свою очередь определяет последовательность аминокислот в белке. Более того, синтез всех белков из соответствующих аминокислот имеет единый механизм.

Определение последовательности аминокислот в белках представляет интерес по четырем причинам. Во-первых, такие данные имеют большое значение для выяснения молекулярной основы биологической активности белка. Сведения о последовательности аминокислот приобретают особую ценность при их сопоставлении с другими химическими и физическими характеристиками. Во-вторых, изучение последовательности аминокислот в сочетании с детальным анализом пространственной структуры необходимо для выяснения тех принципов, на основе которых из полипептидных цепей формируются высокоспецифичные трехмерные формы. При этом последовательность аминокислот в белке служит связующим звеном между генетической информацией, заложенной в ДНК, и трехмерной структурой белка, лежащей в основе его биологической активности. В-третьих, изменения в последовательности аминокислот могут привести к нарушению нормальной функции белка, а следовательно, и к соответствующей болезни. В частности, такая тяжелая болезнь, как серповидно-клеточная анемия, нередко приводящая к легальному исходу, возникает в результате замены всею лишь одной-единственной аминокислоты в одном-единственном белке. Таким образом, определение последовательности аминокислот относится к новой области медицины -молекулярной патологии. В-четвертых, данные о последовательности аминокислот в белке могут многое рассказать о его эволюции. Дело в том, что в неродственных белках эти последовательности совершенно различны. Белки лишь в том случае имеют сходную последовательность аминокислот, если они происходят от общего белка-предшественника, Следовательно, изучение последовательностей аминокислот в белках позволяет проследить эволюцию на молекулярном уровне.

Рассмотрим, как можно определить последовательность аминокислот в коротком пептиде. Допустим, что пептид состоит из 6 аминокислотных остатков, расположенных в следующей последовательности:

(Для обозначения аминокислот использованы общепринятые сокращения). Прежде всего необходимо определить аминокислотный состав пептида. Для этого его гидролизуют до составляющих аминокислот нагреванием до 110°С в течение 24 ч в 6 н. НС1. Далее аминокислоты полученного гидролиза разделяют методом ионообменной хроматографии на колонке с сульфонированным полистиролом. Фракционированные аминокислоты определяют по окраске, образующейся при нагревании с нингидрином: б-аминокислоты дают с нигидрином интенсивное синее окрашивание, а иминокислоты, например пролин, желтое[5].

Рис. 17 нингидрин и флуорескамин

Метод ионообменной хроматографии обладает высокой чувствительностью:

рН 3,25 0,2 м Цитрат натрия

рН 4,25 0(2 м Цитрат натрия

рН 5,28 0,35 м Цитрат натрия

Рис.18 Элюция из колонки

С его помощью можно определить даже один микрограмм аминокислоты, т.е. примерно столько, сколько содержится в одном отпечатке пальца. Количество аминокислоты пропорционально оптической плотности раствора после нагревания с нингидринйм. Если требуется определить еще меньшие количества аминокислоты- порядка нескольких нанограммов, то используют флуорескамин, который реагирует с б-аминогруппой, образуя сильно флуоресцирующее соединение. О природе аминокислоты судят по объему элюции, т.е. по объему буфера, использованному для вымывания данной аминокислоты с колонки (рис. ). Сравнение результатов хроматографии гидролизата со стандартной смесью аминокислот свидетельствует о том, что исследуемый пептид имеет следующий аминокислотный состав:

Скобки показывают, что речь идет о составе, а не последовательности аминокислот в пептиде.

Рис.19 Определение N-концевого остатка пептида. Пептид метят фтординитробензолом (реактив Сэнгера) и затем гидролизуют. ДНФ-производное аминокислоты (в приведенном примере ДНФ-аланин) идентифицируют по хроматографиче-ским характеристикам.

Для определения в белке или пептиде концевого остатка, несущего аминогруппу, его метят с помощью соединения, образующего стабильную ковалентную связь с азотом аминогруппы (рис. 20).

Рис. 20 фтординитробензол и дансилхлорид

Впервые для этой цели Сэнгер использовал фтординитробензол (ФДНБ), реагирующий с незаряженной a-NH2-группой с образованием динитрофенильного (ДНФ) производного пептида желтого цвета. Связь между ДНФ и концевой аминогруппой стабильна в условиях, используемых для гидролиза пептидных связей. Поэтому при гидролизе ДНФ-производного пептида Ala-Gly-Asp-Phe-Arg-Gly в 6 н. НСl высвобождается ДНФ-аминокислота, которую можно идентифицировать хроматографически как ДНФ-аланин.

Для идентификации N-концевых аминокислот в настоящее время часто используют дансилхлорид, который при взаимодействии с аминогруппой дает стабильное, интенсивно флуоресцирующее сульфамидное производное. Этот метод позволяет выявить N-концевую аминокислоту (после кислотного гидролиза пептидных

связей), присутствующую в таком незначительном количестве, как несколько нанограммов.

При всех достоинствах методов определения N-концевых аминокислотных остатков с помощью ДНФ или лансилхлорида их, к сожалению, нельзя использовать дважды применительно к одному и тому же пептиду, поскольку последний полностью распадается при кислотном гидролизе. Пьеру Эдману (P. Edman) удалось разработать метод маркирования N-концевого остатка и отщепления его от пептида без сопутствующего расщепления остальных пептидных связей. Деградация по Эдману (реакция Эдмана) состоит в ступенчатом (по одному) отщеплении аминокислотных остатков с аминоконца пептида, Фенилизотиоциа-нат реагирует с незаряженной концевой аминогруппой пептида с образованием фенилтиокарбамоильного производного

Далее в слабокислой среде происходит отщепление циклического производного N- концевой аминокислоты, а оставшийся неразрушенным пептид оказывается укороченным на один аминокислотный остаток, Указанное циклическое производное представляет собой фенилтиогидантоинаминокислоту (ФТГ-аминокислоту). Его идентифицируют методом хроматографии. Далее аминокислотный состав укороченного пептида (Arg, Asp, Gly2, Phe) сравнивают с исходным: (Ala, Arg, Asp, Gly2, Phe).

Рис 22. Деградация по Эдману.

От пептидной цепи отщепляют меченый N-концевой остаток аминокислоты (ФТГ-аланин на первой ступени деградации). Остаток пептидной цепи при этом не гидролизуется. На второй ступени деградации определяют следующий N-концевой аминокислотный остаток. Еще три ступени деградации но Эдману позволят установить всю последовательность аминокислот во взятом пептиде.

Оказывается, что различие состоит в одном остатке аланина. Следовательно, в исходном пептиде аланин занимает N-концевое положение. Деградацию по Эдману можно вновь повторить па укороченном пептиде. Исходя из аминокислотного состава после второй ступени деградации

Можно поийти к выводу, что вторым остатком с N-конца является глицин, это заключение подтверждают путем хроматографической идентификации ФТГ-глицина, полученного на второй ступени деградации пептида. Еще три ступени деградации по Эдману позволяют полностью раскрыть последовательность аминокислот во взятом пептиде.

Стратегию анализа последовательности аминокислот в белках можно определить как «разделяй и властвуй». Белок подвергают специфическому расщеплению па более короткие пептиды, последовательность аминокислот в которых определяют по Эдману. Специфическое расщепление можно производить химическими или ферментативным методами. Так, Б. Уиткоп (В. Witkop) и Э. Гросс (Е. Gross) обнаружили, что бромистый циан (CNBr) расщепляет полипептидную цепь только по пептидной связи, образованной карбоксильной группой остатка метионина, Если в белке содержится 10 метиониновых остатков, то после обработки бромистым цианом обычно получается 11 пептидов. Высокоспецифическое расщепление достигается также с помощью трипсина-протеолитического фермента поджелудочной железы.

Трипсин расщепляет полипептидные цепи по пептидной связи, образованной карбоксильной группой остатков аргинина и лизина. В результате белок, содержащий 9 остатков лизина и 7 остатков аргинина, после расщепления трипсином распадается на 17 пептидов. Каждый из этих пептидов, кроме пептида, расположенною на карбоксильном конце белка, будет кончаться аргинином или лизином.

Пептиды, полученные при специфическом химическом или ферментативном расщеплении белка, разделяют методами хроматографии. Далее последовательность аминокислот в каждом из пептидов определяют методом Эдмана. Таким образом, достигается этап, когда последовательность аминокислот в отдельных пептидах (фрагментах белка) известна, но остается невыясненной последовательность самих пептидов. Последнюю устанавливают с помощью так называемых перекрывающихся пептидов. При этом используют уже не трипсин, а какой-либо фермент, расщепляющий полипептидную цепь в других участках, например химотрипсин, который расщепляет пептидные связи главным образом по карбоксильным группам ароматических и других больших неполярных аминокислотных остатков

Рис. 23 Бромистый циан расщепляет полипептиды по карбоксильной группе метиониновых остатков.

Пептиды, образующиеся под действием химотрипсина, неизбежно перекрывают два или более триптических пептида, что используется для установления их последовательности. Таким путем полностью определяют последовательность аминокислот в белке.

Описанные методы применимы к белкам, состоящим из одной полипептидной цепи, не имеющей дисульфидных связей. В тех же случаях, когда в белке имеются дисульфидные связи или более одной полипептидной цепи, то необходимы дополнительные методические приемы, Например, если белок содержит две или более полипептидные цепи, соединенные нековалентными связями, то, воздействуя денатурирующими агентами, такими, как мочевина или гуанидингидрохлорид, вызывают диссоциацию цепей. Диссоциированные цепи разделяют и только после этого приступают к определению последовательности аминокислот в каждой из них. Если же полипептидные цепи соединены ковалентными дисульфидными связями, как это имеет место в инсулине, то их окисляют надмуравьиной кислотой; при этом дисульфидные связи разрываются и образуются остатки цистеиновой кислоты.

Анализ структуры белков удалось значительно ускорить путем создания секвенатора-специального прибора для автоматического определения последовательности аминокислот. При таком определении белок в виде тонкой пленки помещают во вращающийся цилиндрический сосуд, где он подвергается деградации по Эдману. Реактивы и растворители проходят над иммобилизованной белковой пленкой, а высвобождающиеся ФТГ-аминокислоты подвергаются жидкостной хроматографии при высоком давлении и таким образом идентифицируются. Один цикл деградации по Эдману занимает при этом менее двух часов. С помощью секвенатора можно определить аминокислотную последовательность полипептида или белка, содержащего до ста аминокислотных остатков.

Читайте также:  Методы анализа белка в молоке

источник

Определение аминокислотного состава белков может быть осуществлено различными методами: химическим, хроматографическим, микробиологическим и изотопным. Чаще используются хроматографические методы.

Бумажная хроматография. Бумажная хроматография используется для идентификации компонентов смеси аминокислот с ди- и три-пептидами, получаемой при частичном гидролизе белков и полипептидов.

Гидролиз может быть осуществлен кислотным, щелочным или ферментативным методом. Кислотный метод используется чаще (6 н. HCl, 8 н. H2SO4). Гидролиз проводят при нагревании, иногда при повышенном давлении. Показателями окончания гидролиза могут служить: прекращение нарастания карбоксильных или аминных групп в гидролизате, либо отрицательная биуретовая реакция. Избыток гидролизующего реагента удаляют: серную кислоту осаждают Ca(OH)2, соляную кислоту отгоняют в вакууме, а остаток кислоты осаждают нитратом серебра.

Компоненты гидролизата распределяются между водой, адсорбированной на целлюлозе и являющейся неподвижной фазой, и органическим растворителем, подвижной фазой, которая движется вдоль листа вверх или вниз. В качестве подвижной фазы используется смесь бутанол-уксусная кислота-вода (4:1:5). Более липофильные аминокислоты сильнее увлекаются органическим растворителем, более гидрофильные – проявляют большую тенденцию связываться с неподвижной фазой. Гомологические соединения, отличающиеся даже на одно метиленовое звено, движутся с различной скоростью и легко могут быть разделены. По окончании хроматографии бумагу высушивают и обрабатывают проявителем (0,5% раствор нингидрина в смеси ацетон-ледяная уксусная кислота-вода) и нагревают в течение нескольких минут. Аминокислоты проявляются в виде окрашенных пятен. Подвижность – постоянная величина, характерная для каждого соединения возрастает с увеличением молекулярной массы. Для аминокислот с неразветвленной цепью величина подвижности несколько больше, чем для соответствующих изомеров. Введение в молекулу полярных групп снижает подвижность соединения. Аминокислоты с объемными неполярными боковыми цепями (лейцин, изолейцин, фенилаланин, триптофан и др.) перемещаются быстрее, чем аминокислоты с более короткими неполярными боковыми цепями (пролин, аланин, глицин) или с полярными боковыми цепями (треонин, аргини, цистеин, гистидин, лизин). Это обусловлено большей растворимостью полярных молекул в гидрофильной стационарной фазе и неполярных – в органических растворителях.

Бумажная хроматография может быть использована для количественной оценки содержания аминокислот. Каждое пятно вырезают и элюируют подходящим растворителем; затем проводят количественный колориметрический (нингидриновый) анализ. В другом варианте бумагу опрыскивают нингидрином и измеряют с помощью фотометра интенсивность окрашивания пятна в отраженном или проходящем свете. При полуколичественной оценке содержание аминокислот оценивают по площади пятен на хроматограмме, которые пропорциональны концентрациям аминокислот в разделяемой смеси.

Тонкослойная хроматография. Для разделения и определения аминокислот может быть также использована тонкослойная хроматография. ТСХ, как известно, существует в двух вариантах. Распределительная ТСХ сходна с распределительной на бумаге и адсорбционная ТСХ, основана совершенно на других принципах.

При проведении РТСХ на порошке целлюлозы или других относительно инертных носителях можно использовать такие же системы растворителей и такие же проявляющие реагенты, как и при хроматографии на бумаге.

Разделение с помощью АТСХ определяется способностью растворителя (этот растворитель не обязательно является бинарной или более сложной смесью) элюировать компоненты образца с места его адсорбции на активированном сорбенте. Например, на нагретом силикагеле. АТСХ применима для разделения таких неполярных соединений, как липиды, но не для разделения аминокислот и большинства пептидов. Для разделения аминокислот используют РТСХ, которая позволяет достаточно быстро разделять и определять 22 аминокислоты белковых гидролизатов.

Аминокислоты в белковом гидролизате могут быть определены также методом газовой хроматографии, но перед хроматографическим анализом аминокислоты как правило переводят в летучие соединения.

-Взаимодействие с нингидрином. Образуются соответствующие альдегиды.

Таким образом, получают смесь альдегидов и анализируют ее. Это простейший случай, пригоден лишь для некоторых аминокислот.

-Переводят аминоксилоты в летучие эфиры (алкильные эфиры, метильные эфиры оксикислот, метиловые эфиры хлорзамещенных кислот и др.).

Выбор производных зависит от исследуемой смеси аминокислот.

Ионообменная хроматография. В настоящее время аминокислотный состав пищевых продуктов определяется исключительно с помощью автоматической ионообменной хроматографии.

Ионообменная хроматография основана на обратимом стехиометрическом обмене ионов, находящихся в растворе, на ионы, входящие в состав ионообменника (катионита, анионита) и на различной способности разделяемых ионов к ионному обмену с фиксированными ионами сорбента, образующимися в результате диссоциации ионогенных групп. Для органических ионов на электростатическое взаимодействие с фиксированными зарядами ионита накладывается гидрофобное взаимодействие органической части иона с матрицей ионита. Чтобы уменьшить его вклад в удерживание органических ионов и добиться оптимальной селективности их разделения, к водному элюенту добавляют органический компонент (1–25% метанола, изопропанола, ацетонитрила).

В методе Мура и Штейна используют короткую и длинную колонки, заполненные смолой из сульфонированного полистирола в Na + – форме. Когда кислотный гидролизат при рН = 2 наносят на колонку, аминокислоты связываются в результате катионного обмена с ионами натрия. Далее колонку элюируют раствором цитрата натрия при заранее запрограммированных значениях рН и температуры. Короткую колонку элюируют одним буфером, длинную – двумя. Элюат обрабатывают нингидрином, измеряя интенсивность окраски с помощью проточного колориметра. Данные автоматически регистрируются на ленте самописца и могут передаваться в компьютер для вычисления площади под пиком.

Высоковольтный электрофорез на инертных носителях. В биохимии широкое применение нашло разделение аминокислот, полипептидов и других амфолитов (молекул, суммарный заряд которых зависит от рН среды) под действием наложенного постоянного электрического поля. Это метод высоковольтного электрофореза на инертных носителях. При разделении аминокислот в качестве инертных носителей чаще всего используют полоски бумаги или тонкие слои целлюлозного порошка. Разделение проводят в течение 0,5–2 ч при напряжении 2000–5000 В в зависимости от суммарных зарядов амфолитов и их молекулярных масс. Среди молекул, несущих одинаковый заряд, более легкие мигрируют быстрее. Но более важным параметром при разделении является суммарный заряд. Метод применяется для разделения аминокислот, низкомолекулярных пептидов, некоторых белков, нуклеотидов. Образец помещают на носитель, смачивают буфером при соответствующем рН и соединяют с буферным резервуаром полоской фильтровальной бумаги. Бумагу прикрывают стеклянной пластинкой или погружают в углеводородный растворитель для охлаждения. В электрическом поле молекулы, несущие при данном рН отрицательный заряд, мигрируют к аноду, а те, которые несут положительный заряд, – к катоду. Далее высушенную электрофореграмму «проявляют» нингидрином (при работе с аминокислотами, пептидами) или измеряют поглощение в УФ-свете (при работе с нуклеотидами).

Выбор рН определяется значениями рК диссоциирующих групп, входящих в состав молекул смеси. При рН 6,4 глутамат и аспарат несут заряд –1 и движутся к аноду; разделение их осуществляется благодаря различию в молекулярной массе. Лизин, аргинин и гистидин движутся в противоположном направлении, а все другие аминокислоты, входящие в состав белка, остаются вблизи места нанесения. При разделении пептидов, образовавшихся в результате ферментативного расщепления, уменьшение рН до 3,5 приводит к увеличению заряда катионных групп и обеспечивает лучшее разделение.

Аминокислоты несут по крайней мере две слабо ионизированные группы: -СООН и -NH3 + . В растворе эти группы находятся в двух формах, заряженной и незаряженной, между которыми поддерживается протонное равновесие: R-COOH « R-COO – + H + R-NH3 + « R-NH2 + H + (сопряженные кислоты и основания) R-COOH и R-NH3 + – слабые кислоты, но первая на несколько порядков сильнее. Поэтому чаще всего (плазма крови, межклеточная жидкость рН 7,1–7,4) карбоксильные группы находятся в виде карбоксилатных ионов, аминогруппы протонированы. Аминокилоты в молекулярном (недиссоциированном) виде не существуют ни при каких рН. Примерные значения рК a-аминокислоты и a-аминогруппы в a-аминокислоте равны 2 и 10 соответственно. Полный (суммарный) заряд (алгебраическая сумма всех положительных и отрицательных зарядов) аминокислоты зависит от рН, т.е. от концентрации протонов в растворе. Заряд аминокислоты можно изменить, варьируя рН. Это облегчает физическое разделение аминокислот, пептидов и белков. Значение рН при котором суммарный заряд аминокислоты равен нулю и поэтому она не перемещается в постоянном электрическом поле, называется изоэлектрической точкой (pI). Изоэлектрическая точка находится посредине между ближайшими значениями рК диссоциирующих групп.

Методы бумажной, тонкослойной хроматографии, микробиологические, газохроматографические и ряд других, в настоящее время практически не используются вследствие худшей воспроизводимости и большой длительности. Современные хроматографы позволяют определять аминокислотный состав смеси, содержащей лишь 10 –7 –10 –9 моль каждого компонента с воспроизводимостью до 5% за 2–4 часа.

Анализ аминокислотного состава включает полный гидролиз исследуемого белка или пептида и количественное определение всех аминокислот в гидролизате. Поскольку при нейтральных рН пептидные связи стабильны, применяют кислотный или щелочной катализ. Ферментативный катализ для полного гидролиза менее пригоден. Полный гидролиз белка на составляющие аминокислоты неизбежно сопровождается частичной потерей некоторых аминокислотных остатков. Для гидролиза обычно используется 6 н. водный раствор соляной кислоты (110ºС), в вакуумированной ампуле. Количественное определение аминокислот в гидролизате проводят с помощью аминокислотного анализатора. В большинстве таких анализаторов смесь аминокислот разделяют на сульфокатионитах, а детектирование осуществляют спектрофотометрически по реакции с нингидрином или флуориметрически с о-фталевым диальдегидом.

Однако данные по аминокислотному составу однотипных продуктов, полученные в разных лабораториях по отдельным аминокислотам, иногда различаются до 50%.

Эти различия обусловлены не только сортовыми, видовыми или технологическими различиями, а главным образом условием проведения гидролиза пищевого продукта. При стандартном кислотном гидролизе (6 н. HСl, 110–120ºС, 22–24 часа) происходит частичное разрушение некоторых аминокислот, в том числе треонина, серина (на 10–15% и тем больше, чем дольше проводится гидролиз) и особенно метионина (30–60%) и цистина 56–60%, а также практически полное разрушение триптофана и цистеина. Этот процесс усиливается в присутствии больших количеств углеводов в продукте. Для количественного определения метионина и цистина рекомендуется проводить предварительное их окисление надмуравьиной кислотой. При этом цистин превращается в цистеиновую кислоту, а метионин в метионин-сульфон, которые весьма устойчивы при последующем кислотном гидролизе.

Цистин Цистеиновая кислота

Трудной задачей в аминокислотном анализе является определение триптофана. Как уже говорилось, при кислотном гидролизе происходит почти полное его разрушение (до 90%). Поэтому для определения триптофана проводят один из вариантов щелочного гидролиза 2 н. NaOH, 100ºС, 16–18 часов в присутствии 5% хлорида олова или 2 н. гидроокиси бария, при которых он разрушается незначительно (до 10%). Минимальное разрушение происходит в присутствии тиогликолевой кислоты и предварительно гидролизованного крахмала. (При щелочном гидролизе происходит разрушение серина, треонина, аргинина и цистеина). Гидролизат после нейтрализации смесью лимонной и соляной кислот немедленно (во избежание студнеобразования) анализируют на аминокислотном анализаторе. Что касается многочисленных химических методов определения триптофана, то они, как правило, в пищевых продуктах плохо воспроизводимы и поэтому их использовать не рекомендуется.

Для мясных продуктов дополнительной необходимой аминокислотой является оксипролин, который характеризует количество соединительных тканных белков в мясе. Его можно определять ионообменной хроматографией с помощью автоматических анализаторов или химическим колориметрическим методом. Метод основан на нейтрализации кислотного гидролизата до рН 6,0, последующем окислении оксипролина с помощью 1,4% раствора хлорамина Т (или хлорамина Б) в смеси пропилового спирта и буфера, колориметрическом определении при 533 нм продуктов окисления оксипролина после реакции с 10%-ным раствором пара-диметиламинобензальдегида в смеси хлорной кислоты и пропилового спирта (1:2).

В связи с тем, что тирозин, фенилаланин и пролин в присутствии кислорода могут частично окисляться, стандартный кислотный гидролиз рекомендуется проводить в атмосфере азота. Ряд аминокислот, в том числе лейцин, изолейцин и валин, требуют для своего полного выделения из белков более длительного кислотного гидролиза – до 72 ч. В биохимии при анализе белков гидролизуют параллельные пробы в течение 24, 48, 72 и 96 ч.

Для точного количественного определения всех аминокислот требуется проводить 5 различных гидролизов, что весьма удлиняет определение. Обычно же проводят 1–2 гидролиза (стандартный с соляной кислотой и с предварительным оксилением надмуравьиной кислотой).

Во избежание потерь аминокислот удаление избытка кислоты при кислотном гидролизе следует проводить немедленно многократным выпариванием в вакуум-эксикаторе с добавлением дистиллированной воды.

При правильной работе анализатора ионообменные колонки работают без замены смолы довольно долго. Однако, если образцы содержат заметные количества красящих веществ и липидов, то колонка быстро забивается и для восстановления ее разделительных способностей требуется многократная регенерация, иногда с перенабивкой колонки. Поэтому, для продуктов, содержащих более 5% жира, рекомендуется предварительно удалять липиды экстракцией. В таблице 2.3 приведены условия пробоподготовки основных пищевых продуктов при анализе аминокислотного состава.

Таблица 2.3. – Условия подготовки проб пищевых продуктов к анализу

Продукт Способ удаления липидов Весовое соотношение белок: HCl (6М)
Белковые концетнраты (изоляты) Нетребуется 1:200
Мясо, рыба, мясные и рыбные консервы, субпродукты) Экстракция 10-кратным количеством диэтилового эфира 3–4 раза или смесью этанол-хлороформ (1:2) 10-кратным количеством 2 раза 1:250
Молоко и молочные продукты Экстракция 10-кратным к навеске количеством смесью этанол-хлороформ (1:2) 2 раза 1:1000
Зерно и зернопродукты Не требуется 1:1000
Растительные продукты Не требуется 1:500
Мясо-растительные и рыбо-растительные продукты Экстракция 10-кратным количеством диэтилового эфира 3-4 раза; смесью этанол-хлороформ (1:2) 10-кратным количеством к навеске 2 раза 1:1000
Яйцо, яичные продукты Экстракция смесью этанол- хлороформ (1:2), 10-кратным количеством к навеске 2 раза 1:200

Контрольные вопросы:

1. Дайте определение понятию «белки».

2. На какие группы делят белки по их функциям в организме?

3. Какова роль белков в питании человека?

4. Каковы рекомендуемые нормы белка в питании?

5. Каково рекомендуемое соотношение белков растительного и животного происхождения и как белки различного происхождения отличаются по своему аминокислотному составу?

6. Какие незаменимые аминокислоты вы знаете и какие аминокислоты могут стать незаменимыми?

7. Как определяют содержание общего азота в продуктах питания?

8. Как определяют аминокислотный состав белков?

9. Какие методы определения аминокислот вы знаете?

§ 2.4. Углеводы

Углеводы широко представлены в растениях и животных, где они выполняют как структурные, так и метаболические функции. В растениях в процессе фотосинтеза из углекислого газа и воды синтезируется глюкоза, которая далее запасается в виде крахмала или превращается в целлюлозу – структурную основу растений. Животные способны синтезировать ряд углеводов из жиров и белков, но большая часть углеводов поступает с пищей растительного происхождения.

Дата добавления: 2015-05-29 ; Просмотров: 3525 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник