Меню Рубрики

Анализ хлориды в сточных водах

С экранов и мониторов коммерческие и социальные рекламы твердят нам, что вода – это заряд энергии, бодрости, источник жизненных сил. Человеку, не имеющему естественно-научного образования, очень сложно принять тот факт, что вода может таить в себе опасность. Потому что единственное, что мы знаем о воде с химической точки зрения, это то, что формула воды состоит из двух молекул водорода и одной кислорода. Это на страницах учебника. В природе в состав воды также входят различные вещества. Для каждого из них есть свой допустимый уровень. Его превышение негативно сказывается на здоровье человека и домашних животных, а также на состояние коммуникаций.

Знакомьтесь с любимчиками природных вод – хлоридами. Это различные химические соединения, представляющие собой соли соляной кислоты. Самые популярные хлориды в воде – кальциевые, магниевые и натриевые. Благодаря своей растворяемости они присутствуют практически в каждом источнике. А вот в бассейнах хлориды могут образовываться в результате хлорирования, необходимого для дезинфекции воды.

Существует две основные причины нахождения хлоридов в природной воде. Первая отсылает нас к процессу вымывания грунтовыми и артезианскими водами различных солей из пластов земли, появившихся в результате вулканических выбросов. Вторая причина неразрывно связанна с деятельностью человека. Здесь можно долго перечислять все возможные каналы попадания хлоридов в воду. Например, каждую зиму мы видим, как дороги посыпают солью для борьбы со льдом. Куда потом уходят эти соли? Круговорот вод мирового океана приводит к тому, что они испаряются, попадают в атмосферу, затем выпадают в виде осадков, наполняя реки, моря, озера. А если добавить сюда выбросы предприятий от нефтяной до химической промышленности, сточные воды, свалки, другие отходы человеческой деятельности, то становится совсем не удивительно, почему допустимая концентрация содержания хлоридов в воде превышена.

350 мг/дм3. Запомните это цифру. Именно это допустимая норма суммарного содержания хлоридов в воде, существующая в нашей стране и зафиксированная в СанПиН 2.1.4.1074-01. Эта ПДК (предельно допустимая концентрация) относится ко всей группе данных солей: хлористый магний, хлористый кальций и хлорид натрия, известный в народе как поваренная соль. Именно хлористый натрий чаще всего превышает установленную норму.

При этом обратите внимание, что данная цифра относится только к питьевой воде. Для питьевой воды в емкостях и питьевой воды для производства различной пищевой продукции существует совсем другие допустимые нормы. Отдельное внимание на хлориды стоит обратить дачникам и садоводам, так как для полива каждой сельскохозяйственной культуры существуют свои допустимые уровни солей в воде. Для владельцев бассейнов ПДК хлоридов в воде составляет 700 мг/л.

Если речь идет о питьевой воде, то самым первым признаком превышения является вкусовая характеристика воды. Вы осознали, что пьете соленую воду? Скорее отправляйте ее на химический анализ воды в лабораторию «ИОН». Ведь в вашей воде превышена концентрация хлористого натрия. Если вкус жидкости определяется вами как горько-соленый, то значит в ней слишком много хлористого кальция. Алгоритм действий тот же самый – необходим качественный и быстрый анализ. При этом обязательно помните, что соли соляной кислоты обладают прекрасной растворимостью, а это значит, визуально зафиксировать их в самой воде невозможно.

Точно определить хлориды в воде поможет только анализ воды, проведенный в химической лаборатории.

Лаборатория «ИОН» бесплатно отправит к вам курьера для отбора пробы на химический анализ. Эта акция действует для клиентов, заказавший анализ воды на сумму от 5000 руб и проживающих в пределах МКАДа. Для Московской области выезд специалиста рассчитывается в индивидуальном порядке.

Если вы решили самостоятельно доставить пробу для определения хлоридов в воде, вам нужно запомнить несколько важных моментов, от которых будет зависеть в последующем качество и достоверность результатов.

  • Возьмите пластиковую тару объемом 1,5-2 л;
  • Пролейте воду сильным напором в течение 5-10 мин (при отборе из крана);
  • Промойте тару и крышку несколько раз в исходной воде;
  • Убавьте напор и заполните бутылку тонкой струйкой по стенке сосуда;
  • Закройте тару крышкой и сразу доставьте ее в лабораторию.

При хранении и транспортировки пробы позаботьтесь о том, чтобы исключить воздействие прямых солнечных лучей и высокой температуры воздуха.

Подробнее с правилами отбора проб можно ознакомиться здесь.

А зачем мне это нужно? Подумает каждый из нас. Жили раньше люди и не переживали о том, какие химические соединения можно найти в воде.

Но, к сожалению, влияние повышенного содержания хлоридов на человеческий организм приводит к серьезным заболеваниям. Многие из них широко распространены в современном мире и каждый из нас должен заботиться о своем здоровье.

Итак, какие же болезни грозят человеку, злоупотребляющему водой с превышенным ПДК:

  • желче- и мочекаменные заболевания;
  • нарушение системы кровообращения;
  • заболевания сосудистой системы;
  • нарушение пищеварения;
  • новообразования органов мочеполовой и пищеварительной систем.

Помните, мы то – что мы пьем.

Повышенное содержание данной примеси чаще всего встречается в колодцах, неглубоких скважинах, реках и озерах. Перед использованием такой воды в хозяйственных нуждах убедитесь в том, что содержание нитратов не превышает норму.

источник

ПНД Ф 14.1:2.96-97 Количественный химический анализ вод. Методика выполнения измерений массовой концентрации хлоридов в пробах природных и очищенных сточных вод аргентометрическим методом

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ
ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

Заместитель Председателя Государственного комитета РФ по охране окружающей среды

_______________ А.А. Соловьянов

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
МАССОВОЙ КОНЦЕНТРАЦИИ ХЛОРИДОВ
В ПРОБАХ ПРИРОДНЫХ И ОЧИЩЕННЫХ СТОЧНЫХ ВОД
АРГЕНТОМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного экологического контроля

МОСКВА 1997 г.
(издание 2004 г.)

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них массовой концентрации хлоридов в диапазоне от 10,0 до 250 мг/дм 3 титриметрическим методом без разбавления и концентрирования пробы.

Если массовая концентрация хлоридов в анализируемой пробе превышает верхнюю границу, то допускается разбавление пробы дистиллированной водой таким образом, чтобы концентрация хлоридов соответствовала регламентированному диапазону.

Определению мешают высокая цветность, мутность, сероводород и сульфиды, сульфиты, тиосульфаты, цианиды, карбонаты (> 100 мг/дм 3 ), фосфаты (> 25 мг/дм 3 ), аммиак (> 5 мг/дм 3 ), а также высокие (> 10 мг/дм 3 ), концентрации металлов — свинца, железа и др.

Устранение мешающих влияний осуществляется в соответствии с п. 10.

Бромиды и иодиды титруются совместно с хлоридами, однако в воде концентрации их, как правило, не превышают 0,5 мг/дм 3 и их влиянием обычно пренебрегают.

Титриметрический метод определения массовой концентрации хлоридов основан на образовании труднорастворимого осадка хлорида серебра при прибавлении раствора нитрата серебра к анализируемой воде. После полного осаждения хлоридов избыток ионов серебра реагирует с индикатором — хроматом-калия — с образованием красновато-оранжевого осадка хромата серебра. Титрование проводят в нейтральной или слабощелочной среде (рН 7 — 10), поскольку в кислой среде не образуется хромат серебра, а в сильнощелочной возможно образование оксида серебра Ag 2 О.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости, правильности

Показатель точности (границы относительной погрешности при вероятности
Р = 0,95), ±δ, %

Показатель повторяемости (относительн ое среднеквадратическое отклонение повторяемости),
s r, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),
s R,%

Показатель правильности (границы относительной систематической погрешности при вероятности
Р = 0,95), ± δс, %

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованным содержанием хлоридов с погрешностью не более 1 % при Р = 0,95

Цилиндры мерные или мензурки

Плитка электрическая с закрытой спиралью и регулируемой мощностью нагрева

Печь муфельная, обеспечивающая температуру нагрева до 900 °С

Стаканчики для взвешивания (бюксы)

Колбы конические или плоскодонные

Колонка хроматографическая диаметром 1,5 — 2,0 см и длиной 25 — 30 см

Стекло часовое диаметром 5 — 7 см

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Азотная кислота концентрированная

Аммиак водный, концентрированный

Хлорид кальция безводный (для эксикатора)

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

или фильтры бумажные обеззоленные «синяя лента»

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

При выполнении измерении в лаборатории должны быть соблюдены следующие условия:

температура окружающего воздуха

не более 80 % при температуре 25 °С;

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором азотной кислоты 1:1, а затем дистиллированной водой.

8.3. Пробы воды отбирают в стеклянные бутыли. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 300 см 3 для неокрашенных вод и 400 см 3 для окрашенных.

8.4. Пробы не консервируют, хранят при комнатной температуре.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

9.1. Приготовление растворов и реактивов

9.1.1. Раствор хлорида натрия, 0,05 моль/дм 3 эквивалента.

Отвешивают 1,4610 г NaCl, предварительно прокаленного при 500 — 600 °С до полного удаления влаги, количественно переносят его в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, доводят до метки и перемешивают. Раствор устойчив при хранении в плотно закрытой склянке не более 3 мес.

9.1.2. Раствор нитрата серебра, 0,02 моль/дм 3 эквивалента.

3,40 г AgNO 3 растворяют в дистиллированной воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течение нескольких дней и затем сливают с помощью сифона прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 2 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора хлорида натрия (п. 9.2) не реже 1 раза в месяц.

9.1.3. Раствор нитрата серебра, 0,05 моль/дм 3 эквивалента.

8,49 г AgNО3 растворяют в дистиллированной воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течение нескольких дней и затем с помощью сифона переливают прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 2 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора хлорида натрия (п. 9.2) не реже 1 раза в месяц.

9.1.4. Раствор нитрата серебра, 10 %.

10 г нитрата серебра AgNО3 растворяют в 90 см 3 дистиллированной воды и прибавляют 1 — 2 капли концентрированной азотной кислоты. При появлении мути раствор отстаивают не менее суток, затем с помощью сифона переливают прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 3 мес.

9.1.5. Раствор хромата калия, 10 %.

50 г К2СrО4 растворяют в 150 см 3 дистиллированной воды, добавляют для удаления хлоридов 10 % раствор AgNО3 до появления слабого красновато-оранжевого осадка, дают отстояться в течение суток и затем фильтруют через фильтр «белая лента». К фильтрату добавляют 300 см 3 дистиллированной виды и перемешивают. Хранят в склянке из темного стекла не более 3 мес.

9.1.6. Раствор азотной кислоты, 0,1 моль/дм 3 .

3,5 см 3 концентрированной азотной кислоты HNO 3 растворяют в 500 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.7. Раствор азотной кислоты, 2 моль/дм 3 .

35 см 3 концентрированной азотной кислоты HNО3 растворяют в 215 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.8. Раствор соляной кислоты, 1:3.

100 см 3 концентрированной соляной кислоты НСl добавляют к 300 см 3 дистиллированной воды и перемешивают. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.9. Раствор гидроксида натрия, 0,4 %.

2 r NaOH растворяют в 500 см 3 дистиллированной воды.

9.1.10. Раствор гидроксида натрия, 8 %.

40 г гидроксида натрия растворяют в 460 см 3 дистиллированной воды.

Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде в течение 2 мес.

9.1.11. Суспензия гидроксида алюминия.

Подготовку гидроксида алюминия осуществляют в соответствии с Приложением А .

9.1.12. Активированный уголь.

Подготовку активированного угля осуществляют в соответствии с Приложением А.

Для определения точной концентрации рабочего раствора нитрата серебра с приблизительной концентрацией 0,05 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 10 см 3 стандартного раствора хлорида натрия, добавляют 90 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией 0,05 моль/дм 3 эквивалента до появления красновато-оранжевого осадка. Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора AgNO 3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение, используя для титрования 100 см 3 дистиллированной воды.

Читайте также:  Гравиметрические методы анализа сточных вод

Для определения точной концентрации рабочего раствора нитрата серебра с приблизительной концентрацией 0,02 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 5 см 3 раствора хлорида натрия, добавляют 95 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией эквивалента 0,02 моль/дм 3 до появления красновато-оранжевого осадка. Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора AgNO 3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение, используя для титрования 100 см 3 дистиллированной воды. Точную концентрацию растворов AgNO 3 находят по формуле:

где С1 — концентрация раствора хлорида натрия, моль/дм 3 эквивалента;

С2 — концентрация раствора нитрата серебра, моль/дм 3 эквивалента;

V 1 — объем раствора хлорида натрия, см 3 ;

V 2 — объем раствора нитрата серебра, пошедший на титрование раствора хлорида натрия, см 3 ;

V хол — объем раствора нитрата серебра, пошедший на титрование холостой пробы, см 3 .

Мешающее влияние взвешенных и коллоидных веществ устраняют предварительным фильтрованием пробы. Для удаления окрашенных веществ можно использовать два способа.

Способ 1. Анализируемую воду пропускают через колонку с активированным углем со скоростью 4 — 6 см 3 /мин, при этом первые 30 — 40 см 3 воды, прошедшие через колонку, следует отбросить.

Способ 2. 200 см 3 анализируемой воды помешают в коническую колбу вместимостью 500 см 3 , приливают 6 см 3 суспензии гидроксида алюминия и встряхивают до обесцвечивания жидкости. Дают пробе отстояться несколько минут и фильтруют через бумажный фильтр «белая лента». Первые порции фильтрата отбрасывают.

Для удаления карбонатов отмеренную для анализа пробу подкисляют раствором азотной кислоты 2 моль/дм 3 до рН 2 и нагревают несколько минут. После охлаждения доводят рН пробы до величины 7 — 8, добавляя 8 % раствор NaOH. При этом удаляются также сульфиды и сульфиты.

Аммиак удаляют нагреванием пробы, к которой добавлен 8 % раствор гидроксида натрия до рН > 12. После охлаждения пробу нейтрализуют раствором азотной кислоты 2 моль/дм 3 .

Сульфиды, сульфиты, тиосульфата, цианиды удаляют, прибавляя к отмеренной для анализа слабощелочной пробе 1 см 3 пероксида водорода и перемешивая 1 мин.

11.1. Предварительная оценка содержания хлоридов в воде

Перед выполнением определения хлоридов в пробе воды неизвестного состава проводят качественную оценку их содержания. Для этого к 5 см 3 анализируемой воды добавляют 3 капли 10 % раствора AgNO 3 и перемешивают. О содержании хлоридов судят по интенсивности помутнения пробы. В зависимости от предполагаемого содержания хлоридов выбирают объем пробы, отбираемый для титрования (таблица 2 ).

Качественная оценка содержания хлоридов в воде и рекомендуемый для титрования объем пробы воды

Ориентировочное содержание хлоридов, мг/дм 3

источник

Хлориды относятся к главным ионам, содержание которых в речных и озерных водах колеблется от доли миллиграммов до граммов в литре; в морских и подземных водах концентрация хлоридов выше – до перенасыщенных растворов и рассолов.

Основными источниками поступления хлоридов в водные объекты является соленосные отложения, магматические породы, в состав которых входят хлорсодержащие минералы (хлорапатит, содомит и др.), вулканические выбросы, засоленные почвы, из которых они вымываются атмосферными осадками. Гораздо большее количество хлоридов попадает в воду с промышленными и хозяйственными сточными водами.

Хлориды в воде не склонны к образованию ионных пар. Они обладают высокой миграционной способностью, что обусловлено хорошей растворимостью их в воде, слабо выраженные способностью к сорбции взвесями и донными отложениями и практическим отсутствием накопления водными организмами.

Повышенные концентрации хлоридов ухудшают вкусовые качества воды делая её непригодной для питьевого водоснабжения, а так же уменьшает или полностью исключает возможность использования для технических и хозяйственных целей, и орошение сельскохозяйственных территорий. Для водных объектов рыбохозяйственного назначения предельно допустимая концентрация (ПДК) хлоридов – 300 мг/дм 3 , для объектов хозяйственно- питьевого и культурно бытового назначения ПДК – 350 мг/дм 3 .

Хлориды относятся к устойчивым компонентам водной среды; пробы предназначенные для определения хлоридов не консервируют.

Перед выполнением определения хлоридов в пробе воды неизвестного состава следует провести качественную оценку их содержания. Для этого в 5 см 3 анализируемой воды добавляют 3 капли 10% раствора AgNO3 и перемешивают. О содержании хлоридов судят по интенсивности помутнения пробы (таблица 1).

В зависимости от предполагаемого содержания хлоридов выбирают методику анализа и объёма анализируемой пробы (таблица 1).

Качественная оценка содержания хлоридов в воде и рекомендуемый для тестирования объём пробы воды.

Характер помутнения пробы Ориентировочное содержание хлоридов в воде (мг/дм 3 ) Объём анализируемой пробы (см 3 )
Слабая муть 1-10 100
Сильная муть 10-50 100
Плавающие хлопья 50-100 100
Оседающие хлопья 100-250 100
Белый объёмистый осадок 250-800 50
больше 800 £25

Определение основано на образовании трудно растворимого осадка хлорида серебра при прибавлении раствора нитрата серебра к анализируемой воде. После полного осаждения хлоридов избыток ионов серебра реагирует с индикатором- хроматом калия- с образованием красновато- оранжевого осадка хромата серебра. Тестирование проводят в нейтральной или слабо щелочной среде (рН 7-10), поскольку в кислой среде не образуется хромат серебра, а в сильно щелочной возможно образование оксида серебра Ag2 o. Мешающее влияние на определение хлоридов могут оказать: высокая цветность, мутность, сероводород и сульфиды, сульфиты, тиосульфаты, цианиды, карбонаты (более 100 мг/дм 3 ), фосфаты (более 25 мг/дм 3 ), аммиак (более 5 мг/дм 3 ). Точному нахождению точки эквивалентности мешает также высокие (более 10 мг/дм 3 ) концентрации металлов- свинца, железа и др.

Устранить или значительно уменьшить влияние всех мешающих веществ при высоком содержании хлоридов можно путем разбавлением пробы; если же содержание хлоридов невелико ( что маловероятно для загрязненных вод), для устранения мешающего влияния следует применить специальные приемы.

Мутность устраняют фильтрованием пробы, цветность – пропусканием пробы через колонку с активированным углем или сорбцией на гидроксиде алюминия.

Массовую концентрацию хлоридов в анализируемой воде находят по формулам:

где Сх или Схэ – массовая концентрация хлоридов в воде, мг/дм 3 или моль/дм 3 эквивалента соответственно.

V- объем раствора нитрата серебра, израсходованного на тестирование анализируемой пробы, см 3 ;

V хол –объема раствора нитрата серебра израсходованного на тестирование пробы, см 3 .

С – концентрация раствора нитрата серебра, моль/дм 3 эквивалента.

V1 — объем пробы воды, взятой для тестирования, см 3 .

1. При выполнении определений массовой концентрации хлоридов в пробах природных и очищенных сточных вод соблюдают требования безопасности, установленные в «Правилах по технике безопасности при производстве наблюдений и работ на сети Госкомгидромета», А., Гидрометеоиздат, 1983 год, или в «Инструкции по технике безопасности для гидрохимических лабораторий органив по регулированию и охране вод» М., 1975.

2. По степени воздействия на организм вредные вещества, используемые при выполнении определений, относятся к 2, 3, 4 классом опасности по ГОСТ 12.1.007.

3. Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать предельно допустимых концентраций в соответствии с ГОСТ 12.1.005.

А) вода дистилированная по ГОСТ 6709

Б) хромат калия по ГОСТ 4459, ч. д. а

В) нитрат серебра по ГОСТ 1277, ч. д. а.

А) воронка лабораторная по ГОСТ 25336

Б) колбы мерные не ниже второго класса точность по ГОСТ 1770

В) бюретка не ниже второго класса точности по ГОСТ 20292

Г) пипетка с одной отметкой не ниже 2 класса точность по ГОСТ 20292

Д) пипетка градуированная не ниже второго класса точности по ГОСТ 20292

Е) колбы конические по ГОСТ 25336

Отбор проб производится в соответствии с ГОСТ 171.5.05. Пробы помещают в стеклянную или полиэтиленовую посуду. Перед определением фильтруют через мембранный фильтр 0,45 мкм, очищенной кипячением в дистиллированной воде. Допустимо использование бумажных фильтров «синяя лента». При фильтровании через любой фильтр первые порции фильтрации следует отбросить.

Хлориды являются одним из наиболее устойчивых компонентов, поэтому определение модно проводить после выполнения анализа менее устойчивых соединений. Пробы не консервируют, хранят при комнатной температуре.

1. Раствор хромата калия, 10% 50г K2 CrO4 взвешивают на технических весах, растворяют в 150 см 3 дистилированной воды, добавляют для удаления хлоридов 10% раствор AgNO3 до появления слабого красновато-ораньжевого осадка, дают отстоятся в течении суток и затем фильтруют через фильтр “белая лента”. К фильтрованному раствору добавляют 300 см 3 дистилированной воды и перемешивают. Хранят в склянке из темного стекла 3 мес.

2. Рабочий раствор нитрата серебра с концентрацией эквивалента 0,05 моль/дм 3.

8,49 г AgNO3 растворяют в дистиллированой воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течении нескольких дней и затем сифонируют прозрачную жидкость. Хранят в склянке из темного стекла.

Точную концентрацию раствора определяют тестированием стандартного раствора хлорида натрия не реже 1 раза в месяц.

Для определения точной концентрации рабочего раствора нитрата серебра с концентрацией 0,05 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 10 см 3 стандартного раствора хлорида натрия, добавляют 90 см 3 дистилированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией эквивалента 0,05 моль/дм 3 до появления красновато-ораньжевого осадка. Титрование повторяют 2-3 раза и при хлориде натрия, добавляют 90 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией эквивалента 0,05 моль/дм 3 до появлениякрасновато-ораньжевого осадка. Титрование повторяют 2-3 раза и при отсутствии расхожденя в объемах растворов AgNO3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение , использую для титрования 100 см 3 дистиллированной воды.

1. Руководящий документ « Методические указания. Аргентометрическое определение хлоридов в водах».

2. А. П. Крешков «Основы аналитической химии»

источник

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них массовой концентрации хлоридов в диапазоне от 10,0 до 250 мг/дм 3 титриметрическим методом без разбавления и концентрирования пробы.

Если массовая концентрация хлоридов в анализируемой пробе превышает верхнюю границу, то допускается разбавление пробы дистиллированной водой таким образом, чтобы концентрация хлоридов соответствовала регламентированному диапазону.

Определению мешают высокая цветность, мутность, сероводород и сульфиды, сульфиты, тиосульфаты, цианиды, карбонаты (> 100 мг/дм 3 ), фосфаты (> 25 мг/дм 3 ), аммиак (> 5 мг/дм 3 ), а также высокие (> 10 мг/дм 3 ), концентрации металлов — свинца, железа и др.

Устранение мешающих влияний осуществляется в соответствии с п. 10.

Бромиды и иодиды титруются совместно с хлоридами, однако в воде концентрации их, как правило, не превышают 0,5 мг/дм 3 и их влиянием обычно пренебрегают.

Титриметрический метод определения массовой концентрации хлоридов основан на образовании труднорастворимого осадка хлорида серебра при прибавлении раствора нитрата серебра к анализируемой воде. После полного осаждения хлоридов избыток ионов серебра реагирует с индикатором — хроматом-калия — с образованием красновато-оранжевого осадка хромата серебра. Титрование проводят в нейтральной или слабощелочной среде (рН 7 — 10), поскольку в кислой среде не образуется хромат серебра, а в сильнощелочной возможно образование оксида серебра Ag 2 О.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости, правильности

Показатель точности (границы относительной погрешности при вероятности
Р = 0,95), ±δ, %

Показатель повторяемости (относительн ое среднеквадратическое отклонение повторяемости),
s r, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),
s R,%

Показатель правильности (границы относительной систематической погрешности при вероятности
Р = 0,95), ± δс, %

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованным содержанием хлоридов с погрешностью не более 1 % при Р = 0,95

Цилиндры мерные или мензурки

Плитка электрическая с закрытой спиралью и регулируемой мощностью нагрева

Печь муфельная, обеспечивающая температуру нагрева до 900 °С

Стаканчики для взвешивания (бюксы)

Колбы конические или плоскодонные

Колонка хроматографическая диаметром 1,5 — 2,0 см и длиной 25 — 30 см

Стекло часовое диаметром 5 — 7 см

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Азотная кислота концентрированная

Аммиак водный, концентрированный

Хлорид кальция безводный (для эксикатора)

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

или фильтры бумажные обеззоленные «синяя лента»

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

При выполнении измерении в лаборатории должны быть соблюдены следующие условия:

температура окружающего воздуха

не более 80 % при температуре 25 °С;

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором азотной кислоты 1:1, а затем дистиллированной водой.

Читайте также:  График выполнения анализов сточных вод

8.3. Пробы воды отбирают в стеклянные бутыли. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 300 см 3 для неокрашенных вод и 400 см 3 для окрашенных.

8.4. Пробы не консервируют, хранят при комнатной температуре.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

9.1. Приготовление растворов и реактивов

9.1.1. Раствор хлорида натрия, 0,05 моль/дм 3 эквивалента.

Отвешивают 1,4610 г NaCl, предварительно прокаленного при 500 — 600 °С до полного удаления влаги, количественно переносят его в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, доводят до метки и перемешивают. Раствор устойчив при хранении в плотно закрытой склянке не более 3 мес.

9.1.2. Раствор нитрата серебра, 0,02 моль/дм 3 эквивалента.

3,40 г AgNO 3 растворяют в дистиллированной воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течение нескольких дней и затем сливают с помощью сифона прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 2 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора хлорида натрия (п. 9.2) не реже 1 раза в месяц.

9.1.3. Раствор нитрата серебра, 0,05 моль/дм 3 эквивалента.

8,49 г AgNО3 растворяют в дистиллированной воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течение нескольких дней и затем с помощью сифона переливают прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 2 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора хлорида натрия (п. 9.2) не реже 1 раза в месяц.

9.1.4. Раствор нитрата серебра, 10 %.

10 г нитрата серебра AgNО3 растворяют в 90 см 3 дистиллированной воды и прибавляют 1 — 2 капли концентрированной азотной кислоты. При появлении мути раствор отстаивают не менее суток, затем с помощью сифона переливают прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 3 мес.

9.1.5. Раствор хромата калия, 10 %.

50 г К2СrО4 растворяют в 150 см 3 дистиллированной воды, добавляют для удаления хлоридов 10 % раствор AgNО3 до появления слабого красновато-оранжевого осадка, дают отстояться в течение суток и затем фильтруют через фильтр «белая лента». К фильтрату добавляют 300 см 3 дистиллированной виды и перемешивают. Хранят в склянке из темного стекла не более 3 мес.

9.1.6. Раствор азотной кислоты, 0,1 моль/дм 3 .

3,5 см 3 концентрированной азотной кислоты HNO 3 растворяют в 500 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.7. Раствор азотной кислоты, 2 моль/дм 3 .

35 см 3 концентрированной азотной кислоты HNО3 растворяют в 215 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.8. Раствор соляной кислоты, 1:3.

100 см 3 концентрированной соляной кислоты НСl добавляют к 300 см 3 дистиллированной воды и перемешивают. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.9. Раствор гидроксида натрия, 0,4 %.

2 r NaOH растворяют в 500 см 3 дистиллированной воды.

9.1.10. Раствор гидроксида натрия, 8 %.

40 г гидроксида натрия растворяют в 460 см 3 дистиллированной воды.

Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде в течение 2 мес.

9.1.11. Суспензия гидроксида алюминия.

Подготовку гидроксида алюминия осуществляют в соответствии с Приложением А .

9.1.12. Активированный уголь.

Подготовку активированного угля осуществляют в соответствии с Приложением А.

Для определения точной концентрации рабочего раствора нитрата серебра с приблизительной концентрацией 0,05 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 10 см 3 стандартного раствора хлорида натрия, добавляют 90 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией 0,05 моль/дм 3 эквивалента до появления красновато-оранжевого осадка. Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора AgNO 3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение, используя для титрования 100 см 3 дистиллированной воды.

Для определения точной концентрации рабочего раствора нитрата серебра с приблизительной концентрацией 0,02 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 5 см 3 раствора хлорида натрия, добавляют 95 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией эквивалента 0,02 моль/дм 3 до появления красновато-оранжевого осадка. Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора AgNO 3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение, используя для титрования 100 см 3 дистиллированной воды. Точную концентрацию растворов AgNO 3 находят по формуле:

где С1 — концентрация раствора хлорида натрия, моль/дм 3 эквивалента;

С2 — концентрация раствора нитрата серебра, моль/дм 3 эквивалента;

V 1 — объем раствора хлорида натрия, см 3 ;

V 2 — объем раствора нитрата серебра, пошедший на титрование раствора хлорида натрия, см 3 ;

V хол — объем раствора нитрата серебра, пошедший на титрование холостой пробы, см 3 .

Мешающее влияние взвешенных и коллоидных веществ устраняют предварительным фильтрованием пробы. Для удаления окрашенных веществ можно использовать два способа.

Способ 1. Анализируемую воду пропускают через колонку с активированным углем со скоростью 4 — 6 см 3 /мин, при этом первые 30 — 40 см 3 воды, прошедшие через колонку, следует отбросить.

Способ 2. 200 см 3 анализируемой воды помешают в коническую колбу вместимостью 500 см 3 , приливают 6 см 3 суспензии гидроксида алюминия и встряхивают до обесцвечивания жидкости. Дают пробе отстояться несколько минут и фильтруют через бумажный фильтр «белая лента». Первые порции фильтрата отбрасывают.

Для удаления карбонатов отмеренную для анализа пробу подкисляют раствором азотной кислоты 2 моль/дм 3 до рН 2 и нагревают несколько минут. После охлаждения доводят рН пробы до величины 7 — 8, добавляя 8 % раствор NaOH. При этом удаляются также сульфиды и сульфиты.

Аммиак удаляют нагреванием пробы, к которой добавлен 8 % раствор гидроксида натрия до рН > 12. После охлаждения пробу нейтрализуют раствором азотной кислоты 2 моль/дм 3 .

Сульфиды, сульфиты, тиосульфата, цианиды удаляют, прибавляя к отмеренной для анализа слабощелочной пробе 1 см 3 пероксида водорода и перемешивая 1 мин.

11.1. Предварительная оценка содержания хлоридов в воде

Перед выполнением определения хлоридов в пробе воды неизвестного состава проводят качественную оценку их содержания. Для этого к 5 см 3 анализируемой воды добавляют 3 капли 10 % раствора AgNO 3 и перемешивают. О содержании хлоридов судят по интенсивности помутнения пробы. В зависимости от предполагаемого содержания хлоридов выбирают объем пробы, отбираемый для титрования (таблица 2 ).

Качественная оценка содержания хлоридов в воде и рекомендуемый для титрования объем пробы воды

Ориентировочное содержание хлоридов, мг/дм 3

источник

ПНД Ф 14.1:2:4.111-97. Количественный химический анализ вод. Методика измерений массовой концентрации хлорид-ионов в питьевых, поверхностных и сточных водах меркуриметрическим методом

2 Приписанные характеристики показателей точности измерений

3 Средства измерений, вспомогательное оборудование, материалы и реактивы

3.1 Средства измерений, вспомогательное оборудование

5 Требования безопасности, охраны окружающей среды

6 Требования к квалификации операторов

7 Требования к условиям измерений

8 Подготовка к выполнению измерений

8.1 Отбор и хранение проб воды

8.2 Приготовление вспомогательных растворов

8.3 Установление точной массовой концентрации раствора нитрата ртути

9.1 Устранение мешающих влияний

9.2 Предварительное измерение

10 Обработка результатов измерений

11 Оформление результатов измерений

12 Контроль точности результатов измерений

12.2 Оперативный контроль процедуры измерений с использованием метода добавок

12.3 Алгоритм оперативного контроля процедуры анализа с применением образцов для контроля

13 Проверка приемлемости результатов, полученных в двух лабораториях

Приложение А (информационное). Бюджет неопределенности измерений (Таблица А.1)

Принят: Институт курортологии и физиотерапии Минздрава СССР

Принят: Институт строительной механики и сейсмостойкости АН Грузинской СССР

Утвержден: ФБУ Федеральный центр анализа и оценки техногенного воздействия 23.03.2011

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ
В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

И.о. директора ФБУ «Федеральный

центр анализа и оценки техногенного

_________________ С.А. Хахалин

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВОЙ
КОНЦЕНТРАЦИИ ХЛОРИД-ИОНОВ В ПИТЬЕВЫХ,
ПОВЕРХНОСТНЫХ И СТОЧНЫХ ВОДАХ
МЕРКУРИМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного
экологического контроля

МОСКВА 1997 г.
(издание 2011 г.)

Методика рассмотрена и одобрена федеральным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия (ФБУ «ФЦАО»).

Главный инженер ФБУ «ФЦАО», к.х.н.

«Федеральный центр анализа и оценки техногенного воздействия» (ФБУ «ФЦАО»)

Настоящий документ устанавливает методику измерений массовой концентрации хлорид-ионов в питьевых, поверхностных и сточных водах меркуриметрическим методом.

Диапазон измерений от 10 до 10000 мг/дм3.

Мешающие влияния, обусловленные присутствием сульфит-, тиосульфат-, сульфид-, роданид-, цианид- ионов, железа и органических веществ, устраняются специальной подготовкой пробы к анализу (п. 9.1).

Определению мешают ионы цинка, свинца, алюминия, никеля и хрома (III) при массовых концентрациях, превышающих 100 мг/дм3, хромат-ионы при массовых концентрациях выше 2 мг/дм3, также мешают бромид- и иодид- ионы. В таких водах хлориды определяют другими методами.

Значения показателя точности измерений1 — расширенной относительной неопределенности измерений по настоящей методике при коэффициенте охвата 2 приведены в таблице 1. Бюджет неопределенности измерений приведен в Приложении А.

Таблица 1 — Диапазон измерений, показатели неопределенности измерений

Суммарная стандартная относительная неопределенность, и, %

Расширенная относительная неопределенность2, U при коэффициенте охвата k = 2, %

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке качества проведения испытаний в лаборатории;

— оценке возможности использования настоящей методики в конкретной лаборатории.

1 В соответствии с ГОСТ Р 8.563-2009 (п. 3.4) в качестве показателя точности измерений использованы показатели неопределенности измерений).

2 Соответствует характеристике погрешности при доверительной вероятности Р = 0,95.

При выполнении измерений применяются следующие средства измерений, вспомогательное оборудование, материалы и реактивы:

3.1 Средства измерений, вспомогательное оборудование

Весы лабораторные специального класса точности с ценой деления не более 0,1 мг, наибольшим пределом взвешивания не более 210 г по ГОСТ Р 53228-2008.

Государственные стандартные образцы (ГСО) состава раствора хлорид-ионов с массовой концентрацией 1 мг/дм3. Относительная погрешность аттестованных значений массовой концентрации не более 1 % при Р = 0,95.

Плитка электрическая лабораторная с регулятором температуры и закрытой спиралью по ГОСТ 14919-83.

Сушильный шкаф электрический (200 °С).

Штатив лабораторный ШЛ, ТУ 64-1-707-80.

Колбы конические КН-2-250-18 ТХС ГОСТ 25336-82.

Колбы мерные 2-100(500, 1000)-2, ГОСТ 1770-74.

Бюретки лабораторные 6-2-2(5); 2-2-10(25), ГОСТ 29251-91.

Стаканчики для взвешивания СВ, ГОСТ 25336-82.

Склянки из темного стекла для хранения реактивов.

Бутыли из полимерного материала или стекла с притертыми или винтовыми пробками для отбора и хранения проб вместимостью 500 — 1000 см3.

1 Допускается использование других средств измерений утвержденных типов, обеспечивающих измерения с установленной точностью.

2 Допускается использование другого оборудования с метрологическими и техническими характеристиками, аналогичными указанным.

3 Средства измерений должны быть поверены в установленные сроки.

Натрий хлористый (NaCl), ГОСТ 4233-77 или стандарт-титр NaCl по ТУ 6-09-2540-87.

Натрий фосфорнокислый, ГОСТ 9397-68.

Спирт этиловый ректификованный технический, ГОСТ 18300-87.

Дифенилкарбазон, ГОСТ 17551-72.

Бромфеноловый синий, ТУ 6-09-1058-76.

Бумага индикаторная универсальная, ТУ 6-09-1181-89.

Фильтры обеззоленные, ТУ 6-09-1678-95.

1 Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

2 Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных.

Меркуриметрический метод определения массовой концентрации хлорид-ионов основан на взаимодействии хлорид-ионов с ионами ртути (II) с образованием малодиссоциированного соединения хлорида ртути.

Избыток ионов ртути (II) образует с индикатором дифенилкарбазоном в кислой среде (рН = 2,5 ± 0,2) окрашенное в фиолетовый цвет комплексное соединение, при появлении которого прекращают титрование.

Резкость перехода окраски индикатора в значительной мере зависит от соблюдения правильного значения рН раствора. Точное установление рН предусмотрено в ходе определения использованием смешанного индикатора и азотной кислоты. Величину рН определяют с помощью рН-метра.

При выполнении измерений необходимо соблюдать следующие требования техники безопасности.

5.1 При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76.

5.2 Электробезопасность при работе с электроустановками по ГОСТ Р 12.1.019-2009.

5.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004-90.

5.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

5.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического анализа, освоивший данную методику и получивший удовлетворительные результаты при выполнении контроля процедуры измерений.

Измерения проводятся в следующих условиях:

температура окружающего воздуха (20 ± 5) °С;

атмосферное давление (84,0 — 106,7) кПа (630 — 800 мм рт.ст);

относительная влажность не более 80 % при t = 25 °C;

напряжение сети (220 ± 22) В;

частота переменного тока (50 ± 1) Гц.

При подготовке к выполнению измерений должны быть проведены следующие работы: отбор проб, приготовление вспомогательных растворов, установление точной концентрации раствора нитрата ртути.

8.1 Отбор и хранение проб воды

8.1.1 Отбор проб питьевых вод производится в соответствии с требованиями ГОСТ Р 51593-2000 «Вода питьевая. Отбор проб».

Отбор проб поверхностных и сточных вод производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб», ПНД Ф 12.15.1-08 «Методические указания по отбору проб для анализа сточных вод».

8.1.2 Пробы воды отбирают в бутыли из полимерного материала или стекла, предварительно ополоснутые отбираемой водой. Объем отобранной пробы должен быть не менее 200 см3.

8.1.3 Пробы обычно не консервируют, хранят при комнатной температуре. В исключительных случаях, чтобы подавить биологические процессы, добавляют 2 — 4 см3 хлороформа на 1 дм3 пробы.

8.1.4 При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

цель анализа, предполагаемые загрязнители;

должность, фамилия отбирающего пробу, дата.

8.2 Приготовление вспомогательных растворов

2,9222 г хлористого натрия, предварительно высушенного при 105 °С, помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу на 1000 см3 и доводят до метки дистиллированной водой.

Допускается приготовление раствора хлористого натрия из стандарт-титра (фиксанала).

Хранят в стеклянной емкости не более 3-х месяцев.

12,7 см3 концентрированной азотной кислоты растворяют в дистиллированной воде в мерной колбе вместимостью 1000 см3 и доводят до метки дистиллированной водой.

Хранят в стеклянной емкости не более 3-х месяцев.

0,5 г дифенилкарбазона и 0,05 г бромфенолового синего помещают в стакан, растворяют в 5 — 10 см3 96 %-ного этилового спирта, переносят в мерную колбу на 100 см3 и доводят до метки 96 %-ным этиловым спиртом.

Хранят в склянке из темного стекла в течение месяца.

4,0 г гидроксида натрия помещают в стакан, растворяют в небольшом количестве дистиллированной воды, после охлаждения раствор переносят в мерную колбу на 1000 см3 и доводят до метки дистиллированной водой. Хранят в полиэтиленовой емкости не более 1 месяца.

5 г натрия фосфорнокислого помещают в коническую колбу и растворяют в 95 см3 дистиллированной воды.

Хранят в стеклянной емкости не более 3-х месяцев.

0,1699 г азотнокислого серебра помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу на 100 см3 и доводят до метки дистиллированной водой.

Хранят в емкости из темного стекла не более 3-х месяцев.

8,12 г Hg(NO3)2 или 8,57 г Hg(NO3)2×H2O или 8,34 г Hg(NO3)2 0,5×Н2O помещают в стакан, растворяют в небольшом количестве дистиллированной воды, приливают 1 см3 концентрированной азотной кислоты, помещают в мерную колбу на 1000 см3 и доводят до метки дистиллированной водой. Хранят в емкости из темного стекла не более 3-х месяцев.

8.3 Установление точной массовой концентрации раствора нитрата ртути

8.3.1 Установить точную нормальную концентрацию раствора нитрата ртути можно, определив коэффициент поправки к массовой концентрации раствора. Коэффициент поправки определяют по ГОСТ 25794.3-83.

8.3.2 Установление точной нормальной концентрации раствора нитрата ртути по раствору хлористого натрия.

В коническую колбу для титрования наливают 90 см3 дистиллированной воды, приливают 10 см3 раствора хлористого натрия (приготовленного по п. 8.2.1), перемешивают, добавляют 0,3 см3 смешанного индикатора, вводят по каплям раствор азотной кислоты до перехода окраски от синей к желтой, дополнительно приливают 1 см3 раствора азотной кислоты (для установления рН = 2,5) и титруют раствором нитрата ртути (II) до изменения желтой окраски на фиолетовую.

Для точного определения нормальной концентрации раствора нитрата ртути необходимо провести три параллельных определения. Расчет нормальной концентрации раствора нитрата ртути приведен в п. 10.1.

9.1.1 При наличии мути и окраски, мешающих определению, пробу встряхивают с активированным углем (на 100 см3 пробы добавляют 0,5 г активированного угля). Уголь не должен содержать хлоридов, что устанавливается холостым опытом с дистиллированной водой. После обесцвечивания пробы ее фильтруют через плотный бумажный фильтр («синяя лента») и фильтр промывают дистиллированной водой.

9.1.2 Для устранения мешающего влияния сульфит-, тиосульфат-, сульфид-, роданид- и цианид-ионов к анализируемой пробе добавляют 3 — 4 см3 перекиси водорода, далее раствором гидроксида натрия (п. 8.2.4) доводят до рН = 9 — 11 (по универсальной индикаторной бумаге) и кипятят пробу в течение 5 — 7 мин.

9.1.3 Определение хлорид-ионов в окрашенных, сильно загрязненных органическими веществами сточных водах, проводят после предварительного выпаривания вод в щелочной среде (рН = 9 — 10) досуха. Остаток после выпаривания слегка прокаливают в течение 5 мин. при температуре 300 °С и растворяют в горячей дистиллированной воде, приливая ее порциями.

9.1.4 Железо мешает в массовых концентрациях, превышающих 10 мг/дм3, его связывают добавлением нескольких капель 5 %-ного раствора натрия фосфорнокислого.

9.2 Предварительное измерение

Для правильного выбора аликвотной части перед началом анализа проводят качественное определение массовой концентрации хлорид-ионов.

Аликвотную часть анализируемой пробы объемом 5 см3 помещают в пробирку вместимостью 10 см3, подкисляют 1 — 2 каплями раствора азотной кислоты, прибавляют 3 — 5 капель раствора азотнокислого серебра и взбалтывают. По количеству осадка устанавливают аликвотную часть пробы, необходимую для проведения анализа согласно таблице 2.

источник

Некачественная плохо очищенная от примесей вода может стать как причиной многих заболеваний, так и поводом для быстрого выхода из строя бытовых приборов. В воде всегда присутствует множество примесей. Большинство примесей опасны в случае, если их концентрация превышает предельно допустимые значения.

Исследование воды включает в себя отбор проб воды и проведение химического и бактериологического анализов воды по ряду показателей, регламентированных СанПиН. Комплексное исследование воды позволяет выяснить, соответствует ли вода установленным требованиям, безопасна ли вода, можно ли использовать ее по назначению или необходимо устанавливать систему дополнительной очистки от примесей. Кроме того, важно выяснить, какие именно вещества в воде превышают допустимые концентрации, чтобы правильно подобрать фильтр для воды. Если система дополнительной фильтрации воды уже есть, химический анализ покажет, насколько эффективны фильтры, как часто необходимо их менять.

Лабораторный анализ воды позволяет определить, какие примеси в воде присутствуют в значительных концентрациях, от каких из них следует избавиться. Самые типичные загрязнители воды — это тяжелые металлы; хлор; соли (органические и неорганические); аммиак и ионы аммония; сероводород; механические примеси; бактерии и другие примеси.

Химическое исследование воды позволяет количественно определить содержание самых распространенных примесей в воде, а так же оценить некоторые другие параметры, чтобы понять, насколько вода соответствует по своему химическому составу требованиям, установленным для ее безопасного использования.

Общая жесткость воды обусловлена главным образом присутствием различных солей кальция и магния. Гидрокарбонаты кальция разрушаются и выпадают в осадок (накипь) при длительном кипячении, другие же соли остаются в растворенном состоянии. Причины возникновения повышенной жесткости в воде — это растворение осадочных пород, сток с почвы, отходы промышленных предприятий. Жесткая вода плоха тем, что имеет неприятный вкус, отрицательно влияет на организм, имеет ряд недостатков с хозяйственно-бытовой точки зрения. Жесткая вода нарушает всасывание жиров в кишечнике; у людей с чувствительной кожей способствует появлению дерматитов; делает волосы жесткими при мытье. При использовании жесткой воды в быту увеличивается расход моющих средств, образуется накипь при кипячении, ткани при стирке теряют мягкость и гибкость; ухудшается разваривание мяса и овощей; витамины при варке связываются в нерастворимые комплексы и не усваиваются.

Хлориды в воде бывают минерального и органического происхождения. В природной воде, как наземного, так и подземного происхождения хлориды появляются в результате растворения солей; попадания в воды солей, используемых для ускорения таяния снега и льда на дорогах; загрязнением в результате вымывания твердых отбросов; вторжением морской воды в прибрежные районы; загрязнением стоками промышленных предприятий и др. Хлориды хорошо растворимы в воде, поэтому присутствуют повсеместно. Концентрация хлоридов в воде является индикатором антропоморфного загрязнения поверхностных и подземных источников воды, поскольку хлориды содержатся в сточных водах и физиологических выделениях человека. Вода с повышенным содержанием хлоридов нарушает водно-солевой обмен в организме человека, способствует ухудшению пищеварения.

Сульфаты являются показателем промышленного загрязнения поверхностных вод и загрязнения подземных источников водами вышележащих горизонтов. Сульфаты содержатся в большой концентрации в стоках промышленных предприятий; образуются в атмосфере в цепочке реакций, начинающихся со сжигания топлива; а так же могут попадать в воду в процессе водоочистки, когда в качестве флоккулянта применяется сульфат алюминия. Большинство сульфатов хорошо растворимы в воде и обычными методами очистки удалить их достаточно сложно. Сульфат магния действует как слабительное в концентрации выше 100 мг/л, поэтому у людей переехавших на новое место жительства, где используют воду с высоким содержанием сульфатов, первое время может происходить расстройство ЖКТ, затем организм адаптируется. Известно, что сульфаты отрицательно влияют на пищеварение, а в достаточно высокой концентрации (свыше 500 мг/л) придают воде горько-солоноватый привкус, снижая водопотребление.

Аммиак появляется воде при разложении органических веществ животного происхождения. После попадания в воду аммиак при наличии кислорода и окисляющих аммиак микроорганизмов, превращается в нитриты и затем нитраты. Чаще всего присутствие аммиака в воде говорит об опасном загрязнении воды веществами животного происхождения.Исключение могут составлять некоторые глубокие подземные источники, где происходит образование аммиака из нитратов в отсутствие кислорода, или болотистые и торфяные воды.

Нитриты образуются в результате окисления аммиака микроорганизмами. Присутствие в воде нитритов может быть обусловлено загрязнением продуктами разложения животной органики, однако то что из аммиака успели образоваться нитриты, говорит об определенной давности загрязнения.

Уровень рН определяет природные свойства воды и является показателем загрязнения природных вод открытых водоемов при сбросе в них стоков промышленных предприятий. Значение рН тесно связано с другими важными показателями, от рН зависит эффективность обеззараживания (в том числе и хлорирования).

В природной воде как поверхностных, так и подземных источников водоснабжения присутствует множество органических соединений. Это вещества природного (гуминовые кислоты, амины, другая органика), или промышленного (поверхностно-активные вещества) происхождения. Все эти вещества влияют на свойства воды, ее внешние и вкусовые качества. Многие из них находятся в непрерывной трансформации, поэтому определить каждое по отдельности практически невозможно. Вместо этого принято косвенным методом определять количество органических соединений. Обычно для этого измеряют перманганатную окисляемость. Превышенное значение перманганатной окисляемости (выше 20 мг О 2 /л) говорит о том, что в воде содержатся легкоокисляемые органические примеси. Некоторые из таких примесей приводят к заболеванию почек. печени, нарушают репродуктивную функцию организма. При хлорировании такой воды образуются хлоруглеводороды, которые еще более вредны для здоровья. Поэтому воду со значением перманганатной окисляемости выше 5 мг О 2 /л, желательно очищать от органических соединений, а если значение 20 мг О 2 /л, то вода требует обязательной очистки от органики.

Железо попадает в природные воды при растворении горных пород. В воде железо присутствует в формах Fe 2 + и Fe 3 +. Двухвалентное железо Fe 2 + присутствует в воде в растворенной форме в виде катионов различных органических и неорганических солей. Трехвалентное железо выпадает в осадок в виде гидроксида. Поверхностные воды достаточно богаты кислородом, поэтому растворенного железа в них не много, в водах подземных источников концентрация железа в форме Fe 2 + может быть значительно выше. Водоснабжение центральной части Новосибирска происходит путем забора воды из реки Обь, а водоснабжение Советского района — водой из скважин, и скважинная вода всегда проходит очистку от избыточных количеств железа и марганца. Однако об очистке воды из частных скважин и колодцев в Новосибирском районе следует заботиться самостоятельно, проведя анализ воды из скважины и подобрав соответствующий фильтр для воды. Но проблема повышенного содержания железа не обходит стороной и жителей центральной части города, поскольку системы водоснабжения в большинстве городов России стальные, а стальные трубы быстро ржавеют, и вода так же насыщается избытком железа. Повышенная концентрация железа придает воде неприятную красно-коричневую окраску и вяжущий вкус, ухудшает показатели цветности и мутности. Такая вода портит сантехнику «ржавыми» потеками, отрицательно влияет на кожу и слизистые оболочки организма, может привести к нарушению состава крови, и способствовать возникновению аллергических реакций.

Марганец редко содержится в воде сам по себе, обычно он присутствует в сочетании с растворенным железом. Это жизненно важный элемент, однако избыток марганца отрицательно сказывается на организме. Избыток марганца накапливается в печени и почках, отрицательно влияет на нервную систему и головной мозг, приводит к заболеваниям костей. Вода, содержащая избыток марганца, имеет неприятный вяжущий привкус, портящий вкус напитков и иногда даже еды; оставляет желто-коричневые пятна на сантехнике и осадок в трубах.

Анализ на мутность и цветность воды проводится для определения общего загрязнения воды. Мутность и цветность обусловлены присутствием в воде различных коллоидных частиц, взвесей и окрашенных соединений. Все эти примеси могут быть как природного, так и техногенного происхождения. Показатели мутности и цветности нормированы для каждого типа вод.

Определение сухого остатка осуществляется выпариванием определенного объема пробы в регламентированном диапазоне температур. При этом испаряется вода, и растворенные в ней летучие органические вещества. Оставшаяся часть — сухой остаток — это общее содержание растворенных в воде твердых (нелетучих) веществ. Он дает представление об общей минерализации воды (при общей минерализации учитываются и растворенные летучие вещества, поэтому она отличается от сухого остатка, как правило, в пределах 10%). Сухой остаток главным образом определяется суммой анионов и катионов солей, основные из них это карбонаты, сульфаты, бикарбонаты, хлориды, нитраты, кальций, магний, калий и натрий. Степень минерализации определяет так же и вкус воды. Слишком высокоминерализованная вода имеет солоноватый или горьковато-соленый вкус. Употребление такой воды приводит к дисбалансу в организме, плохо влияет на органы пищеварения. Слишком слабо минерализованная вода (дистиллированная) так же не рекомендуется для питья, поскольку приводит к вымыванию микроэлементов из организма. По величине сухого остатка можно судить и о других свойствах воды: жесткость, корродирующие свойства, способность образовывать накипь. Другими словами, чаще всего именно высокая минерализация (превышение величины сухого остатка) является причиной быстрого выходя из строя бытовых приборов (чайников, элетроводонагревателей и др.), солевых отложений на сантехнике, коррозии труб.

Наилучшей для питья считают минерализацию воды в пределах 300-500 мг/л. Сухой остаток 100-300 мг/л считается удовлетворительным, 500-1000 мг/л — свидетельствует о повышенной минерализации, но допустимой.

источник

Наименование документа: ПНД Ф 14.1:2:4.111-97
Тип документа: ПНД Ф
Статус документа: Действует
Название: Количественный химический анализ вод. Методика измерений массовой концентрации хлорид-ионов в питьевых, поверхностных и сточных водах меркуриметрическим методом
Область применения: Документ устанавливает методику измерений массовой концентрации хлорид-ионов в питьевых, поверхностных и сточных водах меркуриметрическим методом
Краткое содержание:
Дата добавления в базу: 01.09.2013
Дата актуализации: 01.12.2013
Доступно сейчас для просмотра: 100% текста. Полная версия документа.
Организации: