Меню Рубрики

Методика выполнения химических анализов воды

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД
МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ ХИМИЧЕСКОГО ПОТРЕБЛЕНИЯ КИСЛОРОДА В ПРОБАХ ПРИРОДНЫХ И ОЧИЩЕННЫХ СТОЧНЫХ ВОД ТИТРИМЕТРИЧЕСКИМ МЕТОДОМ
ПНД Ф 14.1:2.100-97

Методика допущена для целей государственного экологического контроля.

Методика рассмотрена и одобрена Главным управлением аналитического контроля и метрологического обеспечения природоохранной деятельности (ГУАК) и Главным метрологом Госкомэкологии России.

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них величины химического потребления кислорода (ХПК) при содержании органических веществ, эквивалентном потреблению молекулярного кислорода в диапазоне от 4,0 до 80,0 мг/куб. дм, титриметрическим методом без концентрирования пробы. При величине ХПК > 50 мг/куб. дм определение следует проводить при соответствующем разбавлении пробы дистиллированной водой.

Определению мешают хлориды, сульфиды, соединения железа (II), нитриты и другие неорганические вещества, способные окисляться бихроматом в кислой среде (устранение мешающих влияний см. в п. 10).

Титриметрический метод определения ХПК основан на окислении

органических веществ избытком бихромата калия в растворе серной кислоты при

нагревании в присутствии катализатора — сульфата серебра. Остаток бихромата

калия находят титрованием раствором соли Мора и по разности определяют

количество K Cr O , израсходованное на окисление органических веществ.

Согласно ГОСТ 27384 «Вода. Нормы погрешности измерений показателей состава и свойств» относительная погрешность измерений при определении ХПК в природных и сточных водах не нормируется.

Настоящая методика количественного химического анализа обеспечивает получение результатов анализа с погрешностями, не превышающими значений, рассчитанных по соотношениям, приведенным в таблице 1.

Диапазон
измеряемых
величин ХПК,
мг/куб. дм

Наименование метрологической характеристики

Характеристика
погрешности, ДЕЛЬТА,
мг/куб. дм (Р = 0,95)

Характеристика случайной составляющей
0
|
погрешности, сигма (ДЕЛЬТА),
мг/куб. дм (Р = 0,95)

От 4,0 до 80,0
включительно

Метрологические характеристики приведены в виде зависимости от значения результата измерения химического потребления кислорода в пробе — С.

Весы лабораторные 2 класса точности, ГОСТ 24104.

Шкаф сушильный общелабораторного назначения, ГОСТ 13474.

Колбы мерные, наливные 2-500-2, ГОСТ 1770.

Бюретка 1-2-25-0,1, ГОСТ 20292.

Мензурки или цилиндры 2-25

Колбы конические типа Кн-2-500, ГОСТ 25336.

Капельница 2-50 ХС, ГОСТ 25336.

Установки для определения ХПК (колбы К-1-250-29/32 ТС или колбы Гр-250-29/32, ГОСТ 25336, с обратным холодильником типа ХПТ-2-400-29/32 ХС, ГОСТ 25336).

Воронка В-56-80 ХС, ГОСТ 25336.

Стаканчики для взвешивания (бюксы) СВ-14/8, ГОСТ 25336.

Устройство для фильтрования проб с использованием мембранных или бумажных фильтров.

Допускается использование других типов средств измерений, посуды и вспомогательного оборудования, в том числе импортных, с характеристиками не хуже, чем у приведенных в п. 3.1.

Бихромат калия (калий двухромовокислый), ГОСТ 4220.

Соль Мора (NH ) Fe(SO ) х 6H O, ГОСТ 4208.

Сульфат серебра, ТУ 6-09-3703.

Гидроксид натрия, ГОСТ 4328.

N-фенилантраниловая кислота, ТУ 6-09-3703, или ферроин (C H N ) х

х FeSO по ТУ 6-09-1256 или 1,10-фенантролин, моногидрат C H N х H O или

сульфат C H N х H SO , ТУ 6-09-05-90.

Вода дистиллированная, ГОСТ 6709.

Фильтры бумажные обеззоленные «синяя лента», ТУ 6-09-1678.

Фильтры мембранные «Владипор МФА-МА», 0,45 мкм, по ТУ 6-05-1903, или другого типа, равноценные по характеристикам.

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами, ГОСТ 12.4.021.

4.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019.

4.3. Организация обучения работающих безопасности труда по ГОСТ 12.0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

Измерения проводятся в нормальных лабораторных условиях.

Температура окружающего воздуха (22 +/- 6) °С.

Относительная влажность (80 +/- 5)%.

Атмосферное давление (84 — 106) кПа.

Частота переменного тока (50 +/- 1) Гц.

Напряжение в сети (220 +/- 10) В.

7.1. Посуду, предназначенную для отбора и хранения проб, моют хромовой смесью, затем тщательно (не менее 10 раз) промывают водопроводной и ополаскивают дистиллированной водой.

7.2. Пробы воды отбирают в стеклянную посуду с пробками, не загрязняющими пробу органическими соединениями.

В зависимости от целей анализа определение ХПК можно проводить в нефильтрованной или фильтрованной пробе. В последнем случае пробу предварительно фильтруют через мембранный фильтр 0,45 мкм, очищенный двукратным кипячением в дистиллированной воде. Допустимо использование бумажных фильтров «синяя лента», промытых дистиллированной водой. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 100 куб. см.

7.3. Определение ХПК, особенно в загрязненных водах, следует проводить как можно скорее после отбора пробы. Допускается хранение пробы при температуре не выше 4 °С не более суток при консервации добавлением раствора серной кислоты (1:2) из расчета 2 куб. см на каждые 100 куб. см пробы воды.

7.4. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

8.1.1. Раствор бихромата калия с концентрацией 0,25 моль/куб. дм эквивалента.

6,129 г бихромата калия, предварительно высушенного в течение 2 ч при 105 °С, переносят в мерную колбу вместимостью 500 куб. см, растворяют в дистиллированной воде и доводят объем раствора до метки. Раствор устойчив при хранении в плотно закрытой темной склянке.

8.1.2. Раствор бихромата калия с концентрацией 0,025 моль/куб. дм эквивалента.

50 куб. см раствора бихромата калия с концентрацией 0,25 моль/куб. дм эквивалента помещают в мерную колбу вместимостью 500 куб. см и доводят объем раствора до метки дистиллированной водой. Хранят в склянке с притертой пробкой в темном месте не более 3 мес.

8.1.3. Раствор соли Мора с концентрацией 0,25 моль/куб. дм эквивалента.

49,0 г соли Мора переносят в мерную колбу вместимостью 500 куб. см, растворяют в дистиллированной воде, осторожно добавляют 10 куб. см концентрированной серной кислоты и после охлаждения доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде не более 6 мес.

8.1.4. Раствор соли Мора с концентрацией 0,025 моль/куб. дм эквивалента.

50 куб. см раствора соли Мора с концентрацией 0,25 моль/куб. дм эквивалента помещают в мерную колбу вместимостью 500 куб. см и доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде. Точную концентрацию раствора устанавливают ежедневно или перед серией определений в соответствии с п. 8.2.

В качестве индикатора используют раствор N-фенилантраниловой кислоты или ферроина (комплекс сульфата железа (II) с 1,10-фенантролином).

Для приготовления раствора N-фенилантраниловой кислоты 0,25 г реактива растворяют в 12 куб. см раствора гидрооксида натрия (для ускорения растворения можно слегка подогреть) и разбавляют дистиллированной водой до 250 куб. см.

Для приготовления раствора ферроина 2,43 г индикатора растворяют в 100

куб. см дистиллированной воды. При приготовлении раствора ферроина на

основе 1,10-фенантролина в 100 куб. см дистиллированной воды растворяют

0,980 г соли Мора (NH ) Fe(SO ) х 6H O, добавляют 2,085 г

1,10-фенантролина моногидрата или 2,93 г сульфата и перемешивают до

Раствор индикатора хранят в плотно закрытой склянке из темного стекла не более 3 мес.

8.1.6. Раствор гидроксида натрия.

0,4 г NaOH растворяют в 100 куб. см дистиллированной воды. Раствор устойчив при хранении в плотно закрытой полиэтиленовой посуде.

8.1.7. Раствор сульфата серебра.

5,0 г Ag SO растворяют в 1 куб. дм концентрированной серной кислоты.

Пипеткой вместимостью 10 куб. см отбирают 10 куб. см раствора бихромата калия с концентрацией 0,025 моль/куб. дм эквивалента (п. 8.1.2), переносят в коническую колбу, добавляют 180 куб. см дистиллированной воды, 20 куб. см концентрированной серной кислоты, после охлаждения 3 — 4 капли индикатора ферроина или 10 капель раствора N-фенилантраниловой кислоты и титруют раствором соли Мора с концентрацией 0,025 моль/куб. дм эквивалента (п. 8.1.4) до перехода окраски из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты. Титрование повторяют и при отсутствии расхождения в объемах титранта более 0,05 куб. см за результат принимают среднее значение. В противном случае повторяют титрование до получения результатов, отличающихся не более чем на 0,05 куб. см.

Точную концентрацию раствора соли Мора находят по формуле:

С — концентрация раствора соли Мора, моль/куб. дм эквивалента;

С — концентрация раствора бихромата калия, моль/куб. дм эквивалента;

V — объем раствора бихромата калия, взятый для титрования, куб. см;

V — объем раствора соли Мора, пошедший на титрование, куб. см.

Мешающее влияние хлоридов при концентрациях менее 300 мг/куб. дм устраняется за счет присутствия в пробе катализатора (сульфата серебра). При больших содержаниях хлоридов к пробе добавляют сульфат ртути (II) из расчета 100 мг на 10 мг хлоридов.

Мешающее влияние сульфидов и соединений железа (II) устраняют

предварительной продувкой пробы воды воздухом, если она не содержит летучих

органических соединений, или учитывают при расчете ХПК. В последнем случае

определяют их концентрации и пересчитывают на величины ХПК, исходя из того,

что 1 мг H S и 1 мг Fe эквивалентны соответственно 0,47 и 0,14 мг O .

Таким же образом учитывают влияние нитритов (1 мг NO — эквивалентен 0,35

При содержании в пробе анализируемой воды менее 300 мг/куб. дм хлоридов помещают пипеткой 20 куб. см воды (или аликвоту, доведенную дистиллированной водой до 20 куб. см) в круглодонную колбу со шлифом для кипячения, добавляют пипеткой 10,0 куб. см раствора бихромата калия с концентрацией 0,025 моль/куб. дм эквивалента (п. 8.1.2), 30 куб. см раствора сульфата серебра в концентрированной серной кислоте и для равномерного кипения бросают 2 — 3 капилляра. К колбе присоединяют обратный холодильник и смесь кипятят на песчаной бане в течение 2 ч.

После охлаждения промывают холодильник дистиллированной водой (около 50 куб. см), отсоединяют его, добавляют в колбу, обмывая ее стенки, еще 50 куб. см дистиллированной воды, вновь охлаждают, переносят пробу в коническую колбу, дважды споласкивая круглодонную колбу дистиллированной водой (по 20 — 30 куб. см). Добавляют 3 — 4 капли раствора ферроина (или 10 капель раствора фенилантраниловой кислоты) и титруют избыток непрореагировавшего бихромата калия раствором соли Мора (п. 9.1.4) до перехода окраски индикатора из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Аналогичным образом проводят холостой опыт с 20 куб. см дистиллированной воды.

Если содержание хлоридов в воде превышает 300 мг/куб. дм, к отобранной для анализа пробе (20 куб. см или меньшей аликвоте, доведенной до 20 куб. см дистиллированной водой) добавляют сульфат ртути из расчета 100 мг на каждые 10 мг содержащихся в пробе хлоридов и тщательно перемешивают. Далее выполняют определение, как описано в п. 10.1. Наличие небольшого количества осадка, образовавшегося после добавления сульфата ртути, не мешает определению.

Величину ХПК (бихроматной окисляемости) С , мг/куб. дм, O , находят по

V — объем раствора соли Мора, израсходованный на титрование в

V — объем раствора соли Мора, израсходованный на титрование пробы

С — концентрация раствора соли Мора, моль/куб. дм, эквивалента;

V — объем пробы воды, взятый для определения, куб. см;

8,0 — масса миллиграмм-эквивалента кислорода, мг.

Результат измерения в документах, предусматривающих его использование, представляют в виде:

С +/- ДЕЛЬТА, мг/куб. дм (Р = 0,95),

где ДЕЛЬТА — характеристика погрешности измерения для данной величины ХПК (таблица 1).

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.

13.1. Оперативный контроль воспроизводимости

Образцами для контроля являются реальные пробы природных и очищенных сточных вод. Объем отобранной для контроля пробы должен соответствовать удвоенному объему, необходимому для проведения анализа по методике. Отобранный объем делят на две равные части и анализируют в точном соответствии с прописью методики, максимально варьируя условия проявления анализа, т.е. получают два результата анализа в разных лабораториях или в одной, используя при этом разные наборы мерной посуды, разные партии реактивов. Два результата анализа не должны отличаться друг от друга на величину допускаемых расхождений между результатами анализа:

С — результат анализа рабочей пробы;

С — результат анализа этой же пробы, полученный в другой лаборатории

или в этой же, но другим аналитиком с использованием другого набора мерной

посуды и других партий реактивов;

D — допускаемые расхождения между результатами анализа одной и той же

Значения норматива контроля приведены в виде зависимости от значения результата измерения массовой концентрации определяемого компонента в пробе — С.

При превышении норматива контрольное определение повторяют. При повторном превышении норматива выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

Диапазон измеряемых
концентраций кальция,
мг/куб. дм

Норматив оперативного контроля
воспроизводимости (для двух результатов
измерений, m = 2), D, мг/куб. дм

источник

Качество потребляемой человеком воды определяется с учетом ее свойств и состава. Данные показатели также определяют пригодность применения воды в тех или иных сферах жизнедеятельности. Нормативы (или стандарты) качества составляются с учетом требований заказчика и основных характеристик. Во многом содержание воды определяется с учетом источника ее происхождения (он может быть антропогенным либо естественным).

Чистая питьевая вода – залог здоровья человека и его отличного самочувствия. Чтобы понять, является она такой или нет, обращайтесь в специализированные инстанции, которые проводят анализ качества жидкости и ее соответствия нормативным стандартам, принятым на сегодняшний день. При выполнении анализа учитываются бактериологические, химические и физические показатели.

Проводить химический анализ по закону обязаны различные организации и предприятия при выполнении определенных работ – например, возведении моста через реку. Обязаны соблюдать требования к химсоставу предприятия, которые осуществляют выпуск бутилированной воды. Частные лица заказывают проведение анализа для:

  • оценки качества питьевой воды из водопровода, скважин, родников;
  • подтверждения качества бутилированной воды;
  • подбора фильтра для воды, оценки его эффективности;
  • контроля качества воды в бассейнах;
  • оценки качества жидкости, используемой для полива растений;
  • контроля среды в аквариуме;
  • пр.
  • щелочность;
  • жесткость;
  • содержание ионов;
  • водородный фактор;
  • минерализация.

Бактериологические параметры жидкости:

  • степень загрязненности источника кишечной палочкой;
  • наличие радиоактивных, токсичных элементов;
  • бактериальная зараженность.

Рассмотрим данные характеристики подробнее.

Цветность – показатель, который всегда должен учитываться при анализе воды. Он обуславливает присутствие железа и включений других металлов в виде коррозионных продуктов. Цветность является косвенной характеристикой присутствия в жидкости растворенной органики, зависит от загрязненности источника стоками промышленной категории, определяется путем сравнения образцов с эталонными. Максимально допустимый показатель составляет 20°.

Мутность зависит от наличия мелкодисперсных взвесей нерастворенных частиц. Выражается она в:

  • наличии осадка;
  • взвешенных, грубодисперсных примесях, определяемых в ходе фильтрации;
  • степени прозрачности.

Можно определять мутность фотометрическим путем – то есть по качеству проходящего через толщу жидкости светового луча.

Запах зависит от присутствия в воде пахнущих веществ, которые попадают в нее из стоков. Практически все органические жидкие вещества передают воде специфический аромат растворенных в ней газов, органики, минеральных солей. Запахи делятся на природные (гнилостные, болотные, серные) и искусственные (фенольные, нефтяные, пр.).

Читайте также:  Сколько воды необходимо для анализа

Вкус воды может быть соленым, кислым, сладким или горьким, все остальные «нотки» относятся уже к привкусам – например, хлорные, аммиачные, металлические, сладковатые, пр. Оценка привкуса и запаха производится по пятибалльной шкале.

Химические показатели, степень загрязненности зависят от глубины забора водных масс, просачивания в стоки различных веществ (отбросы предприятий, свалки, выгребные ямы и т.д.). Анализ проводить нужно обязательно, поскольку загрязнению подвергаются даже артезианские скважины с низким давлением, а что уже говорить о колодцах.

Жесткость характеризуется наличием в жидкости элементов кальция и магния, которые со временем превращаются в нерастворимые соли. Итог – образование накипи, отложений на внутренних поверхностях емкостей, котлов, рабочих узлах бытовой техники.

Сухой осадок указывает на степень концентрации органических элементов, а также растворенных неорганических солей. Его высокое содержание приводит к нарушению солевого баланса организма человека.

Водородный фактор рН характеризуется щелочным и кислотным фоном жидкости. Изменение фактора указывает на нарушения в технологиях водоподготовки. Норма – 6-9 единиц.

Некоторые компоненты ухудшают пищевые качества воды, а также являются потенциально опасными для здоровья человека. Рассмотрим основные:

  1. Железо в составе сульфатов, гидрокарбонатов, органических соединений, хлоридов. Может оно присутствовать и в виде высокодисперсных взвесей, придающих жидкости коричневый с красным оттенком цвет, снижающий вкусовые качества. Из-за высокой концентрации железа в воде начинают развиваться железобактерии, образуются засоры труб. Максимально допустимая концентрация железа по нормам составляет 0,3 мг/л.
  2. Марганец – главная причина генетических мутаций. Элемент оказывает негативное влияние на вкусовые характеристики жидкости, после стирки на белье появляются характерные пятна и разводы, на сантехнике образуется осадок. Максимальная концентрация согласно нормативам – 0,1 мг/л.
  3. Катионы марганца и кальция повышают жесткость воды. Для измерения их содержания обычно используется такой показатель как мг-экв/л. Пороговые значения находятся на отметке 3-3.5 мг-экв/л, при более высоком содержании катионов накапливается осадок на сантехническом оборудовании, нагревательных элементах бытовых приборов. Для здоровья человека жесткая вода очень вредна.
  4. Перманганатная окисляемость указывает на количественное содержание кислорода к концентрации иона перманганата, который принимает участие в процессах окисления воды. Предельно допустимое значение составляет 5 мг О2/л. При высоких показателях перманганатной окисляемости страдают почки и печень, репродуктивная функция, иммунная, нервная системы человека. Не рекомендуют употреблять воду без обработки при значении перманганатной окисляемости выше 2 мг О2/л.
  5. Сульфиды – благодаря им жидкость приобретает посторонние неприятные ароматы, а трубы начинают ржаветь. Именно сульфиды являются токсичными компонентами, вызывающими кожные аллергические реакции.
  6. Фториды – их концентрация не должна составлять более 1,5 мг/л. Обратите внимание, что полностью лишенная фтора вода также не полезна.

Перечисленные компоненты к сильно токсичным не относятся и отравлений не вызывают, но их постоянное употребление в пищу (даже в малых дозах) наносит непоправимый вред здоровью и приводит к хронической интоксикации.

Определение токсичных соединений, содержащихся в сравнительно небольших количествах, становится с каждым годом все более сложным и затратным. Определенные вещества в воде присутствовать могут, но строго в установленных количествах. Важно контролировать как структурный состав жидкости, так и ее функциональные интегральные характеристики.

Метрологические приборы позволяют определять только основные химические показатели, для проверки бактериального состава образцы отправляются в лаборатории. В зависимости от глубины проверки данных, анализы делятся на полные химические, сокращенные, направленные на определение некоторых составляющих. В большинстве случаев сокращенного анализа достаточно, но в целях определения полного набора компонентов требуется выполнение более глубокой проверки.

При анализе результатов нужно учитывать все показатели и сравнивать данные анализа с полученными характеристиками. Для каждого элемента есть предельно допустимая концентрация – она не должна быть превышена.

Рассмотрим основные способы, используемые для проверки качества воды.

Метод позволяет оценивать те качества, которые доступные органам чувств. Органолептическое исследование предполагает оценку цветности, прозрачности, аромата и вкуса воды.

Анализ воды на физико-химические показатели учитывает:

  • жесткость;
  • минерализацию;
  • щелочность;
  • окисляемость.

Методика позволяет определять наличие в воде паразитов и бактерий, среди которых могут присутствовать болезнетворные микроорганизмы. Обычно подсчитывается количество организмов на 1 мл жидкости

При анализе химического состава определяется наличие и количество органических, неорганических включений – к ним относят сложные органические вещества, металлы, нефтепродукты, ПАВы и так далее. Под сложными органическими веществами подразумеваются акриламиды, стиролы, фенолы, винилхлориды, тетрахлорид углероды, диоксины.

Анализ на альфа- и бета-частицы, радий проводится в целях определения радиационной безопасности жидкости. Определение содержания радионуклидов – основа для снижения дозовых нагрузок на организм. Вместе с результатами по комплексному анализу заказчик обычно получает также рекомендации, которые помогут ему улучшить качество воды.

Экспресс-анализы используются в целях ускорения процедуры проверки и снижения ее стоимости. Они позволяют анализировать такие показатели как:

  • биохимическое потребление кислорода;
  • число адсорбируемых либо экстрагируемых галогенов органического происхождения;
  • кислотно-щелочной баланс;
  • органолептические свойства воды.

Экспресс-анализ позволяет сокращать потребность в сложном оборудовании и реактивам. Важно! Высокое качество исследования поверхностная проверка гарантировать не может.

Все чаще в последние годы для проверки состава воды используются сенсоры – чувствительные элементы, которые являются основой большинства многокомпонентных анализаторов и экспрессных тест-систем. Они эффективно определяют содержание ферментов антропогенного происхождения, а также патогенную микрофлору.

Биотестирование – передовая методика определения токсичности химического вещества на биоценоз или водные организмы. Оценочные критерии – выживаемость и активность микроорганизмов, скорость их размножения, пр. Для получения корректных результатов биотестирования нужны соответствующие показатели температуры, освещенности, состава, кислотности и так далее.

Существует множество других быстрых способов определения качества питьевой воды – например, на вкус или используя другие органы чувств. Но вы должны понимать, что подобная оценка является очень субъективной, поэтому ставку следует делать на лабораторные исследования.

источник

Объем гидрохимических работ, количество, сроки, место и способы взятия проб зависят от целей гидрохимических исследований.

Для рыбохозяйственных целей могут быть выполнены:

1)газовый анализ воды (определяют физические свойства воды, содержание растворенного кислорода, углекислого газа, концентрацию ионов водорода (рН), наличие и количество сероводорода, аммиака);

2)краткий анализ воды (кроме определений, перечисленных в газовом анализе, определяют окисляемость, щелочность, карбонатную жесткость воды и общее содер­жание растворенного железа);

3)полный общий анализ воды, который включает определение физических свойств (температуры, прозрачности, цвета, запаха и вкуса); содержания кислорода, углекислого газа, сероводорода, аммиака; концентрации ионов водорода (рН) и ще­лочности, общей, карбонатной жесткости; окисляемости нефильтрованной и фильт­рованной воды; содержания альбуминоидиого азота, солевого аммиака, нитритов, нитратов, фосфатов, различных форм железа, кремния; сульфатов, хлоридов, кальция и магния.

Целью специальных исследований может быть определение содержания метал­лов и микроэлементов.

Полученные результаты сравнивают с нормативными значениями показателей качества воды, приведенными в таблице.

Большинство природных вод мало минерализовано, поэтому для количественно­го определения многих компонентов, растворенных в воде, требуются точные мето­дики. Вместе с тем они должны быть достаточно простыми, не требующими сложного и дорогостоящего оборудования, доступными для выполнения в полевых условиях и в относительно небольших гидрохимических лабораториях рыбоводных хозяйств.

Методики исследования химического состава воды должны быть едиными при изучении водоемов в различных целях; для того чтобы полученные данные можно было сравнить и использовать.

Определения не должны занимать много времени, так как надо стремиться все необходимые показатели определить в течение 1 -2 сут.

Используемые в настоящее время в практических целях методы химического анализа природных вод можно разделить на:

1) химические (весовые, объемный ана­лиз); 2) электрохимические (потенциометрический, кондуктометрический, поляро­графический); 3) оптические (фотометрические и спектрофотометрические, люминес­центный, спектральный анализ); 4) фотохимические, 5) хроматографичсские (жидко­стная колоночная хроматография, тонкослойная хроматография, газовая хроматография и т.д.).

Наиболее распространены в гидрохимии первые три группы методов. К химиче­ским методам относятся методы, предусматривающие проведение химической реак­ции и последующее количественное определение образующихся продуктов. Из хими­ческих методов при анализе природных вод широко используется метод объемного анализа. Основным преимуществом объемного анализа являются простота, быстрота определения, а также широкие возможности использования разнообразных химиче­ских свойств веществ. Именно благодаря этим достоинствам метода объемного ана­лиза в настоящее время являются основными при определении макрокомпонентов природных вод. Суть объемного метода заключается во взаимодействии исследуемо­го компонента с реактивом, который добавляется в виде раствора определенной концентрации (титрованный раствор) до того момента, когда количество прибавленного реактива не станет эквивалентно количеству определяемого компонента в растворе. Этот процесс называется титрованием, а момент окончания титрования — точкой эквивалентности. Конец титрования обычно устанавливают по изменению цвета индикатора, т.е. вещества, которое изменяет вою окраску при концентрациях реаги­рующих веществ, близких к точке эквивалентности. Индикатор и условия титрования выбирают так, чтобы точка титрования индикатора совпадала с точкой эквивалентно­сти или была, возможно, ближе к последней.

Процесс титрования осуществляется следующим образом.

В коническую колбу помещают исследуемую пробу воды, раствор индикатора, по каплям добавляют из бюретки титрующий раствор при постоянном перемешива­нии. Титрование продолжают до изменения цвета окраски в колбе. Обычно для уста­новления конечной точки титрования используют «свидетель», в качестве которого обычно применяется проба, оттитрованная до эквивалентной точки. Сравнение окра­сок следует производить на белом фоне. По окончании титрования по бюретке отме­чают количество затраченного на титрование раствора.

В зависимости от типа реакций методы объемного анализа делятся на четыре большие группы: 1) кислотно-основное титрование, 2) титрование окислителями и восстановителями; 3) методы осаждения; 4) методы, основанные на образовании ком­плексов.

При кислотно-основном титровании в качестве титрованных растворов обычно применяют кислоты и щелочи. Определять этим методом можно кислоты, щелочи, соли слабых кислот и оснований; в частности, в гидрохимии этим методом определя­ют диоксид углерода и гидрокарбонаты.

Титрование окислителями и восстановителями применяется в гидрохимии в ос­новном при определении растворенного кислорода и окисляемости.

Методы объемного анализа, основанные на реакциях осаждения, используются при определении сульфатов и хлоридов.

Примером титрования с образованием комплексов могут служить реакции взаи­модействия ионов кальция и магния с трилоном Б, которые лежат в основе определе­ния общей жесткости воды.

Электрохимические методы основаны на измерении электрохимических свойств компонентов — окислительного потенциала, электрической проводимости, силы полярографического тока и т.д. Простота выполнения определений, легкость ав­томатизации, высокая чувствительность делают эти методы весьма перспективными в анализе вод.

В основе оптических методовлежит способность всех веществ поглощать лу­чистую энергию в виде квантов, соответствующих определенным длинам волн. Ли­нии или полосы поглощения при этом располагаются в ультрафиолетовой, видимой или инфракрасной областях спектра и могут использоваться для количественной оценки (см. лаб. раб.№2.).

В процессе выполнения анализа записи следует вести в табличной форме. При применении объемного метода рекомендуется форма табл.1(приложение), фотоколо­риметрического — табл.2(приложение) и при определении окисляемости перманганатным методом — табл.3 (приложение).

Такие таблицы позволяют легко произвести расчет, устранить неясности и при необходимости быстро проверить правильность вычислений.

Пользуясь указанными выше методами, результаты анализа выражают в виде

источник

ПНД Ф 14.1:2.100-97 Количественный химический анализ вод. Методика выполнения измерений химического потребления кислорода в пробах природных и очищенных сточных вод титриметрическим методом

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ
ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

Государственного комитета РФ

по охране окружающей среды

_____________ А.А. Соловьянов

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
ХИМИЧЕСКОГО ПОТРЕБЛЕНИЯ КИСЛОРОДА
В ПРОБАХ ПРИРОДНЫХ И ОЧИЩЕННЫХ СТОЧНЫХ ВОД
ТИТРИМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного экологического контроля

МОСКВА 1997 г.
(издание 2004 г.)

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них величины химического потребления кислорода (ХПК) при содержании органических веществ, эквивалентном потреблению молекулярного кислорода в диапазоне от 4,0 до 80,0 мг/дм 3 титриметрическим методом без концентрирования пробы.

При величине ХПК > 50 мг/дм 3 определение следует проводить при соответствующем разбавлении пробы дистиллированной водой.

Определению мешают хлориды, сульфиды, соединения железа(II), нитриты и другие неорганические вещества, способные окисляться бихроматом в кислой среде.

Мешающие влияния устраняют в соответствии с п. 10.

Титриметрический метод определения ХПК основан на окислении органических веществ избытком бихромата калия в растворе серной кислоты при нагревании в присутствии катализатора — сульфата серебра. Остаток бихромата калия находят титрованием раствором соли Мора и по разности определяют количество K 2 Cr 2 O 7 , израсходованное на окисление органических веществ.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости

Показатель точности (границы относительной погрешности при вероятности Р = 0,95),
± d , %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости),
s r, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),
s R, %

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Весы лабораторные общего назначения с наибольшим пределом
взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначен ия с наибольш им пределом
взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованным содержанием ХПК с погрешностью не более 1 % при Р = 0,95

Цилиндры мерные или мензурки

Плитки электрические с закрытой спиралью и регулируемой
мощностью нагрева

Шкаф сушильный лабораторный с температурой нагрева до 130 °С

Стаканчики для взвешивания (бюксы)

Установки для определения ХПК в составе:

Колба К-1-250-29/32 ТС или колба Гр-250-29/32

Обратный холодильник ХПТ-2-400-29/32 ХС

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Бихромат калия (калий двухромовокислый)

N-фенилантраниловая кислота или

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

или фильтры бумажные обеззоленные «синяя лента»

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

· температура окружающего воздуха (22 ± 6) °С;

· атмосферное давление (84 — 106) кПа;

· относительная влажность не более 80 % при температуре 25 °С;

· частота переменного тока (50 ± 1) Гц;

· напряжение в сети (220 ± 22) В.

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, моют хромовой смесью, затем тщательно (не менее 10 раз) промывают водопроводной и ополаскивают дистиллированной водой.

8.3. Пробы воды отбирают в стеклянную посуду с пробками, не загрязняющими пробу органическими соединениями.

В зависимости от целей анализа определение ХПК можно проводить в нефильтрованной или фильтрованной пробе. В последнем случае пробу предварительно фильтруют через мембранный фильтр 0,45 мкм, очищенный двухкратным кипячением в дистиллированной воде. Допустимо использование бумажных фильтров «синяя лента», промытых дистиллированной водой. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Читайте также:  Сколько воды нужно для анализа

Объем отбираемой пробы должен быть не менее 100 см 3 .

8.4. Определение ХПК, особенно в загрязненных водах, следует проводить как можно скорее после отбора пробы. Допускается хранение пробы при температуре не выше 4 °С не более суток при консервации добавлением раствора серной кислоты (1:2) из расчета 2 см 3 на каждые 100 см 3 пробы воды.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

9.1. Приготовление растворов и реактивов

9.1.1. Раствор бихромата калия с концентрацией 0,25 моль/дм 3 эквивалента .

6,129 г бихромата калия, предварительно высушенного в течение 2 ч при 105 °С, количественно переносят его в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, доводят до метки и перемешивают. Раствор устойчив при хранении в плотно закрытой темной склянке в течение 6 мес.

50 см 3 раствора бихромата калия с концентрацией 0,25 моль/дм 3 эквивалента помещают в мерную колбу вместимостью 500 см 3 и доводят объем раствора до метки дистиллированной водой. Хранят в склянке с притертой пробкой в темном месте не более 6 мес.

9.1.3. Раствор соли Мора с концентрацией 0,25 моль/дм 3 эквивалента.

49,0 г соли Мора переносят в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, осторожно добавляют 10 см 3 концентрированной серной кислоты и после охлаждения доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде не более 6 мес.

50 см 3 раствора соли Мора с концентрацией 0,25 моль/дм 3 эквивалента помещают в мерную колбу вместимостью 500 см 3 и доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде не более 3 мес.

Точную концентрацию раствора устанавливают ежедневно или перед серией определений в соответствии с п. 10.2.

В качестве индикатора используют раствор N-фенилантраниловой кислоты или ферроина (комплекс сульфата железа(II) с 1,10-фенантролином).

Для приготовления раствора N -фенилантраниловой кислоты 0,25 г реактива растворяют в 12 см 3 раствора гидрооксида натрия (для ускорения процесса раствор можно слегка подогреть) и разбавляют дистиллированной водой до 250 см 3 .

Для приготовления раствора ферроина 2,43 г индикатора растворяют в 100 см 3 дистиллированной воды.

При приготовлении раствора ферроина на основе 1,10-фенантролина растворяют 0,980 г соли Мора ( NH 4 )2 Fe (SO 4 )2 · 6H 2 O в 100 см 3 дистиллированной воды, добавляют 2,085 г 1,10-фенантролина моногидрата или 2,93 г сульфата и перемешивают до растворения последнего.

Раствор индикатора хранят в плотно закрытой склянке из темного стекла не более 3 мес.

9.1.6. Раствор гидроксида натрия, 0,4 %.

0,4 г NaOH растворяют в 100 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой полиэтиленовой посуде не более 2 мес.

9.1.7. Раствор сульфата серебра.

5,0 г Ag 2 SO 4 растворяют в 1 дм 3 концентрированной серной кислоты. Раствор устойчив в склянке из темного стекла в течение 6 мес.

9.2. Установление точной концентрации раствора соли Мора

Пипеткой вместимостью 10 см 3 отбирают 10 см 3 раствора бихромата калия с концентрацией 0,025 моль/дм 3 эквивалента (п. 9.1.2), переносят в коническую колбу, добавляют 180 см 3 дистиллированной воды и 20 см 3 концентрированной серной кислоты. После охлаждения добавляют в пробу 3 — 4 капли индикатора ферроина или 10 капель раствора N -фенилантраниловой кислоты и титруют раствором соли Мора с концентрацией 0,025 моль/дм 3 эквивалента (п. 9.1.4) до перехода окраски из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Титрование повторяют и при отсутствии расхождения в объемах титранта более 0,05 см 3 за результат принимают среднее значение. В противном случае повторяют титрование до получения результатов, отличающихся не более, чем на 0,05 см 3 .

Точную концентрацию раствора соли Мора находят по формуле:

где С м — концентрация раствора соли Мора, моль/дм 3 эквивалента;

Сб — концентрация раствора бихромата калия, моль/дм 3 эквивалента;

V б — объем раствора бихромата калия, взятый для титрования, см 3 ;

V м — объем раствора соли Мора, пошедший на титрование см 3 .

Мешающее влияние хлоридов при концентрациях менее 300 мг/дм 3 устраняется за счет присутствия в пробе катализатора (сульфата серебра). При больших содержаниях хлоридов к пробе добавляют сульфат ртути (II) из расчета 100 мг на 10 мг хлоридов.

Мешающее влияние сульфидов и соединений железа (II) устраняют предварительной продувкой пробы воды воздухом, если она не содержит летучих органических соединений, или учитывают при расчете ХПК. В последнем случае определяют их концентрации и пересчитывают на величины ХПК, исходя из того, что 1 мг H 2 S и 1 мг Fe 2+ эквивалентны соответственно 0,47 и 0,14 мг O 2 . Таким же образом учитывают влияние нитритов (1 мг N О 2 эквивалентен 0,35 мг O 2 ).

Если концентрация хлоридов в пробе анализируемой воды составляет менее 300 мг/дм 3 , в колбу со шлифом установки для определения ХПК вносят с помощью пипетки 20 см 3 воды (или аликвоту, доведенную дистиллированной водой до 20 см 3 ), добавляют 10,0 см 3 раствора бихромата калия с концентрацией 0,025 моль/дм 3 эквивалента (п. 9.1.2) и 30 см 3 раствора сульфата серебра в концентрированной серной кислоте. Для равномерного кипения в колбу бросают 2 — 3 капилляра, присоединяют к ней обратный холодильник и кипятят содержимое на песчаной бане в течение 2 ч.

После охлаждения установки промывают холодильник дистиллированной водой (около 50 см 3 ), отсоединяют его, добавляют в колбу, обмывая ее стенки, еще 50 см 3 дистиллированной воды, вновь охлаждают, переносят пробу в коническую колбу, дважды споласкивая колбу, где кипятилась проба, дистиллированной водой (по 20 — 30 см 3 ). Добавляют 3 — 4 капли раствора ферроина (или 10 капель раствора фенилантраниловой кислоты) и титруют избыток непрореагировавшего бихромата калия раствором соли Мора (п. 9.1.4) до перехода окраски индикатора из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Аналогичным образом проводят холостой опыт с 20 см 3 дистиллированной воды.

Если концентрация хлоридов в воде превышает 300 мг/дм 3 , к отобранной для анализа пробе (20 см 3 или меньшей аликвоте, доведенной до 20 см 3 дистиллированной водой) добавляют сульфат ртути из расчета 100 мг на каждые 10 мг содержащихся в пробе хлоридов и тщательно перемешивают. Далее выполняют определение, как описано в п. 11.1. Наличие небольшого количества осадка, образовавшегося после добавления сульфата ртути, не мешает определению.

12.1. Величину ХПК (бихроматной окисляемости) анализируемой пробы воды X находят по формуле:

где V мх — объем раствора соли Мора, израсходованный на титрование в холостом опыте, см 3 ;

V м — объем раствора соли Мора, израсходованный на титрование в пробы воды, см 3 ;

С м — концентрация раствора соли Мора, моль/дм 3 эквивалента;

V — объем пробы воды, взятый для определения, см 3 ;

8,0 — масса миллиграмм-эквивалента кислорода, мг.

Если величина ХПК в анализируемой пробе превышает верхнюю границу диапазона (80 мг/дм 3 ), разбавляют пробу с таким расчетом, чтобы величина ХПК входила в регламентированный диапазон, и выполняют определение в соответствии с п. 11.2.

В этом случае величину ХПК в анализируемой пробе воды X находят по формуле:

где Х V величина ХПК в разбавленной пробе воды, мг/дм 3 ;

V V — объем пробы воды после разбавления, см 3 ;

v — объем аликвоты пробы воды, взятой для разбавления, см 3 .

12.2. Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 2.

Значения предела воспроизводимости при вероятности Р = 0,95

Предел воспроизводимости (относительное значение допускаемого расхождения
между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

Результат анализа X в документах, предусматривающих его использование, может быть представлен в виде:

где D — показатель точности методики.

Значение D рассчитывают по формуле:

Значение d приведено в таблице 1.

Если проводилось разбавление пробы воды из-за превышения величины ХПК верхней границы диапазона, значение d выбирают из таблицы 1 для величины ХПК в разбавленной пробе воды Х V .

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде:

где Х — результат анализа, полученный в соответствии с прописью методики;

± D л — значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории, и обеспечиваемое контролем стабильности результатов анализа.

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

— оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

— контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

14.1. Алгоритм оперативного контроля процедуры анализа с использованием метода добавок

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры К к с нормативом контроля К.

Результат контрольной процедуры К к рассчитывают по формуле:

где X ¢ — результат анализа величины ХПК в пробе с известной добавкой;

X — результат анализа величины ХПК в исходной пробе;

Норматив контроля К рассчитывают по формуле.

где D л,Х¢ , D л,Х — значения характеристики погрешности результатов анализа, установленные в лаборатории при реализации методики, соответствующие величине ХПК в пробе с известной добавкой и в исходной пробе соответственно.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: D л = 0,84 · D , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

При невыполнении условия (1) контрольную процедуру повторяют. При повторном невыполнении условия (1) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

14.2. Алгоритм оперативного контроля процедуры анализа с применением образцов для контроля

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры К к с нормативом контроля К.

Результат контрольной процедуры К к рассчитывают по формуле:

где Х к — результат анализа величины ХПК в образце для контроля;

С — аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле:

где ± D л — характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: D л = 0,84 · D с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

При невыполнении условия (2) контрольную процедуру повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.

источник

Вода требуется любому организму, но из источника жизни она способна превратиться в причину болезней и отравлений. Помимо полезных микроэлементов, в воде растворяются многие химические соединения и могут развиваться микробы.

В современных условиях нельзя быть уверенным даже в чистоте воды из родника. Прежде чем применять воду для хозяйственных нужд либо питья, следует убедиться в ее качестве и безопасности. Это позволяет сделать лабораторный анализ воды.

Перед применением воды на производстве либо для хознужд проводится предварительная водоподготовка, предполагающая удаление из состава жидкости вредных компонентов, снижение ее жесткости и очистку от тяжелых металлов. Для определения конкретных веществ, подлежащих удалению, существуют химические методы анализа качества воды. Полученные данные позволяют правильно выбрать и установить требуемые очистные установки.

Эффективность работы фильтров проверяется аналогичным способом: анализ проводится повторно, а полученные данные сравниваются с первоначальными результатами. Если показатели улучшились, значит, установленные фильтры выбраны верно.

Для проведения проверки разработаны специальные методы химического анализа воды, при этом каждый из них направлен на установление содержания в жидкости определенного вещества либо группы веществ:

  1. Фотометрия и люминесценция. В основе методики лежит эффект свечения. Тестируемая жидкость обрабатывается ультрафиолетом, в ответ на обработку разные вещества светятся по-разному. Зафиксировать реакцию позволяют специальные приборы. Подобная методика дает возможность установить присутствие в воде нитратов, растворенного сероводорода, отравляющих цианидов, анионных веществ и других компонентов.
  2. ИК-спектрометрия – используется для выявления присутствия жиров и нефтепродуктов. Через воду пропускается инфракрасное излучение, заставляющее молекулы неравномерно колебаться. Длина волн служит маркером для определения примеси конкретного вещества.
  3. Полярография – позволяет установить концентрацию в воде ионов свинца, цинка и органических веществ. Метод основан на движении ионов при проведении электролитической диссоциации.
  4. Масс-спектрометрия – анализирует структуру вещества с помощью данных о его массе и заряде ионов. Применяется для определения изотопного состава молекул.
  5. Потенциометрия – методика химического анализа воды, позволяющая установить наличие фторидов и водородный показатель (pH). В основе способа лежит измерение электродвижущих сил.
  6. Дозиметрия – устанавливает наличие в жидкости радиоактивных примесей.

Многообразие существующих методик позволяет провести общий и полный анализ. При общем качество жидкости проверяется по уровню главных показателей каждой группы. С его помощью делаются выводы о качественном составе воды, однако не определяется концентрация конкретных веществ. Для ее определения проводится полный анализ, предполагающий углубленное исследование исходных образцов.

С помощью общего анализа устанавливаются следующие характеристики:

  • Жесткость.
  • Органолептика.
  • Состав по основным хим. элементам.
  • Кислотность.

Полный анализ предполагает углубленные исследования показателей каждой группы, что позволяет определить точную концентрацию веществ в растворе. Данный метод химического анализа питьевой воды можно использовать для проверки жидкости на содержание патогенной микрофлоры, токсинов, химических компонентов.

Для получения достоверных данных анализ любого вида должен выполняться при строгом соблюдении условий, установленных нормативами. То же самое относится к методике отбора проб воды для химического анализа, их хранению и транспортировке.

Для проб воды применяется тара из стекла или пластика, а колпачки должны закрываться герметично. Хранение исходного материала для последующих анализов происходит при условии их консервации в специальном водном растворе. Максимальный срок хранения – две недели.

Оптимальный объем воды для проведения исследований составляет не менее 3,5 дм3. При взятии образцов составляется акт, в котором указываются причины анализа и его назначение, определяются показатели для проверки, отмечается место и время забора жидкости.

При появлении сомнений относительно качества водопроводной воды либо воды, поступающей в дом из колодца и скважины, лучше не рисковать собственным здоровьем, а обратиться в нашу компанию. По результатам выполненной проверки вы сможете понять, есть ли необходимость устанавливать системы очистки воды. Опытные специалисты подберут подходящие фильтры, а также выполнят их монтаж и последующее обслуживание на выгодных условиях.

источник

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них величины химического потребления кислорода (ХПК) при содержании органических веществ, эквивалентном потреблению молекулярного кислорода в диапазоне от 4,0 до 80,0 мг/дм 3 титриметрическим методом без концентрирования пробы.

Читайте также:  Сколько надо воды для анализа

При величине ХПК > 50 мг/дм 3 определение следует проводить при соответствующем разбавлении пробы дистиллированной водой.

Определению мешают хлориды, сульфиды, соединения железа(II), нитриты и другие неорганические вещества, способные окисляться бихроматом в кислой среде.

Мешающие влияния устраняют в соответствии с п. 10.

Титриметрический метод определения ХПК основан на окислении органических веществ избытком бихромата калия в растворе серной кислоты при нагревании в присутствии катализатора — сульфата серебра. Остаток бихромата калия находят титрованием раствором соли Мора и по разности определяют количество K 2 Cr 2 O 7 , израсходованное на окисление органических веществ.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости

Показатель точности (границы относительной погрешности при вероятности Р = 0,95),
± d , %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости),
s r, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),
s R, %

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Весы лабораторные общего назначения с наибольшим пределом
взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначен ия с наибольш им пределом
взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованным содержанием ХПК с погрешностью не более 1 % при Р = 0,95

Цилиндры мерные или мензурки

Плитки электрические с закрытой спиралью и регулируемой
мощностью нагрева

Шкаф сушильный лабораторный с температурой нагрева до 130 °С

Стаканчики для взвешивания (бюксы)

Установки для определения ХПК в составе:

Колба К-1-250-29/32 ТС или колба Гр-250-29/32

Обратный холодильник ХПТ-2-400-29/32 ХС

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Бихромат калия (калий двухромовокислый)

N-фенилантраниловая кислота или

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

или фильтры бумажные обеззоленные «синяя лента»

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

· температура окружающего воздуха (22 ± 6) °С;

· атмосферное давление (84 — 106) кПа;

· относительная влажность не более 80 % при температуре 25 °С;

· частота переменного тока (50 ± 1) Гц;

· напряжение в сети (220 ± 22) В.

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, моют хромовой смесью, затем тщательно (не менее 10 раз) промывают водопроводной и ополаскивают дистиллированной водой.

8.3. Пробы воды отбирают в стеклянную посуду с пробками, не загрязняющими пробу органическими соединениями.

В зависимости от целей анализа определение ХПК можно проводить в нефильтрованной или фильтрованной пробе. В последнем случае пробу предварительно фильтруют через мембранный фильтр 0,45 мкм, очищенный двухкратным кипячением в дистиллированной воде. Допустимо использование бумажных фильтров «синяя лента», промытых дистиллированной водой. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 100 см 3 .

8.4. Определение ХПК, особенно в загрязненных водах, следует проводить как можно скорее после отбора пробы. Допускается хранение пробы при температуре не выше 4 °С не более суток при консервации добавлением раствора серной кислоты (1:2) из расчета 2 см 3 на каждые 100 см 3 пробы воды.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

9.1. Приготовление растворов и реактивов

9.1.1. Раствор бихромата калия с концентрацией 0,25 моль/дм 3 эквивалента .

6,129 г бихромата калия, предварительно высушенного в течение 2 ч при 105 °С, количественно переносят его в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, доводят до метки и перемешивают. Раствор устойчив при хранении в плотно закрытой темной склянке в течение 6 мес.

50 см 3 раствора бихромата калия с концентрацией 0,25 моль/дм 3 эквивалента помещают в мерную колбу вместимостью 500 см 3 и доводят объем раствора до метки дистиллированной водой. Хранят в склянке с притертой пробкой в темном месте не более 6 мес.

9.1.3. Раствор соли Мора с концентрацией 0,25 моль/дм 3 эквивалента.

49,0 г соли Мора переносят в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, осторожно добавляют 10 см 3 концентрированной серной кислоты и после охлаждения доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде не более 6 мес.

50 см 3 раствора соли Мора с концентрацией 0,25 моль/дм 3 эквивалента помещают в мерную колбу вместимостью 500 см 3 и доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде не более 3 мес.

Точную концентрацию раствора устанавливают ежедневно или перед серией определений в соответствии с п. 10.2.

В качестве индикатора используют раствор N-фенилантраниловой кислоты или ферроина (комплекс сульфата железа(II) с 1,10-фенантролином).

Для приготовления раствора N -фенилантраниловой кислоты 0,25 г реактива растворяют в 12 см 3 раствора гидрооксида натрия (для ускорения процесса раствор можно слегка подогреть) и разбавляют дистиллированной водой до 250 см 3 .

Для приготовления раствора ферроина 2,43 г индикатора растворяют в 100 см 3 дистиллированной воды.

При приготовлении раствора ферроина на основе 1,10-фенантролина растворяют 0,980 г соли Мора ( NH 4 )2 Fe (SO 4 )2 · 6H 2 O в 100 см 3 дистиллированной воды, добавляют 2,085 г 1,10-фенантролина моногидрата или 2,93 г сульфата и перемешивают до растворения последнего.

Раствор индикатора хранят в плотно закрытой склянке из темного стекла не более 3 мес.

9.1.6. Раствор гидроксида натрия, 0,4 %.

0,4 г NaOH растворяют в 100 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой полиэтиленовой посуде не более 2 мес.

9.1.7. Раствор сульфата серебра.

5,0 г Ag 2 SO 4 растворяют в 1 дм 3 концентрированной серной кислоты. Раствор устойчив в склянке из темного стекла в течение 6 мес.

9.2. Установление точной концентрации раствора соли Мора

Пипеткой вместимостью 10 см 3 отбирают 10 см 3 раствора бихромата калия с концентрацией 0,025 моль/дм 3 эквивалента (п. 9.1.2), переносят в коническую колбу, добавляют 180 см 3 дистиллированной воды и 20 см 3 концентрированной серной кислоты. После охлаждения добавляют в пробу 3 — 4 капли индикатора ферроина или 10 капель раствора N -фенилантраниловой кислоты и титруют раствором соли Мора с концентрацией 0,025 моль/дм 3 эквивалента (п. 9.1.4) до перехода окраски из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Титрование повторяют и при отсутствии расхождения в объемах титранта более 0,05 см 3 за результат принимают среднее значение. В противном случае повторяют титрование до получения результатов, отличающихся не более, чем на 0,05 см 3 .

Точную концентрацию раствора соли Мора находят по формуле:

где С м — концентрация раствора соли Мора, моль/дм 3 эквивалента;

Сб — концентрация раствора бихромата калия, моль/дм 3 эквивалента;

V б — объем раствора бихромата калия, взятый для титрования, см 3 ;

V м — объем раствора соли Мора, пошедший на титрование см 3 .

Мешающее влияние хлоридов при концентрациях менее 300 мг/дм 3 устраняется за счет присутствия в пробе катализатора (сульфата серебра). При больших содержаниях хлоридов к пробе добавляют сульфат ртути (II) из расчета 100 мг на 10 мг хлоридов.

Мешающее влияние сульфидов и соединений железа (II) устраняют предварительной продувкой пробы воды воздухом, если она не содержит летучих органических соединений, или учитывают при расчете ХПК. В последнем случае определяют их концентрации и пересчитывают на величины ХПК, исходя из того, что 1 мг H 2 S и 1 мг Fe 2+ эквивалентны соответственно 0,47 и 0,14 мг O 2 . Таким же образом учитывают влияние нитритов (1 мг N О 2 эквивалентен 0,35 мг O 2 ).

Если концентрация хлоридов в пробе анализируемой воды составляет менее 300 мг/дм 3 , в колбу со шлифом установки для определения ХПК вносят с помощью пипетки 20 см 3 воды (или аликвоту, доведенную дистиллированной водой до 20 см 3 ), добавляют 10,0 см 3 раствора бихромата калия с концентрацией 0,025 моль/дм 3 эквивалента (п. 9.1.2) и 30 см 3 раствора сульфата серебра в концентрированной серной кислоте. Для равномерного кипения в колбу бросают 2 — 3 капилляра, присоединяют к ней обратный холодильник и кипятят содержимое на песчаной бане в течение 2 ч.

После охлаждения установки промывают холодильник дистиллированной водой (около 50 см 3 ), отсоединяют его, добавляют в колбу, обмывая ее стенки, еще 50 см 3 дистиллированной воды, вновь охлаждают, переносят пробу в коническую колбу, дважды споласкивая колбу, где кипятилась проба, дистиллированной водой (по 20 — 30 см 3 ). Добавляют 3 — 4 капли раствора ферроина (или 10 капель раствора фенилантраниловой кислоты) и титруют избыток непрореагировавшего бихромата калия раствором соли Мора (п. 9.1.4) до перехода окраски индикатора из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Аналогичным образом проводят холостой опыт с 20 см 3 дистиллированной воды.

Если концентрация хлоридов в воде превышает 300 мг/дм 3 , к отобранной для анализа пробе (20 см 3 или меньшей аликвоте, доведенной до 20 см 3 дистиллированной водой) добавляют сульфат ртути из расчета 100 мг на каждые 10 мг содержащихся в пробе хлоридов и тщательно перемешивают. Далее выполняют определение, как описано в п. 11.1. Наличие небольшого количества осадка, образовавшегося после добавления сульфата ртути, не мешает определению.

12.1. Величину ХПК (бихроматной окисляемости) анализируемой пробы воды X находят по формуле:

где V мх — объем раствора соли Мора, израсходованный на титрование в холостом опыте, см 3 ;

V м — объем раствора соли Мора, израсходованный на титрование в пробы воды, см 3 ;

С м — концентрация раствора соли Мора, моль/дм 3 эквивалента;

V — объем пробы воды, взятый для определения, см 3 ;

8,0 — масса миллиграмм-эквивалента кислорода, мг.

Если величина ХПК в анализируемой пробе превышает верхнюю границу диапазона (80 мг/дм 3 ), разбавляют пробу с таким расчетом, чтобы величина ХПК входила в регламентированный диапазон, и выполняют определение в соответствии с п. 11.2.

В этом случае величину ХПК в анализируемой пробе воды X находят по формуле:

где Х V величина ХПК в разбавленной пробе воды, мг/дм 3 ;

V V — объем пробы воды после разбавления, см 3 ;

v — объем аликвоты пробы воды, взятой для разбавления, см 3 .

12.2. Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 2.

Значения предела воспроизводимости при вероятности Р = 0,95

Предел воспроизводимости (относительное значение допускаемого расхождения
между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

Результат анализа X в документах, предусматривающих его использование, может быть представлен в виде:

где D — показатель точности методики.

Значение D рассчитывают по формуле:

Значение d приведено в таблице 1.

Если проводилось разбавление пробы воды из-за превышения величины ХПК верхней границы диапазона, значение d выбирают из таблицы 1 для величины ХПК в разбавленной пробе воды Х V .

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде:

где Х — результат анализа, полученный в соответствии с прописью методики;

± D л — значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории, и обеспечиваемое контролем стабильности результатов анализа.

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

— оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

— контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

14.1. Алгоритм оперативного контроля процедуры анализа с использованием метода добавок

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры К к с нормативом контроля К.

Результат контрольной процедуры К к рассчитывают по формуле:

где X ¢ — результат анализа величины ХПК в пробе с известной добавкой;

X — результат анализа величины ХПК в исходной пробе;

Норматив контроля К рассчитывают по формуле.

где D л,Х¢ , D л,Х — значения характеристики погрешности результатов анализа, установленные в лаборатории при реализации методики, соответствующие величине ХПК в пробе с известной добавкой и в исходной пробе соответственно.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: D л = 0,84 · D , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

При невыполнении условия (1) контрольную процедуру повторяют. При повторном невыполнении условия (1) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

14.2. Алгоритм оперативного контроля процедуры анализа с применением образцов для контроля

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры К к с нормативом контроля К.

Результат контрольной процедуры К к рассчитывают по формуле:

где Х к — результат анализа величины ХПК в образце для контроля;

С — аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле:

где ± D л — характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: D л = 0,84 · D с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

При невыполнении условия (2) контрольную процедуру повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.

источник