Меню Рубрики

Метод анализа магния в воде

Настоящий нормативный документ устанавливает пламенный атомно-абсорбционный метод определения массовых концентраций магния, кальция и стронция в питьевых, природных и сточных водах. Диапазоны определяемых концентраций указаны в таблице 1.

Мешающее влияние со стороны сопутствующих элементов: алюминия, кремния, титана, цинка, щелочных металлов, серной кислоты, фосфорной кислоты в воздушно-ацетиленовом пламени устраняют введением в анализируемые растворы хлорида лантана.

Блок-схема анализа приведена в Приложении 1.

Диапазоны определяемых концентраций

Диапазоны определяемых концентраций, мг/дм 3

Питьевая и природная вода

При соответствующем дальнейшем разбавлении возможен анализ проб с более высокими содержаниями кальция, магния и стронция.

Метод основан на измерении резонансного поглощения света свободными атомами магния, кальция или стронция при прохождении света через атомный пар исследуемого образца, образующийся в пламени.

Настоящая методика обеспечивает получение результатов анализа с погрешностями, не превышающими значений, приведенных в табл. 2.

3.1.1. Атомно-абсорбционный спектрометр с пламенным атомизатором.

3.1.2. Лампы с полым катодом на кальций, магний, стронций.

3.1.4. Государственные стандартные образцы (ГСО) состава водных растворов магния, кальция и стронция с относительной погрешностью аттестованных значений массовых концентраций не более 1 % при Р = 0,95.

3.1.5. Бидистиллятор стеклянный БС ТУ 25-11.1592 или установка для получения деионизированной воды (степень чистоты 2 по ГОСТ Р 52501).

3.1.6. Плитка электрическая по ГОСТ 14919 или баня песчаная, или микроволновая печь с закрытыми стаканами, например, MDS-2000 (СЕМ) или Mars 5 (СЕМ).

Примечание : Допускается использовать средства измерений и вспомогательное оборудование с метрологическими и техническими характеристиками не хуже, чем у вышеуказанных

Диапазон измеряемых концентраций, относительные показатели точности, правильности, повторяемости и воспроизводимости методики при доверительной вероятности Р = 0,95

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), s r( d ), %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости) s R( d ), %

Показатель правильности (границы относительной систематической погрешности при вероятности Р = 0,95) ± d c, %

Показатель точности (границы, в которых находится погрешность методики при Р = 0,95), ± d , %

3.2.1. Колбы мерные вместимостью 25, 50, 100, 1000 см 3 , по ГОСТ 1770, 2 класс точности.

3.2.2. Пипетки градуированные вместимостью 1, 2, 5, 10 см 3 , по ГОСТ 29227 или с одной меткой по ГОСТ 29169.

3.2.3. Цилиндры мерные наливные вместимостью 50, 100, 1000 см 3 , по ГОСТ 1770, 2 класс точности.

3.2.4. Стаканы химические термостойкие из боросиликатного стекла вместимостью 50, 100, 1000 см 3 , по ГОСТ 25336.

3.2.5. Полиэтиленовые емкости или емкости из боросиликатного стекла для хранения проб вместимостью 500 см 3 .

3.3.1. Фильтры мембранные с диаметром пор 0,45 мкм (тип МФА-МА по ТУ 6-05-1903) или 5 мкм, или аналогичные.

3.3.3. Ацетилен растворенный газообразный по ГОСТ 5457.

3.3.4. Фильтры обеззоленные «белая лента» по ТУ 6-09-1678.

3.3.5. Бумага индикаторная универсальная по ТУ 6-09-1181.

3.4.1. Лантан хлористый семиводный, LaCl 3 × 7H 2 O, х.ч., ТУ 6-09-4773.

3.4.2. Кислота соляная, конц. (d = 1,18 г/см 3 ), НСl, о.с.ч., ГОСТ 3118, или фиксаналы соляной кислоты с концентрацией 0,1 моль/дм 3 .

3.4.3. Кислота азотная, конц. (d = 1,42 г/см 3 ), HNO 3 , о.с.ч., ГОСТ 4461.

3.4.4. Вода дистиллированная по ГОСТ 6709 или вода для лабораторного анализа по ГОСТ Р 52501 (степень чистоты 2).

3.4.5. Перекись водорода 30 %, ос.ч., ТУ 2611-003-57856778.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

4.2. При работе с оборудованием необходимо соблюдать правила электробезопасности по ГОСТ 12.1.019.

4.3. Обучение работающих безопасности труда должно быть организовано в соответствии с ГОСТ 12.0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

К выполнению измерений и обработке их результатов допускают лиц, имеющих высшее инженерно-химическое образование, владеющих методом атомно-абсорбционного анализа, знающих принцип действия, конструкцию и правила эксплуатации данного оборудования.

К выполнению работ по пробоподготовке допускают лиц, имеющих среднее специальное химическое образование, обученных методике подготовки проб.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

относительная влажность воздуха

7.1. Отбор проб воды осуществляют в соответствии с ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб» и ГОСТ Р 51593-2000 «Отбор проб. Питьевая вода».

7.2. Пробы отбирают в емкости из полиэтилена или боросиликатного стекла. Требуемый объем пробы не менее 0,2 дм 3 .

7.3. При определении растворенных кальция, магния и стронция пробы воды фильтруют через мембранный фильтр 0,45 мкм и подкисляют азотной кислотой до рН

7.4. При определении общего содержания кальция, магния и стронция нефильтрованные пробы воды подкисляют концентрированной азотной кислотой до рН 3 кислоты на 1 дм 3 пробы). Срок хранения проб 1 месяц.

7.5. Срок хранения проб без консервации 2 суток.

7.6. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

Подготовку спектрометра к работе проводят в соответствии с инструкцией по эксплуатации. Рекомендуемая длина волны для измерения кальция — 422,7 нм; для магния — 285,2 нм; для стронция — 460,7 нм.

Примечание : Условия определения элементов (длина волны, ширина щели, расход газов, скорость распыления раствора и др.) могут варьироваться в зависимости от модели спектрометра и версии используемого программного обеспечения.

8.2.1. Приготовление 1 % (v/v) раствора азотной кислоты

В мерную колбу вместимостью 1 дм 3 наливают 700 — 800 см 3 дистиллированной воды и осторожно приливают к ней 10 см 3 концентрированной азотной кислоты, отмеренные цилиндром. Объем раствора доводят до метки водой и перемешивают.

Срок хранения раствора 3 месяца при комнатной температуре.

0,1 моль/дм 3 раствора соляной кислоты

В мерную колбу вместимостью 1 дм 3 наливают 700 — 800 см 3 дистиллированной воды и осторожно приливают к ней 8 см 3 концентрированной соляной кислоты, доводят объем до метки дистиллированной водой и тщательно перемешивают.

При использовании фиксаналов соляной кислоты в мерную колбу вместимостью 1 дм 3 наливают 700 — 800 см 3 дистиллированной воды и в колбу количественно переносят содержимое ампулы, доводят до метки дистиллированной водой и тщательно перемешивают.

Срок хранения раствора 3 месяца.

8.2.3. Приготовление спектроскопического буферного раствора

250 г хлористого лантана растворяют в 500 — 600 см 3 0,1 моль/дм 3 раствора НСl, переносят в мерную колбу вместимостью 1 дм 3 , доводят до метки 0,1 моль/дм 3 раствором НСl.

В закрытом стеклянном сосуде раствор устойчив в течение 3 месяцев.

8.2.4. Приготовление градуировочных растворов кальция

10 см 3 стандартного раствора кальция ГСО (С = 1 мг/см 3 ) с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 . Доводят до метки 1 % (v/v) раствором азотной кислоты и перемешивают. Полученный основной градуировочный раствор содержит 0,1 мг/см 3 кальция. Срок хранения раствора 2 месяца при температуре 2 — 10 °С или 14 суток при комнатной температуре.

10 см 3 основного градуировочного раствора с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 и доводят объем до метки 1 % (v/v) раствором азотной кислоты (промежуточный раствор). Концентрация кальция в полученном растворе 10 мг/дм 3 . Срок хранения раствора 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

Градуировочные растворы кальция готовят в соответствии с таблицами 3 и 4, добавляя в мерные колбы по 5 см 3 раствора соли лантана перед доведением объема до метки 1 % (v/v) раствором азотной кислоты. Срок хранения растворов 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

8.2.5. Приготовление градуировочных растворов магния

10 см 3 стандартного раствора магния ГСО (С = 1 мг/см 3 ) с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 . Доводят объем до метки 1 % (v/v) раствором азотной кислоты и перемешивают. Полученный основной градуировочный раствор содержит 0,1 мг/см 3 магния. Срок хранения раствора 2 месяца при температуре 2 — 10 °С или 14 суток при комнатной температуре.

10 см 3 основного градуировочного раствора с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 и доводят объем до метки 1 % (v/v) раствором азотной кислоты (промежуточный раствор). Концентрация магния в полученном растворе 10 мг/дм 3 . Срок хранения раствора 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

Градуировочные растворы магния готовят в соответствии с таблицами 5 и 6, добавляя в мерные колбы по 5 см 3 раствора соли лантана перед доведением объема до метки 1 % (v/v) раствором азотной кислоты. Срок хранения растворов 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

8.2.6. Приготовление градуировочных растворов стронция

10 см 3 стандартного раствора стронция ГСО (С = 1 мг/см 3 ) с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 . Доводят объем до метки 1 % (v/v) раствором азотной кислоты и перемешивают. Полученный основной градуировочный раствор содержит 0,1 мг/см 3 стронция. Срок хранения раствора 2 месяца при температуре 2 — 10 °С или 14 суток при комнатной температуре.

10 см 3 основного градуировочного раствора с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 и доводят объем до метки 1 % (v/v) раствором азотной кислоты (промежуточный раствор). Концентрация стронция в полученном растворе 10 мг/дм 3 . Срок хранения раствора 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

Градуировочные растворы стронция готовят в соответствии с таблицей 7, добавляя в мерные колбы по 0,5 см 3 раствора соли лантана перед доведением объема до метки 1 % (v/v) раствором азотной кислоты. Срок хранения растворов 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

Распыляют градуировочные растворы в пламени горелки и регистрируют поглощение каждого элемента при требуемой длине волны.

Оптическую плотность градуировочных растворов измеряют в порядке возрастания массовой концентрации определяемого элемента.

Градуировочную характеристику, выражающую зависимость показаний прибора от количества определяемого элемента (мг/дм 3 ), устанавливают по среднеарифметическим результатам трех измерений для каждой точки за вычетом среднеарифметического результата трех измерений холостой пробы. Для установления градуировочной характеристики используют не менее 5 точек. Холостой пробой является 1 % раствор азотной кислоты, к которому добавляют такое же количество спектроскопического буфера, как и в градуировочные растворы.

Через каждые десять проб повторяют измерение одного из градуировочных растворов. Если измеренная концентрация этого градуировочного раствора отличается от истинной более, чем на 8 %, градуировку повторяют полностью.

Приготовление шкалы градуировочных растворов кальция
(используется при анализе проб питьевых, природных и сточных вод)

Объем основного раствора кальция (100 мг/дм 3 ), см 3

Объем промежуточного раствора кальция, (10 мг/дм 3 ), см 3

Концентрация градуировочного раствора кальция, мг/дм 3

Приготовление шкалы градуировочных растворов кальция
(используется при анализе проб дистиллированной или деионизированной воды)

Объем промежуточного раствора кальция, (10 мг/дм 3 ), см 3

Концентрация градуировочного раствора кальция, мг/дм 3

Приготовление шкалы градуировочных растворов магния
(используется при анализе проб питьевых, природных и сточных вод)

Объем промежуточного раствора магния, (10 мг/дм 3 ), см 3

Объем раствора магния с концентрацией 1 мг/дм 3 , см 3

Концентрация градуировочного раствора магния, мг/дм 3

Приготовление шкалы градуировочных растворов магния
(используется при анализе проб дистиллированной или деионизированной воды)

Объем промежуточного раствора магния, (10 мг/дм 3 ), см 3

Объем раствора магния с концентрацией 1 мг/дм 3 , см 3

Концентрация градуировочного раствора магния, мг/дм 3

Приготовление шкалы градуировочных растворов стронция

Объем промежуточного раствора стронция, (10 мг/дм 3 ), см 3

Концентрация градуировочного раствора стронция, мг/дм 3

При определении растворенных металлов пробу воды фильтруют через мембранный фильтр с диаметром пор 0,45 мкм. Фильтрат подкисляют концентрированной азотной кислотой до рН = 2 — 3. К 50 см 3 фильтрата добавляют 2,5 см 3 конц. азотной кислоты и в полученном растворе определяют содержание металлов.

При определении взвешенных (суспендированных) форм металлов хорошо перемешанную пробу воды определенного объема фильтруют через обеззоленный фильтр. Осадок с фильтром подвергают озолению конц. азотной кислотой при нагревании на электроплитке с закрытой спиралью, либо на песчаной бане, или в микроволновой печи. Полученный раствор фильтруют через мембранный фильтр 0,45 мкм, количественно переносят в мерную колбу, доводят объем до метки дистиллированной водой и в нем определяют содержание элементов. Концентрацию взвешенных (суспендированных) форм элементов рассчитывают с учетом объема взятой для анализа пробы воды.

При определении кислото-экстрагируемых металлов хорошо перемешанную пробу воды подкисляют азотной кислотой до рН = 2 — 3, нагревают на водяной бане или электроплитке, охлаждают, фильтруют через мембранный фильтр 0,45 мкм. Объем полученного раствора доводят до первоначального объема пробы воды и в полученном растворе определяют содержание металлов.

При определении общего содержания металлов нефильтрованную хорошо перемешанную пробу воды подвергают кислотному озолению на электроплитке, песчаной бане или в микроволновой печи (МВП).

Примечание 1: При анализе сточных вод предпочтительно проводить минерализацию в микроволновой печи.

При использовании электроплитки, песчаной или водяной бани к 50 см 3 тщательно гомогенизированной пробы анализируемой воды добавляют 2,5 см 3 концентрированной азотной кислоты и нагревают, не доводя до кипения, до образования влажных солей. Если проба содержит значительное количество органических веществ, например, проба сточной воды, в процессе нагрева добавляют 1 — 3 см 3 перекиси водорода до получения прозрачного раствора. Объем полученного раствора доводят до первоначального объема пробы воды дистиллированной водой. Полученные растворы в зависимости от дисперсности и размеров частиц осадка фильтруют через мембранный фильтр с диаметром пор 0,45 или 5,00 мкм или через фильтр «белая лента» и в полученном растворе определяют содержание металлов.

При использовании микроволновой печи к 50 см 3 тщательно гомогенизированной пробы воды в стакане, предназначенном для микроволновой печи, приливают 2,5 см 3 концентрированной азотной кислоты, выдерживают 15 — 30 мин. Подготовленные стаканы ставят в турель микроволновой печи и проводят разложение по подобранному лабораторией режиму.

По окончании разложения пробы воды охлаждают в закрытых стаканах для микроволновой печи, затем открывают стаканы и фильтруют полученные растворы через мембранный фильтр с диаметром пор 0,45 или 5,00 мкм (в зависимости от дисперсности и размера частиц осадка) или через фильтр «белая лента».

Независимо от способа минерализации предварительно проводится холостой опыт для каждого типа используемых фильтров.

При необходимости подготовленные пробы анализируемой воды разбавляют таким образом, чтобы величина измеряемого сигнала абсорбции попадала в диапазон построенного для каждого элемента градуировочного графика. Например, при необходимости разбавления пробы в 5 раз в мерную колбу вместимостью 50 см 3 вносят 10 см 3 пробы, 5 см 3 раствора хлорида лантана при определении кальция и магния, или 0,5 см 3 при определении стронция, доводят объем до метки дистиллированной водой. Можно использовать меньшие объемы, например: в мерную колбу вместимостью 10 см 3 вносят 2 см 3 пробы, 1 см 3 спектроскопического буфера при определении кальция и магния, или 0,1 см 3 при определении стронция, доводят объем до метки дистиллированной водой. При разбавлении пробы более чем в 5 раз для доведения объема используют 1 % (v/v) раствор азотной кислоты.

Примечание 2: Для разбавления проб возможно использовать программируемый автоматический разбавитель.

Перед проведением серии анализов контролируются чистота посуды и качество используемых реактивов путем предварительного анализа холостого опыта.

При обработке результатов измерений содержания кальция, магния и стронция в анализируемой воде следует учитывать разбавление пробы. Содержание металла в пробе рассчитывают по формуле:

А — содержание металла в анализируемой пробе воды, найденное по градуировочному графику или рассчитанное с использованием градуировочных коэффициентов, мг/дм 3 ;

V 1 — объем колбы, в которой проводили разбавление, см 3 ;

V — объем пробы анализируемой воды, см 3 .

Результаты анализа в протоколе представляют в виде:

Значения d (показатель точности) приведены в табл. 2

12.1. При необходимости проверку приемлемости результатов измерений, полученных в условиях повторяемости (сходимости), осуществляют в соответствии с требованиями раздела 5.2. ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений не должно превышать предела повторяемости (r). Значения r приведены в таблице 8.

12.2. При необходимости проверку приемлемости результатов измерений, полученных в условиях воспроизводимости, проводят с учетом требований раздела 5.3 ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений, полученными двумя лабораториями, не должно превышать предела воспроизводимости (R). Значения R приведены в таблице 8.

Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

— контроль стабильности результатов измерений путем контроля стабильности среднеквадратического отклонения повторяемости, промежуточной прецизионности и погрешности;

— контроль исполнителем процедуры выполнения измерений путем оценки погрешности при реализации отдельно взятой контрольной процедуры.

Периодичность контроля исполнителем процедуры выполнения измерений и алгоритмы контрольных процедур (с использованием метода добавок, с использованием образцов для контроля и т.п.), а также реализуемые процедуры контроля стабильности результатов измерений регламентируют во внутренних документах лаборатории.

Диапазон измеряемых массовых концентраций и пределы повторяемости и воспроизводимости результатов измерений при доверительной вероятности Р = 0,95

(относительное значение допускаемого расхождения между двумя параллельными результатами измерений), r, %

(относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

источник

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВЫХ КОНЦЕНТРАЦИЙ МАГНИЯ, КАЛЬЦИЯ, СТРОНЦИЯ В ПРОБАХ ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОД ПЛАМЕННЫМ АТОМНО-АБСОРБЦИОННЫМ МЕТОДОМ

Читайте также:  Анализы сточных вод для разработки ндс

И.о. директора ФГБУ «Федеральный центр анализа и оценки техногенного воздействия» А.Г.Кудрявцев 15 декабря 2017 г.

Методика допущена для целей государственного экологического контроля

Методика измерений аттестована Центром метрологии и сертификации «СЕРТИМЕТ» Уральского отделения РАН (Аттестат аккредитации N RA.RU.310657 от 12.05.2015), рассмотрена и одобрена федеральным государственным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия» (ФГБУ «ФЦАО»).

Настоящее издание методики введено в действие взамен ПНД Ф предыдущего издания и действует со 2 июля 2018 года до выхода нового издания.

Методика зарегистрирована в Федеральном информационном фонде по обеспечению единства измерений. Информация о методике представлена на сайтах www.fundmetrology.ru в разделе «Сведения об аттестованных методиках (методах) измерений» и www.rossalab.ru в разделе «Методики анализа».

Заместитель директора ФГБУ «ФЦАО»

Разработчик:

© ЗАО «РОСА», 1998

Адрес: 119297, г.Москва, ул.Родниковая, 7, стр.35

Телефон: (495) 502-44-22, телефон/факс: (495) 439-52-13

http://www.rossalab.ru

e-mail: quality@rossalab.ru

1 ОБЩИЕ ПОЛОЖЕНИЯ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий нормативный документ устанавливает методику измерений массовых концентраций магния, кальция, стронция пламенным атомно-абсорбционным методом в пробах питьевых, природных и сточных вод.

Примечание — Под питьевыми водами подразумеваются воды централизованных и нецентрализованных систем водоснабжения, воды расфасованные в емкости (упакованная питьевая вода), минеральные воды. Под природными водами подразумеваются поверхностные и подземные воды, в том числе источники питьевого водоснабжения, грунтовые, талые, атмосферные осадки (дождь, снег, град). Под сточными водами подразумеваются воды производственные, хозяйственно-бытовые, ливневые и очищенные.

Допускается применение методики для анализа вод бассейнов и аквапарков, технических вод (открытых и закрытых систем технического водоснабжения, восстановленных), вытяжек (из материалов, используемых в системах водоснабжения, из продукции, изготовленной из полимерных материалов, из укупорочных материалов, из продукции текстиля, меха и кожи, из материалов, используемых при изготовлении игрушек и прочей продукции).

Диапазоны измерений массовых концентраций определяемых элементов указаны в таблице 1.

Мешающее влияние со стороны сопутствующих элементов: алюминия, кремния, титана, цинка, серной кислоты, фосфорной кислоты в воздушно-ацетиленовом пламени устраняют введением в анализируемые пробы раствора хлорида лантана (спектроскопического буфера).

Таблица 1 — Перечень определяемых показателей и диапазоны измерений

Диапазоны измерений массовых концентраций, мг/дм

Питьевая и природная вода

Блок-схема проведения анализа приведена в приложении А.

ГОСТ 12.0.004-2015 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения.

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования.

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности.

ГОСТ 12.4.009-83 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание.

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков.

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия.

ГОСТ 5457-75 Ацетилен растворенный и газообразный технический. Технические условия.

ГОСТ 6709-72 Вода дистиллированная. Технические условия.

ГОСТ 11125-84 Кислота азотная особой чистоты. Технические условия.

ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия.

ГОСТ 14919-83 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия.

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры.

ГОСТ 28311-89 Дозаторы медицинские лабораторные. Общие технические требования и методы испытания.

ГОСТ 29169-91 Посуда лабораторная стеклянная. Пипетки с одной отметкой.

ГОСТ 29227-91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования.

ГОСТ 31861-2012 Вода. Общие требования к отбору проб.

ГОСТ Р 12.1.019-2009 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты.

ГОСТ Р 52501-2005 Вода для лабораторного анализа. Технические условия.

ГОСТ Р 53228-2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р 56237-2014 Вода питьевая. Отбор проб на станциях водоподготовки и в трубопроводных распределительных системах.

ГОСТ OIML R 76-1-2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике.

МУ 2.1.4.2898-11 Методические указания. Санитарно-эпидемиологические исследования (испытания) материалов, реагентов и оборудования, используемых для водоочистки и водоподготовки.

МУК 4.1/4.3.2038-05 Методы контроля. Химические факторы/физические факторы. Санитарно-эпидемиологическая оценка игрушек. Методические указания.

ТУ 6-05-1903-87* Мембраны «Владипор» типа МФА-МА.
________________
* ТУ, упомянутые здесь и далее по тексту, не приводятся. За дополнительной информацией обратитесь по ссылке. — Примечание изготовителя базы данных.

ТУ 6-09-1181-89 Бумага индикаторная универсальная для определения РН 1-10 и 7-14. Технические условия.

ТУ 6-09-1678-95 Фильтры обеззоленные (белая, красная, синяя ленты).

ТУ 6-09-4773-84 Хлориды иттрия и редкоземельных элементов (лантана, празеодима, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия, лютеция, неодима, самария).

ТУ 2114-002-14555954-2004 Воздух сжатый.

ГОСТ 177-88 Водорода перекись. Технические условия.

ТУ 2642-001-33813273-97 Стандарт-титры (Фиксаналы; Нормадозы).

Примечание — Если ссылочный стандарт заменен (изменен), то следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Настоящая методика обеспечивает получение результатов измерений с погрешностью, не превышающей значений, приведенных в таблице 2.

Таблица 2 — Диапазоны измерений определяемых показателей, значения показателей точности, воспроизводимости и повторяемости

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), , %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), , %

Показатель точности (границы относительной погрешности при доверительной вероятности 0,95), , %

источник

Химический анализ природной и питьевой воды. Метод ионообменной хроматографии и титриметрический метод определения ионов кальция и магния. Особенности приготовления растворов. Устранение мешающего влияния катионов железа, марганца, цинка, меди и олова.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методика определения ионов кальция и магния в природных водах (определение общей жесткости воды)

2. Приготовление растворов

3.1 Титриметрический метод

3.2 Метод ионообменной хроматографии

Химический анализ природной и питьевой воды показывает, что любая вода представляет собой не чистое вещество с формулой Н2О, а смесь большого количества веществ.

Многочисленные анализы природных вод показали, что среди большого числа компонентов, растворенных в них, 90 % солесодержания составляют карбонаты, гидрокарбонаты, хлориды и сульфаты кальция, магния и натрия. О.А. Алекиным предложена классификация природных вод по результатам их химического анализа. По преобладающему аниону воды делятся на три класса: карбонатные (гидрокарбонатные), хлоридные и сульфатные. По преобладающему катиону воды делятся на три группы: кальциевые, магниевые и натриевые.

В природных водах постоянно находятся ионы кальция и магния, обеспечивающие жесткость воды. Источник их поступления в воду — растворение гипса, известняков и доломитов, входящих в состав горных пород. В санитарно-гигиеническом отношении ионы кальция и магния не представляют большой опасности, но чрезмерная жесткость воды делает ее непригодной для бытовых целей, т.к. образующаяся накипь выводит из строя нагревательные элементы электрических систем нагрева воды. Оптимальная жесткость воды — до 7 мг-экв/л.

Для определения ионов кальция и магния используются два метода:

2. метод ионообменной хроматографии

1. Наиболее точный и распространенный метод определения общей жесткости — комплексометрический, основанный на образовании ионами Са 2+ и Mg 2+ прочных внутрикомплексных соединений с трилоном Б. В качестве индикатора при определении общей жесткости используется эриохром черный. В зависимости от общей жесткости концентрация рабочего раствора трилона Б и объем пробы воды могут быть различными.

Для определения кальция в природных водах преимущественно используются трилонометрический метод с индикатором мурексидом.

Содержание магния проводят расчетным методом, зная общую жесткость и содержание кальция.

2. Приготовление растворов

Раствор трилона Б с концентрацией 0,02 моль/дм 3 эквивалента.

Навеску 3,72г. трилона Б растворяют в 1 дм 3 дистиллированной воды. Точную концентрацию устанавливают по стандартному раствору хлорида цинка. Раствор хранят в полиэтиленовой посуде, проверяют его концентрацию не реже 1 раза в месяц.

Раствор хлорида цинка с концентрацией 0,02 моль/ дм 3 эквивалента.

Отвешивают на технических весах около 0,35 г металлического цинка, смачивают его небольшим количеством концентрированной соляной кислоты и сейчас же промывают дистиллированной водой. Цинк сушат в сушильном шкафу при 105 течение 1ч, затем охлаждают и взвешивают на аналитических весах.

Навеску цинка помещают в мерную колбу вместимостью 500 см 3 , в которую предварительно вносят 10-15 см 3 дистиллированной воды и 1,5 см 3 концентрированной соляной кислоты. Цинк растворяют. После растворения цинка объём раствора доводят до метки на колбе дистиллированной водой. Рассчитывают молярную концентрацию эквивалента раствора хлорида цинка CZn(1/2 ZnCl2), моль/дм 3 , по формуле:

где m — навеска металлического цинка, г; 32,69 — молярная масса эквивалента Zn 2+ , г/моль; V — объём мерной колбы, см 3 .

Буферный раствор NH4Cl +NH4OH.

7,0 г хлорида аммония растворяют в мерной колбе вместимостью 500 см 3 в 100 см 3 дистиллированной воды и добавляют 75 см 3 концентрированного раствора аммиака. Объем раствора доводят до метки дистиллированной водой и тщательно перемешивают. Буферный раствор хранят в стеклянной или полиэтиленовой посуде не более 2 месяцев. Гидроксид натрия, 2 моль/дм 3 .

40 г гидроксида натрия растворяют в мерной колбе вместимостью 500 см 3 и раствор доводят до метки дистиллированной водой.

Индикатор эриохром черный Т.

Растереть в ступке 0,25 г эриохрома черного Т с 50 г хлорида натрия.

0,5 г мурексида растереть с 100 г хлорида натрия. Водный раствор лучше не готовить, т.к. мурексид нестоек в растворе.

Раствор сульфида натрия, 4%.

2 г сульфида натрия растворяют в 50 см 3 дистиллированной воды. Хранят в плотной закрытой полиэтиленовой посуде не более недели.

Раствор гидрохлорида гидроксиламина.

5 г гидрохлорида гидроксиламина растворяют в 100 см 3 дистиллированной воды. Хранят не более 2 месяцев.

Установление точной концентрации раствора трилона Б.

В коническую колбу вместимостью 250 см 3 вносят 10 см 3 раствора хлорида цинка, добавляют дистиллированной воды приблизительно до 100 см 3 , 5 см 3 буферного раствора и 10-15 мг индикатора эриохрома чёрного Т. Содержимое конической колбы тщательно перемешивают и титруют из бюретки раствором трилона Б до перехода окраски красной в голубую. Концентрацию раствора трилона Б рассчитывают по формуле:

3.1 Титриметрический метод

Определение ионов кальция и магния

Устранение мешающих ионов

Для устранения мешающего влияния катионов железа, цинка, меди и олова в пробу добавляют 0,5 мл раствора сульфида натрия.

Для устранения мешающего влияния марганца в пробу добавляют 0,5 мл солянокислого раствора гидроксиламина.

Перед выполнением анализа пробы воды с неизвестной величиной жёсткости проводят оценочное титрование. Для этого берут 10 см 3 воды, добавляют 0,5 см 3 буферного раствора, индикатор (эриохром чёрный Т) и титруют до перехода окраски из красной в голубую. По величине израсходованного трилона Б выбирают из таблицы 1 соответствующий объём пробы воды.

ионообменный хроматография вода магний

Таблица 1. Объём пробы воды, рекомендуемый для определения жёсткости по результатам оценочного титрования

Объём израсходованного раствора трилона Б, см 3

Рекомендуемый объём пробы, см 3

v Определение суммы кальция и магния

К пробе необходимого объёма (см. Оценочное титрование) 100 см 3 добавляют 5 см 3 буфера, индикатор (эриохром чёрный Т) на шпателе. Сразу же титруют при перемешивании до перехода окраски от винно-красной к синей.

К пробе необходимого объёма (см. Оценочное титрование) 100 см 3 добавляют 2 см 3 NaOH (2н) и индикатора (мурексид) на шпателе. Титруют до перехода окраски от красной в фиолетовую. Окраску раствора следует сравнивать с цветом перетитрованного раствора.

Содержание кальция высчитывают по формуле:

где Стр — молярная концентрация эквивалента трилона Б, моль/дм 3 ; V’ тр — объем трилона Б, пошедший на титрование с мурексидом, см 3 (см. Определение кальция); 20,04 — масса эквивалента Ca 2+ ; Vпробы — объем пробы, взятый для анализа, см 3 .

Содержание магния высчитывают по формуле:

где Стр — молярная концентрация эквивалента трилона Б, моль/дм 3 ; V тр — объем трилона Б, пошедший на титрование с эриохромом черным Т, см 3 (см. Определение суммы кальция и магния); V’тр — объем трилона Б, пошедший на титрование с мурексидом, см 3 (см. Определение кальция); 12,15- масса эквивалента Mg 2+ ; Vпробы- объем пробы, взятый для анализа, см 3 .

v Определение общей жесткости воды

Общую жесткость находят по формуле:

где Стр — молярная концентрация эквивалента трилона Б, моль/дм 3 ; Vтр — объем раствора трилона Б, пошедшего на титрование пробы, см 3 ; Vпробы — объем пробы, взятый для анализа, см 3 .

Метод добавок. Для определения данным методом в пробу вводят добавку, равную 50-150% (желательно 100%) жёсткости воды (см. Определение общей жёсткости воды) ГСО 8206-2002.

Затем высчитывают общую жесткость воды с добавкой.

a. Результаты измерений, полученных в условиях воспроизводимости для пробы 1.

Проба 1: оз. Среднее, с. Озёрное, 85 км от берега, дата: 1.10.13, время: 16.55, t = +3.

Установлена точная концентрация трилона Б: Стрилона = 0,002226 (моль/дм 3 ). При выполнении оценочного титрования объем необходимой пробы соответствует 100 (мл).

источник

Магний. В поверхностные воды магний поступает в основном за счет процессов химического выветривания и растворения доломитов, мергелей и других минералов. Значительные количества магния могут поступать в водные объекты со сточными водами металлургических, силикатных, текстильных и других предприятий.

В речных водах содержание магния обычно колеблется от нескольких единиц до десятков миллиграммов в 1 дм 3 .

Содержание магния в поверхностных водах подвержено заметным колебаниям: как правило, максимальные концентрации наблюдаются в меженный период, минимальные — в период половодья.

ПДКвр ионов Мg 2+ составляет 40 мг/дм 3 .

Для определения содержания магния в незагрязненных по­верхностных и грунтовых природных водах, как и в большинстве речных вод, можно применять расчетный метод по разности ре­зультатов определения общей жесткости и концентрации катиона кальция. Для анализа загрязненных вод на содержание магния необходимо применять прямое определение магния.

Массовую концентрацию катиона магния (Смг) в мг/л оп­ределяют расчетным методом, производя вычисления по формуле:

где СОЖ и СКА – результаты определения общей жесткости (мг-экв/л) и массовой концентрации катиона кальция (мг/л) соответственно; 0,05 – коэффициент пересчета концентрации катиона кальция в миллиграмм-эквивалентную форму; 12,16 – эквивалентная масса магния.

Полученный результат округлите до целых чисел (мг/л).

Карбонаты и гидрокарбонаты. Основным источником гидрокарбонатных и карбонатных ионов в поверхностных водах являются процессы химического выветривания и растворения карбонатных пород типа известняков, мергелей, доломитов, например:

Некоторая часть гидрокарбонатных ионов поступает с атмосферными осадками и грунтовыми водами. Гидрокарбонатные и карбонатные ионы выносятся в водоемы со сточными водами предприятий химической, силикатной, содовой промышленности и т.д.

По мере накопления гидрокарбонатных и особенно карбонатных ионов последние могут выпадать в осадок:

В речных водах содержание гидрокарбонатных и карбонатных ионов колеблется от 30 до 400 мг HCO3 — /дм 3 , в озерах – от 1 до 500 мг HCO3 — /дм 3 , в морской воде – от 100 до 200 мг/дм 3 , в атмосферных осадках – от 30 до 100 мг/дм 3 , в грунтовых водах – от 150 до 300 мг/дм 3 , в подземных водах – от 150 до 900 мг/дм 3 .

Как отмечалось выше (в разделе «Щелочность и кислотность»), карбонаты и гидрокарбонаты представляют собой компо­ненты, определяющие природную щелочность воды. Их содержание в воде обусловлено процессами растворения атмосферного СО2, взаимодействия воды с находящимися в прилегающих грунтах известняками и, конечно, жизненными процессами дыхания всех водных организмов.

Определение карбонат- и гидрокарбонат-анионов является титриметрическим и основано на их реакции с водородными ионами в присутствии фенолфталеина (при определении карбонат-анионов) или метилового оранжевого (при определении гидрокарбонат-анионов) в качестве индикаторов. Используя эти два индикатора, удается наблюдать две точки эквивалентности: в первой точке (рН 8,0-8,2) в присутствии фенолфталеина полнос­тью завершается титрование карбонат-анионов, а во второй (рН. 4,1-4,5) – гидрокарбонат-анионов. По результатам титрования можно определить концентрации в анализируемом растворе основных ионных форм, обуславливающих потребление кислот (гидроксо-, карбонат- и гидрокарбонат-анионов),а также величины свободной и общей щелочности воды, т.к. они находятся в стехиометрической зависимости от содержания гидроксол-, карбонат- и гидрокарбонат-анионов.Для титрования обычно используют титрованные растворы соляной кислоты с точно известным значением концентрации 0,05 г-экв/л либо 0,1 г-экв/л.

Определение гидрокарбонат-анионов основано на реакции:

Присутствие карбонат-аниона в концентрациях, определя­емых аналитически, возможно лишь в водах, рН которых более 8,0-8,2. В случае присутствия в анализируемой воде гидроксо-анионов при определении карбонатов протекает также реакция нейтрализации:

Определение гидрокарбонат-анионовосновано на реакции:

Таким образом, при титровании по фенолфталеину в реак­ции с кислотой участвуют анионы ОН — и СО3 2- , а при титровании по метиловому оранжевому – ОН — , СО3 2- и НСО3 — .

Величина карбонатной жесткости рассчитывается с уче­том эквивалентных масс участвующих в реакциях карбонат- и гидрокарбонат-анионов.

При анализе карбонатных природных вод правильность получаемых результатов зависит от величины потребления кис­лоты на титрование по фенолфталеину и метилоранжу. Если тит­рование в присутствии фенолфталеина обычно не вызывает труд­ностей, т.к. происходит изменение окраски от розовой до бесцветной, то в присутствии метилового оранжевого, при изме­нении окраски от желтой до оранжевой, определить момент окон­чания титрования иногда довольно сложно. Это может привести к значительной ошибке при определении объема кислоты, израсхо­дованной на титрование. В этих случаях, для более четкого выяв­ления момента окончания титрования, определение полезно прово­дить в присутствии контрольной пробы, для чего рядом с титруемой пробой помещают такую же порцию анализируемой воды (во вто­рой склянке), добавляя такое же количество индикатора.

Читайте также:  Анализы производимые в сточных водах

В результате титрования карбоната и гидрокарбоната, ко­торое может выполняться как параллельно в разных пробах, так и последовательно в одной и той же пробе, для расчета значений концентраций необходимо определить общее количество кисло­ты (V) в миллилитрах, израсходованной на титрование карбоната (VK) и гидрокарбоната (VГК). Следует иметь в виду, что при определении потребления кислоты на титрование по метилоранжу (Vмо) происходит последовательное титрование и карбонатов, и гидрокарбонатов. По этой причине получаемый объем кислоты Vмо содержит соответствующую долю, обусловленнуюприсутствием в исходной пробе карбонатов, перешедших после реакции с катионом водорода в гидрокарбонаты, и не характеризует полностью концентрацию гидрокарбонатов в исходной пробе. Следовательно, при расчете концентраций основных ионных форм, обусловливающих потребление кислоты, необходимо учесть относительное потребление кислоты при титровании по фенолфталеину (Vф) и метилоранжу (Vмо). Рассмотрим несколько возможных вариантов, сопоставляя величины Vф и Vмо.

1. Vф = 0. Карбонаты, а также гидроксо-анионы в пробе отсутствуют, и потребление кислоты при титровании по метилоранжу может быть обусловлено только присутствием гидрокарбонатов.

2. Vф ¹ 0, причем 2Vф Vмо. В данном случае в исходной пробе гидрокарбонаты отсутствуют, но присутствуют не только карбонаты, но и другие потребляющие кислоту анионы, а именно – гидроксо-анионы. При этом содержание последних эквивалентно составляет Vон = 2Vф – Vмо. Содержание карбонатов можно рассчитать, составив и решив систему уравнений:

VOH = 2VФ – VMO

5. VФ = Vмо. В исходной пробе отсутствуют и карбонаты, и гидрокарбонаты, и потребление кислоты обусловлено присутстви­емсильных щелочей, содержащих гидроксо-анионы.

Присутствие свободных гидроксо-анионов в заметных ко­личествах (случаи 4 и 5) возможно только в сточных водах.

Массовые концентрации анионов (не солей!) рассчитыва­ются на основе уравнений реакций потребления кислоты кар­бонатами (Ск) и гидрокарбонатами (Сгк) в мг/л по формулам:

где Vк и Vгк – объем раствора соляной кислоты, израсходованной на титрование карбоната и гидрокарбонатасоответственно, мл;
Н – точная концентрация титрованного раствора соляной кислоты (нормальность), г-экв/л; VA – объем пробы воды, взятой для анализа, мл; 60 и 61 – эквивалентная масса карбонат- и гидрокарбонат-аниона соответственно, в соответствующих реакциях; 1000 – коэффициент пересчета единиц измерений.

Результаты титрования по фенолфталеину и метилоранжу позволяют рассчитать показатель щелочности воды, который чис­ленно равен количеству эквивалентов кислоты, израсходован­ной на титрование пробы объемом 1 л. При этом потребление кис­лоты при титровании по фенолфталеину характеризует свободную щелочность, а по метилоранжу – общую щелочность, которая измеряется в мг-экв/л. Показатель щелочности используется в Рос­сии, как правило, при исследовании сточных вод. В некоторых других странах (США, Канаде, Швеции и др.) щелочность опре­деляется при оценке качества природных вод и выражается мас­совой концентрацией в эквиваленте СаСО3.

Следует иметь в виду, что при анализе сточных и загрязнен­ных природных вод получаемые результаты не всегда корректно отражают величины свободной и общей щелочности, т.к. в воде, кроме карбонатов и гидрокарбонатов, могут присутствовать соеди­нения некоторых других групп (см. «Щелочность и кислотность»).

Дата добавления: 2014-12-26 ; Просмотров: 1849 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Химическое обозначение: Mg

Синонимы: магнезия, магнезиум, австрий.

Описание: элемент 2 группы 3 периода с атомным номером 12. Лёгкий мягкий металл серебристого цвета с высокой химической активностью, ковкий.

Методы определения: потенциометрия, титрование, масс-спектрометрия, атомная абсорбция и эмиссия.

Методики, используемые в Испытательном центре МГУ для определения концентрации магния в природных средах

Нормативный документ на методику Метод определения Оборудование
Вода
масс-спектрометрия AGILENT 7500A ICP-MS
Почва
ФР.1.31.2009.06787 масс-спектрометрия AGILENT 7500A ICP-MS
ЦВ 5.18.19.01-2005 масс-спектрометрия AGILENT 7500A ICP-MS

Распространённость: магний встречается в составе соединений: брусит, каинит, бишофит, карналлит. На этот элемент приходится 1,95 % массы земной коры, т.е. его концентрация достигает 19,5 кг на тонну. Магний относится к биогенным элементам и наряду с кальцием широко распространён. Содержание магния в воде обуславливает жёсткость воды.

В воде систем централизованного водоснабжения содержание магния не нормируется напрямую: в водопроводной воде нормируется параметр жёсткости. Магний, наряду с кальцием и стронцием, вносит вклад в показатель жёсткости: если предположить, что вся жёсткость водопроводной воды будет обусловлена только магнием, его максимально допустимая концентрация будет составлять 85,02 мг/л.

Предельно допустимая концентрация (ПДК) магния в различных водных объектах

Бутилированная вода первой категории

Бутилированная вода высшей категории

Вода систем централизованного водоснабжения

Водные объекты рыбохозяйственного значения

Приказ Минсельхоза РФ № 552

Объекты рекреационного водопользования

Вода плавательных бассейнов

Постановление Правительства РФ № 644

Постановление Правительства РФ № 644

Суточная норма потребления магния находится в диапазоне 0,2–0,7 г и зависит от возраста и гендерной принадлежности. Большая потребность в элементе возникает у беременных и кормящих грудью женщин. В сочетании с сульфатами приобретает сильный слабительный эффект.

Магний участвует в:

  • метаболизме углеводов;
  • образовании сложных эфиров;
  • продукции аминокислот;
  • передаче нервных импульсов;
  • усвоении и разрушении витаминов в крови;
  • клеточном и обычном иммунитете.

При недостатке элемента наблюдаются:

  • замедление проводимости нервных тканей;
  • внезапная смерть младенцев;
  • нарушение работы сердца;
  • общий дефицит магния (гипомагниемия).

При избытке магния наблюдается:

  • развитие дыхательной дисфункции (паралича);
  • развитие симптома сердечной блокады;
  • в присутствии сульфатов – раздражение желудочно-кишечного тракта.

Ионный обмен. При использовании ионообменных смол в воде происходит замена ионов магния на ионы натрия. Поскольку магний, как и кальций, играет выраженную физиологическую роль, убирать магний из воды полностью не нужно. Оптимальное значение жёсткости (именно по этому параметру часто настраивают ионообменные фильтры) составляет 1,5–2,5 мг-экв/л.

Обратный осмос. Вместе с другими веществами обратный осмос убирает из воды магний. Нецелесообразно использовать обратный осмос только для умягчения и при жёсткости воды более 7 мг-экв/л без предварительного умягчения.

Кипячение. Во время кипячения воды соли жёсткости, в состав которых входит магний, осаждаются на стенках сосуда, поэтому вода становится немного мягче, то есть содержит меньше магния, чем исходная вода.

Магний относится к элементам, которые обладают как отрицательным, так и положительным влиянием на организм человека. Поэтому необходимо контролировать содержание магния в питьевой воде и регулировать его содержание таким образом, чтобы концентрация находились в оптимальном диапазоне.

источник

МУ 08-47/252 Воды теплоэнергетические. Методика выполнения измерений массовой концентрации кальция и магния (с Изменением N 1)

МУ 08-47/252 Воды теплоэнергетические. Методика выполнения измерений массовой концентрации кальция и магния (с Изменением N 1)

Вид документа:
МУ (Методические указания)

Принявший орган: ООО «Сиб-СТРИМ»

Тип документа: Нормативно-технический документ
Дата начала действия: 17 мая 2010 г.
Опубликован:

  • ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны (с Изменением N 1) ГОСТ
  • Как нас найти
  • ГОСТ 12.1.004-91 ССБТ. Пожарная безопасность. Общие требования (с Изменением N 1) ГОСТ
  • ГОСТ 12.4.009-83 ССБТ. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание (с Изменением N 1) ГОСТ
  • ГОСТ 1770-74 (ИСО 1042-83, ИСО 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия (с Изменениями N 1-10) ГОСТ
  • ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия (с Изменением N 1) ГОСТ
  • ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры (с Изменениями N 1-4) ГОСТ
  • ГОСТ 24104-2001 Весы лабораторные. Общие технические требования (не действует на территории РФ) ГОСТ
  • ГОСТ Р 51652-2000 Спирт этиловый ректификованный из пищевого сырья. Технические условия (с Изменением N 1) ГОСТ Р
  • ГОСТ Р 53228-2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания (с Изменением N 1) ГОСТ Р
  • ГОСТ 3118-77 (СТ СЭВ 4276-83) Реактивы. Кислота соляная. Технические условия (с Изменением N 1) ГОСТ
  • ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия (с Изменениями N 1, 2) ГОСТ
  • ГОСТ 29227-91 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования ГОСТ
  • МУ 08-47/252 Воды теплоэнергетические. Методика выполнения измерений массовой концентрации кальция и магния (с Изменением N 1) МУ (Методические указания)

МУ 08-47/252
(по реестру аккредитованной метрологической службы
Томского политехнического университета)

Красноярским филиалом ОАО «Инженерно-аналитический центр «Кузбасстехэнерго»

660021, г.Красноярск, ул.Бограда, 144а

634055, г.Томск, ул.Королева, 6-41

АТТЕСТОВАНА аккредитованной метрологической службой Томского политехнического университета, аттестат об аккредитации N РОСС RU 01.00143-08 от 03.04.2008

634050, г.Томск, пр.Ленина, 30,

Свидетельство об аттестации методики измерений МУ 08-47/252, выдано 17 мая 2010 г.

634050, г.Томск, пр.Ленина, 30, тел/факс: (3822) 41-67-29

Проректор по НРиИ ТПУ Власов В.А.

Регистрационный номер в Федеральном реестре методик измерений ФР.1.31.2010.07526

Измененная редакция, Изменение N 1

Директор ООО «Сиб-СТРИМ» В.В.Мошкин 17 мая 2010 г.

Настоящий документ (МУ 08-47/252) предназначен для проведения анализа теплоэнергетических вод и устанавливает титриметрическую методику выполнения измерений массовой концентрации кальция и магния с визуальным фиксированием конечной точки титрования в диапазоне измерений от 0,1 до 100 мг/дм .

Химические помехи, влияющие на результаты определения массовых концентраций кальция и магния, устраняются в процессе подготовки и измерения.

Если содержание кальция и магния в пробе выходит за верхнюю границу диапазона определяемых концентраций, проводят разбавление исходной анализируемой пробы воды.

Методика выполнения измерений массовых концентраций кальция и магния в пробах теплоэнергетических вод обеспечивает получение результатов с погрешностью, не превышающей значений, приведенных в таблице 1.

Таблица 1 — Относительные значения приписанных характеристик случайной (показатель воспроизводимости, показатель повторяемости) и общей (показатель точности) погрешности методики при 0,95

Диапазон измерений, мг/дм

повторяемости, , %

воспроизводимости, , %

точности, , %

Весы лабораторные аналитические общего назначения с наибольшим пределом взвешивания 200 г

* На территории Российской Федерации документ не действует. Действует ГОСТ Р 53228-2008, здесь и далее по тексту. — Примечание изготовителя базы данных.

Бюретки вместимостью 10 см 2-го класса с ценой деления 0,02 и 0,05 см , микробюретки вместимостью 1,0 см

Дозаторы пипеточные с дискретностью установки доз 0,01-1,0 см

Пипетки стеклянные вместимостью 5, 10, 50 и 100 см 2-го класса

Колбы мерные вместимостью 100 и 1000 см рН-метр любой модели

3.2 ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ И МАТЕРИАЛЫ

Колбы конические вместимостью 250 см

Сменные наконечники к дозаторам на 0,01-10,0 см

Склянки с пришлифованными пробками и без пробок вместимостью 0,1; 1,0 дм

Капельницы для однократной дозировки

Магнитная мешалка любого типа

Устройство для фильтрования проб с использованием мембранных фильтров

Емкости из полимерного материала и стекла для хранения растворов вместимостью 0,1, 0,5 и 1,0 дм

Стандарт-титр (фиксанал) трилона Б

Аммиак водный с массовой долей 25%, ос.ч.

Натрий сернистый 9-водный, ч.д.а.

Гидроксиламина гидрохлорид, х.ч.

Индикатор хром кислотный темно-синий, ч.д.а.

Спирт этиловый ректификованный

Вода для лабораторного анализа 1-й и 2-й степени чистоты
(далее по тексту обессоленная вода)

Допускается использовать другое оборудование и реактивы, позволяющие воспроизводить метрологические характеристики, указанные в данной методике анализа.

4.1 При выполнении анализов необходимо соблюдать правила техники безопасности, установленные при работе с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005.

4.2 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004.

4.3 Лаборатория должна иметь средства пожаротушения по ГОСТ 12.4.009.

Анализ по данной методике может проводить химик-аналитик, имеющий опыт работы в химической лаборатории и владеющий техникой титриметрического анализа.

При выполнении измерений соблюдают следующие условия: температура окружающей среды (20±5) °С; относительная влажность воздуха не более 80% при температуре 25 °С; атмосферное давление (630-800) мм рт.ст. или (84-106,7) кПа.

6 (Измененная редакция, Изм. N 1)

Метод отбора и хранения проб — по ОСТ 34-70-953.1-88 «Производственные воды тепловых электростанций. Метод отбора проб». Пробу анализируют сразу после отбора. Если анализ не может быть выполнен немедленно, пробу консервируют соляной кислотой до рН

Раствор из стандарт-титра (фиксанала) готовят в соответствии с инструкцией по приготовлению, используя для разведения обессоленную воду.

Раствор трилона Б хранят в стеклянной посуде при комнатной температуре. Срок хранения 6 месяцев.

Примечание — Концентрацию вещества в используемых стандарт-титрах, выраженную в единицах нормальности, мг/дм и др., необходимо пересчитать в моль/дм . Например, стандарт-титр Трилона Б 0,1 моль/дм (0,1 Н) соответствует молярной концентрации 0,05 моль/дм .

8.2.2 Раствор трилона Б молярной концентрации 0,01 моль/дм

В мерную колбу вместимостью 1000 см вносят 100,0 см раствора трилона Б (8.2.1) и доводят объем до метки обессоленной водой.

Раствор трилона Б хранят в стеклянной посуде при комнатной температуре. Срок хранения 6 месяцев.

8.2.3 Раствор гидроокиси натрия молярной концентрации 2 моль/дм

Навеску 80,0 г гидроокиси натрия, взятую с точностью 0,1 г, растворяют в мерной колбе вместимостью 1 дм в небольшом количестве обессоленной воды и доводят объем до метки обессоленной водой.

Раствор гидроокиси натрия хранят в емкости из полимерного материала при комнатной температуре. Срок хранения 6 месяцев.

8.2.4 Хлоридно-аммиачный буферный раствор (рН 10,0±0,1)

Навеску 20,00 г хлорида аммония, взятую с точностью 0,01 г, растворяют примерно в 200 см обессоленной воды в мерной колбе вместимостью 1000 см , добавляют 100 см раствора аммиака с массовой долей 25%, перемешивают и доводят объем до метки обессоленной водой.

Срок хранения раствора 2 месяца. Раствор сохраняют в полиэтиленовой или фторопластовой ёмкости с плотно закрывающейся пробкой. Значение рН раствора контролируют с помощью рН-метра не реже одного раза в 10 дней. При изменении величины рН более чем на 0,2 единицы необходимо приготовить свежий буферный раствор.

8.2.5 Раствор соляной кислоты молярной концентрации 2 моль/дм

В мерную колбу вместимостью 1000 см , заполненную наполовину обессоленной водой, вносят 170 см концентрированной соляной кислоты (плотность 1,19 г/см ), отмеренных мерным цилиндром, осторожно доводят объем до метки обессоленной водой.

Раствор устойчив в течение года, хранят в склянке с плотно закрывающейся пробкой.

8.2.6 Раствор гидроксиламина гидрохлорида

Навеску 1,00 г гидроксиламина гидрохлорида ( ), взятую с точностью 0,01 г, растворяют в мерной колбе вместимостью 100 см в обессоленной воде и объем доводят до метки.

Раствор хранят в склянке с плотно закрывающейся пробкой. Срок хранения 2 месяца.

8.2.7 Раствор сульфида натрия с массовой долей 2% (в пересчете на безводную соль)

Навеску 6,20 г сульфида натрия ( ), взятую с точностью 0,01 г, растворяют в мерной колбе вместимостью 100 см и объем раствора доводят до метки обессоленной водой.

Раствор должен быть свежеприготовленным.

8.2.8 Раствор индикатора хрома кислотного темно-синего с массовой долей 0,5%

Навеску 0,500 г, взятую с точностью 0,001 г, помещают в мерную склянку на 100 см , растворяют в 20 см аммиачного буферного раствора и доводят до метки этиловым спиртом.

Реактив устойчив в течение месяца, хранят в склянке из темного стекла.

8.2.1 (Измененная редакция, Изм. N 1)

Мутные пробы предварительно фильтруют через мембранные фильтры с порами диаметром 0,45 мкм или бумажные фильтры «белая лента», фильтр промывают обессоленной водой, собирая промывные воды в колбу с фильтратом. Влияние цветности уменьшают разбавлением пробы так, чтобы значение концентрации ионов кальция и магния не выходили за нижнюю границу диапазона (таблица 1).

Сущность метода заключается в последовательном комплексонометрическом титровании в одной пробе ионов кальция при 12 и ионов магния при 8-9 с использованием в качестве индикатора хрома кислотного темно-синего. Для того, чтобы обеспечить избирательное титрование ионов кальция и магния при их совместном присутствии, титрование выполняют по схеме, приведенной на рисунке 1.

Схема определения ионов магния и кальция титриметрическим методом с визуальным фиксированием конечной точки титрования

Мешающее влияние оказывают: ионы железа (более 10 мг/дм ), меди, кадмия, свинца (более 0,05 мг/дм ), марганца (II), алюминия, цинка, никеля, олова (более 0,1 мг/дм ), цветность более 200° и мутность. Перевод мешающих ионов в малорастворимые сульфиды уменьшает влияние цинка, железа, меди, кадмия, свинца, алюминия, цинка, никеля. Влияние марганца (II) уменьшают добавлением восстановителей (гидроксиламина). Мутные пробы предварительно фильтруют. Влияние цветности устраняют разбавлением пробы.

В зависимости от ожидаемого значения жёсткости в качестве титранта используют трилон Б молярной концентрации 0,1 моль/дм (титруют из бюретки) или 0,01 моль/дм (титруют из микробюретки). Рекомендуемый объем пробы воды и концентрация титранта приведены в таблице 2.

Читайте также:  Анализы сточных и ливневых вод

Таблица 2 — Рекомендуемые объемы проб воды и концентрация трилона Б

Концентрация , , мг/дм

Рекомендуемый объем пробы для анализа, см

Молярная концентрация трилона Б, моль/дм

Одновременно проводят анализ двух параллельных проб. Ход анализа зависит от концентрации мешающих ионов, поэтому определение проводят по 10.2.1, 10.2.2 или 10.2.3.

10.2.1 Определение содержания ионов кальция и магния в водах в отсутствие мешающего влияния меди (менее 0,05 мг/дм ), марганца и цинка (менее 0,1 мг/дм ), железа (менее 5 мг/дм ).

В отсутствие мешающего влияния вышеперечисленных элементов после добавления раствора гидроокиси натрия и индикатора анализируемый раствор должен оставаться прозрачным.

10.2.1.1 В коническую колбу вместимостью 250-300 см отбирают пипеткой или дозатором объем анализируемой воды в соответствии с рекомендациями таблицы 2, при необходимости доводят до 100 см обессоленной водой. Колбу помещают на магнитную мешалку, при перемешивании добавляют 2 см раствора гидроокиси натрия молярной концентрации 2 моль/дм , через 5 мин вносят 5 капель раствора хрома кислотного темно-синего. Титруют ионы кальция раствором трилона Б соответствующей концентрации из бюретки или микробюретки. Титрование проводят на фоне титрованной контрольной пробы. В начале титрования раствор трилона Б добавляют быстро при постоянном перемешивании, при изменении цвета анализируемого раствора порции раствора трилона Б добавляют медленно. Окончанием титрования является изменение розовой окраски в фиолетово-голубую.

10.2.1.2 По окончании титрования по бюретке отсчитывают объем раствора , см , пошедший на титрование ионов кальция.

10.2.1.3 Оттитрованный раствор нейтрализуют раствором соляной кислоты молярной концентрации 2 моль/дм до перехода окраски в розовую ( 2 см ). Прибавляют 5 см хлоридно-аммиачного буферного раствора и титруют магний раствором трилона Б до перехода окраски от розовой к фиолетово-голубой.

10.2.1.4 По окончании титрования по бюретке отсчитывают объем раствора , см , пошедший на титрование ионов магния.

10.2.1.5 Аналогично проводят измерения для второй параллельной анализируемой пробы.

10.2.1.6 Одновременно готовят две холостые пробы: вносят те же реактивы, но вместо исследуемой пробы добавляют обессоленную воду.

Фиксируют расход раствора трилона Б на титрование холостой пробы и вычисляют среднее арифметическое значение объемов , , см , если расхождение между двумя результатами параллельных определений не превышает 0,05 см . В противном случае титрование повторяют.

10.2.2 Определение содержания ионов кальция в водах, содержащих марганец (от 0,1 до 1 мг/дм ), железо и алюминий (до 20 мг/дм )

Свидетельством мешающего влияния марганца и/или железа является окрашивание анализируемого раствора в серый или бурый цвет после добавления раствора гидроокиси натрия и индикатора.

10.2.2.1 В коническую колбу вместимостью 250-300 см отбирают пипеткой или дозатором объем анализируемой воды в соответствии с рекомендациями таблицы 2, при необходимости доводят до 100 см обессоленной водой. Колбу помещают на магнитную мешалку, при перемешивании добавляют 5-10 капель раствора гидроксиламина гидрохлорида (8.2.6), 2 см раствора гидроокиси натрия молярной концентрации 2 моль/дм . В том случае, если выпадает осадок или видна явная взвесь или муть, пробу фильтруют через фильтр «белая лента». После фильтрования всего объема пробы фильтр промывают обессоленной водой, собирая промывные воды в ту же колбу. В профильтрованный раствор вносят 5 капель раствора хрома кислотного темно-синего и титруют раствором трилона Б аналогично (10.2.1.1-10.2.1.6).

10.2.3 Определение содержания ионов кальция и магния в водах, содержащих медь (от 0,05 до 1 мг/дм ) и цинк (от 0,1 до 200 мг/дм )

Признаком наличия недопустимого количества меди (выше 0,05 мг/дм ) и цинка (выше 0,1 мг/дм ) является нечеткий переход окраски в точке эквивалентности.

10.2.3.1 В коническую колбу вместимостью 250-300 см отбирают пипеткой или дозатором объем анализируемой воды в соответствии с рекомендациями таблицы 2, при необходимости доводят до 100 см обессоленной водой. Колбу помещают на магнитную мешалку, при перемешивании добавляют 5 см раствора сульфида натрия (8.2.7), 2 см раствора гидроокиси натрия молярной концентрации 2 моль/дм , через 5 мин вносят 5 капель раствора хрома кислотного темно-синего и титруют раствором трилона Б аналогично (10.2.1.1-10.2.1.6).

11.1 Концентрацию ионов кальция ( ) в мг/дм вычисляют по формуле:

,

где — объем раствора трилона Б, пошедший на титрование ионов кальция в пробе, см ;

— объем раствора трилона Б, пошедший на титрование ионов кальция в холостой пробе, см ;

— молярная концентрация трилона Б (0,01 или 0,1 моль/дм );

40,08 — молярная масса иона кальция, г/моль;

— объем пробы воды, взятый для анализа, см ;

1000 — пересчет к 1 дм .

11.2 Вычисления проводят для каждой из двух параллельных проб, получая и соответственно.

11.3 Концентрацию ионов магния ( ) в мг/дм вычисляют по формуле:

,

где — объем раствора трилона Б, пошедший на титрование ионов магния в пробе, см ;

— объем раствора трилона Б, пошедший на титрование ионов магния в холостой пробе, см ;

— молярная концентрация трилона Б (0,01 моль/дм или 0,1 моль/дм );

24,32 — молярная масса иона магния, г/моль;

— объем пробы воды, взятый для анализа, см ;

1000 — пересчет к 1 дм .

12.1 Рассчитывают среднее арифметическое значение двух результатов единичных анализов и , полученных согласно разделам (10, 11):

. (1)

12.2 Вычисляют абсолютное значение предела повторяемости, используя относительные значения, приведенные в таблице 3:

. (2)

12.3 Определяют расхождение между двумя параллельными результатами анализа и сравнивают с пределом повторяемости, проверяя условие:

. (3)

Если условие (3) выполняется, то оба результата считаются приемлемыми и в качестве окончательного результата принимают среднее арифметическое значение, вычисленное по формуле (1).

12.4 Если условие (3) не выполняется, получают еще один результат анализа ( ).

12.5 Сравнивают максимальное расхождение с критической разностью, используя относительные значения, приведённые в таблице 3:

, (4)

.

Таблица 3 — Относительные значения пределов повторяемости для двух результатов единичного анализа и критической разности для трех результатов анализа

Диапазон концентраций, мг/дм

Предел повторяемости (относительное значение между двумя результатами анализа) , %

Относительное значение критической разности для трех результатов анализа , %

12.6 Если условие (4) выполняется, то за окончательный результат принимают среднее арифметическое трех результатов анализа:

. (5)

12.7 Если условие (4) не выполняется, то в качестве результата анализа принимают второе наименьшее значение из трех результатов анализа (медиана).

13.1 Расхождение между двумя результатами анализа одной и той же пробы, полученными в разных лабораториях ( и ), не должно превышать абсолютного значения предела воспроизводимости . Абсолютное значение воспроизводимости определяют, используя относительное значение ( ,%), приведенное в таблице 4:

, мг/дм , (6)

где — среднее арифметическое двух результатов анализа, полученных в разных лабораториях:

, мг/дм . (7)

Оба результата считаются приемлемыми при выполнении условия:

. (8)

В этом случае за окончательный результат анализа принимают среднее арифметическое значение двух результатов анализа, полученных в разных лабораториях, по формуле (7).

Таблица 4 — Относительные значения пределов воспроизводимости при 0,95

Диапазон концентраций, мг/дм

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами, полученными в разных лабораториях), , %

14.1 Результат анализа представляют в виде:

, мг/дм , 0,95,

где — результат анализа, полученный в соответствии с настоящим документом;

— абсолютное значение показателя точности методики.

Значение рассчитывают по формуле:

, мг/дм , (9)

где — относительное значение показателя точности методики, которое приведено в таблице 1.

14.2 Результат анализа в документах, выдаваемых лабораторией, допустимо представлять в виде:

, мг/дм ,

где — абсолютное значение характеристики погрешности результатов измерений, установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов измерений.

Примечание — Характеристика погрешности (показатель точности результатов анализа) может быть установлена на основе выражения:

, мг/дм (10)

с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

14.3 При представлении результатов анализа указывают:

  • количество результатов единичных определений, использованных для расчёта результатов анализа;
  • способ определения результата анализа: среднее арифметическое значение или медиана результатов единичных определений.

15.1.1 Контроль качества результатов анализа при реализации методики в лаборатории предусматривает следующие виды контроля:

  • контроль исполнителем процедуры выполнения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
  • контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратичного отклонения внутрилабораторной прецизионности, погрешности).

15.1.2 Периодический контроль процедуры выполнения анализа исполнителем, а также контроль стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.

15.2 ОПЕРАТИВНЫЙ КОНТРОЛЬ ПРОЦЕДУРЫ АНАЛИЗА

15.2.1 Оперативный контроль процедуры анализа проводят с целью проверки готовности лаборатории к проведению анализа рабочих проб или оценки качества результатов анализа каждой серии рабочих проб, полученных совместно с результатом контрольного измерения. Оперативный контроль проводят в следующих случаях:

  • при внедрении методики;
  • при выявлении факторов, которые могут повлиять на стабильность результатов анализа (смена реактивов, использование средства измерения после ремонта и т.д.);
  • при получении двух из трёх последовательных результатов анализа рабочих проб в виде медианы.

15.2.2 Оперативный контроль процедуры анализа проводит непосредственно исполнитель анализа на основе оценки отдельно взятой контрольной процедуры ( ) и сравнения результата процедуры с нормативом контроля ( ).

15.2.3 Оперативный контроль процедуры анализа проводят по следующей схеме:

  • проведение контрольного измерения и получение результата контрольной процедуры;
  • расчёт результата контрольной процедуры ( );
  • расчет норматива контроля ( ).

Реализация решающего правила контроля — сопоставление результата контрольной процедуры с нормативом контроля и выводы по результатам контроля.

15.2.4 Оперативный контроль процедуры анализа может быть проведён по одному из алгоритмов: с применением образцов для контроля (по п.15.3) или с применением метода добавок (по п.15.4). При организации контроля исполнитель анализа в соответствии с выбранным алгоритмом проведения контрольной процедуры анализа выбирает (при необходимости готовит) средства контроля.

15.2.5 Результаты измерений, полученные при оперативном контроле процедуры анализа, проводимого с каждой серией рабочих проб, могут быть использованы при реализации любой из форм контроля стабильности результатов анализа.

15.3 ОПЕРАТИВНЫЙ КОНТРОЛЬ ПРОЦЕДУРЫ АНАЛИЗА С ПРИМЕНЕНИЕМ ОБРАЗЦОВ ДЛЯ КОНТРОЛЯ

15.3.1. В качестве образцов для контроля могут быть использованы стандартные образцы. Применяемые образцы должны быть адекватны по составу анализируемым пробам вод. Погрешность аттестованного значения образца не должна превышать 1/3 погрешности результатов анализа, получаемых по методике.

15.3.2 Получают результат анализа в соответствии с разделами 10, 11 настоящего документа. В качестве результата контрольного измерения берут результат анализа образца для контроля, рассчитанный по формуле (1). Если условие (3) не выполняется, то анализ образца для контроля повторяют, при этом результаты предыдущих анализов отбрасывают. При повторном превышении предела повторяемости (условие (3) — вновь не выполняется), выясняют и устраняют причины появления неудовлетворительной повторяемости результатов анализа. В качестве результата контрольного измерения может быть использовано только среднее арифметическое 2 результатов анализа образца для контроля, расхождение между которыми не превышает предела повторяемости (условие (3)).

15.3.3. Результат контрольной процедуры рассчитывают по формуле:

, мг/дм , (11)

где — результат контрольного измерения концентрации ионов кальция и/или магния в образце для контроля;

— аттестованное значение концентрации ионов кальция и/или магния в образце для контроля.

15.3.4. Норматив контроля ( ) рассчитывают по формуле:

, мг/дм , (12)

где — характеристика погрешности результатов контрольного измерения, соответствующая аттестованному значению образца для контроля.

Значение рассчитывается по формуле:

, мг/дм , (13)

где — абсолютное значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов анализа;

— абсолютное значение характеристики погрешности, вычисляемое по формуле (9).

15.3.5. Реализация решающего правила контроля. Процедуру анализа признают удовлетворительной, если выполняется условие:

. (14)

При невыполнении этого условия контрольную процедуру повторяют. При повторном невыполнении условия (14) выясняют причины, приводящие к неудовлетворительному результату, и принимают меры к их устранению.

Примечание — Если в рабочей пробе установлено отсутствие ионов кальция и/или магния на уровне нижней границы диапазона концентраций, установленного методикой анализа, то эта рабочая проба с введённой добавкой ионов кальция и/или магния может служить образцом для контроля с аттестованным значением . При этом оперативный контроль процедуры анализа проводят аналогично с пп.15.3.2-15.3.5. В этом случае результат контрольной процедуры рассчитывают по формуле:

, мг/дм , (15)

где — результат контрольного измерения концентрации ионов кальция и/или магния в образце для контроля; — величина добавки.

15.4 ОПЕРАТИВНЫЙ КОНТРОЛЬ ПРОЦЕДУРЫ АНАЛИЗА С ПРИМЕНЕНИЕМ МЕТОДА ДОБАВОК

15.4.1 Средствами контроля являются пробы стабильного состава и эти же пробы с известной добавкой определяемого компонента. Рабочие пробы для проведения оперативного контроля выбирают таким образом, чтобы концентрация ионов кальция и/или магния находилась в исследуемом диапазоне, указанном в таблице 1. Анализируемую пробу делят на 2 части. Одну часть оставляют без изменения, во вторую делают добавку ионов кальция и/или магния , величина добавки должна составлять (50-200)% от содержания в пробе. В условиях внутрилабораторной прецизионности проводят анализ пробы с введённой добавкой.

15.4.2 В соответствии с п.10, 11 получают результаты контрольных измерений концентрации ионов кальция и/или магния в рабочей пробе — и в рабочей пробе с внесённой известной добавкой аттестованной смеси ионов кальция и/или магния — . Проводят проверку приемлемости по п.12.

Если для результатов единичных определений пробы или пробы с добавкой не выполняется условие (3), то повторяют анализ, давший неприемлемые результаты. При повторном превышении предела повторяемости (условие (3) вновь не выполняется), выясняют и устраняют причины появления неудовлетворительной повторяемости результатов анализа.

В качестве результатов контрольных измерений концентрации ионов кальция и/или магния в пробе и в пробе с добавкой могут быть использованы только средние арифметические двух результатов единичных определений, расхождение между которыми не превышает предела повторяемости (условие (3)).

15.4.3. Результат контрольной процедуры рассчитывают по формуле:

, мг/дм . (16)

15.4.4. Норматив контроля рассчитывают по формуле:

, мг/дм , (17)

где — характеристика погрешности результатов контрольного измерения, соответствующая содержанию ионов кальция и/или магния в пробе с добавкой, рассчитанная по формуле:

, мг/дм , (18)

— характеристика погрешности результатов контрольного измерения, соответствующая содержанию ионов кальция и/или магния в пробе, рассчитанная по формуле:

, мг/дм , (19)

— относительное значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов анализа.

15.4.5. Реализация решающего правила контроля.

. (20)

При невыполнении этого условия контрольную процедуру повторяют. При повторном невыполнении условия (20) выясняют причины, приводящие к неудовлетворительному результату, и принимают меры к их устранению.

Приложение А
(обязательное)

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования.

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

ГОСТ 12.4.009-83 Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание.

ГОСТ 17.1.1.04-80 Охрана природы. Гидросфера. Классификация подземных вод по целям водопользования.

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия.

ГОСТ 2053-77 Реактивы. Натрий сернистый 9-водный. Технические условия.

ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия.

ГОСТ 3773-72 Реактивы. Аммоний хлористый. Технические условия.

ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия.

ГОСТ 5456-79 Реактивы. Гидроксиламина гидрохлорид. Технические условия.

ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия.

ГОСТ 24104-2001 Весы лабораторные. Общие технические требования.

ГОСТ 24147-80 Аммиак водный особой чистоты. Технические условия.

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры. Размеры.

ГОСТ 29227-91 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования.

ГОСТ 29251-91 (ИСО 385-1-84) Посуда лабораторная стеклянная. Бюретки. Часть 1. Общие требования.

ГОСТ Р 51652-2000 Спирт этиловый ректификованный из пищевого сырья. Технические условия.

ГОСТ Р 52501-2005 (ИСО 3696-1987) Вода для лабораторного анализа. Технические условия.

[1] Дозаторы пипеточные с дискретностью установки доз 0,01-1,00 см

* ТУ, упомянутые здесь и далее по тексту, являются авторской разработкой. За дополнительной информацией обратитесь по ссылке. — Примечание изготовителя базы данных.

[3] Стандарт-титр (фиксанал) трилона Б [4] Индикатор кислотный хром темно-синий

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

АККРЕДИТОВАННАЯ МЕТРОЛОГИЧЕСКАЯ СЛУЖБА НИ ТПУ

(Аттестат об аккредитации N РОСС RU 01.00143 от 04.03.08)

Методика выполнения измерений массовой концентрации кальция и магния, разработанная в ООО «Сиб-СТРИМ» и Красноярском филиале ОАО «Инженерно-аналитический центр «Кузбасстехэнерго», регламентированная в МУ 08-47/252 (по реестру аккредитованной метрологической службы Национального исследовательского Томского политехнического университета)

ВОДЫ ТЕПЛОЭНЕРГЕТИЧЕСКИЕ.
МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВОЙ КОНЦЕНТРАЦИИ КАЛЬЦИЯ И МАГНИЯ

аттестована в соответствии с ГОСТ Р 8.563 (ГОСТ 8.010).

Аттестация осуществлена по результатам теоретического и экспериментального исследования МВИ.

В результате аттестации МВИ установлено, что данная МВИ соответствует предъявляемым к ним метрологическим требованиям и обладает следующими основными метрологическими характеристиками:

1 Диапазоны измерений, относительные значения показателей повторяемости, воспроизводимости и точности методики при доверительной вероятности 0,95

Диапазон измеряемых концентраций, мг/дм

Показатель повторяемости (среднеквадратическое отклонение повторяемости), , %

Показатель
воспроизводимости (среднеквадратическое отклонение воспроизводимости), , %

Показатель точности (границы, в которых находится погрешность методики), , %

источник