Меню Рубрики

Анализ воды на ионы металлов

Здравствуйте! Скажите, пожалуйста, какие существуют методы обнаружения тяжелых металлов в природных водах? Я нашла информацию только об атомно-абсорбционном анализе. Было бы интересно узнать и о других. И если можно, дайте, пожалуйста, им хотя бы краткую характеристику. Заранее спасибо! Карина

Конечное, атомно-абсорбционной спектрометрии (AAS) не единственный метод определения содержания тяжёлых металлов в воде, хотя она и обладает наибольшей чувствительностью и поэтому очень широко применяется.

Методов определения содержания тяжёлых металлов в воде очень много. Так, содержание тяжёлых металлов в водных средах может определяться рядом методов химического и физико-химического анализа – весовым, спектральными, электрохимическими и др. В зависимости от количества анализируемого вещества содержание тяжёлых металлов может определяться методами макро-, полумикрои микроанализа.

В настоящее время существуют две основные группы аналитических методов для определения тяжелых металлов: электрохимические и спектрометрические методы. В последнее время с развитием микроэлектроники электрохимические методы получают новое развитие, тогда как ранее они постепенно вытеснялись спектрометрическими методами. Среди спектрометрических методов определения тяжелых металлов первое место занимает атомно-абсорбционная спектрометрия с разной атомизацией образцов: атомно-абсорбционная спектрометрия с пламенной атомизацией (FAAS) и атомно-абсорбционная спектрометрия с электротермической атомизацией в графитовой кювете (GF AAS). Основными способами определения нескольких элементов одновременно являются атомная эмиссионная спектрометрия с индукционно связанной плазмой (ICP-AES) и масс-спектрометрия с индукционно связанной плазмой (ICP-MS). За исключением ICP-MS остальные спектрометрические методы имеют слишком высокий предел обнаружения для определения тяжелых металлов в воде.

Определение содержание тяжёлых металлов в пробе производится путем перевода пробы в раствор – за счет химического растворения в подходящем растворителе (воде, водных растворах кислот, реже щелочей) или сплавления с подходящим флюсом из числа щелочей, оксидов, солей с последующим выщелачиванием водой. После этого соединение искомого металла переводится в осадок добавлением раствора соответствующего реагента – соли или щелочи, осадок отделяется, высушивается или прокаливается до постоянного веса, и содержание тяжёлых металлов определяется взвешиванием на аналитических весах и пересчетом на исходное содержание в пробе. При квалифицированном применении метод дает наиболее точные значения содержания тяжёлых металлов, но требует больших затрат времени.

Для определения содержания тяжёлых металлов электрохимическими методами пробу также необходимо перевести в водный раствор. После этого содержание тяжёлых металлов определяется различными электрохимическими методами – полярографическим (вольтамперометрическим), потенциометрическим, кулонометрическим, кондуктометрическим и другими, а также сочетанием некоторых из перечисленных методов с титрованием. В основу определения содержания тяжёлых металлов указанными методами положен анализ вольт-амперных характеристик, потенциалов ион-селективных электродов, интегрального заряда, необходимого для осаждения искомого металла на электроде электрохимической ячейки (катоде), электропроводности раствора и др., а также электрохимический контроль реакций нейтрализации и др. в растворах. С помощью этих методов можно определять тяжёлые металлы до 10 -9 моль/л.

Эта группа методов позволяет определять содержание различных тяжёлых металлов в широком диапазоне концентраций с удовлетворительной точностью, но трудоемкость указанных методов также довольно высока.

Достаточно разнообразна группа спектральных методов определения содержания тяжёлых металлов. В нее входят, в частности, различные методы определения тяжёлых металлов из анализа характеристических спектров электромагнитного излучения атомов – атомный эмиссионный анализ, атомный абсорбционный анализ, спектрофотометрия, масс-спектрометрия, спектрометрии с индуктивно связанной плазмой (ISP-спектрометрия), рентгеноспектральный анализ.

Содержание тяжёлых металлов в очень малых (примесных) концентрациях – чаще радиоактивных изотопов соответствующих элементов, но и не радиоактивных тоже – определяется рядом методов ядерной спектрометрии (бета-, гамма-спектрометрии, а также нейтронно-активационного анализа).

В некоторых случаях содержание тяжёлых металлов определяется комплексными методами, сочетающими спектральные и электрохимические – например, спектрополяриметрией.

К преимуществам спектральных методов относится их высокая чувствительность и, как следствие, небольшие количества пробы, необходимые для анализа содержания тяжёлых металлов в пробе. Вместе с тем, для осуществления ряда из них (атомный абсорбционный анализ, спектрофотометрия, спектрополяриметрия) пробу необходимо перевести в раствор, что обуславливает довольно высокую трудоемкость таких анализов на содержание тяжёлых металлов. Методы ядерной спетрометрии для анализа содержания тяжёлых металлов довольно специфичны.

Из числа спектральных методов определения содержания тяжёлых металлов наиболее привлекательным представляется один из вариантов рентгеноспектрального анализа – рентгенофлуоресцентный анализ. Этот метод универсален и позволяет определять содержание тяжёлых металлов в широком диапазоне атомных номеров элементов. Так, наиболее совершенные приборы для реализации этого метода определения содержания тяжёлых металлов – рентгенофлуоресцентные кристалл-дифракционные сканирующие спектрометры серии «Спектроскан Макс» позволяют определять элементы от натрия 11Na до урана 92U (94 Pu) при содержании этих элементов (в т.ч. тяжёлых металлов) от 0,3 ppm (мг/кг). Так, методика анализа воды на сорбционных целлюлозных ДЭТАТА фильтрах рентгенофлуоресцентным методом, разработанная фирмой-изготовителем спектрометров “Спектроскан”, позволяет определять такие элементы, как— Bi, Pb, Zn, Сu (II), Ni, Co, Fe (III), Mn (II), Cr (III) и V. Однако, при анализе природных вод с высокими валовыми содержаниями железа (до 1,5 мг/дм3) и марганца (до 1,0 мг/дм3) сорбционной емкости ДЭТАТА фильтров не хватает для одновременного определения указанных элементов. В процессе анализа теряется возможность их многоразового использования— фильтры загрязняются солями железа и марганца. Предел обнаружения определяемых элементов поднимается с 0,005 до 0,05 мг/дм3, что в пять раз выше ПДК для рыбохозяйственных водоемов для таких элементов, как Zn, Ni и Со.

Рентгенофлуоресцентный анализ обладает рядом несомненных достоинств:

он является неразрушающим методом контроля, не разрушает и не деформирует пробу;

предъявляет минимальные требования к пробоподготовке, чаще всего – не требует никакой;

делает ненужной измерение количества пробы – взвешивание, измерение объема и т.п.

Использующие этот метод приборы – спектрометры серии «Спектроскан Макс» позволяют проводить количественный анализ содержания тяжёлых металлов и других элементов.

Наиболее часто встречающиеся аналитические задачи определения содержания тяжёлых металлов в различных средах – анализ природных минеральных и питьевых, промышленных и коммунальных сточных вод на содержание тяжелых металлов; определение содержания тяжелых металлов в почвах, промышленных выбросах, воздухе рабочей зоны; анализ различных растворов на содержание тяжёлых металлов; определение содержания тяжёлых металлов в нефти, попутных водах (рассолах) и нефтепродуктах; анализ различных сплавов на содержание цветных металлов; анализ углеродистых сталей на содержание легирующих добавок; анализ ювелирных изделий на содержание драгоценных металлов; анализ моторных масел на содержание тяжёлых металлов с целью определения износа двигателей; анализ катализаторов на содержание палладия и платины и др.

источник

Качество потребляемой человеком воды определяется с учетом ее свойств и состава. Данные показатели также определяют пригодность применения воды в тех или иных сферах жизнедеятельности. Нормативы (или стандарты) качества составляются с учетом требований заказчика и основных характеристик. Во многом содержание воды определяется с учетом источника ее происхождения (он может быть антропогенным либо естественным).

Чистая питьевая вода – залог здоровья человека и его отличного самочувствия. Чтобы понять, является она такой или нет, обращайтесь в специализированные инстанции, которые проводят анализ качества жидкости и ее соответствия нормативным стандартам, принятым на сегодняшний день. При выполнении анализа учитываются бактериологические, химические и физические показатели.

Проводить химический анализ по закону обязаны различные организации и предприятия при выполнении определенных работ – например, возведении моста через реку. Обязаны соблюдать требования к химсоставу предприятия, которые осуществляют выпуск бутилированной воды. Частные лица заказывают проведение анализа для:

  • оценки качества питьевой воды из водопровода, скважин, родников;
  • подтверждения качества бутилированной воды;
  • подбора фильтра для воды, оценки его эффективности;
  • контроля качества воды в бассейнах;
  • оценки качества жидкости, используемой для полива растений;
  • контроля среды в аквариуме;
  • пр.
  • щелочность;
  • жесткость;
  • содержание ионов;
  • водородный фактор;
  • минерализация.

Бактериологические параметры жидкости:

  • степень загрязненности источника кишечной палочкой;
  • наличие радиоактивных, токсичных элементов;
  • бактериальная зараженность.

Рассмотрим данные характеристики подробнее.

Цветность – показатель, который всегда должен учитываться при анализе воды. Он обуславливает присутствие железа и включений других металлов в виде коррозионных продуктов. Цветность является косвенной характеристикой присутствия в жидкости растворенной органики, зависит от загрязненности источника стоками промышленной категории, определяется путем сравнения образцов с эталонными. Максимально допустимый показатель составляет 20°.

Мутность зависит от наличия мелкодисперсных взвесей нерастворенных частиц. Выражается она в:

  • наличии осадка;
  • взвешенных, грубодисперсных примесях, определяемых в ходе фильтрации;
  • степени прозрачности.

Можно определять мутность фотометрическим путем – то есть по качеству проходящего через толщу жидкости светового луча.

Запах зависит от присутствия в воде пахнущих веществ, которые попадают в нее из стоков. Практически все органические жидкие вещества передают воде специфический аромат растворенных в ней газов, органики, минеральных солей. Запахи делятся на природные (гнилостные, болотные, серные) и искусственные (фенольные, нефтяные, пр.).

Вкус воды может быть соленым, кислым, сладким или горьким, все остальные «нотки» относятся уже к привкусам – например, хлорные, аммиачные, металлические, сладковатые, пр. Оценка привкуса и запаха производится по пятибалльной шкале.

Химические показатели, степень загрязненности зависят от глубины забора водных масс, просачивания в стоки различных веществ (отбросы предприятий, свалки, выгребные ямы и т.д.). Анализ проводить нужно обязательно, поскольку загрязнению подвергаются даже артезианские скважины с низким давлением, а что уже говорить о колодцах.

Жесткость характеризуется наличием в жидкости элементов кальция и магния, которые со временем превращаются в нерастворимые соли. Итог – образование накипи, отложений на внутренних поверхностях емкостей, котлов, рабочих узлах бытовой техники.

Сухой осадок указывает на степень концентрации органических элементов, а также растворенных неорганических солей. Его высокое содержание приводит к нарушению солевого баланса организма человека.

Водородный фактор рН характеризуется щелочным и кислотным фоном жидкости. Изменение фактора указывает на нарушения в технологиях водоподготовки. Норма – 6-9 единиц.

Некоторые компоненты ухудшают пищевые качества воды, а также являются потенциально опасными для здоровья человека. Рассмотрим основные:

  1. Железо в составе сульфатов, гидрокарбонатов, органических соединений, хлоридов. Может оно присутствовать и в виде высокодисперсных взвесей, придающих жидкости коричневый с красным оттенком цвет, снижающий вкусовые качества. Из-за высокой концентрации железа в воде начинают развиваться железобактерии, образуются засоры труб. Максимально допустимая концентрация железа по нормам составляет 0,3 мг/л.
  2. Марганец – главная причина генетических мутаций. Элемент оказывает негативное влияние на вкусовые характеристики жидкости, после стирки на белье появляются характерные пятна и разводы, на сантехнике образуется осадок. Максимальная концентрация согласно нормативам – 0,1 мг/л.
  3. Катионы марганца и кальция повышают жесткость воды. Для измерения их содержания обычно используется такой показатель как мг-экв/л. Пороговые значения находятся на отметке 3-3.5 мг-экв/л, при более высоком содержании катионов накапливается осадок на сантехническом оборудовании, нагревательных элементах бытовых приборов. Для здоровья человека жесткая вода очень вредна.
  4. Перманганатная окисляемость указывает на количественное содержание кислорода к концентрации иона перманганата, который принимает участие в процессах окисления воды. Предельно допустимое значение составляет 5 мг О2/л. При высоких показателях перманганатной окисляемости страдают почки и печень, репродуктивная функция, иммунная, нервная системы человека. Не рекомендуют употреблять воду без обработки при значении перманганатной окисляемости выше 2 мг О2/л.
  5. Сульфиды – благодаря им жидкость приобретает посторонние неприятные ароматы, а трубы начинают ржаветь. Именно сульфиды являются токсичными компонентами, вызывающими кожные аллергические реакции.
  6. Фториды – их концентрация не должна составлять более 1,5 мг/л. Обратите внимание, что полностью лишенная фтора вода также не полезна.

Перечисленные компоненты к сильно токсичным не относятся и отравлений не вызывают, но их постоянное употребление в пищу (даже в малых дозах) наносит непоправимый вред здоровью и приводит к хронической интоксикации.

Определение токсичных соединений, содержащихся в сравнительно небольших количествах, становится с каждым годом все более сложным и затратным. Определенные вещества в воде присутствовать могут, но строго в установленных количествах. Важно контролировать как структурный состав жидкости, так и ее функциональные интегральные характеристики.

Метрологические приборы позволяют определять только основные химические показатели, для проверки бактериального состава образцы отправляются в лаборатории. В зависимости от глубины проверки данных, анализы делятся на полные химические, сокращенные, направленные на определение некоторых составляющих. В большинстве случаев сокращенного анализа достаточно, но в целях определения полного набора компонентов требуется выполнение более глубокой проверки.

При анализе результатов нужно учитывать все показатели и сравнивать данные анализа с полученными характеристиками. Для каждого элемента есть предельно допустимая концентрация – она не должна быть превышена.

Рассмотрим основные способы, используемые для проверки качества воды.

Метод позволяет оценивать те качества, которые доступные органам чувств. Органолептическое исследование предполагает оценку цветности, прозрачности, аромата и вкуса воды.

Анализ воды на физико-химические показатели учитывает:

  • жесткость;
  • минерализацию;
  • щелочность;
  • окисляемость.

Методика позволяет определять наличие в воде паразитов и бактерий, среди которых могут присутствовать болезнетворные микроорганизмы. Обычно подсчитывается количество организмов на 1 мл жидкости

При анализе химического состава определяется наличие и количество органических, неорганических включений – к ним относят сложные органические вещества, металлы, нефтепродукты, ПАВы и так далее. Под сложными органическими веществами подразумеваются акриламиды, стиролы, фенолы, винилхлориды, тетрахлорид углероды, диоксины.

Анализ на альфа- и бета-частицы, радий проводится в целях определения радиационной безопасности жидкости. Определение содержания радионуклидов – основа для снижения дозовых нагрузок на организм. Вместе с результатами по комплексному анализу заказчик обычно получает также рекомендации, которые помогут ему улучшить качество воды.

Экспресс-анализы используются в целях ускорения процедуры проверки и снижения ее стоимости. Они позволяют анализировать такие показатели как:

  • биохимическое потребление кислорода;
  • число адсорбируемых либо экстрагируемых галогенов органического происхождения;
  • кислотно-щелочной баланс;
  • органолептические свойства воды.

Экспресс-анализ позволяет сокращать потребность в сложном оборудовании и реактивам. Важно! Высокое качество исследования поверхностная проверка гарантировать не может.

Все чаще в последние годы для проверки состава воды используются сенсоры – чувствительные элементы, которые являются основой большинства многокомпонентных анализаторов и экспрессных тест-систем. Они эффективно определяют содержание ферментов антропогенного происхождения, а также патогенную микрофлору.

Биотестирование – передовая методика определения токсичности химического вещества на биоценоз или водные организмы. Оценочные критерии – выживаемость и активность микроорганизмов, скорость их размножения, пр. Для получения корректных результатов биотестирования нужны соответствующие показатели температуры, освещенности, состава, кислотности и так далее.

Существует множество других быстрых способов определения качества питьевой воды – например, на вкус или используя другие органы чувств. Но вы должны понимать, что подобная оценка является очень субъективной, поэтому ставку следует делать на лабораторные исследования.

источник

Оптические свойства воды оцениваются по её прозрачности, которая в свою очередь зависит от длины волны излучения, проходящего через воду. Вследствие поглощения оранжевых и красных компонентов света вода приобретает голубоватую окраску. Вода прозрачна только для видимого света и сильно поглощает инфракрасное излучение, поэтому на инфракрасных фотографиях водная поверхность всегда получается чёрной. Ультрафиолетовые лучи легко проходят через воду, поэтому растительные организмы способны развиваться в толще воды и на дне водоёмов, инфракрасные лучи проникают только в поверхностный слой. Вода отражает 5 % солнечных лучей, в то время как снег — около 85 %. Под лёд океана проникает только 2 % солнечного света.

Питьевая вода — это вода, которая предназначена для безопасного неограниченного ежедневного и неограниченного потребления человеком и другими живыми биологическими существами. Основным отличием от столовых и минеральных вод является пониженное содержание солей, а также наличие действующих стандартов на общий состав и свойства (СанПиН 2.1.4.1116-02 — для вод, расфасованных в ёмкости и СанПиН 2.1.4.1074-01 — для централизованных систем водоснабжения).

Читайте также:  Анализ грунтовых вод на химический состав

Вода многих источников пресной воды непригодна для питья людьми, так как может служить источником распространения болезней или вызывать долгосрочные проблемы со здоровьем, если она не отвечает определённым стандартам качества воды. Вода, не наносящая вред здоровью человека и отвечающая требованиям действующих стандартов качества называется питьевой водой. В случае необходимости, чтобы вода соответствовала санитарно-эпидемиологическим нормам, её очищают или, официально говоря, «подготавливают» с помощью установок водоподготовки.

Источники питьевой воды

Основным источником питьевой воды является природная вода, которую очищают и обеззараживают муниципальные службы, осуществив все этапы водоподготовки и водоочистки, необходимые для получения сначала технической, а после водопроводной воды. В России основными являются водохранилища, реки, озёра. Доля подземных вод не велика. В целом источники следующие:

Подземные источники, колодцы, артезианская скважина, родники;

Водозабор из водохранилищ, рек, озёр;

Вода делится на артезианскую, питьевую, минеральную, очищенную, газированную, ключевую и воду из скважины. (согласно ГОСТ 51232-98 «Вода питьевая. Общие требования к организации и контролю качества.»)

Анализ питьевой воды на тяжёлые металлы.

В настоящее время термином «тяжелые металлы» обозначают ряд химических элементов, обладающими определенными химическими свойствами, а также токсичностью для человеческого организма, и достаточно распространены в природе. Некоторые из них, такие как железо, цинк, медь, молибден, участвуют в определенных биологических процессах и необходимы для организма в небольших количествах. Однако, важно, чтобы эти количества не были превышены, иначе эффект для здоровья будет негативный. Другие металлы, такие как ртуть, кадмий, мышьяк, свинец, токсичны для организма даже в малых количествах.

Тяжелые металлы в окружающей среде

В связи с развитием химического производства, металлургической и других видов промышленности, а также ростом количества техногенных отходов, контроль над содержанием тяжелых металлов в окружающей среде, а тем более в воде, становится все более актуальным. В основном источником тяжелых металлов в воде становятся сточные воды предприятий и городские стоки. Но происходит и поступление из атмосферы, так как выхлопные газы автомобилей, отходы сжигания угля в котельных и некоторые промышленные газовые выбросы так же содержат тяжелые металлы. Известно, что тяжелые металлы могут легко мигрировать из хранилищ отходов производства и мест городских свалок в грунтовые и речные воды, многие из них образуют стойкие органические соединения, которые переносятся на большие расстояния от источника. Водные растения, микроорганизмы и большинство видов рыб обладают способностью аккумулировать тяжелые металлы из воды, именно поэтому требованиями к качеству воды рыбохозяйственных водоемов установлены очень низкие ПДК для тяжелых металлов.

Распространённые тяжёлые металлы

Ртуть. Тяжелый металл, который относят к наиболее опасным для здоровья. Токсичностью обладает не сама металлическая ртуть, а ее соединения. Особенно органические соединения, такие как метилртуть, поскольку они легко проникают через мембраны внутрь клеток и нарушают ферментативные процессы. Именно поэтому особенно опасно попадание ртути в воду, поскольку в воде она преобразуется микроорганизмами в метилртуть и накапливается в больших количествах в тканях рыб. Попадание ртути в организм человека в виде паров или соединений, присутствующих в воде и пище, вызывает поражение нервной системы, почек, печени, желудочно-кишечного тракта. При вдыхании паров поражаются дыхательные пути. Предельно допустимые концентрации ртути составляют: 0,0005 мг/л для питьевой воды (СанПиН 1074-01); 0,0005 мг/л для природных вод (ГН 2.1.5.1315-03); 0,0003 мг/дм 3 для атмосферного воздуха (ГН 2.1.6.1338-03).

Свинец. Достаточно распространенный рассеянный металл, встречающийся как в воде, так и в почве. Поступление свинца в атмосферу в следствии жизнедеятельности человека происходит в виде тетраэтилсвинца, который добавляют в автомобильное топливо. Соответственно, это токсичное соединение присутствует в автомобильных выхлопах. Свинец выводится из организма достаточно медленно. Накапливается свинец в костях, что приводит к их разрушению, а так же в почках и печени. Особенно опасен для детей, так как при хроническом отравлении вызывает умственную отсталость. Предельно допустимые концентрации свинца составляют: 0,0003 мг/дм 3 в атмосферном воздухе (ПДК с.с., ГН 2.1.6.1338-03), 0,03 мг/л в питьевой воде (СанПиН 2.1.4.1075-01), 0,01 мг/л в природных водах (ГН 2.1.5.1315-03).

Кадмий. Достаточно рассеянный и редкий элемент. Техногенным источником кадмия в природных водах обычно являются сточные воды рудообогатительных предприятий, металлургических и химических производств. Кадмий медленно выводится из организма, поэтому его относят к кумулятивным, к накапливающимся ядам. Соединения кадмия высокотоксичны. Особенно пары оксида кадмия. В организме кадмий встраивается в белковые молекулы, нарушая их работу. В результате поражается центральная нервная система, печень и почки, хроническое отравление приводит к анемии и разрушению костей, острое отравление может приводить к летальному исходу. Предельно допустимые концентрации кадмия: 0,001 в питьевой воде (СанПиН 1074-01); 0,001 в природных водах (ГН 2.1.5.1315-03)

Виды анализов воды на тяжёлые и токсичные металлы

Существует несколько методик анализа воды на тяжелые металлы. Наиболее простым с точки зрения проведения анализа является многоэлементный анализ на атомно-эмиссионном спектрометром, позволяющий за один анализ получать данные о концентрациях всех элементов. Также существуют методики определения каждого элемента в отдельности — фотометрические, флуориметрические и др.

Атомно-эмиссионная спектрометрия(АЭС) — совокупность методов элементного анализа, которые основаны на изучении спектров испускания свободных атомов и ионов газовой фазе. Обычно эмиссионные спектры регистрируют в наиболее удобной оптической области длин волн приблизительно от 200 до 1000 нм.

Фотометрический анализ(ФА) — совокупность методов молекулярно -абсорбционного спектрального анализа, основанных на избирательном поглощении электромагнитного излучения в видимой, ИК и УФ областях молекулами определяемого компонента или его соединений с подходящим реагентом. ФА включает визуальную фотометрию, спектрофотометрию и фотоколориметрию. Последняя отличается от спектрофотометрии тем, что поглощение света измеряют в видимой области спектра, реже — в ближних УФ и ИК областях (т. е. в интервале длин волн приблизительно от 315 до 980 нм), а также тем, что для выделения нужного участка спектра (шириной 10-100 нм) используют не монохроматоры, а узкополосные светофильтры.

Флуориметрический (люминесцентный) анализ основан на измерении излучения (интенсивности или суммы света), который возникает в результате выделения избыточной энергии возбужденными молекулами анализируемого вещества.

Анализ воды на тяжелые металлы подразумевает определение концентраций рядя элементов. Некоторые из них являются токсичными для человека, другие же необходимы для жизнедеятельности организма, однако превышение их концентраций вредно для здоровья. Поэтому рекомендуется контролировать их содержание в воде.

В условиях лаборатории анализ питьевой воды лучше проводить с помощью фотометрического метода.

Для проведения анализа концентрации меди в питьевой воде потребуется 250 см 3 воды,для анализа свинца- 1 дм 3 , для анализа молибдена — 200 см 3 , для анализа железа — 200 см 3 , для анализа марганца — 1 дм 3 воды.

При фотометрическом колориметрировании меди используют синий светофильтр (=430 нм) и кювету с толщиной рабочего слоя 50 мм. Из измеренной оптической плотности исследуемой пробы вычитают оптическую плотность контрольной пробы.

Для построения градуировочного графика используют оптические плотности окрашенных стандартных растворов меди в воде. (по ГОСТ 4388-72. Вода питьевая. Методы определения массовой концентрации меди.)

Интенсивность окраски раствора свинца в воде измеряют фотометрически, пользуясь шкалой стандартных растворов, приготовленной в тех же условиях, что и исследуемая проба воды.Измерение оптической плотности проводят с зеленым светофильтром (=515 нм), используя кювету с толщиной рабочего слоя 2 см. Из найденных значений оптической плотности каждого раствора вычитают оптическую плотность холостого определения. (по ГОСТ 18293-72 Вода питьевая. Методы определения содержания свинца, цинка, серебра.)

С помощью шкалы стандартных растворов определяется содержание свинца α= 0,031 мг/дм 3 .

Оптическую плотность раствора молибдена в воде измеряют с голубым светофильтром (= 470-480 нм), используя кювету толщиной рабочего слоя 10 мм. (по ГОСТ 18308-72 Вода питьевая. Метод определения содержания молибдена.)

С помощью шкалы определяют концентрацию молибдена С= 0,052 мг/дм 3 .

Измеряют оптическую плотность окрашенных растворов железа в воде, используя фиолетовый светофильтр (=400-430 нм) и кюветы с толщиной оптического слоя 2, 3 или 5 см 3 . Массовую концентрацию общего железа находят по градуировочному графику. (по ГОСТ 4011-72 Вода питьевая. Методы измерения массовой концентрации общего железа.)

С помощью градуировочного графика определяют концентрацию железа С= 0,0012 мг/дм 3 . Оптическую плотность стандартных растворов марганца в воде измеряют на фотоколориметре с зеленым светофильтром (=530 нм), используя кюветы с толщиной рабочего слоя 20-50 мм. (по ГОСТ 4974-72 Вода питьевая. Методы определения содержания марганца.) С помощью стандартной шкалы определяют концентрацию марганца α =0,00012 мг/дм 3 .

Список используемой литературы

ЭЛЕКТРОКОАГУЛЯЦИОННАЯ ОЧИСТКА ВОДЫ ОТ КОЛЛОИДНЫХ ПАВБоровская Л.В., Доценко С.П.Современные наукоёмкие технологии. 2010. №4.С.76-78

ФИЗИЧЕСКАЯ ХИМИЯ. ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА (ЭЛЕКТРОННЫЙ УЧЕБНИК) Данилин В.Н., Боровская Л.В., Шурай П.Е.

Международный журнал экспериментального образования. 2009. №4 С.10

ФИЗКОЛЛОИДНАЯ ХИМИЯ (ЭЛЕКТРОННЫЙ УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС) Боровская Л.В.

Международный журнал экспериментального образования.2009.№4 С.9-10

источник

Тяжелые металлы – это токсичные и крайне опасные вещества, способные значительно ухудшить здоровье человека и даже привести к гибели. Биогенные элементы – это исключение среди тяжелых металлов, которые необходимы всем живым организмам. Атомный вес тяжелых металлов составляет более 40.

Появление тяжелых металлов в воде обусловлено 2 факторами: антропогенным и природным.

Тяжелые металлы в воде имеют высокую биологическую активность, благодаря чему им не составляет труда внедриться в обменные процессы человека, вытеснить полезные вещества и нарушить метаболизм. Воздействие отдельных металлов на организм человека:

  • Медь – приводит к болезням костной системы, печени, развитию анемии
  • Кобальт – приводит к развитию анемии, возникновению эндемического зоба, дефициту витамина В12
  • Цинк – приводит к развитию раковых клеток
  • Ртуть – приводит к головным болям, нервно-психическим нарушениям, нарушениям речи, снижению мозговой активности и памяти
  • Кадмий – приводит к деформации костей, отрицательно влияет на почки
Химическое вещество СанПиН 2.1.4.1074-01, мг/л
Кадмий 0,001
Медь 1
Мышьяк 0,05
Никель 0,1
Ртуть 0,0005
Свинец 0,03
Цинк 5
Хром 0,5
Кобальт 0,1

На сегодняшний день определить тяжелые металлы в воде можно 2 способами: электрохимическим и спектрометрическим.

При применении последнего способа особая роль отводится атомно-абсорбционной спектометрии: FAAS (плазменная атомизация) и GFAAS (электротермическая атомизация в графитовой ванночке). Основа электрохимического способа – анализ вольтамперных характеристик.

  1. Слить воду сильным напором в течении 5-10 минут
  2. Промыть тару несколько раз без моющего средства
  3. Настроить напор тонкой струей
  4. Отобрать 1,5-2 литра исходной воды в чистую пластиковую тару для питьевой воды
  5. Наполнить тару до краев
  6. Закрыть емкость крышкой

Метод удаления тяжелых металлов из воды зависит от результата анализа. Он может быть отдельным или комбинированным.

  • Сорбентный – глубокое очищение за счет связывания химических веществ и примесей на молекулярном уровне, удаляет даже органические соединения
  • Посредством ионного обмена – эффективен при небольшом загрязнении воды, на завершающей стадии очистки и в системах водоподготовки, где требуется высокое качество воды; очищение происходит за счет процесса обмена между ионами в растворе и на поверхности твердой фазы
  • Установка мембранного фильтра – действует на молекулярном уровне, относится к системе глубокой очистки
  • Гальваническая очистка – предотвращение попадания загрязненной производственной воды в окружающую среду
  • Магнитная очистка – притяжение тяжелых металлов к магнитному полю
  • Дистилляция – испарение жидкости и последующее ее охлаждение с целью отделения вредных и тяжелых веществ

Лаборатория «ИОН» проводит анализ в Москве и Московской области, благодаря которому вы сможете узнать состояние вашей воды и способы улучшения ее качества. Мы работаем более 20 лет, занимаемся химическим анализом и разработкой новых методов диагностики веществ и материалов. Сотрудники нашей лаборатории – лучшие специалисты в стране, а приборный парк – самый современный, благодаря плодотворному сотрудничеству с крупнейшими разработчиками аналитического оборудования. Вы можете обратиться к нам для исследования питьевой, природной, талой, морской, технологической воды, а также воды из бассейнов и мест общего пользования.

Содержание железа в воде – распространенное явление. В допустимых приделах оно приносит пользу организму, но его избыток опасен как для сантехники, так и для человека. Появление железа в воде из скважины связано с процессами растворения горных пород.

Главная причина жесткой воды – наличие солей кальция и магния. Источники жесткости имеют исключительно природный характер, это единственная экологическая проблема, которой не присущ антропогенный фактор.

* Бесплатный выезд для физических лиц в пределах МКАД при заказе на сумму более 5 000 ₽. Подробнее в разделе Доставка и оплата

© 1997-2019 — Лаборатория ИОН. Все права защищены.

Для химического анализа необходимо заполнить водой чистую пластиковую тару (оптимально 1,5 л). Использовать бутылки из-под сладких, газированных или ароматизированных напитков, а также солёной или минеральной воды недопустимо.
Если выбранный Вами анализ включает определение содержания нефтепродуктов, необходимо заполнить дополнительную стеклянную тару объемом 0,2 л.
Если выбранный Вами анализ включает определение содержания сероводорода, необходимо заполнить дополнительную стеклянную тару объемом 0,5 л (необходимо использовать консервант).

При отборе воды из проточного источника, непосредственно перед отбором необходимо пролить воду сильной струёй в течение 3-5 минут. Перед отбором проб ёмкости и крышки необходимо 3 раза промыть изнутри водой, подлежащей анализу. Использование моющих средств недопустимо. Наполнять тару необходимо тонкой струёй по стенке сосуда «под горлышко». Это снижает насыщение воды кислородом и предотвращает протекание реакций.

Для микробиологического анализа необходимо использовать стерильный контейнер для биоматериалов объемом 150-200 мл.

Перед взятием пробы необходимо протереть водопроводный кран спиртовой салфеткой, уделив особое внимание месту выхода воды.
При отборе воды из водопровода, скважины или колонки необходимо пролить воду сильной струёй в течение 3–5 минут.
При отборе воды из колодца с помощью ведра необходимо обдать ведро кипятком для дезинфекции. Отбор пробы через поливочные шланги и предметы, контактирующие с почвой, не допускается.
Для отбора пробы необходимо надеть перчатки и вскрыть упаковку стерильного контейнера. Не касаясь внутренней поверхности ёмкости, отобрать образец воды (2/3 объема контейнера) и закрыть крышкой.

Рекомендуем доставлять пробу сразу после отбора.
Если сразу после отбора нет возможности доставить пробу в лабораторию, допускается хранение образцов при температуре 2–10 °C в течение 1 суток.

Съезд на ул. Руставели, на первом светофоре поворот налево на ул. Яблочкова.
Через 300 м поворот направо на ул. Гончарова, через 500 м поворот налево (напротив дома №6), через 200 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Поворот на ул. Руставели, на светофоре поворот направо на ул. Добролюбова, через 300м на светофоре поворот налево на ул. Гончарова, напротив дома №6 поворот направо, через 200 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Двигаясь по ул. Милошенкова, поворачиваем на ул. Добролюбова
Через 150 метров поворот направо, за домом 21АкБ поворот налево, через 100-120 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Ближайшее станция метро – Фонвизинская (600 м)
Последний вагон из центра. Выход в сторону улицы Фонвизина. Из стеклянный дверей направо. Перейти через пешеходный переход и идти через дворы в соответствии со схемой. Пункт назначения — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Анализ «Минимальный» содержит минимальный и обязательный перечень загрязнителей, часто встречающихся в питьевой воде, и включает 16 показателей:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная;
  • катионы: железо, аммоний;
  • анионы: нитраты, карбонат, гидрокарбонат.
Читайте также:  Анализ ионов аммония в природных водах

Данный набор рекомендуется для исследования воды хозяйственно-бытового назначения. Анализ «Минимальный» не обладает достаточной информативностью для подбора системы водоочистки, так как не позволяет получить полную картину о безопасности воды. Если Вы планируете использовать воду в питьевых целях, рекомендуем обратить внимание на наборы, содержащие большее число параметров.

  • Точность определения
  • Подходит для воды, применяемой в хоз-бытовом назначении
  • Срок выполнения — 3-4 рабочих дня
  • Не подходит для воды, применяемой в питьевых целях
  • Не подходит для корректного подбора/оценки работы фильтров
  • Не включает определение тяжелых металлов
  • Не включает определение органических загрязнителей

Анализ «Начальный» предназначен для выявления наиболее часто встречающихся вредных веществ в питьевой воде и включает 23 параметра:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная;
  • катионы: железо, аммоний, марганец, калий, магний, кальций;
  • анионы: фториды, хлориды, нитраты, сульфаты, карбонаты, гидрокарбонаты.

Данный анализ рекомендуется для воды централизованных систем водоснабжения. По протоколу анализа «Начальный» также можно сделать вывод о корректности работы системы водоочистки. В перечень определяемых параметров входят органолептические показатели, общие химические показатели, а также содержание катионов и анионов.

  • Точность определений
  • Подходит для водопроводной воды
  • Позволяет оценить эффективность работы системы водоочистки
  • Позволяет корректно настроить водоочистное оборудование
  • Срок выполнения — 5 рабочих дней
  • Не включает определение тяжелых металлов
  • Не включает определение органических загрязнителей
  • Не подходит для полной проверки воды из колодца или скважины

Анализ «Расширенный» содержит перечень наиболее часто встречающихся загрязнителей воды, вне зависимости от источника, и включает 31 показатель:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная;
  • катионы: железо, аммоний, марганец, калий, магний, кальций, алюминий, натрий;
  • анионы: фториды, хлориды, нитраты, сульфаты, карбонаты, гидрокарбонаты;
  • тяжелые металлы и металлоиды: медь, мышьяк, свинец, кадмий, цинк, стронций.

Данный набор рекомендуется, в первую очередь, владельцам колодцев и скважин. Помимо катионов и анионов, органолептических и общих химических параметров содержит перечень основных тяжелых металлов и метталоидов. Перед покупкой системы водоподготовки рекомендуем провести исследование воды с данным перечнем загрязнителей. Ориентируясь на полученную информацию, Вы сможете подобрать оборудование водоочистки с эффективностью до 98%, а так же корректно его настроить. Если вода из Вашего источника имеет выраженный запах сероводорода (запах тухлых яиц), рекомендуем дополнительно проверить воду на содержание сероводорода.

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для колодцев и скважин
  • Содержит перечень тяжелых металлов
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Позволяет корректно и экономично настроить водоочистное оборудование
  • Срок выполнения — 5-6 рабочих дней

Анализ «СанПиН» предназначен для исследования воды по максимальному перечню загрязнителей, вне зависимости от источника, и включает 61 параметр:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная, сероводород, хлор общий, хлор остаточный свободный, нефтепродукты;
  • катионы: железо, аммоний, марганец, калий, магний, кальций, алюминий, натрий, литий;
  • анионы: фториды, хлориды, нитраты, нитриты, фосфаты, сульфаты, сульфиды, гидросульфиды, карбонаты, гидрокарбонаты;
  • тяжелые металлы и металлоиды: барий, бериллий, бор, ванадий, молибден, кобальт, цинк, никель, хром, стронций, кадмий, мышьяк, медь, свинец, кремний, серебро, титан, ртуть;
  • органические компаненты: АПАВ, фенол, формальдегид, бензол, толуол, о-ксилол, п-ксилол, м-ксилол, стирол.

Данное исследование рекомендуется тем, кто серьезно относится к выбору питьевой воды. Протокол анализа «Максимальный» позволяет со 100% уверенностью сделать вывод о пригодности воды для питья и приготовления пищи. Результаты исследования позволяют выбрать схему водоочиски, а также оценить эффективность уже установленного оборудования.

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для любых источников воды
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Включает полный перечень тяжелых металлов
  • Позволяет корректно и экономично настроить водоочистное оборудование
  • Содержит полный перечень опасных органических веществ
  • Срок выполнения — 5-6 рабочих дней

Помимо хичиеского анализа мы настоятельно рекомендуем провести микробиологическое исследование Вашей воды. Микробиологический анализ включает определение общего микробного числа (ОМЧ), общих колиформных и колиформных термотолерантных бактерий.

Важен правильный отбор проб и оперативная доставка образцов в лабораторию или пункт приема проб. Подробная информация здесь

Если у Вас есть точный перечень параметров, Вы можете заказать анализ по Индивидуальному перечню показателей. Минимальный чек на индивидуальный анализ — 1 500 руб! Для расчета стоимости позвоните нам по номеру +7 (495) 149-23-57 или напишите на почту info@ion-lab.ru.

Анализ «Водоем / Аквариум» включает в себя перечень параметров, превышения по которым чаще всего встречаются в водоемах. Анализ включает определение основных химических параметров.

Химические параметры:

  • общехимические : рН, нефтепродукты, аммоний, ХПК, БПК5, АПАВ, фенол;
  • анионы : нитраты, сульфаты, хлориды, нитриты, фосфаты, фториды;
  • тяжелые металлы и металлоиды : марганец, железо общее, ртуть, цинк, никель, кадмий, мышьяк, медь, свинец, хром.

Нормирование осуществляется по №552 Минсельхоза РФ от 13.12.2016 г «Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения.»

источник

Жидкость занимает больший объем в организме человека. Выполнение физиологических функций в человеческом теле, зависит от степени загрязнения воды тяжелыми металлами. Для поддержания обменных процессов в организме, требуется не менее 2 литров жидкости в день. И, на первое место в потреблении питьевых ресурсов, выходит очистка воды от тяжелых металлов.

Понятие «тяжелый металл» относится к сфере охраны природы и здравоохранения. В эту группу относят полуметаллы и металлы, имеющие токсичные свойства и поражающую биологическую активность. Немало металлов входит в перечень необходимого микроэлементного уровня для нормального протекания биологических процессов и функционирования систем живого организма.

Токсичные химические элементы, попадая в организм человека с водой, имеют свойство аккумулироваться. Но, большую опасность представляет их способность к биомагнификации. Когда по пищевой цепочке: загрязненная вода – растения или почва – рыба или животное – человек, тяжелые металлы увеличивают свое вредоносное действие в сотни раз. Понимание, к чему приводит загрязнение воды тяжелыми металлами, подвигло человечество на внимательное отношение к природным ресурсам.

Таблица 1. ПДК тяжелых металлов в воде

Показатели СанПиН 2.1.4.1074-01 ВОЗ ЕС
Ед. изм. ПДК Показ. вред. Класс опасн.
Алюминий (Al3+) мг/л 0,5 с.-т 2 0,2 0,2
Барий (Ва2+) мг/л 0,1 с.-т 2 0,7 0,1
Ванадий (V) мг/л 0,1 с.-т 3 0,1
Железо (Fe, суммарно) мг/л 0,3(1,0) орг. 3 0,3 0,2
Кадмий (Cd, суммарно) мг/л 0,001 с.-т 2 0,003 0,005
Кобальт (Со) мг/л 0,1 с.-т 2
Медь (Сu, суммарно) мг/л 1 орг. 3 2,0(1,0) 2,0
Мышьяк (As, суммарно) мг/л 0,05 с.-т 2 0,01 0,01
Ртуть (Hg, суммарно) мг/л 0,0005 с.-т 1 0,001 0,001
Свинец (Pb, суммарно) мг/л 0,03 с.-т 2 0,01 0,01
Селен (Se, суммарно) мг/л 0,01 с.-т 2 0,01 0,01
Серебро (Ag+) мг/л 0,05 2 0,1
Хром (Cr3+) мг/л 0,5 с.-т 3
Хром (Cr6+) мг/л 0,05 с.-т 3 0,05 0,05
Цианиды (CN-) мг/л 0,035 с.-т 2 0,07 0,05
Цинк (Zn2+) мг/л 5 орг. 3 3,0 5,0

с.-т – санитарно-токсикологический показатель;

орг. – органолептический показатель;

значения в скобках, могут приниматься в отдельных районах по указанию санитарного врача.

Как видно из таблицы, многие химические элементы находятся в виде различных лиганд, гидролизных или полимеризованных комплексов. Кроме прямого удаления загрязнений, немалое значение придается очистке воды от ионов тяжелых металлов и их соединений. Если присутствует значительное количество ионов тяжелых металлов в воде, увеличивается токсичность элемента из-за проявления кумулятивного эффекта.

Насыщенность токсичными химическими элементами питьевых ресурсов оценивается не только по их общему содержанию, но и по связанным и свободным формам, учитываются и соли тяжелых металлов в воде.

Распознавание нежелательных примесей сложной формы, проводят спектрометрическим или электрохимическим способом. Важное место в точном определении концентрации тяжелых металлов в воде занимает атомно-абсорбционная спектрометрия. Она подразделяется:

  • на FAAS – плазменная атомизация;
  • на GF AAS – электротермическая атомизация в графитовой ванночке.

Для выделения спектров нескольких металлов одновременно применяют эмиссионную или масс-спектрометрию, с плазмой связанной индукцией. Электрохимический способ распознавания основан на анализе вольт-амперных характеристик. Это сложные лабораторные методы определения уровня загрязнения воды тяжелыми металлами, на фото показаны:

  • химическая лаборатория городской водозаборной станции;
  • спектрометрический прибор для измерения тяжелых металлов в воде.

В зависимости от результатов проведенного анализа воды на тяжелые металлы, выбирается метод очистки, иногда их приходится комбинировать. Это может быть:

  • использование сорбентов для поглощения
  • перевод в нерастворимые соединения через ионный обмен;
  • мембранный фильтр воды для тяжелых металлов;
  • гальваническая очистка;
  • применение магнитного поля;
  • дистилляция с последующим конденсированием.

Абсорбенты и мембранные фильтры, самые простые и недорогие способы очистки, и нашли широкое применение в бытовых очистных устройствах. Выпаривание, слишком энергозатратный метод и редко применяется, несмотря на высокий уровень очищения жидкости.

Ионно-обменный метод очистки дает высокие результаты по удалению примесей. Технология реализуется с помощью ионообменных смол, собирающих на своей поверхности ионы тяжелых металлов. Регенерацию смолы проводят кислотой. Металлы в ионной форме могут осаждаться с помощью изменения pH до значения 9,0÷10,5. И затем, отделяют осадок от жидкости.

При высоком насыщении жидкости ионами меди, хорошие результаты дает гальванический процесс. В загрязненную воду опускают электроды с пористой структурой и большой активной поверхностью. При подаче электричества, ионы меди восстанавливают атомарное состояние и осаждаются на электроде.

На водоочистных станциях, куда попадают и городские и производственные стоки, применяют цикличные процессы обработки воды, куда последовательно включают несколько операций.

источник

Международный Фестиваль «Звезды Нового Века» — 2014

Естественные науки (от 14 до 17 лет)

«Качественное определение ионов металлов в воде »

1. Вода и жизнь — понятия неразделимые . 4

2.1. Загрязнение воды бытовыми сельскохозяйственными или промышленными стоками . 6

2.2. Тепловое загрязнение воды .. 8

2.3. Загрязнение воды нефтью и нефтепродуктами . 9

3. Методы очистки воды .. 12

4. Качественное определение металлов в водопроводной воде . 14

4.1. Обнаружение ионов свинца (Pb2+) 15

4.2. Обнаружение ионов железа (Fe2+) 15

4.3. Обнаружение ионов железа ( Fe 3+) 16

4.4. Обнаружение ионов марганца (Mn2+). 17

4.5. Обнаружение ионов меди ( Cu2) . 18

Вода наиболее распространенное и важное вещество на Земле. Общие запасы воды на планете составляют 133800 кубических километров. Из этого количества 96,5% приходится на долю Мирового океана, 17% — это подземные воды, 1,74% — ледники и постоянные снега. Тем не менее, общие запасы пресной воды составляют всего лишь 2,53% от общих запасов воды.

Основная часть воды внутри организма, связанная вода, сосредоточена внутри клеток (около 70 %), а остальная (30 %) часть воды – это внеклеточная вода. Из этой внеклеточной воды – 7 % составляет кровь и лимфу (фильтрат) крови, а остальная омывает клетки. Это межтканевая или свободная вода организма.

Ряд органов организма человека содержат достаточно много воды в своем составе. Это мозг, половые клетки, кожа, печень и др. Эмбрион человека на 97 % состоит из воды, а у новорожденного ее количество составляет 77 % массы, и с годами количество воды в организме постоянно уменьшается.

Вода – сок жизни. Так сказал Леонардо да Винчи. Действительно, вода является непременной составной частью всего живого.

Так как вода — основа жизни меня заинтересовал вопрос: «А какая вода течет у нас из крана?»

Тема моего исследования стала: « Качественное определение ионов металлов в воде »

Цель: Провести качественные реакции на ионы: Pb2+, Fe3+, Fe 2+ , Mn2+, Cu2+.

Предмет исследования : водопроводная вода различных районов н. п. Высокий.

Объект исследования: водопроводная вода.

1. Провести определение ионов свинца;

2. Провести определение ионов железа ( II );

3. Провести определение ионов железа ( III );

4. Провести определение ионов марганца;

5. Провести определение ионов меди ( II );

6. Сделать вывод о качестве воды по полученным результатам.

Методы исследования: наблюдение, исследование, сбор и обработка информации, качественный анализ.

Вода — самое распространённое неорганическое соединение на нашей планете. Вода — основа всех жизненных процессов, единственный источник кислорода в главном движущем процессе на Земле — фотосинтезе. Вода присутствует во всей биосфере: не только в водоёмах, но и в воздухе, и в почве, и во всех живых существах. Последние содержат до 80-90 % воды в своей биомассе. Потери 10-20 % воды живыми организмами приводит их к гибели. Большая часть всей воды на нашей планете сосредоточена в морях и океанах. Запасы пресной воды составляют всего 2-3 % . Большая часть пресных вод (85%) сосредоточена во льдах полярных зон и ледников. Возобновление пресных вод происходит в результате круговорота воды.

Загрязнение атмосферы, принявшее крупномасштабный характер, нанесло ущерб рекам, озерам, водохранилищам, почвам. Загрязняющие вещества и продукты их превращений рано или поздно из атмосферы попадают на поверхность Земли. Эта и без того большая беда значительно усугубляется тем, что и в водоемы и на землю непосредственно идет поток отходов. Огромные площади сельскохозяйственных угодий подвергаются действию различных пестицидов и удобрений, растут территории свалок. Промышленные предприятия сбрасывают сточные воды прямо в реки. Стоки с полей также поступают в реки и озера. Загрязняются и подземные воды – важнейший резервуар пресных вод. Загрязнение пресных вод и земель бумерангом вновь возвращается к человеку в продуктах питания и питьевой воде.

Реки всегда были источником пресной воды. Но в современную эпоху они стали транспортировать отходы. Отходы на водосборной территории по руслам рек стекают в моря и океаны. Большая часть использованной речной воды возвращается в реки и водоемы в виде сточных вод. До сих пор рост очистных сооружений отставал от роста потребления воды. И на первый взгляд в этом заключается корень зла. На самом деле все обстоит гораздо серьезнее. Даже при самой совершенной очистке, включая биологическую, все растворенные неорганические вещества и до 10% органических загрязняющих веществ остаются в очищенных сточных водах. Такая вода вновь может стать пригодной для потребления только после многократного разбавления чистой природной водой.

Типичные загрязнители вод некоторых отраслей промышленности

Отрасль промышленности и ее продукция

Характеристика отходов, поступающих в водоемы

Кислоты, краски, масла, мыла, органические вещества

Органические вещества, бензольные соединения, кислоты

4) Моющие и чистящие средства

Продукты гидролиза жиров и другие растворенные и взвешенные органические вещества, щелочные сульфаты и сульфонаты, фосфаты, силикаты, бораты, хлор, бром, мышьяк

2) Консервированные и замороженные фрукты и овощи

Растворенные частицы и взвешенные фрагменты неразложившейся органики, сахара, крахмал

Сахара, взвешенные частицы и растворы для мытья бутылок

Сыворотка (молочный белок, молочный сахар, растворимые соли), жиры

Фекальные массы от ферм и скотных дворов; кровь, жир, белки и другие органические вещества

Серная и другие кислоты из дренажных вод шахт, взвешенные минеральные частицы, удаленные при обогащении и сортировке угля

Железосодержащие соли, соляная и серная кислоты, фенол, известь, масла

Растворенные органические вещества, кусочки мяса и шерсть животных, мыльные растворы, растительные и минеральные дубильные химикаты, основания и кислоты, красители

Читайте также:  Анализ и контроль качества воды

Плавиковая, серная и хромовая кислоты, сульфат никеля, цианиды меди, цинка, кадмия и серебра, масла

Витамины и другие растворенные и взвешенные органические и неорганические вещества

Органические вещества, фенол, рассолы, нефть, соединения серы

Лигносульфонаты, древесные сахара, сульфитная целлюлоза, клеи и наполнители, красители, кислоты, отбеливатели, древесные и бумажные волокна, целлюлоза, ртуть

1) Натуральная, синтетическая и восстановленная резина

Органические вещества, ароматические соединения серы, хлориды, взвешенные твердые частицы

Сильные основания, красители, высокое содержание растворенных и взвешенных органических веществ

Органические материалы поступают из бытовых, сельскохозяйственных или промышленных стоков. Их разложение происходит под действием микроорганизмов и сопровождается потреблением растворенного в воде кислорода. Если кислорода в воде достаточно и количество отходов невелико, то аэробные бактерии довольно быстро превращают их в сравнительно безвредные остатки. В противном случае деятельность аэробных бактерий подавляется, содержание кислорода резко падает, развиваются процессы гниения При содержании кислорода в воде ниже 5 мг на 1 литр, а в районах нереста — ниже 7 мг многие виды рыб погибают.

Болезнетворные микроорганизмы и вирусы содержатся в плохо обработанных или совсем не обработанных канализационных стоках населенных пунктов и животноводческих ферм. Попадая в питьевую воду, патогенные микробы и вирусы вызывают различные эпидемии, такие, как вспышки сальмонеллиоза, гастроэнтерита, гепатита и др. В развитых странах в настоящее время распространение эпидемий через общественное водоснабжение происходит редко. Могут быть заражены пищевые продукты, например овощи, выращиваемые на полях, которые удобряются шламами после очистки бытовых сточных вод (от нем. Schlamme — буквально грязь). Водные беспозвоночные, например устрицы или другие моллюски, из зараженных водоемов служили часто причиной вспышек брюшного тифа.

Питательные элементы, главным образом соединения азота и фосфора, поступают в водоемы с бытовыми и сельскохозяйственными сточными водами. Увеличение содержания нитритов и нитратов в поверхностных и подземных водах ведет к загрязнению питьевой воды и к развитию некоторых заболеваний, а рост этих веществ в водоемах вызывает их усиленную эвтрофикацию (увеличение запасов биогенных и органических веществ, из-за чего бурно развиваются планктон и водоросли, поглощая весь кислород в воде).

К неорганическим и органическим веществам также относятся соединения тяжелых металлов, нефтепродукты, пестициды (ядохимикаты), синтетические детергенты (моющие средства), фенолы. Они поступают в водоемы с отходами промышленности, бытовыми и сельскохозяйственными сточными водами. Многие из них в водной среде либо вообще не разлагаются, либо разлагаются очень медленно и способны накапливаться в пищевых цепочках.

Увеличение донных осадков относится к одному из гидрологических последствий урбанизации. Их количество в реках и водоемах постоянно возрастает из-за эрозии почв в результате неправильного ведения сельского хозяйства, сведения лесов, а также зарегулированности речного стока. Это явление приводит к нарушению экологического равновесия в водных системах, пагубно действует донные организмы.

Нарушение температурного режима водоемов, вызываемое сбросом теплых вод промышленными предприятиями, прежде всего тепловыми и атомными электростанциями, представляет собой физическое загрязнение, которое приводит к разрушению, угнетению или перестройке водных биоценозов. Наиболее масштабные перестройки происходят в результате теплового загрязнения водоемов, особенно в зимнее время на средних и северных широтах, когда водоем покрыт льдом, а в зоне подогрева образуется постоянная полынья.

Здесь у водосброса темп, может достигать +10+12°, а в области умеренного подогрева, особенно в придонных или средних слоях, составлять +4+6°. Т. е.в зонах подогрева создаются как бы «субтропические» оазисы — районы, никогда не покрывающиеся льдом, с зимними температурами, близкими к нормальным весенним. В летние же месяцы температуры в зонах подогрева зависят от естественной темп, забираемой воды. Если в водоеме вода прогрелась до +20°,то в зоне подогрева она может достигать +28+32°. Такой существенный подогрев не может не оказать влияния на биологические явления в водоеме.

В зоне подогрева формируется теплолюбивая фауна (термофильные виды), которая замещает отмирающие холодноводные организмы или, в средних широтах, складывается эврибионтный (эвритермный) комплекс организмов. В южных широтах при естественном прогреве воды до +30° и выше сброс подогретых вод приводит к массовой гибели организмов, как и при токсическом загрязнении. Существенно, а иногда и критически нарушаются физиологические процессы в животных и растительных организмах. Подогрев воды природных водоемов приводит к уменьшению содержания кислорода за счет снижения растворимости. При одинаковой температуре в морской воде содержание кислорода меньше, чем в пресной. При этом увеличивается поступление в воду биогенных веществ, приводящее к евтрофикации водоемов вплоть до цветения воды, ухудшению качества питьевой воды.

В весенний период происходит раннее (преждевременное) половое созревание у рыб при отсутствии условий для нереста: отложенная икра гибнет, а неотложенная резорбируется и вызывает болезни рыб. Тепловое загрязнение водоемов в последние десятилетия растет в связи со все возрастающими масштабами развития энергетики, особенно тепловых и атомных электростанций. Вред, наносимый электростанциями использованием вод на водозаборах и в местах (акваториях), подверженных влиянию подогретых вод, становится все более ощутимым.

Нефть и нефтепродукты являются наиболее распространенными загрязняющими веществами в Мировом океане. Наибольшие потери нефти связаны с ее транспортировкой из районов добычи. Аварийные ситуации, слив за борт танкерами промывочных и балластных вод, — все это обуславливает присутствие постоянных полей загрязнения на трассах морских путей. Объем загрязнений из этого источника составляет 2,0 млн. т./год. Со стоками промышленности ежегодно в воду попадает 0,5 млн. т. нефти. Попадая в морскую среду, нефть сначала растекается в виде пленки, образуя слои различной мощности. Нефтяная пленка изменяет состав спектра и интенсивность проникновения в воду света. Пропускание света тонкими пленками сырой нефти составляет 1-10% (280 нм), 60-70% (400нм). Пленка толщиной 30-40 мкм полностью поглощает инфракрасное излучение. Смешиваясь с водой, нефть образует эмульсию двух типов: прямую — «нефть в воде» — и обратную — «вода в нефти». При удалении летучих фракций, нефть образует вязкие обратные эмульсии, которые могут сохраняться на поверхности, переноситься течением, выбрасываться на берег и оседать на дно.

В разных странах в качестве питьевой воды используют воду из поверхностных или подземных источников. К сожалению, все они подвержены загрязнению вредными химическими примесями, в том числе и нефтепродуктами. Органические соединения нефтяного происхождения давно уже стали приоритетными загрязнителями как поверхностных, так и подземных вод.

Более чем 700 органических соединений выявлены к настоящему времени в питьевой воде. Все они являются потенциальными канцерогенами; правда, пока не ясно, каковы размеры опасности при их совместном или индивидуальном воздействии.

Канцерогенами для человека и животных являются не только компоненты самой нефти (например, бензол и бензапирен), но и многочисленные и распространённые в различных сферах деятельности человека продукты нефтехимии (винилхлорид, пестициды, ПХБ, галогеноулеводороды, нитрилы, гидразины и др.).

Помимо перечисленных токсичных органических соединений, опасных для человека и животных, существует большое количество менее опасных, но не менее вредных для человека загрязнителей питьевой воды, относящихся к углеводородам нефтяного происхождения и их производным.

Следующим источником загрязнения являются пестициды — искусственно созданные вещества, используемые для борьбы с вредителями и болезнями растений. Промышленное производство пестицидов сопровождается появлением большого количества побочных продуктов, загрязняющих сточные воды.

Вода служит основным средством транспорта пестицидов в окружающей среде. В открытые водоемы они могут попадать со сточными водами предприятий, которые их выпускают, при авиационной и наземной обработках сельскохозяйственных угодий и лесов, с дождевыми и талыми водами, а также при непосредственной обработке открытых водоемов для уничтожения водорослей, моллюсков, переносчиков заболеваний человека и животных, сорных растений.

Почвенные и грунтовые воды, внутренние водоемы, реки и Мировой океан при определенных условиях могут стать конечным депо для пестицидов. Вследствие этого возможно загрязнение водоемов в первую очередь стойкими веществами.

Влияние пестицидов на обитателей водных систем может проявляться как в прямом токсическом действии (острая или хроническая токсичность), так и косвенно (снижение содержания растворимого в воде кислорода, изменение химического состава воды, уничтожение водных насекомых и т. д.).

При переходе пестицидов из воды в другие звенья биологической цепи их содержание увеличивается в сотни и тысячи раз. Будучи поглощенными организмом-фильтратором (например, одним из видов планктонных организмов), стойкие препараты могут откладываться в тканях и затем попадать в организм рыбы. В последующих звеньях пищевой цепи действие веществ, обладающих кумулятивным свойством, усиливается в несколько раз.

В основном многие пестициды быстро разрушаются в водной среде, в связи с чем их применение в сельском хозяйстве в борьбе с вредителями, болезнями и сорняками сельскохозяйственных культур не влечет за собой отрицательных последствий.

Тяжелые металлы — очень опасные токсические вещества. В наши дни, мониторинг уровня разных таких веществ особо важна в промышленных и городских районов.

Известно более 40 элементов, которые относят к тяжелым металлам. Они имеют атомную массу больше 50 а. е. Как не странно именно эти элементы обладают большой токсичностью даже при малой кумуляции для живых организмов. V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo. Pb, Hg, U, Th. все они входят в эту классу. Даже при их токсичности, многие из них являются важными микроэлементами , кроме кадмия, ртути, свинца и висмута для которых не нашли биологическую роль.

Обсуждая про баланс ионов различных веществ в растворе, обнаружили, что растворимость таких частиц связанно со многими факторами. Главные факторы солюбилизации являются рН, наличие лигандов в растворе и окислительно-восстановительный потенциал. Они причастны к процессам окисления этих элементов с одной степени окисления к другой, в которой растворимость иона в растворе выше.

В зависимости от природы ионов, в растворе могут происходить различные процессы:

· комплексообразование с разными лигандами;

Из-за этих процессов, ионы могут переходить в осадок или оставаться стабильными в растворе. От этого зависит и каталитические свойства определённого элемента, и его доступность для живых организмов.

Многие тяжелые металлы образуют с органическими веществами довольно стабильные комплексы. Эти комплексы входят в механизм миграции этих элементов в прудах. Почти все хелатные комплексы тяжелых металлов устойчивы в растворе. Также, комплексы почвенных кислот с солями разных металлов (молибден, медь, уран, алюминий, железо, титан, ванадий) имеют хорошую растворимость в нейтральной, слабощелочной и слабокислой среды. Это факт очень важен, потому что такие комплексы могут продвигаться в растворенном состоянии на большие расстояния. Самые подверженные водные ресурсы — это маломинерализованные и поверхностные водоёмы, где не происходит образование других таких комплексов.

В результате миграции тяжелых металлов в металлокомплексы в растворе могут произойти такие последствия:

1. В первых, увеличивается кумуляция ионов химического элемента за счёт перехода этих из донных отложений в природные растворы;

2. Во вторых, возникает возможность изменения мембранной проницаемости полученных комплексов в отличие от обычных ионов;

3. Также, токсичность элемента в комплексной форме может отличаться от обычной ионной формы.

Откуда же берутся тяжелые металлы в нашу среду обитания? Причины присутствия таких элементов могут быть сточные воды с разных промышленных объектов занимающийся черной и цветной металлургией, машиностроением, гальванизацией. Некоторые химические элементы входят в состав пестицидов и удобрений и таким образом могут быть источником загрязнения местных прудов.

А если войти в тайны химии, то самым главным виновником повышения уровня растворимых солей тяжелых металлов является кислотные дожди (закисление). Понижение кислотности среды (уменьшение рН) тянет за собою переход тяжелых металлов из малорастворимых соединений (гидроксиды, карбонаты, сульфаты) в более хорошо растворимые (нитраты, гидросульфаты, нитриты, гидрокарбонаты, хлориды) в почвенном растворе.

Решение проблемы охраны вод следует осуществлять путём проведения комплексных высокоэффективных водоохранных мероприятий, направленных на сохранение необходимого качества и достаточного количества природных вод, в основу которых должно быть положено стремление к полному или максимально возможному уменьшению степени загрязнённости и объём промышленных стоков в процессе их образования. В основу этих мероприятий по очистке вод должно быть положено стремление к максимально возможному сокращению потребления промышленностью воды и сброса отработанных стоков, а главное — к уменьшению загрязнённости последних. Для чего собственно и требуются очистные сооружения. Но главная трудность здесь заключается в том, что сооружения по очистке и использованию отработанных вод требуют значительных капиталовложений и эксплуатационных затрат. Поэтому, как многим кажется, легче обойтись без очистных сооружений. Однако, нельзя рассматривать эти расходы, как приносящие материальные затраты, потому что, благодаря использованию очищенных стоков, обеспечивается сокращение ряда других эксплуатационных затрат, связанных с водоснабжением и водоотведением, что в большинстве случаев окупает первоначальные капиталовложения. Высокая необходимость в улучшении санитарной охраны поверхностных водных источников и в увеличении запасов чистой пресной воды, несомненно, приведёт к тому, что экономические показатели оборотных систем станут вполне приемлемыми. Поэтому сейчас разрабатываются процессы, которые позволяют практически повсеместно решать проблему восстановления сточных вод до кондиций, обеспечивающих их повторное использование. Однако, несмотря на всеобъемлющие возможности научно- технического прогресса, в ближайшем будущем, скорее всего полностью избежать загрязнения воды различными отходными веществами в процессе её технологического использования будет невозможно. Поэтому в решении проблемы водоохраны, будет уделяться внимание различного рода очистным и утилизационным сооружениям.

Существует множество способов водоочистки. От нас зависит какой из них выбрать и использовать, какой из них будет более приемлемым в той или другой ситуации и принесёт большую эффективность. Для очистки сточных вод применялись и применяются различные методы: механический, химический, физико-химический, биохимический.

Отстаивание вод может быть заменено флотацией, которая представляет технологический процесс, основанный на принципе всплывания дисперсных частиц вместе с пузырьками воздуха. Подобный метод применяется для удаления из сточных вод волокон, масел нефтепродуктов и других нерастворимых в воде веществ с развитой поверхностью и мало отличающейся от воды плотностью. В тех случаях, когда извлекают какой-либо продукт с целью его использования, применяются методы сорбции, экстракции и эвапорации.

При сорбционной очистке сточных вод их в последующем перемешивают и отстаивают (сорбция в динамических условиях), либо фильтруют через слой сорбента (сорбция в динамических условиях). В качестве сорбентов применяют активированный уголь, коксовую мелочь, торф, каолин, болотную руду, опилки, золу и другие материалы.

Экстракционный метод очистки сточных вод базируется на том, что при перемешивании двух взаимно нерастворимых жидкостей всякое другое вещество, находящееся в растворе, распределяется между ними согласно своей растворимости в этих жидкостях.

Эвапорацию (выпаривание сточной жидкости) применяют с целью очистки сточных вод от летучих веществ водяным паром в периодически действующих аппаратах или непрерывно действующих дистилляционных колоннах.

Биохимическая очистка, которая широко применяется для очистки хозбытовых сточных вод, как правило, успешно справляется и с городскими стоками, содержащими большое количество промышленных стоков.

В последнее время по мере накопления положительного опыта эксплуатации всё большее внимание привлекают методы доочистки сточных вод органического происхождения в биологических прудах. Широкое использование природных процессов самоочищения в биологических прудах в ряде случаев выгодно дополняет индустриальные способы очистки стоков. Такое сочетание позволяет удешевить очистку, упростить эксплуатацию и гораздо успешнее решить проблему санитарной охраны поверхностных водоёмов.

Для качественного определения металлов в водопроводной воде взяли пробы воды из крана с различных улиц н. п.Высокий, также взял для сравнения родниковую и дистиллированную воду.

Для удобства и наглядности результатов, создал шкалу наличия примесей в воде таким образом:

источник