Меню Рубрики

Кислород в воде анализ методика

Кислород постоянно присутствует в растворенном виде в поверхностных водах. Содержание растворенного кислорода (РК) в воде характеризует кислородный режим водоема и имеет важнейшее значение для оценки его экологического и санитарного состояния. Кислород должен содержаться в воде в достаточном количестве, обеспечивая условия для дыхания гидробионтов. Он также необходим для самоочищения водоемов, т.к. участвует в процессах окисления органических и других примесей, разложения отмерших организмов. Снижение концентрации РК свидетельствует об изменении биологических процессов в водоеме, о загрязнении водоема биохимически интенсивно окисляющимися веществами (в первую очередь органическими). Потребление кислорода обусловлено также химическими процессами окисления содержащихся в воде примесей, а также дыханием водных организмов.

Поступление кислорода в водоем происходит путем растворения его при контакте с воздухом (абсорбции), а также в результате фотосинтеза водными растениями, т.е. в результате физико-химических и биохимических процессов. Кислород также поступает в водные объекты с дождевыми и снеговыми водами. Поэтому существует много причин, вызывающих повышение или снижение концентрации в воде растворенного кислорода.

Растворенный в воде кислород находится в виде гидратированных молекул О2. Содержание РК зависит от температуры, атмосферного давления, степени турбулизации воды, количества осадков, минерализации воды др. При каждом значении температуры существует равновесная концентрация кислорода, которую можно определить по специальным справочным таблицам, составленным для нормального атмосферного давления. Степень насыщения воды кислородом, соответствующая равновесной концентрации, принимается равной 100%. Растворимость кислорода возрастает с уменьшением температуры и минерализации и с увеличением атмосферного давления.

В поверхностных водах содержание растворенного кислорода может колебаться от 0 до 14 мг/л и подвержено значительным сезонным и суточным колебаниям. В эвтрофированных и сильно загрязненных органическими соединениями водных объектах может иметь место значительный дефицит кислорода. Уменьшение концентрации РК до 2 мг/л вызывает массовую гибель рыб и других гидробионтов.

В воде водоемов в любой период года до 12 часов дня концентрация РК должна быть не менее 4 мг/л. ПДК растворенного в воде кислорода для рыбохозяйственных водоемов установлена 6 мг/л (для ценных пород рыбы) либо 4 мг/л (для остальных пород).

Растворенный кислород является весьма неустойчивым компонентом химического состава вод. При его определении особо тщательно следует проводить отбор проб: необходимо избегать контакта воды с воздухом до фиксации кислорода (связывания его в нерастворимое соединение).

Контроль содержания кислорода в воде – чрезвычайно важная проблема, в решении которой заинтересованы практически все отрасли народного хозяйства, включая черную и цветную металлургию, химическую промышленность, сельское хозяйство, медицину, биологию, рыбную и пищевую промышленность, службы охраны окружающей среды. Содержание РК определяют как в незагрязненных природных водах, так и в сточных водах после очистки. Процессы очистки сточных вод всегда сопровождаются контролем содержания кислорода. Определение РК является частью анализа при определении другого важнейшего показателя качества воды – биохимического потребления кислорода (БПК).

Определение концентрации РК в воде проводится методом йодометрического титрования – методом Винклера, широко используемым и общепринятым при санитарно-химическом и экологическом контроле*. Метод определения концентрации РК основан на способности гидроксида марганца (II) окисляться в щелочной среде до гидроксида марганца (IV), количественно связывая при этом кислород. В кислой среде гидроксид марганца (IV) снова переходит в двухвалентное состояние, окисляя при этом эквивалентное связанному кислороду количество йода. Выделившийся йод оттитровывают раствором тиосульфата натрия в присутствии крахмала в качестве индикатора.

Определение РК проводится в несколько этапов. Сначала в анализируемую воду добавляют соль Мn (II), который в щелочной среде реагирует с растворенным кислородом с образованием нерастворимого дегидратированного гидроксида Мn (IV) по уравнению:

Таким образом производится фиксация, т.е. количественное связывание, кислорода в пробе. Фиксация РК, являющегося неустойчивым компонентом в составе воды, должна быть проведена сразу после отбора пробы.

Далее к пробе добавляют раствор сильной кислоты (как правило, соляной или серной) для растворения осадка и раствор йодида калия, в результате чего протекает химическая реакция с образованием свободного йода по уравнению:

Затем свободный йод титруют раствором тиосульфата натрия в присутствии крахмала, который добавляют для лучшего определения момента окончания титрования. Реакции описываются уравнениями:


J2 + крахмал —» синее окрашивание

О завершении титрования судят по исчезновению синей окраски (обесцвечиванию) раствора в точке эквивалентности. Количество раствора тиосульфата натрия, израсходованное на титрование, пропорционально концентрации растворенного кислорода.

В ходе анализа воды определяют концентрацию РК (в мг/л) и степень насыщения им воды (в %) по отношению к равновесному содержанию при данных температуре и атмосферном давлении.

В сточных и загрязненных поверхностных водах могут присутствовать компоненты, оказывающие мешающее влияние и искажающие результаты определения РК методом Винклера. К таким компонентам относятся следующие загрязняющие вещества.

1. Взвешенные и окрашенные вещества. Они могут помешать определению, адсорбируя йод на своей поверхности или химически взаимодействуя с ним. При наличии в анализируемой воде взвешенных веществ их отделяют отстаиванием (не фильтрованием!) либо осветлением при добавлении раствора алюмокалиевых квасцов и аммиака.

2. Биологически активные взвешенные вещества (например, активный ил биохимических очистных сооружений). Пробы сточных вод, содержащие плохо оседающие взвешенные вещества, которые могут вызвать снижение концентрации кислорода вследствие продолжающейся жизнедеятельности микроорганизмов, необходимо осветлять также прибавлением раствора алюмокалиевых квасцов при одновременном добавлении токсичного для микроорганизмов вещества (растворов сульфаминовой кислоты, хлорида ртути или сульфата меди) сразу после отбора пробы.

3. Восстановители, реагирующие с выделенным йодом в кислой среде (сульфиты, тиосульфаты, сульфиды). Для устранения влияния восстановителей используют метод Росса, основанный на добавках к пробам растворов гипохлорита натрия NaOCl, хлорной извести CaOCl2 и роданида калия KNCS.

4. Окислители, выделяющие йод из йодида калия (активный хлор, нитриты, катионы железа (III) и др.). Влияние железа (III) устраняется добавлением раствора фторида калия.

Влияние нитритов, которые часто встречаются в природных и сточных водах, устраняют добавлением раствора сульфаниловой кислоты, обычно предусмотренного в измерительных комплектах производства ЗАО «Крисмас+».

Процесс определения РК проводится в кислородных калиброванных склянках из комплекта и включает:
– специальную обработку пробы для устранения мешающего влияния примесей (выполняется при необходимости, преимущественно при анализе сточных вод);
– фиксацию кислорода, проводимую немедленно после заполнения кислородной склянки;
– титрование, которое может быть проведено через некоторое время (но не более суток).

При выполнении анализа несколько раз повторяются следующие операции.

1. Наполнение мерных пипеток растворами проводят с помощью медицинского шприца с соединительной трубкой (а не ртом!).
2. Перенос раствора в наполненной пипетке проводят (при необходимости), герметично зажав ее верхнее отверстие пальцем. Раствор не должен скапывать с пипетки!
3. Погружение пипетки с раствором в кислородную склянку осуществляют на глубину 2–3 см, как показано на рисунке, и по мере выливания раствора поднимают вверх. Излишек жидкости из склянки стекает через край на подставленную чашку Петри.
4. После введения раствора склянку быстро закрывают пробкой, слегка наклонив ее. Излишек жидкости стекает через край. В склянке не должно остаться пузырьков воздуха. Склянка не должна оставаться открытой.
5. Содержимое склянки перемешивают помещенной внутрь склянки мешалкой, удерживая склянку рукой.

Барометр любого типа; груша резиновая или медицинский шприц; колба коническая вместимостью 250–300 мл; склянка кислородная калиброванная (100–200 мл) с пробкой; мешалка (стеклянные шарик, палочка и т.п.) известного объема; пипетки мерные на 1 мл и 10 мл; термометр с ценой деления не более 0,5°С; поддон.
Раствор соли марганца; раствор серной кислоты (1:2); раствор тиосульфата натрия (0,02 моль/л экв.); раствор крахмала (0,5%); раствор йодида калия щелочной.
Если в лаборатории имеются приборы для измерения содержания растворенного в воде кислорода (оксиметры), их с успехом можно использовать для выполнения анализов в полевых условиях.
Приготовление растворов см. приложение 3.

Отбор проб на содержание РК имеет ряд особенностей.

Для отбора проб на РК в общем случае (ГОСТ 17.1.5.05) используют батометр, к крану которого прикреплена резиновая трубка длиной 20–25 см. Для отбора проб воды из поверхностных горизонтов используют эмалированную либо стеклянную посуду. Если отбирается общая проба воды для анализов по разным компонентам, то проба для определения РК должна быть первой, взятой для дальнейшей обработки.

Водой из отобранной пробы ополаскивают 2–3 раза чистые калиброванные склянки из состава комплекта или (если требуется специальная подготовка проб, например отстаивание) стеклянные бутыли.

Наполнение склянок из батометра осуществляют сифоном через резиновую трубку, опущенную до дна склянки. После наполнения кислородной склянки до горлышка ее наполнение продолжают до тех пор, пока не выльется около 100 мл воды, т.е. пока не вытиснится вода, соприкасавшаяся с находившимся в склянке воздухом, и еще один объем. Трубку вынимают из склянки, не прекращая тока воды из батометра. Аналогично проводят заполнение склянки из бутыли с анализируемой водой либо бутыли из батометра (в последнем случае резиновую трубку сифона погружают примерно до половины высоты водяного столба в бутыли). Сразу после заполнения склянки производят фиксацию кислорода, как описано ниже.

Отбор пробы для измерения концентрации РК непосредственно на водоеме выполняют следующим образом.

Примечания. 1. В склянке не должно остаться пузырьков воздуха.
2. Анализируйте пробу, по возможности, скорее.

А. Фиксация кислорода в пробе

1. Введите в склянку разными пипетками 1 мл раствора соли марганца, затем 1 мл раствора йодида калия и 1–2 капли раствора сульфаминовой кислоты**, после чего закройте склянку пробкой.
2. Перемешайте содержимое склянки с помощью имеющейся внутри мешалки, держа склянку в руке. Дайте отстояться образующемуся осадку не менее 10 мин.

Примечание. Склянку с фиксированной пробой можно хранить в затемненном месте не более 1 суток .

3. Введите в склянку пипеткой 2 мл раствора серной кислоты, погружая пипетку до осадка (не взмучивать!) и постепенно поднимая ее вверх по мере опорожнения.
4. Склянку закройте пробкой и содержимое перемешайте до растворения осадка.
5. Содержимое склянки полностью перенесите в коническую колбу на 250 мл.
Примечание. Определение концентрации РК в воде можно выполнять путем титрования части пробы. При этом в колбу на 100 мл цилиндром переносят 50,0 мл пробы с растворенным осадком***. Дальнейшие операции проводят, как описано ниже, для обработки полной пробы.
6. В бюретку (пипетку), закрепленную в штативе из состава комплекта, наберите 10 мл раствора тиосульфата и титруйте пробу до слабо желтой окраски. Затем добавьте пипеткой 1 мл раствора крахмала (раствор в колбе синеет) и продолжайте титрование до полного обесцвечивания раствора.
7. Определите общий объем раствора тиосульфата, израсходованный на титрование (как до, так и после добавления раствора крахмала).

При наличии в анализируемой воде мешающих примесей (взвешенных и окрашенных веществ, восстановителей, железа в концентрациях более 1 мг/л) выполняют специальную обработку пробы (подробно описано в паспорте на комплект «Растворенный кислород»). Далее пробой заполняют кислородную склянку, выполняют фиксацию и титрование, как описано выше.

В случае титрования всего количества раствора в кислородной склянке массовую концентрацию РК в анализируемой пробе воды (СРК) в мг/л рассчитайте по формуле:

где:
8 – эквивалентная масса атомарного кислорода;
CТ – концентрация титрованного стандартного раствора тиосульфата, моль/л экв.;
VТ – общий объем раствора тиосульфата, израсходованного на титрование (до и после добавления раствора крахмала), мл;
V – внутренний объем калиброванной кислородной склянки с закрытой пробкой (определяется заранее для каждой склянки отдельно), мл;
V1 – суммарный объем растворов хлорида марганца и йодида калия, добавленных в склянку при фиксации РК, а также мешалки, мл (рассчитывается как V1=1+1+0,5=2,5 мл);
1000 – коэффициент пересчета единиц измерения из г/л в мг/л.

Примечание. Принимается, что потери растворенного кислорода в фиксированной форме при сливе излишков жидкости из склянки и при выполнении других операций много меньше результата измерений (пренебрежимо малы).

В случае титрования части пробы (50,0 мл) в кислородной склянке, массовую концентрацию РК в анализируемой пробе воды (СРК в мг/л) рассчитывают по формуле:

Пример расчета концентрации растворенного кислорода в воде.

При общем объеме раствора тиосульфата, израсходованного на титрование, равном 4,7 мл, концентрации раствора тиосульфата 0,02 ммоль/л экв. и объеме кислородной склянки 102,5 мл содержание растворенного кислорода рассчитывается как:

Для определения степени насыщения воды кислородом по табл. 13 определите величину концентрации насыщенного раствора кислорода в воде (СН, мг/л), исходя из температуры воды, зафиксированной в момент отбора пробы.

Далее рассчитайте степень насыщения воды кислородом (R) в % с учетом фактической величины атмосферного давления по формуле:

где:
100 – коэффициент пересчета единиц измерения из мг/л в %;
760 – нормальное атмосферное давление, мм рт. ст.;
СН – величина концентрации насыщенного раствора кислорода для условий отбора, определенная по табл. 13.
Р – фактическая величина атмосферного давления в момент отбора пробы.

Читайте также:  Анализы сточных вод на фосфаты

Примечание. При отсутствии данных об атмосферном давлении в момент отбора допускается его принимать равным нормальному (т.е. 760 мм рт. ст.).

Зависимость равновесной концентрации кислорода в воде от температуры
(атмосферное давление – 760 мм рт. ст.)

Температура Равновесная концентрация растворенного кислорода
(в мг/л) при изменении температуры на десятые доли °С (Сн)
°С 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
14,65 14,61 14,57 14,53 14,49 14,45 14,41 14,37 14,33 14,29
1 14,25 14,21 14,17 14,13 14,09 14,05 14,02 13,98 13.94 13,90
2 13,86 13,82 13,79 13,75 13,71 13,68 13,64 13,60 13,56 13,53
3 13,49 13,46 13,42 13,38 13,35 13,31 13,28 13,24 13,20 13,17
4 13,13 13,10 13,06 13,03 13,00 12,96 12,93 12,89 12,86 12,82
5 12,79 12,76 12,72 12,69 12,66 12,52 12,59 12,56 12,53 12,49
6 12,46 12,43 12,40 12,36 12,33 12,30 12,27 12,24 12,21 12,18
7 12,14 12,11 12,08 12,05 12,02 11,99 11,96 11,93 11,90 11,87
8 11,84 11,81 11,78 11,75 11,72 11,70 11,67 11,64 11,61 11,58
9 11,55 11,52 11,49 11,47 11,44 11,41 11,38 11,35 11,33 11,30
10 11,27 11,24 11,22 11,19 11,16 11,14 11,11 11,08 11,06 11,03
11 11,00 10,98 10,95 10,93 10,90 10,87 10,85 11,82 10,80 10,77
12 10,75 10,72 10,70 10,67 10,65 10,62 10,60 10,57 10,55 10,52
13 10,50 10,48 10,45 10,43 10,40 10,38 10,36 10,33 10,31 10,28
14 10,26 10,24 10,22 10,19 10,17 10,15 10,12 10,10 10,08 10,06
15 10,03 10,01 9,99 9,97 9,95 9,92 9,90 9,88 9,86 9,84
16 9,82 9,79 9,77 9,75 9,73 9,71 9,69 9,67 9,65 9,63
17 9,61 9,58 9,56 9,54 9,52 9,50 9,48 9,46 9,44 9,42
18 9,40 9,38 9,36 9,34 9,32 9,30 9,29 9,27 9,25 9,23
19 9,21 9,19 9,17 9,15 9,13 9,12 9,10 9,08 9,06 9,04
20 9,02 9,00 8,98 8,97 8,95 8,93 8,91 9,90 8,88 8,86
21 8,84 8,82 8,81 8,79 8,77 8,75 8,74 8,72 8,70 8,68
22 8,67 8,65 8,63 8,62 8,60 8,58 8,56 8,55 8,53 8,52
23 8,50 8,48 8,46 8,45 8,43 8,42 8,40 8,38 8,37 8,35
24 8,33 8,32 8,30 8,29 8,27 8,25 8,24 8,22 8,21 8,19
25 8,18 8,16 8,14 8,13 8,11 8,11 8,08 8,07 8,05 8,04
26 8,02 8,01 7,99 7,98 7,96 7,95 7,93 7,92 7,90 7,89
27 7,87 7,86 7,84 7,83 7,81 7,80 7,78 7,77 7,75 7,74
28 7,72 7,71 7,69 7,68 7,66 7,65 7,64 7,62 7,61 7,59
29 7,58 7,56 7,55 7,54 7,52 7,51 7,49 7,48 7,47 7,45
30 7,44 7,42 7,41 7,40 7,38 7,37 7,35 7,34 7,32 7,31

Пример расчета степени насыщения воды кислородом.

При значениях СРК=7,52 мг/л, СН=9,82 мг/л, Р=735 мм рт. ст. и температуре воды в момент отбора 16°С степень насыщения составляет:

При выполнении измерений концентрации РК в воде контроль точности необходимо проводить по поверенному (образцовому) оксиметру.

* Например, РД 52.24.419, ИСО 5813 и др.

** Если вода не содержит нитритов или их содержание менее 0,05 мг/л, раствор сульфаминовой кислоты можно не добавлять. Однако концентрация нитритов, как правило, неизвестна, поэтому мы рекомендуем добавлять сульфаминовую кислоту при каждом анализе.

*** В данном случае из одной фиксированной пробы можно получить несколько параллельных результатов измерений, однако это приводит к некоторому снижению точности анализа.

источник

Нормативные документы — РД 52.24.419-95, ИСО 5813:1983.

Определение кислорода в поверхностных водах включено в программы наблюдений с целью оценки условий обитания гидробионтов, в том числе рыб, а также как косвенная характеристика оценки качества поверхностных вод и регулирования процесса очистки стоков. Содержание растворенного кислорода существенно для аэробного дыхания и является индикатором биологической активности (т. е. фотосинтеза) в водоеме.

Концентрация кислорода определяет величину окислительно-восстановительного потенциала и в значительной мере направление и скорость процессов химического окисления органических и неорганических соединений.

Кислородный режим оказывает глубокое влияние на жизнь водоема. Минимальное содержание растворенного кислорода, обеспечивающее нормальное развитие рыб, составляет около 5 мг О2/дм 3 . Понижение его содержания до 2 мг/дм 3 вызывает массовую гибель рыб. Неблагоприятно сказывается на их состоянии и пересыщение воды кислородом.

Определение кислорода в поверхностных водах включено в программы наблюдений с целью оценки условий обитания гидробионтов, в том числе рыб, косвенной характеристики качества воды, интенсивности процессов продуцирования и деструкции органических веществ, самоочищения водоемов и т. д.

Концентрацию кислорода выражают либо в мг/дм 3 , либо в процентах насыщения, вычисление кислорода производится по формуле

где Сх — концентрация кислорода, найденная экспериментально, мг/дм 3 ; Со — нормальная концентрация при данной температуре, нормальности и атмосферном давлении 760 мм; р — атмосферное давление в момент анализа.

Кислород является неустойчивым компонентом, определение которого вследствие зависимости его содержания от температуры воды должно производиться на месте отбора проб (Скопин-цев, Овчинников, 1933).

Метод предназначен для анализа неокрашенных или слабо-окрашенных вод с содержанием кислорода выше 0,05 мг О2/дм 3 .

Метод основан на взаимодействии в щелочной среде гидро-окиси марганца с растворенным в воде кислородом. Гидроокись марганца, количественно связывая растворенный в воде кисло-род, переходит в нерастворимое соединение четырехвалентного марганца коричневого цвета. При подкислении раствора в присутствии избытка йодистого калия образуется йод, количество которого эквивалентно содержанию растворенного кислорода и учитывается титрованием раствора тиосульфата:

Mn 2+ + 2OH — > Mn(OH)2 (белый) (6)

MnO(OH)2 + 4H + + 3 I — > Mn 2+ + I 3- + 3H2O (8)

Минимально определяемая концентрация 0,05 мг О2/дм 3 . Относительное стандартное отклонение U при концентрациях 7-10 мг О2/дм 3 составляет 0,3 % (n=20). Продолжительность определения единичной пробы с учетом ее отстаивания 40 мин. Серия из шести проб определяется в течение 1,5 ч.

Пробу воды для определения растворенного кислорода отбирают батометром, к крану которого прикреплена резиновая трубка длиной 20-25 см. Фиксирование кислорода производят сразу после отбора пробы. Для этого кислородную склянку 2-3 раза ополаскивают и затем наполняют исследуемой водой. Резиновая трубка при этом должна касаться дна склянки. После заполнения склянки до горлышка ее наполнение продолжают до тех пор, пока не выльется приблизительно 100 мл воды, т. е. пока не вытиснится вода, соприкасавшаяся с воздухом, находящимся в склянке. Трубку вынимают, не прекращая тока воды, из батометра. Склянка должна быть заполнена пробой до краев и не иметь внутри на стенках пузырьков воздуха.

Затем в склянку с пробой воды вводят 1 мл щелочного раствора йодистого калия.

При этом необходимо пользоваться отдельными пипетками. Пипетку погружают каждый раз до половины склянки и по мере выливания раствора поднимают вверх. Затем быстро закрывают склянку стеклянной пробкой таким образом, чтобы в ней не оставалось пузырьков воздуха, и содержимое склянки тщательно перемешивают.

Образовавшемуся осадку гидроокиси марганца дают отстояться не менее 10 мин. и не более суток. Затем приливают 5 мл раствора HCI. Пипетку погружают до осадка и медленно поднимают вверх. Вытеснение из склянки раствором соляной кислоты прозрачной жидкости для анализа значения не имеет.

Склянку закрывают пробкой и содержимое тщательно перемешивают. Отбирают пипеткой 50 мл раствора (пипетку предварительно необходимо ополоснуть этим раствором) и переносят его в коническую колбу объемом 250 мл. Раствор титруют 0,02 н. раствором тиосульфата до тех пор, пока он не станет светло-желтым. Затем прибавляют 1 мл свежеприготовленного раствора крахмала и продолжают титрование до исчезновения синей окраски.

Содержание растворенного кислорода С в мг О2/дм 3 находят по формуле:

Cx = (8 Nn Е 1000V)/[50(V-2)] = (160 NnV)/(V — 2) (9)

где N — нормальность тиосульфата; n — объем тиосульфата, пошедшего на титрование, мл; V — объем склянки, в которую отбиралась проба, мл; 2 — объем пробы, вылившийся при фиксации растворенного кислорода, мл.

Степень насыщения воды кислородом в процентах вычисляют по формуле:

где Сх — концентрация кислорода, найденная путем анализа, мг/дм 3 , Со — нормальная концентрация кислорода для температуры, измеренной при отборе пробы, атмосферном давлении 760 мм рт. ст. и поправкой на минерализацию воды.

Характеристика погрешности — при содержании кислорода от 0,5 до 5,0 мг/дм 3 — 10 %, от 5 до 10 мг/дм 3 — 5 %.

Определение нормальности тиосульфата

В коническую колбу 250 мл наливают 35 мл дистиллированной воды, всыпают 1 г сухого KI, 15 мл 0,02 н. раствора K2Cr2O7, точно отмеренных пипеткой, и 10 мл раствора НСl (2:1).

Титрование раствором тиосульфата начинают сразу после растворения КI, непрерывно помешивая, до появления слабожелтой окраски. Затем добавляют 50-100 мл дистиллированной воды и 1 мл раствора крахмала и продолжают титрование до исчезновения окраски.

Определение повторяют и при отсутствии расхождения более 0,05 мл, за результат определения берут среднее арифметическое. Вычисляют нормальность раствора тиосульфата до пятого знака после запятой по формуле:

где N1— нормальность раствора Na2S2O3; N2 — нормальность раствора K2Cr2O7; n — объем расвора Na2S2O3, пошедшего на титрование, мл; a-объем раствора K2Cr2O7, взятого для определения нормальности, мл.

Характеристика погрешности: при содержании кислорода 1,0-3,0 мг/дм 3 д=0,1с; при содержании кислорода св. 3 до 15 мг/дм 3 д = 0,034 С, где С — найденная концентрация кислорода в мг/дм 3 .

Чисто вымытую и высушенную склянку взвешивают с точностью до 0,01 г. Затем наполняют ее до краев дистиллированной водой, закрывают пробкой так, чтобы не осталось пузырьков воздуха, склянку вытирают и снова взвешивают до 0,01 г.

Объем склянки V рассчитывают по формуле

где P1 — масса пустой склянки, г; P2 — масса склянки с водой, г; d — плотность воды при температуре взвешивания, г/см 3 (d при температурах 15, 20 и 25 С равны соответственно 0,998; 0,997 и 0,996 г/см 3 ).

источник

Для определения растворенного в воде кислорода обычно используется несколько методов. Их можно разделить на физико-химические и химические.

Химические методы определения растворенного кислорода основываются на хорошей окислительной способности этого газа.

Обычно используют метод Винклера

Среди методов определения концентрации растворенного кислорода самым старым, но до сих пор не потерявшим своей актуальности, остается химический метод Винклера. В этом методе растворенный кислород количественно реагирует со свежеосажденной гидроокисью Mn(II). При подкислении соединения марганца более высокой валентности высвобождает йод из раствора иодида в эквивалентных кислороду количествах. Высвобожденный йод далее определятся титрованием тиосульфатом натрия с крахмалом, в качестве индикатора.

Метод известен с 1888 года. До конца двадцатого века методика работы постоянно совершенствовалась. И только в 1970 году для определения содержания кислорода, растворенного в воде, начали использовать физико-химические методы анализа. Хронология развития метода Винклера представлена в таблице 1 [3]. В настоящее время метод не потерял своей актуальности и сейчас основной проблемой для совершенствования метода является повышение точности и возможность определения малых концентраций кислорода.

Хронологическое развитие метода Винклера

Первая публикация Винклером новой методики .

Включение метода Винклера в сборник Standard methods (1925). Появление первых химических модификаций.

Развитие альтернативных инструментальных методов (газометрические, фотометрические).

Изучение основополагающих принципов метода Винклера . Попытки разработки унифицированной процедуры определения растворенного кислорода на основе работ Кэррита и Карпентера.

Развитие амперометрических анализаторов. ГОСТ 22018-84 , СТ СЭВ 6130-87

Разработка стандартов по определению растворенного кислорода на основе варианта Карпентера. ИСО 5813-83, ИСО 5814-84.

Проблема калибровки и сравнения методов определения растворенного кислорода в области микроконцентраций (меньше 1 мгО2/л).

Метод основан на окислении кислородом двухвалентного марганца до нерастворимого в воде бурого гидрата четырехвалентного марганца, который, взаимодействуя в кислой среде с ионами иода, окисляет их до свободного иода, количественно определяемого титрованным раствором гипосульфита (тиосульфата) натрия:

МnО (ОН)2 + 2I- + 4Н3О+ ? Мn2+ + I2 + 7Н2O,

I2 + 2Na2S2O3 ? Na2S4O6 + 2NaI.

Из уравнений видно, что количество выделившегося иода эквимольно количеству молекулярного кислорода. Минимально определяемая этим методом концентрация кислорода составляет 0,06 мл/л.

Данный метод применим только к водам, не содержащим окислителей (например, солей трехвалентного железа) и восстановителей (например, сероводорода). Первые завышают, а вторые занижают фактическое количество растворенного кислорода.

Проба для определения кислорода должна быть первой, взятой из батометра. Для этого после ополаскивания водой из батометра кислородной склянки вместе с резиновой трубкой в свободный конец последней вставляют стеклянную трубку длиной 10 см и опускают ее на дно кислородной склянки. Воду наливают с умеренной скоростью во избежание образования воздушных пузырьков и один объем склянки переливают через ее горло после заполнения. Не закрывая крана батометра, осторожно вынимают трубку из склянки и только тогда закрывают кран. Склянка должна быть заполнена до краев и не иметь пузырьков воздуха на стенках.

Читайте также:  Анализы сточных вод на нитраты методика

Сразу же после заполнения фиксируют растворенный кислород, для чего в склянку вносят последовательно 1 мл хлористого, (или сернокислого) марганца и 1 мл щелочного раствора йодистого калия (или натрия). Пипетки с вводимыми реактивами необходимо опускать до половины высоты склянки. После введения реактивов склянку тщательно закрывают пробкой, избегая попадания пузырьков воздуха, и энергично перемешивают образовавшийся осадок 15-20-кратным переворачиванием склянки до равномерного распределения его в воде. Затем склянки с зафиксированными пробами переносят в темное место для отстаивания. В таком состоянии их можно хранить максимум сутки при t

источник

Однако, в общем, коэффициент Генри зависит от давления, хотя и в небольшой степени. Зависимость растворимости от температуры или, что то же самое, зависимость К (р°, Т) проявляется в уменьшении растворимости с повышением Т или в более сложных по характеру зависимостях, когда исследуют широкий температурный интервал рис. 1. Изменение растворимости y в условиях, удаленных от критических точек для раствора или растворителя, можно описать эмпирическим уравнением

Растворение кислорода и других газов в воде вызывает нарушение ближнего порядка. Это требует затраты энергии и в результате растворимость в воде оказывается на порядок меньше, чем в неполярных жидкостях. Учет особенностей молекулярного строения воды оказался достаточно сложным, и до сих пор нет хороших теоретических подходов для его оценки. Поэтому приходится пользоваться эмпирическими данными.

Процесс растворения является самопроизвольным. Растворение следует рассматривать как совокупность физических и химических явлений, выделяя при этом три основные стадии:

а) разрушение химических и межмолекулярных связей в растворяющихся газах, требующее затраты энергии. Энтальпия системы при этом растет: ΔH1 > 0;

б) химическое взаимодействие растворителя с растворяющимся веществом, вызванное образованием новых соединений – сольватов (или гидратов), сопровождающееся выделением энергии. Энтальпия системы при этом уменьшается: ΔН2 0.

Суммарный тепловой эффект процесса растворения (ΔН= ΔH1 + ΔН2 + ΔН3 ) может быть положительным (эндотермическое растворение) и отрицательным (экзотермическое растворение).

Растворение протекает самопроизвольно (ΔG 2+ + 2OH — = Mn(OH)2

Иодометрическое титрование (кислая среда)

По мере использования этого метода в природных водах было отмечено существенное влияние редокс-активных примесей. Но несмотря на это, методическая простота и надежность позволила уже 1925 году включить метод Винклера в сборник стандартных химических методов анализа вод. Обнаруженное влияние редокс примесей инициировало разработку химических модификации метода Винклера, некоторые из которых познее были также включены в Standard methods. В этих модификациях активно используются процедуры пробоподготовки, применение маскирующих агентов, методы холостой пробы, метод параллельной йодной пробы, регламентируются условия проведения анализа, при которых действием той или иной примеси можно пренебречь. Как показывает анализ научной периодики начало исследований по разработке таких химических модификаций относится к 20–30 годам. Ниже кратко представлены те трудности, которые могут возникать при проведении анализа по Винклеру при одновременном присутствии в воде часто встречающихся редокс-примесей.

Мешающее действие редокс-активных примесей:

Соединения двухвалентного железа на стадии фиксации кислорода могут выступать как конкуренты по отношению к марганцу. Прореагировав с кислородом образуется гидроксид Fe(III), кинетика взаимодействия которого с иодидом в кислой среде замедлена. Так при концентрции железа более 25 мг/л использование классического варианта метода Винклера приводит к занижению результатов определений. Было предложено элиминировать влияние железа(III) добавками фторида или использованием фосфорной кислотой при подкислении пробы. Образующийся фторидный или фосфатный комплекс не дает железу взаимодействовать с ионами иодида. Но этот способ не дает возможности элиминировать влияние двухвалентного железа.

Обычно присутствие в воде нитритов обусловлено микробиологическим преобразованием аммония в нитрат. И известно, что нитриты в кислой среде способны окислять иодид ионы, вызывая тем самым завышений результатов в методе Винклера. Тем не менее при содержании в воде до 0.05–0.1 мгN/л можно применять прямой метод Винклера. В настоящее время самым распространенным способом нейтрализации влияния нитритов считается использование добавок азида натрия (метод Альстерберга). Здесь нельзя забывать, что излишнее увеличение концентрации азида может привести и к отрицательной ошибке. Это обусловлено возможностью протекания реакции:

Кроме применеия азида есть и другие способы подавления или учета влияния нитритов: применение мочевины или сульфаминовой кислоты. Все эти реактивы разрушают нитрит до молекулярного азота.

Понятно, что влияние орг. веществ, как выраженных восстановителей будет проявляться на всех этапах определения растворенного кислорода по Винклеру. Молекулярный кислород, окисленные формы марганца, молекулярный йод – все это достаточно сильные окислители для взаимодействия с органическими примесями. Если вода богата орг. веществами (окисляемость 15–30мгО2 /л и более), то оказывается необходимым вводить поправку на их взимодействие. Например в руководстве предлагается проводить параллельную йодную пробу, находя тем самым сколько йода израсходовалось на иодирование орг. примесей. Но есть методы, которые основаны на проведении метода Винклера, в отличающихся от классических условиях (время анализа, концентрации реагентов). Таким образом удается подобрать условия, при которых мешающим действием примеси можно пренебречь.

Нельзя здесь не отметить оригинальные работы Голтермана. В этой работе ему удалось разработать химический метод, сочетающий в себе определение концентрации растворенного кислорода и определение химического потребления кислорода (ХПК-Суммарная нормальность восстановителей, выраженная в мгО2 /л.). В соответствии с его методикой растворенный кислород в щелочной среде фиксируется не Mn(II), а солью Ce(III).

Выделившейся Ce(IV) после растворения его в растворе кислоты определяется фотометрически или титриметрически. Кроме того, использование солей церия (III, IV) позволяет учесть расход церия (IV) на окисление примеси-восстановителя, проводя «холостой» опыт, т.е. вводя в пробу воды не Ce(III), а Ce(IV) на стадии фиксации кислорода.

Обнаружено, что содержание в анализируемой воде сульфидов приводит к занижению результатов метода Винклера. При этом обнаружено, что взаимодействие сульфида с окислителями носит стехиометрический характер: 1 моль кислорода и 2 моля сульфида. В результате реакции выделяется элементарная сера. Поскольку в методе Винклера сильными окислителями являются кроме кислорода также йод и маргенец (III, IV), то в формулировании механизма взаимодействия сульфида с окислителем есть различные мнения. Так в работе считается, что сульфид взаимодействует с окисленными формами марганца, а в с йодом. В работе разработан метод одновременного определения сульфидов и кислорода в пробе воды. Авторы, используя соли Zn, осаждают ZnS, который далее отделяют и определяют спектрофотометрически, а в оставшейся над осадком воде проводят определение растворенного кислорода. В более ранней работе использована сходная схема, но использовался не сульфат, а ацетат Zn. При взаимодействии кислорода и сульфида возможно также образование тиосульфата, в качестве промежуточного соединения. В работе предложен способ учета такого тиосульфата по методу холостой пробы.

источник

Сущность метода состоит в образовании окрашенного соединения кислорода с индикатором метиленовым голубым и последующим визуальным сравнением интенсивности окраски анализируемого раствора с контрольными градуировочными растворами.

Метод пригоден для определения растворенного в воде кислорода в малых концентрациях (в пределах от 0 до 100мкг/л).

Чувствительность метода — 5,0 мкг/л.

Необходимые для проведения анализа приборы и материалы

Склянки пробоотборные для определения кислорода на 100 мл.
Стаканы В-1-150 ТХС, по ГОСТ 25336Е.
Колбы мерные 2-100-2; 2-500-2 по ГОСТ 1770.
Пипетки измерительные градуированные на 1; 5 и 50 см 3 по ГОСТ 29227.
Бюретка 1-2-50-0,1 по ГОСТ 29251.

Вода дистиллированная по ГОСТ 6709 (вода обессоленная, конденсат).

Состав набора

Смесь 0,375г метиленового голубого и 3,6 г глюкозы для приготовления раствора индикатора
Глицерин, ч.д.а., общий объем 1350 мл
Калия гидроокись, ч.д.а. (х.ч.), общее количество 30 г
Масло вазелиновое, общий объем 50 мл

Реактивы, входящие в состав набора проверяются на соответствие требованиям действующих стандартов и технических условий.

Отбор проб производят одновременно в две склянки одинаковой емкости. Объем склянок предварительно промеряют взвешиванием.

На штуцер пробоотборной точки надевают трубку, соединенную с тройником типа «гребенки». К последнему присоединяют две стекленные трубки, которые опускают в пробоотборные склянки, установленные на дне ведра или специальной кружки. Высота ведра или кружки должна быть на 7-10 см выше высоты пробоотборной склянки.

Перед отбором проб трубки промывают током анализируемой воды, причем во время промывки целесообразно несколько раз поднять трубки для удаления из них пузырьков воздуха. Истечение воды из трубок должно быть спокойным, со скоростью 500-600 см 3 /мин.

После того, как через склянки пройдет десятикратный объем анализируемой воды, не прекращая ее поступления, осторожно вынимают из склянок стеклянные трубки и сразу же вводят реактивы.

Приготовление растворов

Раствор метиленового голубого (глицериновый) готовят следующим образом: в мерную колбу вместимостью 500 см 3 помещают содержимое одной упаковки № 1 (смеси метиленового голубого и глюкозы) и растворяют в 50 см 3 дистиллированной воды. После полного растворения реактивов объем раствора доводят до метки глицерином и хорошо перемешивают. Хранят в склянке из темного стекла в месте, защищенном от прямого солнечного света.

Устойчив в течение 6 месяцев.

Время, затрачиваемое на проведение операции — около 30 минут.

Раствор калия гидроксида с массовой долей 30% готовят растворением навески калия гидроксида в 70 см 3 очищенной воды. Раствор устойчив, хранят в полиэтиленовом сосуде.

Время, затрачиваемое на проведение операции — около 20 минут.

Рабочий раствор метиленового голубого с восстановителем готовят смешением 50 см 3 глицеринового раствора метиленового голубого с 1 см 3 раствора калия гидроокиси. Полученный раствор заливают в бюретку соответствующей емкости с тонким, хорошо оттянутым носиком. Для защиты раствора от воздействия атмосферного кислорода на поверхность раствора аккуратно помещают 1-2 см 3 вазелинового масла.

Раствор обесцвечивается примерно через 1 час, обесцвечивание свидетельствует о том, что раствор готов к употреблению.

Устойчив в течение 7 дней.

Время, затрачиваемое на проведение операции — около 1,5 часа.

Стандартный раствор метиленового голубого готовят следующим образом: в мерную колбу вместимостью 500 см 3 помещают 4,7 см 3 глицеринового раствора метиленового голубого (см. выше) и доводят объем раствора до метки очищенной водой. Полученный синий раствор по интенсивности соответствует концентрации кислорода 100 мкг/л.

Время, затрачиваемое на проведение операции — около 15 минут

Приготовление шкалы стандартов.

Шкалу стандартов готовят разбавлением стандартного раствора метиленового голубого, содержащего 100 мкг О2/дм 3 . Для этого в восемь мерных колб вместимостью 100 см 3 отмеривают соответственно 0; 5; 10; 20; 30; 40; 50; 100 см 3 стандартного раствора метиленового голубого, объем раствора во всех колбах (кроме последней) доводят до метки очищенной водой и перемешивают. Затем растворы переливают в склянки и закрывают пробками. Приготовленные растворы шкалы устойчивы в течение 10 суток при хранении в темном месте.

Содержание кислорода в пробах приведено в таблице.

Объемы стандартного раствора метиленового голубого, см 3 , отмеренные в колбы

Окраска соответствует содержанию кислорода,
мкг О2/дм 3

источник

Большинство химических и биологических процессов влияют на уровень растворенного в воде кислорода. Поэтому в обработке промышленных, муниципальных вод и в области аквакультуры важной задачей является непрерывное и точное измерение концентрации растворенного кислорода.

В данной статье описаны три стандартных метода определения концентрации растворенного кислорода. Приведены принцип работы этих методов, их преимущества и недостатки, а также результаты сравнения точности и надежности измерений в различных условиях среды.

Процедура титрования исторически является первым методом определения концентрации кислорода в воде.

Образец воды обрабатывают сульфатом марганца, гидроксидом калия и йодидом калия с образованием гидроксида марганца, Mn(OH)2. Кислород в воде реагирует с Mn(II), переводя его в Mn(III). Нестабильный Mn(III) затем реагирует с другой молекулой O2, переходя в Mn(IV). Для фиксации реакции в раствор добавляют сильную кислоту (серную или соляную), переводят осадок MnO(OH)2 в сульфат марганца, при этом MnO(OH)2 действует как окисляющий агент на йод, I2. Этот йод — стехиометрический эквивалент к растворенному кислороду в образце, его титруют тиосульфатом натрия или фениларсиноксидом с крахмалом. Крахмал нужен для более точного определения окончания реакции.

J2 + крахмал -> синее окрашивание

Метод имеет многочисленные помехи, которые вносят ионы нитрита, двух и трехвалентные ионы железа, взвешенные частицы и органика. Он показывает завышенные значения растворенного кислорода в аноксической среде и заниженные значения в гипероксичной среде, потому что проба воды и сами реагенты испаряются во время работы.

Читайте также:  Анализы сточных вод методы их очистки

Для измерения кислорода в воде обычно используют датчик, состоящий из мембраны, которая покрывает амперометрический сенсор. В ноябре 1959 года изобретатель Кларк (H. A. Clark) получил патент (US Patent 2913386), «Электрохимическое устройство для химического анализа».

В пластмассовом цилиндрическом корпусе 1 имеются сквозные отверстия для проводников, в которых находятся индикаторный (рабочий) электрод 2 из платины и электрод сравнения 3 из серебряных проволок, концы которых покрыты пастой из хлорида серебра. Нижний конец корпуса обтягивают газопроницаемой полимерной мембраной 4 из полипропилена (тефлона, полиэтилена, фторопласта, целлофана и т.п.), которую механически фиксируют на корпусе с помощью резинового кольца 5. В пространство между электродами и мембраной залит водный раствор хлорида кальция 6. Извне мембрана 4 контактирует с контролируемой средой 7. Это может быть как жидкость, так и газ.

Если в контролируемой среде кислорода нет, то при подаче напряжения между электродом сравнения (анод) и рабочим электродом установившийся стационарный ток очень слаб. При наличии в контролируемой среде кислорода его молекулы диффундируют сквозь мембрану 4 и через раствор 6. Когда они достигают индикаторного электрода 2, то благодаря каталитическим свойствам платины здесь происходит реакция восстановления:

O2 + 4e- + 4H+ = 2H2O, вследствие которой ток через электрохимический элемент значительно возрастает.

Стационарный ток линейно зависит от концентрации кислорода в контролируемой среде.

Специально подбирая материал электродов, состав внутреннего электролита, электродное напряжение, удается построить амперометрические сенсоры подобной конструкции также для определения концентраций таких газов, как хлор, сероводород, серный газ, водород, угарный газ, окислы азота и т.д.

Вследствие потребления кислорода катодом и необходимостью диффузии кислорода через мембрану, для точности измерений следует поддерживать достаточный поток свежей воды. Загрязнение воды маслами и другими полимерами снижает диффузию и искажает результаты. С течением времени, мембрана разрушается, электролит становится грязным, а электроды расходуются до такой степени, что дают ограниченный ответ на присутствие кислорода.

Тушение люминофоров кислородом описано в далеком 1939 году (Kautsky, 1939), но в области анализа воды технология, основанная на этом феномене, является относительно новой (Klimant et al., 1995; Glud et al., 1999; Wenzhöffer et al., 2001). Много позже, получили развитие оптические устройства, детекторы, устройства обработки информации. Значительного прогресса в 1990-х годах достигли технологии регистрации растворенного кислорода в жидкости с использование люминофоров, оптод (оптические датчики) и портативных компьютеров. Успехи в области создания диодов с синим спектром свечения и маломощной высокоскоростной электроники позволили миниатюризировать чувствительные к кислороду оптоды до размера портативных устройств. Датчики не потребляют кислород и стабильны длительное время. Они имеют быстрое время отклика, обычно τ63% менее 60 секунд, часто менее 30 секунд для изменений концентрации кислорода ниже 8 мг/л. Оптоды имеют температурную зависимость, их значения корректируются с помощью локального температурного датчика.

Приложение технологии тушения люминофоров кислородом для оценки качества воды активно изучается. Обнаружено, что технология чрезвычайно хорошо подходит для анализа качества воды, и для коммерческого внедрения необходимо преодолеть два препятствия:

— защитить люминофор от фотовыгорания, чтобы датчик мог работать длительный срок в полевых условиях;

— обеспечить воспроизводимость процесса печати, чтобы последовательно и недорого интегрировать люминофор в колпачок датчика.

Кислородная оптода обеспечивает более удобный и надежный способ измерения растворенного кислорода, чем титрование и электрохимические датчики . Фундаментальный принцип основан на способности некоторых веществ действовать как динамические гасители флюоресценции. В случае определения концентрации кислорода, если рутениевый комплекс освещают синим светом, он возбуждается и испускает красную люминесценцию с интенсивностью и сроком жизни, которые зависят от концентрации кислорода в образце воды.

Важно отметить три параметра, на которых строятся измерения: интенсивность (насколько возвратное излучение сильное), срок жизни (как быстро возвратная люминесценция прекращается) и смещение фаз.

Измерения, базирующиеся на интенсивности, легче провести, но полученные значения меняются с течением времени. Различные технологии определения сигнала и области их приложения обобщены в работах Wolfbeis (1991), Demas et al. (1999) и Glud et al. (2000).

Сенсорная пленка состоит из чувствительного к кислороду люминесцентного вещества (люминофор), который погружен в полимерный слой, который, в свою очередь, тонким слоем покрывает полиэстеровую подложку.

Чаще всего в качестве люминофора используют рутениевые комплексы, но иногда платиновые комплексы порфиринов [полициклические ароматические углеводорода, Ru(II), Os(II), Rh(II), фосфоресцентные порфирины]. В последнем случае датчик имеет в пять раз больший срок жизни сигнала, поэтому сигнал проще считывать, и показания более стабильные. Кроме того, платиновые комплексы порфиринов менее чувствительны к фотовыгоранию.

Газопроницаемый защитный черный силиконовый слой работает как оптический изолятор, защищает от возможных люминесцентных/флюоресцентных материалов в воде, от солнечного излучения.

Пленку освещают синим/зеленым светодиодом с частотой 5 кГц. Возвратное красное флюоресцентное свечение от пленки принимает фотодиод. Красный оптический фильтр снижает отраженный свет, поступающий в фотодиод непосредственно от синего/зеленого излучателя.

Хотя детектор измеряет интенсивность флюоресцентного свечения, эта интенсивность восприимчива к оптическим связям и фотовыгоранию люминофора. Для измерения уровня тушения люминесценции кислородом гораздо лучше определять время жизни излучения от возбужденных люминофоров в пленке по отношению к возбуждающему сигналу. Время жизни измеряют опосредованно, через фазовое смещение между возбуждающим синим/зеленым сигналом и испускаемым от люминофора красным сигналом. Дополнительный красный светодиод включен в качестве невозбуждаемого сигнала сравнения как средство компенсации потенциального дрейфа в электронных схемах передатчика и приемника.

Использование техники фазовой модуляции означает, что флуктуации интенсивности излучения от синего/зеленого светодиода и излучения от люминофора не вносят помехи в измерения на протяжении всего срока службы оптического датчика. Кроме того, так как между концентрацией растворенного кислорода и фазовым смещением возвратной красной флюоресценции отмечается обратная зависимость, «отношение сигнал шум» имеет особое значение для измерения очень низкой концентрации растворенного кислорода. Наконец, между циклами измерения поочередно включаются синий и красный светодиоды, что обеспечивает внутреннее сравнение для оптического и электронного прохождения сигнала. Этот внутренний контроль обеспечивает стабильность в условиях корректировки температуры.

  1. Оптический датчик проводит измерения, последовательно включая синий и красный светодиоды.
  2. Синий свет возбуждает молекулы красителя люминофора на чувствительной пленке.
  3. Испускаемый светодиодом красный свет обеспечивает нулевое сравнительное значение; он не возбуждает молекулы люминофора.
  4. Возбужденные молекулы люминофора испускают красный свет в обратную сторону.
  5. Фотодиод обнаруживает возвратный красный свет от возбужденных молекул люминофора и красный свет от светодиода.

Оптическое тушение люминофора сильно зависит от температуры. Важно с высокой точностью измерять температуру (с множеством повторений), при этом датчик температуры и оптода должны располагаться близко друг к другу. Во время калибровки необходимо равенство температур образца воды, колпачка оптоды и температурного датчика.

Например, когда для калибровки значения 100% насыщения используется водонасыщенный воздух, колпачок оптоды и температурный датчик должны находиться на воздухе в температурном равновесии. Аналогично, когда для калибровки значения 100% насыщения используется насыщенная воздухом вода, колпачок оптоды и температурный датчик должны погружаться в воду и находится в температурном равновесии друг с другом и с водой.

Во время калибровки в полевых условиях рекомендуют защищать колпачок от термического нагревания при помощи солнечного щита.

Для создания уравновешенных образцов воды с известными значениями температуры и давления использовали поверочную газовую O2/N2 смесь Национального института стандартов и технологий (NIST, США). Измерения концентрации растворенного кислорода титрованием, электродом Кларка и оптическим датчиком Hach LDO сравнивали с теоретическими значениями растворенного кислорода (Hitchman, 1978).

Измерения концентрации растворенного кислорода титрованием, электродом Кларка и оптическим датчиком Hach LDO сравнивали с теоретическими значениями растворенного кислорода (Hitchman, 1978)

Используя автоматический титратор по методике Виклера, измерения модели зонда Hydrolab Series 5 от компании Hach LDO показали высокую степень корреляции со значениями титратора. Каждая группа данных включала два образца, и эти данные перекрывались.

Сравнения показаний оптоды с автоматическим титрованием по Виклеру Измерения при высокой солености. Сравнение показаний оптоды Hach LDO и электрода Кларка

В контролируемых лабораторных условиях с помощью коммерческой морской соли корректировали соленость воды до желаемого уровня. Емкость продували азотом, снижая концентрацию кислорода, а затем растворяли кислород, продувая емкость кислородом. Сравнения оптоды Hach LDO с электрохимическим мембранным датчиком при средней (6.9 млрд -1 ) и высокой солености (45.5 млрд -1 ) показали аналогичные значения, с ошибками ±0.2 мг/л для мембранного датчика и ±0.1 мг/л для Hach LDO датчика (значения ниже 8 мг/л) и ±0.2 мг/л для Hach LDO датчика (значения выше 8 мг/л).

В контролируемых лабораторных условиях корректировали концентрацию растворенного кислорода при помощи продувки азотом и кислородом. Емкость продували азотом, снижая концентрацию кислорода, а затем растворяли кислород, продувая емкость кислородом. Брали несколько сотен значений на кривой концентрации кислорода для датчика Hach LDO. Значения насыщения для датчика Hach LDO и электрохимического датчика аналогичные. Процент насыщения, рассчитанный через измерения в абсолютных значениях (мг/л) одинаков для двух методов регистрации.

Определения процента насыщения

Время отклика оптического датчика изменялось поэтапно, менее 30 секунд, достигая τ95%, когда концентрация снижалась с 8 мг/л до 0 мг/л и когда она возрастала от 0 мг/л до 8 мг/л.

Время отклика оптического датчика Hach LDO

Сравнения измерений Hach LDO и титрования по Виклеру в условиях низкой концентрации кислорода и температур показали аналогичные результаты. Это говорит о способности оптического датчика достигать нуля и работать при низких температурах.

Сравнение измерений оптического датчика Hydrolab Series 5 с датчиком Hach LDO и электрода Кларка в течение недели проводилось в естественном водоеме города Найвот, Колорадо. Регистрация проводилась каждые 15 минут, и результаты измерений показали четкий суточный ритм в зеленом пруду.

Тестирование в природных водоемах

Параметр Титрование по Виклеру Оптический датчик Электрохимический электрод Гальванический электрод
Средняя исходная ошибка, net bias, мг/л 0.19 0.55 0.22 Насколько датчик точен в начале
Частота исходных ошибок 0.2 мг/л или меньше, % 50 40 10
Частота исходных ошибок 0.2 мг/л или больше, % 10 60
Расброс значений в начале измерений, мг/л 0.9 3.1 9.5
Индивидуальная точность, % 0.22 0.11 0.11 0.18 Насколько идентичны одинаковые модели датчиков
Обычное отклонение за первую неделю, мг/л 0.39 0.77 1.01 Насколько высокие отклонения измерений
Вариабельность отклонений (завышает или занижает), мг/л 0.58 3.94 0.74
Ранний срок начала отклонений более 2.0 мг/л, дни 14 3 8
Mooney R., Arnerich T., Performance of optical dissolved oxygen sensors in seven site, mix matrix study

Рассмотрены три стандартных метода определения концентрации растворенного кислорода в воде.
Титрование по Винклеру подходит для точного измерения кислорода в природных водоемах, но имеет ограничения, касающиеся токсичной природы химических реактивов и трудозатрат на выполнение процедуры. Кроме того, сложно анализировать образцы, далекие от равновесного состояния (слишком аноксические и гипероксические).

В электродах Кларка мембрана покрывает амперометрический сенсор. Полвека назад этот датчик стал шагом вперед в реал-тайм мониторинге уровня растворенного кислорода. Электроду присущи ограничения, так как он потребляет кислород и требует частого обслуживания.

Оптические датчики, работающие на технологии фазового смещения сигнала и принципе гашения люминесценции кислородом, имеют существенные преимущества. Они наиболее точные и имеют самый долгий срок службы среди других датчиков, включая оптоды, использующие оценку интенсивности сигнала. В условии нормальных концентраций веществ, они лишены каких-либо помех, и в этом плане превосходят электрохимический метод измерения и титрование.

Таким образом, метод не имеет таких ограничений, какие имеет химический мембранный метод. Мембрана не взаимодействует с кислородом, поэтому нет необходимости помешивания датчика. Кроме того, прочная конструкция датчика обеспечивает калибровку на долгие годы.

В качестве рабочего варианта приведу характеристики модели In-Situ ®Inc.’s Rugged Dissolved Oxygen (RDO) Titan Probe. Далее следуют выдержки из руководства по эксплуатации.

Прочность конструкции

Датчик устойчив к стиранию и потери флуоресценции в ходе фотовыгорания. Выдерживает высокую соленость раствора, состоит из устойчивых к коррозии материалов. Нечувствителен к помехам, которые обычно возникают у датчиков с мембраной (сероводород, хлор, аммоний и другие).

Простота обслуживания

Датчик не требует частой калибровки. Включает средства диагностики состояния датчика. Работает с очень малыми отклонениями в течение длительного периода времени. Быстро реагирует на изменения концентрации кислорода и температуры. Обеспечивает стабильные, воспроизводимые результаты ( 5%, перекись водорода >3%, раствор гипохлорита (белизна) >3%, газообразный диоксид серы, газообразный хлор.

источник