Меню Рубрики

Анализы на аминокислоты у детей

Основу протеинового белка составляют аминокислоты — органические соединения в организме человека. Для выявления проблем с функционированием печени и почек, необходимо провести анализ крови на аминокислоты, так как нарушенный аминокислотный обмен приводит к заболеваниям этих органов. Степень усвоения белка в крови и метаболический дисбаланс устанавливается путем проведения анализа 20 аминокислот.

Следующее сочетание симптомов у детей и взрослых, являются признаками нарушения аминокислотного обмена:

  • умственная отсталость;
  • дефицит внимания;
  • ухудшение зрения;
  • поражения кожи различного вида;
  • специфический запах и цвет мочи.
  • периодически бывают судороги.

Некоторые аминокислоты синтезируются в организме, а некоторые поставляются с потреблением пищи.

Аланин. С помощью аминокислоты аланина центральная нервная система и головной мозг получают энергию. Аланин участвует в метаболизме органических кислот и сахаров, а также вырабатывает антитела в крови, что способствует укреплению иммунитета. Кроме того, из данного типа аминокислот может вырабатываться глюкоза, то есть регуляция уровня сахара в крови проходит с участием аланина.

Аргинин. Это заменимая аминокислота, с помощью которой из организма человека выводится конечный азот.

Аспаргиновая кислота. Содержится в белковом составе. При увеличении ее концентрации в моче, возникает дикарбоксильная аминоацидурия.

Таблица аминокислот в продуктах питания

Глутаминовая кислота. Глутаминовая аминокислота выполняет в организме множество функций, среди которых участие в обмене белками и углеводами, стимулирование окислительных процессов, повышение устойчивости организма к гипоксии (кислородное голодание), нормализация обмена веществ. Она способствует выведению токсинов и аммиака из организма.

Глицин. В ЦНС протекают процессы возбуждения и торможения. За нормальное функционирование этих процессов отвечает глицин. Он способствует улучшению умственной работоспособности, а также помогает человеку справиться со стрессом.

Треонин. Треонин способствует стимуляции иммунной системы, улучшает энергообсеспечение. К его функциям относится обезвреживание аммиака.

Метионин. Дезинтоксикация ксенобиотиков протекает с помощью метионина. Гормоны, витамины, белки и ферменты в крови активируются благодаря метионину.

Тирозин. Синтез тирозина может протекать в организме. Он является незаменимой аминокислотой. Повышенное содержание тирозина в крови говорит о возможном сепсисе.

Валин. Синтез роста тканей тела невозможен без валина. Он способствует стимуляции координации, улучшает умственную деятельность и активность. Поврежденные ткани восстанавливаются благодаря валину, также с его участием протекает метаболизм в мышцах.

Фенилаланин. Аминокислота фенилаланина способствует улучшению памяти и способности к обучению. Фенилаланин способен уменьшить боль и подавить аппетит. Он также оказывает влияние на настроение.

Лейцин и изолейцин. Лейцин и изолейцин это аминоксилоты, действуя вместе, служат источниками энергии. Еще одной их функцией является защита мышечных тканей. На психическую устойчивость и физическую выносливость влияет изолицейн. Без него невозможна выработка гемоглобина в крови. Он также осуществляет регуляцию уровня сахара в крови и занимает важное место при проблемах с психикой и физических нагрузках. Лейцин отвечает за восстановление кожи, мышц, костей, так как вырабатывает гормон роста.

Далее приведен список болезней и соответствующие характеристики из расшифровки анализа крови на аминокислоты:

Таблица нормы аминокислот

  • Болезнь Кушинга – повышенное содержание аланинина;
  • Подагра – повышенное содержание аланинина, повышенный уровень глутаминовой кислоты, пониженное содержание глицина;
  • Сахарный диабет – пониженное содержание глицина;
  • Белковая непереносимость – повышенное содержание аланинина;
  • Кеотическая гипогликемия – недостаток аланина;
  • Хроническая почечная недостаточность – недостаток аланина, аргинина, глутаминовой кислоты, тирозина, повышенное содержание глицина;
  • Гиперинсулинемия 2 типа – высокий уровень аргинина;
  • Ревматоидный артрит – недостаток аргинина, тирозина, повышенный уровень глутаминовой кислоты;
  • Дикарбоксильная аминоацидурия – повышенная концентрация аспаргиновой кислоты в моче;
  • Рак поджелудочной – повышенный уровень глутаминовой кислоты;
  • Гипераммониемия 1 типа – повышенное содержание глицина;
  • Гипогликемия при сахарном диабете – повышенное содержание глицина;
  • Тяжелые ожоги – повышенное содержание глицина;
  • Голодание – повышенное содержание глицина, валина.
  • Нарушение толерантности к белку – повышенный уровень треонина;
  • Болезни печени – повышенный уровень треонина, метионина;
  • Дефицит пируват-карбоксилазы – повышенный уровень треонина;
  • Интоксикация аммонием – повышенный уровень треонина;
  • Гомоцистинурия – повышенный уровень треонина;
  • Карциноидный синдром – повышенный уровень треонина;
  • Гомоцистинурия – пониженный уровень треонина;
  • Нарушение белкового питания – пониженный уровень треонина, повышенный уровень валина;
  • Сепсис крови – повышенный уровень тирозина, фенилаланина;
  • Микседема – пониженный уровень тирозина;
  • Гипотиреоидизм — пониженный уровень тирозина;
  • Поликистоз почек — пониженный уровень тирозина;
  • Гипотермия – пониженный уровень тирозина;
  • Фенилкетонурия – пониженный уровень тирозина, повышенное содержание фенилаланина;
  • Карциноидный синдром – пониженный уровень тирозина, повышенный уровень валина;
  • Печеночная энцефалопатия – недостаток валина (также свидетельствует о нарушении координации, повышенной чувствительности кожи к раздражителям), повышенное содержание фенилаланина;
  • Преходящая тирозинемия новорожденных – повышенное содержание фенилаланина;
  • Вирусный гепатит — повышенное содержание фенилаланина;
  • Гиперфенилаланинемия — повышенное содержание фенилаланина.

Отклонения от нормы анализа крови на аминокислоты являются поводом для беспокойства.

По мнению врачей, следующим группам людей необходимо делать анализ крови на аминокислоты (32 показателя):

  • младенцы;
  • вегетарианцы и люди, придерживающиеся диет;
  • спортсмены и люди, испытывающие повышенную физическую нагрузку.

Анализ крови на аминокислоты можно сдать во многих клиниках. Перед сдачей аминокислотного анализа нельзя принимать пищу в течение 4 часов. Забор крови у грудничка проводится из пятки. Возможно образование гематомы. Срок выполнения анализа составляет около 16 дней.

Анализ крови на аминокислоты для детей имеет большое значение, так как помогает своевременно выявить проблемы со здоровьем и приступить к лечению.

Анализ крови на аминокислоты и ацилкарнитины проводится с целью выявления наследственных болезней. Чем раньше обнаружится патология, тем больше вероятность предотвращения тяжелых заболеваний.

источник

Аминокислоты — органические соединения, являющиеся основной составляющей частью протеинов (белков). Нарушение обмена аминокислот является причиной многих заболеваний (печени и почек). Анализ аминокислот (мочи и крови) является основным средством оценки степени усвоения пищевого белка, а также метаболического дисбаланса, лежащего в основе многих хронических нарушений.

Биоматериалом для комплексного анализа на аминокислоты в Лаборатории Гемотест может служить кровь или моча.

Исследуется следующие незаменимые аминокислоты: аланин, аргинин, аспарагиновая кислота, цитруллин, глутаминовая кислота, глицин, метионин, орнитин, фенилаланин, тирозин, валин, лейцин, изолейцин, гидроксипролин, серин, аспарагин, α-аминоадипиновая кислота, глутамин, β-аланин, таурин, гистидин, треонин, 1-метилгистидин, 3-метилгистидин, γ-аминомасляная кислота, β-аминоизомасляная кислота, α-аминомасляная кислота, пролин, цистатионин, лизин, цистин, цистеиновая кислота.

Аланин – важный источник энергии для головного мозга и центральной нервной системы; укрепляет иммунную систему путем выработки антител;активно участвует в метаболизме сахаров иорганических кислот. Может быть сырьем для синтеза глюкозы в организме, это делает его важным источником энергии и регулятором уровня сахара в крови.

Снижение концентрации: хронические болезни почек, кетотическая гипогликемия.

Повышение концентрации: гипераланинемия, цитруллинемия (умеренное повышение), болезнь Кушинга, подагра, гипероротининемия, гистидиемия, дефицит пируваткарбоксилазы,лизинурическая белковая непереносимость.

Аргинин является условно заменимой аминокислотой. Участвует в цикле переаминирования и выведения из организма конечного азота, то есть продукта распада отработанных белков. От мощности работы цикла (орнитин — цитруллин — аргинин) зависит способность организма создавать мочевину и очищаться от белковых шлаков.

Снижение концентрации :3 дня после оперативного вмешательства на брюшной полости, хроническая почечная недостаточность, ревматоидный артрит.

Повышение концентрации: гипераргининемия, в некоторых случаях гиперинсулинемии II типа.

Аспарагиновая кислота входит в состав белков, играет важную роль в реакциях цикла мочевины и переа-минирования, участвует в биосинтезе пуринов и пиримидинов.

Снижение концентрации: 1 сутки после оперативного вмешательства.

Повышение концентрации: моча – дикарбоксильная аминоацидурия.

Цитруллин повышает энергообеспечение, стимулирует иммунную систему, в процессах обмена веществ превращается в L-аргинин. Обезвреживает аммиак, повреждающий клетки печени.

Повышение концентрации цитруллина: цитруллинемия, болезни печени, интоксикация аммонием, дефицит пируват-карбоксилазы, лизинурическое нарушение толерантности к белку.

Моча — цитруллинемия, болезнь Хартнупа, аргининосукцинат-ацидурия.

Глутаминовая кислота является нейромедиатором, передающим импульсы в центральной нервной системе. Играет важную роль в углеводном обмене и способствует проникновению кальция через гематоэнцефалический барьер. Снижение концентрации: гистидинемия, хроническая почечная недостаточность.

Повышение концентрации: рак поджелудочной железы, подагра, глутаминовая ,ацидурия, ревматоидный артрит. Моча – дикарбоксильная аминоацидурия.

Глицин является регулятором обмена веществ, нормализует процессы возбуждения и торможения в центральной нервной системе, обладает антистрессорным эффектом, повышает умственную работоспособность.

Снижение концентрации: подагра, сахарный диабет.

Повышение концентрации: септицемия, гипогликемия, гипераммониемия 1 типа, тяжелые ожоги, голодание, пропионовая ацидемия, метилмалоновая ацидемия, хроническая почечная недостаточность. Моча – гипогликемия, цистинурия, болезнь Хартнупа, беременность, гиперпролинемия,глицинурия, ревматоидный артрит.

Метионин незаменимая аминокислота, помогающая переработке жиров, предотвращая ихотложение в печени и стенках артерий. Синтез таурина и цистеина зависит от количества метионина в организме. Способствует пищеварению, обеспечивает дезинтоксикационныепроцессы, уменьшает мышечную слабость, защищает от воздействия радиации,полезна при остеопорозе и химической аллергии.

Снижение концентрации: гомоцистинурия, нарушение белкового питания.

Повышение концентрации: карциноидный синдром, гомоцистинурия, гиперметионинемия, тирозинемия, тяжелые заболевания печени.

Орнитин помогает высвобождению гормона роста, который способствует сжиганию жиров в организме. Необходим для иммунной системы, участвует в дезинтоксикационных процессах и восстановлении пече-ночных клеток.

Снижение концентрации: карциноидный синдром, хроническая почечная недостаточность.

Повышение концентрации: спиральная атрофия хориоидной оболочки и сетчатки, тяжелые ожоги,гемолиз.

Фенилаланин — незаменимая аминокислота, в организме она может превращаться в тирозин, который, в свою очередь, используется в синтезе двух основных нейромедиаторов: допамина и норадреналина. Влияет на настроение, уменьшает боль, улучшает память и способность к обучению, подавляет аппетит.

Повышение концентрации: преходящая тирозинемия новорожденных, гиперфенилаланинемия,сепсис, пе-ченочная энцефалопатия, вирусный гепатит, фенилкетонурия.

Тирозин является предшественником нейромедиаторов норадреналина и дофамина.Участвует в регуляциинастроения; недостаток тирозина приводит к дефициту норадреналина, что приводит к депрессии. Подавляет аппетит, уменьшает отложения жиров, способствует выработке мелатонина и улучшает функции надпочечников, щитовидной железы и гипофиза, также участвует в обмене фенилаланина. Тиреоидные гормоны образуются при при-соединении к тирозину атомов йода.

Снижение концентрации: поликистоз почек, гипотермия, фенилкетонурия, хроническая почечная недоста-точность, карциноидный синдром, микседема, гипотиреоидизм, ревматоидный артрит.

Повышение концентрации: гипертирозинемия, гипертиреоидизм, сепсис.

Валин незаменимая аминокислота, оказывающая стимулирующее действие. Необходима для метаболизма в мышцах, восстановления поврежденных тканей и для поддержания нормального обмена азота в организме, может быть использован мышцами в качестве источника энергии.

Снижение концентрации: гиперинсулинизм, печеночная энцефалопатия.

Повышение концентрации: кетоацидурия, гипервалинемия,недостаточное белковое питание, карциноидный синдром, острое голодание.

Лейцин и изолейцин — защищают мышечные ткани и являются источниками энергии, а также способствуют восстановлению костей, кожи, мышц. Способны понижать уровень сахара в крови и стимулировать выделение гормона роста.

Снижение концентрации: острое голодание, гиперинсулинизм, печеночная энцефалопатия.

Повышение концентрации: кетоацидурия, ожирение, голодание, вирусный гепатит.

Гидроксипролин содержится в тканях практически всего организма, входит в состав коллагена, на долю которого приходится большая часть белка в организме млекопитающих. Синтез гидроксипролина нару- шается при дефиците витамина С.

Повышение концентрации: гидроксипролинемия, уремия, цирроз печени.

Серин относится к группе заменимых аминокислот, участвует в образовании активных центров ряда ферментов, обеспечивая их функцию. Важен в биосинтезе других заменимых аминокислот : глицина, цистеина, метионина, триптофана.Серин является исходным продуктом синтеза пуриновых и пиримидиновых оснований, сфинголипидов, этаноламина, и других важных продуктов обмена веществ.

Снижение концентрации: недостаточность фосфоглицерат дегидрогеназы, подагра.

Повышение концентрации серина: непереносимость белка. Моча – ожоги, болезнь Хартнупа.

Аспарагин необходим для поддержания баланса в процессах, происходящих в центральной нервной

системе; препятствует как чрезмерному возбуждению, так и излишнему торможению, участвует в процессах синтеза аминокислот в печени.

Повышение концентрации: ожоги, болезнь Хартнупа, цистиноз.

Альфа-аминоадипиновая кислота — метаболит основных биохимических путей лизина.

Повышение концентрации: гиперлизинемия, альфа-аминоадипиновая ацидурия, альфа-кетоадипиновая ацидурия, синдром Рея.

Глутамин выполняет ряд жизненно важных функций в организме: участвует в синтезе аминокислот, углеводов, нуклеиновых кислот, цАМФ и ц-ГМФ, фолиевой кислоты, ферментов, осуществляющих окислительно-восстановительные реакции (НАД), серотонина, н-аминобензойной кислоты; обезвреживает аммиак; превращается в аминомасляную кислоту (ГАМК); способен повышать проницаемость мышечных клеток для ионов калия.

Снижение концентрации глутамина: ревматоидный артрит

Повышение концентрации: Кровь – Гипераммониемия, вызванная следующими причинами: печеночная кома, синдром Рея, менингит, кровоизлияние в мозг, дефекты цикла мочевины, недостаточность орнитинтранскарбамилазы, карбамоилфосфатсинтазы, цитруллинемия, аргининсукциновая ацидурия, гиперорнитинемия,гипераммониемия, гомоцитруллинемия (HHH syndrome), в некоторых случаях гиперлизиемия 1 типа, лизинурическая белковая непереносимость. Моча – Болезнь Хартнупа, генерализованная аминоацидурия, ревматоидый артрит.

β-аланин – является единственной бета-аминокислотой, образуется из дигидроурацила и карнозина.

Повышение концентрации: гипер-β -аланинемия.

Таурин — способствуют эмульгированию жиров в кишечнике, обладает противосудорожной активностью, оказывает кардиотропное действие, улучшает энергетические процессы, стимулирует репаративные процессы при дистрофических заболеваниях и процессах, сопровождающихся нарушением метаболизма тканей глаза, способствует нормализации функции клеточных мембран и улучшению обменных процессов.

Снижение концентрации таурина: Кровь — Маниакально-депрессивный синдром, депрессивные неврозы

Повышение концентрации таурина: Моча — Сепсис, гипер-β-аланинемия, недостаточность фолиевой кислоты (В9), первый триместр беременности, ожоги.

Гистидин входит в состав активных центров множества ферментов, является предшественником в био-синтезе гистамина. Способствует росту и восстановлению тканей. В большом количестве содержится в гемоглобине; используется при лечении ревматоидных артритов, аллергий, язв и анемии. Недостаток гистидина может вызвать ослабление слуха.

Снижение концентрации гистидина: Ревматоидный артрит

Повышение концентрации гистидина: Гистидинемия, беременность, болезнь Хартнупа, генерализован-

Треонин — это незаменимая аминокислота, способствующая поддержанию нормального белкового обмена в организме, важна для синтеза коллагена и эластина, помогает работе печени, участвует в обмене жиров, стимулирует иммунитет.

Снижение концентрации треонина: Хроническая почечная недостаточность, ревматоидный артрит.

Повышение концентрации треонина: Болезнь Хартнупа, беременность, ожоги, гепатолентикулярная дегенерация.

1-метилгистидин основное производное ансерина. Фермент карнозиназа превращает ансерин в β-аланин и 1-метилгистидин. Высокие уровни 1-метилгистидина, как правило, подавляют фермент карнозиназу и увеличивают концентрации ансерина. Уменьшение активности карнозиназ также встречается у пациентов с болезнью Паркинсона, рассеянным склерозом и у пациентов после инсульта. Дефицит витамина Е может привести к 1–метилгистидинурии, вследствие увеличения окислительных эффектов в скелетных мышцах.

Повышение концентрации: хроническая почечная недостаточность, мясная диета.

3-метигистидин является показателем уровня распада белков в мышцах.

Снижение концентрации: голодание, диета.

Повышение концентрации: хроническая почечная недостаточность, ожоги, множественные травмы.

Гамма-аминомасляная кислота — содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге. Лиганды рецепторов ГАМК рассматриваются, как потенциальные средства для лечения различных расстройств психики и центральной нервной системы, к которым относятся болезнь Паркинсона и Альцгеймера, расстройства сна (бессонница, нарколепсия), эпилепсия. Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение.

Бета (β) — аминоизомасляная кислота — небелковая аминокислота является продуктом катаболизма тимина и валина. Повышение концентрации: различные типы новообразований, болезни, сопровождающиеся усиленным разрушением нуклеиновых кислот в тканях, синдром Дауна, белковое недоедание, гипер-бета-аланинемия, бета-аминоизомасляная ацидурия, отравление свинцом.

Альфа (α) -аминомасляная кислота является основным промежуточным продуктом биосинтеза офталь-мовой кислоты. Повышение концентрации: неспецифические аминоацидурии, голодание.

Пролин — одна из двадцати протеиногенных аминокислот, входит в состав всех белков всех организмов.

Снижение концентрации: Хорея Хантингтона, ожоги

Повышение концентрации: Кровь – гиперпролинемия тип 1 (недостаточность пролиноксидазы), гиперпролинемия тип 2 (недостаточность пирролин-5-карбоксилат дегидрогеназы), недостаточность белкового питания у новорожденных. Моча – гиперпролиемия 1 и 2 типов, синдром Джозефа (тяжелая пролинурия), карциноидный синдром, иминоглицинурия, болезнь Вильсона-Коновалова (гепатолентикулярная дегенерация).

Цистатионин — cepоcoдержащая аминокислота, участвует в биосинтезе цистеина изметионина и серина.

Лизин – это незаменимая аминокислота, входящая в состав практически любых белков, необходима для роста, восстановления тканей, производства антител, гормонов, ферментов, альбуминов, оказывает противовирусное действие, поддерживает уровень энергии, участвует в формировании коллагена и восстановлении тканей, улучшает усвоение кальция из крови и транспорт его в костную ткань.

Снижение концентрации: карциноидный синдром, лизинурическая протеиноваянепереносимость.

Повышение концентраций: Кровь – гиперлизинемия, глутаровая ацидемия тип 2. Моча – цистинурия, гиперлизинемия, первый триместр беременности, ожоги.

Цистин в организме является важной частью белков, таких как иммуноглобулины, инсулин и соматостатин, укрепляет соединительную ткань. Снижение концентрации цистина: белковое голодание, ожоги.Повышение концентраций цистина: Кровь — сепсис, хроническая почечная недостаточность. Моча – Цистиноз, цистинурия, цистинлизинурия, первый триместр беременности.

Цистеиновая кислота — серосодержащая аминокислота. Промежуточный продукт обмена цистеина и цистина. Принимает участие в реакциях переаминирования, является одним из предшественников таурина.

В организме человека синтезируется лишь половина необходимых аминокислот, а остальные амино-кислоты – незаменимые (аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, трип-тофан, фенилаланин) — должны поступать с пищей. Исключение из рациона какой-либо незаменимой аминокислоты из рациона ведет к развитию отрицательного азотистого баланса, клинически проявляющегося нарушением функций нервной системы, мышечной слабостью и другими признаками патологии обмена веществ и энергии.

Показания к назначению анализа:

  • Диагностика заболеваний, связанных с нарушением аминокислотного обмена.
  • Оценка состояния организма человека.

Необходимо соблюдать общие правила подготовки. Кровь на исследование необходимо сдавать натощак. Между последним приёмом пищи и взятием крови должно пройти не менее 8 часов.

Мочу для исследования собрать среднюю утреннюю порцию.

источник

Аминокислоты – важные органические вещества, в структуре которых находятся карбоксильная и аминная группы. Комплексное исследование, определяющее содержание аминокислот и их производных в крови позволяет выявить врождённые и приобретенные нарушения аминокислотного обмена.

  1. Аланин (ALA)
  2. Аргинин (ARG)
  3. Аспарагиновая кислота (ASP)
  4. Цитруллин (CIT)
  5. Глутаминовая кислота (GLU)
  6. Глицин (GLY)
  7. Метионин (MET)
  8. Орнитин (ORN)
  9. Фенилаланин (PHE)
  10. Тирозин (TYR)
  11. Валин (VAL)
  12. Лейцин (LEU)
  13. Изолейцин (ILEU)
  14. Гидроксипролин (HPRO)
  15. Серин (SER)
  16. Аспарагин (ASN)
  17. Alpha-аминоадипиновая к-та (AAA)
  18. Глутамин (GLN)
  19. Beta-аланин (BALA)
  20. Таурин (TAU)
  21. Гистидин (HIS)
  22. Треонин (THRE)
  23. 1-метилгистидин (1MHIS)
  24. 3-метилгистидин (3MHIS)
  25. Gamma-аминомасляная к-та (GABA)
  26. Beta-аминоизомасляная к-та (BAIBA)
  27. Alpha-аминомасляная к-та (AABA)
  28. Пролин (PRO)
  29. Цистатионин (CYST)
  30. Лизин (LYS)
  31. Цистин (CYS)
  32. Цистеиновая кислота (CYSA)

Скрининг аминоацидопатий; аминокислотный профиль.

Синонимы английские

Amino Acids Profile, Plasma.

Метод исследования

Высокоэффективная жидкостная хроматография.

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

  • Исключить из рациона алкоголь в течение 24 часов до исследования.
  • Не принимать пищу в течение 8 часов до исследования, можно пить чистую негазированную воду.
  • Полностью исключить прием лекарственных препаратов в течение 24 часов перед исследованием (по согласованию с врачом).
  • Исключить физическое и эмоциональное перенапряжение в течение 30 минут до исследования.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Аминокислоты – органические вещества, содержащие карбоксильные и аминные группы. Известно около 100 аминокислот, но в синтезе белка участвуют только 20. Данные аминокислоты называются «протеиногенными» (стандартными) и по возможности синтеза в организме классифицируются на заменимые и незаменимые. К незаменимым аминокислотам относятся аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин. Заменимыми аминокислотами являются аланин, аспарагин, аспартат, глицин, глутамат, глутамин, пролин, серин, тирозин, цистеин. Протеиногенные и нестандартные аминокислоты, их метаболиты участвуют в различных обменных процессах в организме. Дефект ферментов на различных этапах трансформации веществ может приводить к накоплению аминокислот и их продуктов превращения, оказывать отрицательное влияние на состояние организма.

Нарушения метаболизма аминокислот могут быть первичными (врождёнными) или вторичными (приобретенными). Первичные аминоацидопатии обычно наследуются аутосомно-рецессивно или сцеплено с Х-хромосомой и проявляются в раннем детском возрасте. Заболевания развиваются вследствие генетически обусловленного дефицита ферментов и/или транспортных белков, связанных с метаболизмом определенных аминокислот. В литературе описано более 30 вариантов аминоацидопатий. Клинические проявления могут варьироваться от легких доброкачественных нарушений до тяжелого метаболического ацидоза или алкалоза, рвоты, задержки умственного развития и роста, летаргии, комы, синдрома внезапной смерти новорождённых, остеомаляции и остеопороза. Вторичные нарушения обмена аминокислот могут быть связаны с заболеваниями печени, желудочно-кишечного тракта (например, язвенный колит, болезнь Крона), почек (например, синдром Фанкони), недостаточным или неадекватным питанием, новообразованиями. Ранняя диагностика и своевременное лечение позволяют предупредить развитие и прогрессирование симптомов заболевания.

Данное исследование позволяет комплексно определить концентрацию в крови стандартных и непротеиногенных аминокислот, их производных и оценить состояние аминокислотного обмена.

Аланин (ALA) способен синтезироваться в организме человека из других аминокислот. Он участвует в процессе глюконеогенеза в печени. По некоторым данным, повышенное содержание аланина в крови ассоциировано с повышением артериального давления, холестерина, индекса массы тела, АЛТ.

Аргинин (ARG) в зависимости от возраста и функционального состояния организма относится к полузаменимым аминокислотам. В связи с незрелостью ферментных систем недоношенные дети не способны к его образованию, поэтому нуждаются во внешнем источнике поступления данного вещества. Повышение потребности в аргинине возникает при стрессе, оперативном лечении, травмах. Данная аминокислота участвует в делении клеток, заживлении ран, высвобождении гормонов, образовании окиси азота и мочевины.

Аспарагиновая кислота (ASP) может образовываться из цитруллина и орнитина и являться предшественником некоторых других аминокислот. Аспарагиновая кислота и аспарагин (ASN) участвуют в глюконеогенезе, синтезе пуриновых основ, азотистом обмене, функции АТФ-синтетазы. В нервной системе аспарагин играет роль нейротрансмиттера.

Цитруллин (CIT) может образовываться из орнитина или аргинина и является важным компонентом цикла образования мочевины в печени (орнитинового цикла). Цитруллин входит в состав филаггрина, гистонов и играет роль в аутоиммунном воспалении при ревматоидном артрите.

Глутаминовая кислота (GLU) – заменимая аминокислота, которая имеет большое значение в азотистом обмене. Свободная глутаминовая кислота используется в пищевой промышленности в качестве усилителя вкуса. Глутаминовая кислота и глутамат являются важными возбуждающими нейротрансмиттерами в нервной системе. Снижение высвобождения глутамата отмечается при классической фенилкетонурии.

Глицин (GLY) является заменимой аминокислотой, которая может образовываться из серина под действием пиридоксина (витамина В6). Он принимает участие в синтезе белков, порфиринов, пуринов и является тормозным медиатором в центральной нервной системе.

Метионин (MET) – незаменимая аминокислота, максимальное содержание которой определяется в яйцах, кунжуте, злаках, мясе, рыбе. Из него может образовываться гомоцистеин. Дефицит метионина приводит к развитию стеатогепатита, анемии.

Орнитин (ORN) не кодируется человеческим ДНК и не включается в синтез белка. Данная аминокислота образуется из аргинина и играет ключевую роль в синтезе мочевины и выведении аммиака из организма. Содержащие орнитин препараты применяются для лечения цирроза, астенического синдрома.

Читайте также:  Брали бак анализы у детей

Фенилаланин (PHE) – незаменимая аминокислота, которая является предшественником тирозина, катехоламинов, меланина. Генетический дефект метаболизма фенилаланина приводит к накоплению аминокислоты и ее токсических продуктов и развитию аминоацидопатии – фенилкетонурии. Заболевание ассоциировано с нарушениями умственного и физического развития, судорогами.

Тирозин (TYR) поступает в организм с пищей или синтезируется из фенилаланина. Является предшественником нейротрансмиттеров (дофамина, норадреналина, адреналина) и пигмента меланина. При генетических нарушениях метаболизма тирозина возникает тирозинемия, которая сопровождается повреждением печени, почек и периферической нейропатией. Важное дифференциально диагностическое значение имеет отсутствие повышения уровня тирозина в крови при фенилкетонурии, в отличие от некоторых других патологических состояний.

Валин (VAL), лейцин (LEU) и изолейцин (ILEU) – незаменимые аминокислоты, которые являются важными источниками энергии в мышечных клетках. При ферментопатиях, которые нарушают их метаболизм и приводят к накоплению данных аминокислот (особенно лейцина), возникает «болезнь кленового сиропа» (лейциноз). Патогномоничным признаком данного заболевания служит сладкий запах мочи, который напоминает кленовый сироп. Симптомы аминоацидопатии возникают с раннего возраста и включают рвоту, обезвоживание, летаргию, гипотонию, гипогликемию, судороги и опистотонус, кетоацидоз и патологию центральной нервной системы. Заболевание нередко заканчивается летально.

Гидроксипролин (HPRO) образовывается при гидроксилировании пролина под воздействием витамина С. Данная аминокислота обеспечивает стабильность коллагена и является главной его составляющей. При дефиците витамина С нарушается синтез гидроксипролина, снижается стабильность коллагена и возникает повреждение слизистых оболочек – симптомы цинги.

Серин (SER) входит в состав практически всех белков и участвует в формировании активных центров многих ферментов организма (например, трипсина, эстераз) и синтезе других заменимых аминоксилот.

Глутамин (GLN) является частично заменимой аминокислотой. Потребность в нем значительно возрастает при травмах, некоторых желудочно-кишечных заболеваниях, интенсивных физических нагрузках. Он принимает участие в азотистом обмене, синтезе пуринов, регуляции кислотно-щелочного баланса, выполняет нейромедиаторную функцию. Данная аминокислота ускоряет процессы заживления и восстановления после травм и операций.

Гамма-аминомасляная кислота (GABA) синтезируется из глутамина и является важнейшим тормозным нейромедиатором. Препараты ГАМК используются для лечения различных неврологических нарушений.

Бета-аминоизомасляная кислота (BAIBA) является продуктом метаболизма тимина и валина. Повышение ее уровня в крови наблюдается при дефиците бета-аминоизобутират-пируват-аминотрансферазы, голодании, отравлении свинцом, лучевой болезни и некоторых новообразованиях.

Альфа-аминомасляная кислота (AABA) – предшественник синтеза офтальмовой кислоты, являющейся аналогом глутатиона в хрусталике глаза.

Бета-аланин (BALA), в отличие от альфа-аланина, не участвует в синтезе белков в организме. Данная аминокислота входит в состав карнозина, который в качестве буферной системы препятствует накоплению кислот в мышцах во время физических нагрузок, уменьшает мышечную боль после тренировок, ускоряет процессы восстановления после травм.

Гистидин (HIS) – незаменимая аминокислота, которая является предшественником гистамина, входит в состав активных центров многих ферментов, содержится в гемоглобине, способствует восстановлению тканей. При редком генетическом дефекте гистидазы возникает гистидинемия, которая может проявиться гиперактивностью, задержкой развития, трудностями при обучении и в некоторых случаях умственной отсталостью.

Треонин (THRE) – эссенциальная аминокислота, необходимая для синтеза белка и образования других аминокислот.

1-метилгистидин (1MHIS) является производным ансерина. Концентрация 1-метилгистидина в крови и моче коррелирует с употреблением мясной пищи и возрастает при дефиците витамина Е. Повышение уровня данного метаболита возникает при дефиците карозиназы в крови и наблюдается при болезни Паркинсона, рассеянном склерозе.

3-метилгистидин (3MHIS) является продуктом метаболизма актина и миозина и отражает уровень распада белков в мышечной ткани.

Пролин (PRO) синтезируется в организме из глутамата. Гиперпролинемия вследствие генетического дефекта ферментов или на фоне неадекватного питания, повышенного содержания молочной кислоты в крови, заболеваний печени может приводить к судорогам, умственной усталости и другой неврологической патологии.

Лизин (LYS) – эссенциальная аминокислота, которая участвует в формировании коллагена и восстановлении тканей, функции иммунной системы, синтезе белков, ферментов и гормонов. Недостаточность глицина в организме приводит к астении, снижении памяти и нарушению репродуктивных функций.

Альфа-аминоадипиновая кислота (AAA) – промежуточный продукт метаболизма лизина.

Цистеин (CYS) является незаменимой аминокислотой для детей, пожилых и людей с нарушением всасывания питательных веществ. У здоровых людей данная аминокислота синтезируется из метионина. Цистеин входит в состав кератинов волос, ногтей, участвует в формировании коллагена, является антиоксидантом, предшественником глутатиона и защищает печень от повреждающего действия метаболитов алкоголя. Цистин является димерной молекулой цистеина. При генетическом дефекте транспорта цистина в почечных канальцах и стенках кишечника возникает цистинурия, которая приводит к формированию камней в почках, мочеточниках и мочевом пузыре.

Цистатионин (CYST) – промежуточный продукт обмена цистеина при его синтезе из гомоцистеина. При наследственном дефиците фермента цистатионазы или приобретенном гиповитаминозе В6 уровень цистатионина в крови и моче повышается. Данное состояние описывается как цистатионинурия, которая протекает доброкачественно без явных патологических признаков, однако в редких случаях может проявляться дефицитом интеллекта.

Цистеиновая кислота (CYSA) образовывается при окислении цистеина и является предшественником таурина.

Таурин (TAU) синтезируется из цистеина и, в отличие от аминокислот, является сульфокислотой, содержащей сульфогруппу вместо карбоксильной группы. Таурин входит в состав желчи, участвует в эмульгации жиров, является тормозным нейромедиатором, улучшает репаративные и энергетические процессы, обладает кардиотоническими и гипотензивными свойствами.

В спортивном питании аминокислоты и протеины нашли широкое распространение и используются для увеличения мышечной массы. У вегетарианцев же в связи с отсутствием в рационе животного белка может возникнуть дефицит некоторых незаменимых аминокислот. Данное исследование позволяет оценить адекватность таких видов питания и при необходимости провести их коррекцию.

Для чего используется исследование?

  • Диагностика наследственных и приобретенных заболеваний, связанных с нарушением метаболизма аминокислот;
  • дифференциальная диагностика причин нарушений азотистого обмена, выведения аммиака из организма;
  • мониторинг соблюдения диетотерапии и эффективности лечения;
  • оценка пищевого статуса и модификация питания.

Когда назначается исследование?

  • При подозрении на нарушение метаболизма аминокислот у детей, в т. ч. новорождённых (рвота, диарея, метаболический ацидоз, особый запах и окраска пеленок, нарушение умственного развития);
  • при гипераммониемии (увеличении уровня аммиака в крови);
  • при отягощенном семейном анамнезе, наличии врождённых аминоацидопатий у родственников;
  • при контроле за соблюдением диетических рекомендаций, эффективности лечения;
  • при обследовании спортсменов (например, бодибилдеров), употребляющих спортивное питание (протеины и аминокислоты);
  • при обследовании вегетарианцев.

источник

Основу протеинового белка составляют аминокислоты — органические соединения в организме человека. Для выявления проблем с функционированием печени и почек, необходимо провести анализ крови на аминокислоты, так как нарушенный аминокислотный обмен приводит к заболеваниям этих органов. Степень усвоения и метаболический дисбаланс устанавливается путем проведения анализа 20 аминокислот.

Следующее сочетание симптомов у детей и взрослых, являются признаками нарушения аминокислотного обмена:

  • умственная отсталость;
  • ухудшение зрения;
  • поражения кожи различного вида;
  • специфический запах и цвет мочи.
  • периодически .

Некоторые аминокислоты синтезируются в организме, а некоторые поставляются с потреблением пищи.

Аланин . С помощью аминокислоты аланина центральная нервная система и головной мозг получают энергию. Аланин участвует в метаболизме органических кислот и сахаров, а также вырабатывает , что способствует укреплению иммунитета. Кроме того, из данного типа аминокислот может вырабатываться глюкоза, то есть регуляция проходит с участием аланина.

Аргинин. Это заменимая аминокислота, с помощью которой из организма человека выводится конечный азот.

Аспаргиновая кислота. Содержится в белковом составе. При увеличении ее концентрации в моче, возникает дикарбоксильная аминоацидурия.

Глутаминовая кислота . Глутаминовая аминокислота выполняет в организме множество функций, среди которых участие в обмене белками и углеводами, стимулирование окислительных процессов, повышение устойчивости организма к гипоксии (), нормализация обмена веществ. Она способствует выведению токсинов и аммиака из организма.

Глицин. В ЦНС протекают процессы возбуждения и торможения. За нормальное функционирование этих процессов отвечает глицин. Он способствует улучшению умственной работоспособности, а также помогает человеку справиться со стрессом.

Треонин. Треонин способствует стимуляции иммунной системы, улучшает энергообсеспечение. К его функциям относится обезвреживание аммиака.

Метионин. Дезинтоксикация ксенобиотиков протекает с помощью метионина. Гормоны, витамины, белки и активируются благодаря метионину.

Тирозин. Синтез тирозина может протекать в организме. Он является незаменимой аминокислотой. Повышенное содержание тирозина в крови говорит о возможном сепсисе.

Валин. Синтез роста тканей тела невозможен без валина. Он способствует стимуляции координации, улучшает умственную деятельность и активность. Поврежденные ткани восстанавливаются благодаря валину, также с его участием протекает метаболизм в мышцах.

Фенилаланин . Аминокислота фенилаланина способствует и способности к обучению. Фенилаланин способен уменьшить боль и подавить аппетит. Он также оказывает влияние на настроение.

Лейцин и изолейцин. Лейцин и изолейцин это аминоксилоты, действуя вместе, служат источниками энергии. Еще одной их функцией является защита мышечных тканей. На психическую устойчивость и физическую выносливость влияет изолицейн. Без него невозможна выработка . Он также осуществляет регуляцию уровня сахара в крови и занимает важное место при проблемах с психикой и физических нагрузках. Лейцин отвечает за восстановление кожи, мышц, костей, так как вырабатывает гормон роста.

Отклонения от нормы анализа крови на аминокислоты являются поводом для беспокойства.

По мнению врачей, следующим группам людей необходимо делать анализ крови на аминокислоты (32 показателя):

  • младенцы;
  • вегетарианцы и люди, придерживающиеся диет;
  • спортсмены и люди, испытывающие повышенную физическую нагрузку.

Анализ крови на аминокислоты можно сдать во многих клиниках. Перед сдачей аминокислотного анализа нельзя принимать пищу в течение 4 часов. проводится из пятки. Возможно образование гематомы. Срок выполнения анализа составляет около 16 дней.

Анализ крови на аминокислоты для детей имеет большое значение, так как помогает своевременно выявить проблемы со здоровьем и приступить к лечению.

Анализ крови на аминокислоты и ацилкарнитины проводится с целью выявления наследственных болезней. Чем раньше обнаружится патология, тем больше вероятность предотвращения тяжелых заболеваний.

Основной частью протеинов (белков) являются органические соединения, называемые аминокислотами. Нарушение их обмена может привести ко многим заболеваниям печени и почек. Для определения степени усвоения пищевого белка и лежащего в основе многих хронических нарушений метаболического дисбаланса делают анализ крови . Всего есть 20 аминокислот, и клиническими признаками нарушения их обмена есть сочетание умственной отсталости с нарушением зрения у детей, плюс периодически возникающие судороги, различные поражения кожи, изменения запаха и цвета мочи.

Сейчас известно более 70 врождённых нарушений обмена и синтеза аминокислот, и хоть они встречаются довольно редко, но их суммарная частота значительно выше.

Некоторые аминокислоты не синтезируются в организме, поэтому их необходимо вводить с пищей, некоторые – образовываются эндогенно.

Аланин является важным источником энергии для ЦНС и головного мозга; берёт активное участие в метаболизме органических кислот и сахаров; укрепляет иммунитет путём выработки антител. Также может быть сырьём для вырабатывания глюкозы в крови, поэтому аланин — регулятор сахара в крови. При повышенной концентрации может быть подагра, белковая непереносимость, болезнь Кушинга. При чересчур низком уровне возможна кетотическая гипогликемия и хронические болезни почек.

Участвует в выведении из организма конечного азота, и является условно заменимой аминокислотой. При слишком высоком уровне может быть гиперинсулинемия 2 типа. При пониженном — ревматоидный артрит, хроническая почечная недостаточность.

Она есть в составе белков. При повышении её концентрации в моче возможна дикарбоксильная аминоацидурия.

Синтезируется в организме и поступает с пищей; берёт участие в углеводном и белковом обмене, повышает устойчивость организма к гипоксии, стимулирует окислительные процессы, приводит в норму обмен веществ, оказывает дезинтоксикационное воздействие, способствует выведению и обезвреживанию аммиака, и многое другое. При повышенном уровне глутаминовой аминокислоты может быть рак поджелудочной, ревматоидный артрит, подагра. При пониженном уровне в анализе крови — хроническая почечная недостаточность.

Это регулятор обмена веществ, который обладает антистрессовым эффектом, нормализует процессы торможения и возбуждения в ЦНС, повышает умственную работоспособность. Если анализ показывает слишком большую концентрацию в крови, то это может указывать на: гипераммониемию 1 типа, гипогликемию, тяжелые ожоги, голодание, хроническую почечную недостаточность. Пониженный уровень глицина сигнализирует о подагре или сахарном диабете.

Обезвреживает аммиак, повышает энергообеспечение, стимулирует иммунную систему. При повышенном уровне могут быть нарушение толерантности к белку, болезни печени, дефицит пируват-карбоксилазы, интоксикация аммонием.

Необходим для дезинтоксикации ксенобиотиков; активирует действие гормонов, витаминов, белков, ферментов; берёт участие в обмене серосодержащих аминокислот. При повышенной концентрации могут быть тяжёлые заболевания печени, гомоцистинурия, карциноидный синдром. Анализ показал пониженную концентрацию аминокислоты — в наличии гомоцистинурия, нарушение белкового питания.

Одна из незаменимых аминокислот: может синтезироваться самим организмом. Когда анализ показывает повышенную концентрацию — возможен сепсис. Пониженная — сигнализирует о микседеме, ревматоидном артрите, гипотиреоидизме, поликистозе почек, гипотермии, хронической почечной недостаточности, фенилкетонурии, карциноидном синдроме.

Также незаменимая аминокислота, которая является одним из основных компонентов синтеза и роста тканей тела, стимулирует координацию, активность и умственную деятельность. Валин необходим для восстановления повреждённых тканей и метаболизма в мышцах. При недостатке данной аминокислоты нарушается координация, повышается чувствительность кожи к раздражителям. При повышенном уровне возможно острое голодание, карциноидный синдром, недостаточное белковое питание. Если анализ крови показывает пониженный уровень — печёночная энцефалопатия.

Эта аминокислота уменьшает боль, улучшает память и способность к обучению, влияет на настроение, подавляет аппетит. Повышение концентраций сигнализирует от фенилкетонурии, преходящей тирозинемии новорожденных, сепсисе, вирусном гепатите, печёночной энцефалопатии, гиперфенилаланинемии.

Также принадлежат к перечню незаменимых аминокислот, и действуют вместе. Являются источниками энергии и защищают мышечные ткани. Изолейцин определяет психическую и физическую выносливость, и регулирует процессы энергообеспечения организма; необходим для выработки гемоглобина, регулирует в крови уровень сахара. Крайне важен при психических заболеваниях, проблемах с психикой, и при физических нагрузках. Лейцин способствует восстановлению кожи, мышц, костей, так как стимулирует гормон роста.

Решили завтра или послезавтра пойти сдавать кровь из вены, и давно нам надо на аминокислоты сдать анализ

И так давно, что я забыла всё: и что именно (вроде моча+кровь) нужно сдавать и где сдавать. кровь брать будем на Дундича, а потом папа повезет..

Напомните, пожалуйста непутевой:091:

Мы сдавали на Энгеьса, тел. 294-45-50, 971-72-31, цены не подскажу делали давно.

Ярославский пр-т, 76/7
296-54-62
971-72-31
Я бы не сказала, что там оч.дорого:005:

мы года три назад сдавали из вены. Стоимость в зависимости от кол-ва а\к если не ощибаюсь. По-моему, макс 26.

Платили порядка 2000 с чем то.А за мочу суточную на а\к платили по-меньше.

Врач нам советовала и так и так сдать — так как там по этим анализам что то можно сопоставить. У нас был интерес. момент — в крови был таурин оч. повышен, а в моче — нет. (или наоборот). Вра чсказала, что это печень не прав. работает. И прописала период. пить метионин.

Вы меня извините и кидайте помидорами-заслужила-скептик я, но совсем не обязательно платить 5 тонн, что бы узнать, что печень плохо работает, она у наших детей у всех не ахти.
Что бы назначать метионин, нужно знать не течет ли гомоцистеин — вот он зверь и враг нашего организма. Это очень важно.

Народ, просветите серого человека, каким врачам нужны эти анализы?

Где будете на аминокислоты сдавать?
По моим изысканиям в Питере нет мест, которые делают анализ достоверно, по которым можно поставить достоверный диагноз или оценить состояния рябы. Если на Ярославском проспекте(год назад тыщь пять -моча+кровь -я попалась-зы), то когда моего ребенка смотрел германский доктор специализирующийся на болезнях обмена веществ, аминокислот в частности, то он сказал, что эти анализы не правильные, показания аминокислот крови такими быть не могут никогда ни у больного, ни у здорового. Ими делать нечего. Мы пересдавали в Москве, несколько раз(2000рублей).

Да, забыла. Важно наверно, но не актуально. У нас в МГЦ(Тобольская 5) купили тандем (анализы на аминокислоты), к нему прилагался реагент на 200 тестов. Лимит исчерпали еще в мае. Купить реагент не могут, ждут денег. Поеду завтра туда и узнаю, может закупили. Хотя с тандемом нужно уметь работать и оценивать результаты, а для этого нужен опыт работы с ним. Я в абсолютной достоверность результатов сомневаюсь.
не знаю где сдавать! в том то и дело! папе нашему все равно куда кровь везти

Расскажите в какую пробирку сдавать, сколько? про мочу — ее весь день надо в 1 баночку сливать или как? какую надо?

5 тыс так 5, лишь бы смысл был

эээ, немного глупый вопрос — мы на аминокислоты и микроэл-ты сдавали — кровь из вены и волосы. а мочу с нас никто не спрашивал. это все было на ярославском. мы что то пропустили?

Народ, просветите серого человека, каким врачам нужны эти анализы?
Кто унас обменов веществ занимается или это для чего-то другого нужно.
Какие анализы? Если на аминокислоты крови, мочи — генетикам, педиатрам, гастроэнтерологам, диетологам, эндокринологам, биохимикам наконец, я даже гомеопата подключила.
А вот кто занимается?Да, я все пятки стерла:015:. Единого доктора ПОКА нет:016:. От все понемногу, самоизучение. :010:

Эээ, немного глупый вопрос — мы на аминокислоты и микроэл-ты сдавали — кровь из вены и волосы. а мочу с нас никто не спрашивал. это все было на ярославском. мы что то пропустили?
а в москве хоть нормально проверяют?
вот видите, а для полной картины метаболизма нужна кровь и моча, т.к. кровь-это метаболизм на одном этапе, моча-на выходе.

Понимаете, анализ на аминокислоты. крови — это не один единственный тест по которому можно судить есть ли генетическое заболевание или нет. Да, он выявляет несколько заболеваний обмена веществ, но аминокислот и чего-то там. короткоцепочных. А есть еще углеводный, липидный обмен и прочее. Их тысячи(анализов) и ни один не дает 100% ответ. Но по этому анализу можно например посмотреть как усваивается белки, какие аминокислоты немного повышены, нехватка- т.е. как я понимаю это и есть вторичное нарушение обмена веществ, так сказать дисбаланс, который можно корректировать. Генетика это когда превышение в 500раз. У нас в частности повысились несколько аминокисло(незначительно), звоню в Москву умному доктору, спрашиваю как и чего делать _ мне сказали, что мол у УО детей такое бывает.:(. Хотя заграницей наоборот считают, что УО бывает в следствии НОВ.

Да в том то и дело! Смысл? Я и хочу сказать, что я этому заведению не доверяю. Абсолютно.
Если исключить генетическое заболевание, то вам точно не на Ярославский?Вы ведь туда хотите?? Все закончится Москвой, в может и заграницей.
Если оценить метаболизм в целом, то маловероятно, что в результат будет правильным.
И меня даже не интересует кто вас туда отправляет, т.к. либо он не совсем понимает, что делает либо от безвыходности т.к. в городе лабораторий нет:(, или имеет другой интерес.:(:001:
нас направляла к московской тетке Гладкова (генетик из МГЦ), потом не помню куда Кадурина.

нас направляла к московской тетке Гладкова (генетик из МГЦ), потом не помню куда Кадурина.

Мы не растем:(нам надо понять почему и что делать

Расскажите кому звонить — писать и спрашивать! ПОЖАЛУЙСТА! можно в личку, если тут не удобно

Нам 3г и 2 мес, рост 82 см намерила врач 2 дня назад:(раньше ИФР1 был в норме, говорили, что и гормон роста должен быть в норме, по косвенным признакам — тоже должен быть в норме, что сейчас с ИФР1 — пока не знаю — хочу сразу за 1 раз взять кровь на все, что можно.
Теперь нам светят пробы на гормон роста в стационаре, я не хочу карапуза мучить, он у нас как цветок: маленький, нежный, впечатлительный, вен нет..

Говорят — генетика, а ее не лечат, если что-то с обменом веществ — может недостающие вещества подавать какие-то..

Нас тоже какой-то немец смотрел, в МГЦ приезжал.. сказал — приезжайте к нам, сделаем вам анализы.. но никакой конкретики.. а денег то лишних нет просто так прокатиться и сдать кучу анализов.. может можно послать кровь, может еще что-то — ничего не понятно:((

Эээх. чувствую я — опять начинаются врачи и опять у меня паника:(как хорошо без них, ребенок то золотой, и про ангела на Петропавловке расскажет и экскаватор нарисует

Да, у меня ряба тоже маленький, худенький и слабенький-сегодня накрылась консультация в МГЦ-болеем, кашляем — дорога 4часа+прием =не выдержит:(:(:(

Генетика бывает разной.
Если уж Гладкова отправляет в Москву, то и сомневаться не нужно. Тут ловить нечего.
В Москве, я сдавала анализ на аминокислоты в 2-х местах. РАМН МГЦ Каширская 1
и Институт педиатрии и хирургии (отделение наследственных болезней). Я бы сделала так: позвонила и уточнила к какому доктору вас направляют. Далее связалась с ним по телефону и спросила бы, какие анализы она хотела бы видеть на первичной консультации (очень любят говорить, что нужно видеть ребенка, а Москва не ближний свет и анализы все равно сдавать придется, по моему мнению консультация должна быть с уже готовыми анализами.). Далее сделать анализы. На аминокислоты просто, кровь на «спец. бумажке» — из пальца. Моча утренняя, в баночку и в термос со льдом. Это все везти в лабораторию. Если некому везти, то можно отправить службой федекс (доставляют в течении суток, но с учетом выходных). Моча как правило, для того, если в крови будет какие-то изменения. Оплата через сбер.банк. Может в вашем случае еще анализы потребуются. Нужно уточнять у доктора, который специализируется на эндокринных заболеваниях.
В МГЦ РАМН делают аминокислоты крови и мочи (стоило 6мес. назад. -2000+2500)
Институт ПиХ только кровь, мочу отправляют в институт Белозерского(1800+1000).
А волосы тут не нужны.

Читайте также:  Болезни кожи у детей анализ

Вот сайт МГЦ РАМН (есть прайс) http://www.labnbo.narod.ru/index.html
Вот сайт НИИ Педиатрии и Хирургии http://www.pedklin.ru/ (да, тут только анализы придется везти, у них нет оплаты через Сбанк и никто там нас не ждет, самим бегать и ловить) и соответственно в Белозерского везти самим, а оплата в ИПиХ.

спасибо!! запишу все себе:flower::flower:

А мне Гладкова давала телефон дамы, которая возит анализы в Москву:008: но было это полтора года назад наверное..

[ 06-225 ] Анализ крови на аминокислоты (32 показателя)

Аминокислоты – важные органические вещества, в структуре которых находятся карбоксильная и аминная группы. Комплексное исследование, определяющее содержание аминокислот и их производных в крови позволяет выявить врождённые и приобретенные нарушения аминокислотного обмена.

  1. Аланин (ALA)
  2. Аргинин (ARG)
  3. Аспарагиновая кислота (ASP)
  4. Цитруллин (CIT)
  5. Глутаминовая кислота (GLU)
  6. Глицин (GLY)
  7. Метионин (MET)
  8. Орнитин (ORN)
  9. Фенилаланин (PHE)
  10. Тирозин (TYR)
  11. Валин (VAL)
  12. Лейцин (LEU)
  13. Изолейцин (ILEU)
  14. Гидроксипролин (HPRO)
  15. Серин (SER)
  16. Аспарагин (ASN)
  17. Глутамин (GLN)
  18. Beta-аланин (BALA)
  19. Таурин (TAU)
  20. Гистидин (HIS)
  21. Треонин (THRE)
  22. 1-метилгистидин (1MHIS)
  23. 3-метилгистидин (3MHIS)
  24. Alpha-аминомасляная к-та (AABA)
  25. Пролин (PRO)
  26. Цистатионин (CYST)
  27. Лизин (LYS)
  28. Цистин (CYS)
  29. Цистеиновая кислота (CYSA)

Скрининг аминоацидопатий; аминокислотный профиль.

Amino Acids Profile, Plasma.

Высокоэффективная жидкостная хроматография.

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

  • Исключить из рациона алкоголь в течение 24 часов до исследования.
  • Не принимать пищу в течение 8 часов до исследования, можно пить чистую негазированную воду.
  • Полностью исключить прием лекарственных препаратов в течение 24 часов перед исследованием (по согласованию с врачом).
  • Исключить физическое и эмоциональное перенапряжение в течение 30 минут до исследования.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Аминокислоты – органические вещества, содержащие карбоксильные и аминные группы. Известно около 100 аминокислот, но в синтезе белка участвуют только 20. Данные аминокислоты называются «протеиногенными» (стандартными) и по возможности синтеза в организме классифицируются на заменимые и незаменимые. К незаменимым аминокислотам относятся аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин. Заменимыми аминокислотами являются аланин, аспарагин, аспартат, глицин, глутамат, глутамин, пролин, серин, тирозин, цистеин. Протеиногенные и нестандартные аминокислоты, их метаболиты участвуют в различных обменных процессах в организме. Дефект ферментов на различных этапах трансформации веществ может приводить к накоплению аминокислот и их продуктов превращения, оказывать отрицательное влияние на состояние организма.

Нарушения метаболизма аминокислот могут быть первичными (врождёнными) или вторичными (приобретенными). Первичные аминоацидопатии обычно наследуются аутосомно-рецессивно или сцеплено с Х-хромосомой и проявляются в раннем детском возрасте. Заболевания развиваются вследствие генетически обусловленного дефицита ферментов и/или транспортных белков, связанных с метаболизмом определенных аминокислот. В литературе описано более 30 вариантов аминоацидопатий. Клинические проявления могут варьироваться от легких доброкачественных нарушений до тяжелого метаболического ацидоза или алкалоза, рвоты, задержки умственного развития и роста, летаргии, комы, синдрома внезапной смерти новорождённых, остеомаляции и остеопороза. Вторичные нарушения обмена аминокислот могут быть связаны с заболеваниями печени, желудочно-кишечного тракта (например, язвенный колит, болезнь Крона), почек (например, синдром Фанкони), недостаточным или неадекватным питанием, новообразованиями. Ранняя диагностика и своевременное лечение позволяют предупредить развитие и прогрессирование симптомов заболевания.

Данное исследование позволяет комплексно определить концентрацию в крови стандартных и непротеиногенных аминокислот, их производных и оценить состояние аминокислотного обмена.

Аланин (ALA ) способен синтезироваться в организме человека из других аминокислот. Он участвует в процессе глюконеогенеза в печени. По некоторым данным, повышенное содержание аланина в крови ассоциировано с повышением артериального давления, индекса массы тела, .

Аргинин (ARG ) в зависимости от возраста и функционального состояния организма относится к полузаменимым аминокислотам. В связи с незрелостью ферментных систем недоношенные дети не способны к его образованию, поэтому нуждаются во внешнем источнике поступления данного вещества. Повышение потребности в аргинине возникает при стрессе, оперативном лечении, травмах. Данная аминокислота участвует в делении клеток, заживлении ран, высвобождении гормонов, образовании окиси азота и мочевины.

Аспарагиновая кислота (ASP ) может образовываться из цитруллина и орнитина и являться предшественником некоторых других аминокислот. Аспарагиновая кислота и аспарагин (ASN) участвуют в глюконеогенезе, синтезе пуриновых основ, азотистом обмене, функции АТФ-синтетазы. В нервной системе аспарагин играет роль нейротрансмиттера.

Цитруллин (CIT ) может образовываться из орнитина или аргинина и является важным компонентом цикла образования мочевины в печени (орнитинового цикла). Цитруллин входит в состав филаггрина, гистонов и играет роль в аутоиммунном воспалении при ревматоидном артрите.

Глутаминовая кислота (GLU ) – заменимая аминокислота, которая имеет большое значение в азотистом обмене. Свободная глутаминовая кислота используется в пищевой промышленности в качестве усилителя вкуса. Глутаминовая кислота и глутамат являются важными возбуждающими нейротрансмиттерами в нервной системе. Снижение высвобождения глутамата отмечается при классической фенилкетонурии.

Глицин (GLY ) является заменимой аминокислотой, которая может образовываться из серина под действием пиридоксина (витамина В6). Он принимает участие в синтезе белков, порфиринов, пуринов и является тормозным медиатором в центральной нервной системе.

Метионин (MET ) – незаменимая аминокислота, максимальное содержание которой определяется в яйцах, кунжуте, злаках, мясе, рыбе. Из него может образовываться гомоцистеин. Дефицит метионина приводит к развитию стеатогепатита, .

Орнитин (ORN ) не кодируется человеческим ДНК и не включается в синтез белка. Данная аминокислота образуется из аргинина и играет ключевую роль в синтезе мочевины и выведении аммиака из организма. Содержащие орнитин препараты применяются для лечения цирроза, астенического синдрома.

Фенилаланин (PHE ) – незаменимая аминокислота, которая является предшественником тирозина, катехоламинов, меланина. Генетический дефект метаболизма фенилаланина приводит к накоплению аминокислоты и ее токсических продуктов и развитию аминоацидопатии – фенилкетонурии. Заболевание ассоциировано с нарушениями умственного и физического развития, судорогами.

Тирозин (TYR) поступает в организм с пищей или синтезируется из фенилаланина. Является предшественником нейротрансмиттеров (дофамина, норадреналина, адреналина) и пигмента меланина. При генетических нарушениях метаболизма тирозина возникает тирозинемия, которая сопровождается повреждением печени, почек и периферической нейропатией. Важное дифференциально диагностическое значение имеет отсутствие повышения уровня тирозина в крови при фенилкетонурии, в отличие от некоторых других патологических состояний.

Валин (VAL), лейцин (LEU) и изолейцин (ILEU) – незаменимые аминокислоты, которые являются важными источниками энергии в мышечных клетках. При ферментопатиях, которые нарушают их метаболизм и приводят к накоплению данных аминокислот (особенно лейцина), возникает «болезнь кленового сиропа» (лейциноз). Патогномоничным признаком данного заболевания служит сладкий запах мочи, который напоминает кленовый сироп. Симптомы аминоацидопатии возникают с раннего возраста и включают рвоту, обезвоживание, летаргию, гипотонию, гипогликемию, судороги и опистотонус, кетоацидоз и патологию центральной нервной системы. Заболевание нередко заканчивается летально.

Гидроксипролин (HPRO) образовывается при гидроксилировании пролина под воздействием витамина С. Данная аминокислота обеспечивает стабильность коллагена и является главной его составляющей. При дефиците витамина С нарушается синтез гидроксипролина, снижается стабильность коллагена и возникает повреждение слизистых оболочек – симптомы цинги.

Серин (SER) входит в состав практически всех белков и участвует в формировании активных центров многих ферментов организма (например, трипсина, эстераз) и синтезе других заменимых аминоксилот.

Глутамин (GLN) является частично заменимой аминокислотой. Потребность в нем значительно возрастает при травмах, некоторых желудочно-кишечных заболеваниях, интенсивных физических нагрузках. Он принимает участие в азотистом обмене, синтезе пуринов, регуляции кислотно-щелочного баланса, выполняет нейромедиаторную функцию. Данная аминокислота ускоряет процессы заживления и восстановления после травм и операций.

Гамма-аминомасляная кислота (GABA) синтезируется из глутамина и является важнейшим тормозным нейромедиатором. Препараты ГАМК используются для лечения различных неврологических нарушений.

Бета-аминоизомасляная кислота (BAIBA) является продуктом метаболизма тимина и валина. Повышение ее уровня в крови наблюдается при дефиците бета-аминоизобутират-пируват-аминотрансферазы, голодании, отравлении свинцом, лучевой болезни и некоторых новообразованиях.

Альфа-аминомасляная кислота (AABA) – предшественник синтеза офтальмовой кислоты, являющейся аналогом глутатиона в хрусталике глаза.

Бета-аланин (BALA), в отличие от альфа-аланина, не участвует в синтезе белков в организме. Данная аминокислота входит в состав карнозина, который в качестве буферной системы препятствует накоплению кислот в мышцах во время физических нагрузок, уменьшает мышечную боль после тренировок, ускоряет процессы восстановления после травм.

Гистидин (HIS) – незаменимая аминокислота, которая является предшественником гистамина, входит в состав активных центров многих ферментов, содержится в гемоглобине, способствует восстановлению тканей. При редком генетическом дефекте гистидазы возникает гистидинемия, которая может проявиться гиперактивностью, задержкой развития, трудностями при обучении и в некоторых случаях умственной отсталостью.

Треонин (THRE) – эссенциальная аминокислота, необходимая для синтеза белка и образования других аминокислот.

1-метилгистидин (1MHIS) является производным ансерина. Концентрация 1-метилгистидина в крови и моче коррелирует с употреблением мясной пищи и возрастает при дефиците . Повышение уровня данного метаболита возникает при дефиците карозиназы в крови и наблюдается при болезни Паркинсона, рассеянном склерозе.

3-метилгистидин (3MHIS) является продуктом метаболизма актина и миозина и отражает уровень распада белков в мышечной ткани.

Пролин (PRO) синтезируется в организме из глутамата. Гиперпролинемия вследствие генетического дефекта ферментов или на фоне неадекватного питания, повышенного содержания молочной кислоты в крови, заболеваний печени может приводить к судорогам, умственной усталости и другой неврологической патологии.

Лизин (LYS) – эссенциальная аминокислота, которая участвует в формировании коллагена и восстановлении тканей, функции иммунной системы, синтезе белков, ферментов и гормонов. Недостаточность глицина в организме приводит к астении, снижении памяти и нарушению репродуктивных функций.

Альфа-аминоадипиновая кислота (AAA) – промежуточный продукт метаболизма лизина.

Цистеин (CYS) является незаменимой аминокислотой для детей, пожилых и людей с нарушением всасывания питательных веществ. У здоровых людей данная аминокислота синтезируется из метионина. Цистеин входит в состав кератинов волос, ногтей, участвует в формировании коллагена, является антиоксидантом, предшественником глутатиона и защищает печень от повреждающего действия метаболитов алкоголя. Цистин является димерной молекулой цистеина. При генетическом дефекте транспорта цистина в почечных канальцах и стенках кишечника возникает цистинурия, которая приводит к формированию камней в почках, мочеточниках и мочевом пузыре.

Цистатионин (CYST) – промежуточный продукт обмена цистеина при его синтезе из гомоцистеина. При наследственном дефиците фермента цистатионазы или приобретенном гиповитаминозе В 6 уровень цистатионина в крови и моче повышается. Данное состояние описывается как цистатионинурия, которая протекает доброкачественно без явных патологических признаков, однако в редких случаях может проявляться дефицитом интеллекта.

Цистеиновая кислота (CYSA) образовывается при окислении цистеина и является предшественником таурина.

Таурин (TAU) синтезируется из цистеина и, в отличие от аминокислот, является сульфокислотой, содержащей сульфогруппу вместо карбоксильной группы. Таурин входит в состав желчи, участвует в эмульгации жиров, является тормозным нейромедиатором, улучшает репаративные и энергетические процессы, обладает кардиотоническими и гипотензивными свойствами.

В спортивном питании аминокислоты и протеины нашли широкое распространение и используются для увеличения мышечной массы. У вегетарианцев же в связи с отсутствием в рационе животного белка может возникнуть дефицит некоторых незаменимых аминокислот. Данное исследование позволяет оценить адекватность таких видов питания и при необходимости провести их коррекцию.

Для чего используется исследование?

  • Диагностика наследственных и приобретенных заболеваний, связанных с нарушением метаболизма аминокислот;
  • дифференциальная диагностика причин нарушений азотистого обмена, выведения аммиака из организма;
  • мониторинг соблюдения диетотерапии и эффективности лечения;
  • оценка пищевого статуса и модификация питания.

Когда назначается исследование?

  • При подозрении на нарушение метаболизма аминокислот у детей, в т. ч. новорождённых (рвота, диарея, метаболический ацидоз, особый запах и окраска пеленок, нарушение умственного развития);
  • при гипераммониемии (увеличении уровня аммиака в крови);
  • при отягощенном семейном анамнезе, наличии врождённых аминоацидопатий у родственников;
  • при контроле за соблюдением диетических рекомендаций, эффективности лечения;
  • при обследовании спортсменов (например, бодибилдеров), употребляющих спортивное питание (протеины и аминокислоты);
  • при обследовании вегетарианцев.
  • Аланин (ALA):
  • Аргинин (ARG):
  • Аспарагиновая кислота (ASP):
  • Цитруллин (CIT):
  • Глутаминовая кислота (GLU):
  • Глицин (GLY)
  • Метионин (MET)
  • Орнитин (ORN)
  • Фенилаланин (PHE)
  • Тирозин (TYR)
  • Валин (VAL)
  • Лейцин (LEU)
  • Изолейцин (ILEU)
  • Гидроксипролин (HPRO)
  • Серин (SER)
  • Аспарагин (ASN)
  • Alpha-аминоадипиновая к-та (AAA)
  • Глутамин (GLN)
  • Beta-аланин (BALA): 0 — 5 мкмоль/л.
  • Таурин (TAU)
  • Гистидин (HIS)
  • Треонин (THRE)
  • 1-метилгистидин (1MHIS)
  • 3-метилгистидин (3MHIS)
  • Gamma-аминомасляная к-та (GABA)
  • Beta-аминоизомасляная к-та (BAIBA)
  • Alpha-аминомасляная к-та (AABA): 0 — 40 мкмоль/л.
  • Пролин (PRO)
  • Цистатионин (CYST): 0 — 0,3 мкмоль/л.
  • Лизин (LYS)
  • Цистин (CYS)
  • Цистеиновая кислота (CYSA): 0.

Интерпретация результатов осуществляется с учетом возраста, особенностей питания, клинического состояния и других лабораторных данных.

Увеличение общего уровня аминокислот в крови возможно при:

  • эклампсии;
  • нарушении толерантности к фруктозе;
  • диабетическом кетоацидозе;
  • почечной недостаточности;
  • синдроме Рейе.

Снижение общего уровня аминокислот в крови может возникнуть при:

  • гиперфункции коры надпочечников;
  • лихорадке;
  • болезни Хартнупа;
  • хорее Хантингтона;
  • неадекватном питании, голодании (квашиоркоре);
  • синдроме мальабсорбции при тяжелых заболеваниях желудочно-кишечного тракта;
  • гиповитаминозе;
  • нефротическом синдроме;
  • лихорадке паппатачи (москитной, флеботомной);
  • ревматоидном артрите.

Повышение аргинина, глутамина – дефицит аргиназы.

Повышение аргининсукцината, глутамина – дефицит аргиносукциназы.

Повышение цитруллина, глутамина – цитруллинемия.

Повышение цистина, орнитина, лизина – цистинурия.

Повышение валина, лейцина, изолейцина – болезнь кленового сиропа (лейциноз).

Повышение фенилаланина – фенилкетонурия.

Повышение тирозина – тирозинемия.

Повышение глутамина – гипераммониемия.

Повышение аланина – лактацидоз (молочнокислый ацидоз).

Повышение глицина – органические ацидурии.

Повышение тирозина – транзиторная тирозинемия у новорождённых.

Аминокислоты – важные органические вещества, в структуре которых находятся карбоксильная и аминная группы. Комплексное исследование, определяющее содержание аминокислот и их производных в крови позволяет выявить врождённые и приобретенные нарушения аминокислотного обмена.

  1. Аланин (ALA)
  2. Аргинин (ARG)
  3. Аспарагиновая кислота (ASP)
  4. Цитруллин (CIT)
  5. Глутаминовая кислота (GLU)
  6. Глицин (GLY)
  7. Метионин (MET)
  8. Орнитин (ORN)
  9. Фенилаланин (PHE)
  10. Тирозин (TYR)
  11. Валин (VAL)
  12. Лейцин (LEU)
  13. Изолейцин (ILEU)
  14. Гидроксипролин (HPRO)
  15. Серин (SER)
  16. Аспарагин (ASN)
  17. Alpha-аминоадипиновая к-та (AAA)
  18. Глутамин (GLN)
  19. Beta-аланин (BALA)
  20. Таурин (TAU)
  21. Гистидин (HIS)
  22. Треонин (THRE)
  23. 1-метилгистидин (1MHIS)
  24. 3-метилгистидин (3MHIS)
  25. Gamma-аминомасляная к-та (GABA)
  26. Beta-аминоизомасляная к-та (BAIBA)
  27. Alpha-аминомасляная к-та (AABA)
  28. Пролин (PRO)
  29. Цистатионин (CYST)
  30. Лизин (LYS)
  31. Цистин (CYS)
  32. Цистеиновая кислота (CYSA)

Скрининг аминоацидопатий; аминокислотный профиль.

Синонимы английские

Amino Acids Profile, Plasma.

Метод исследования

Высокоэффективная жидкостная хроматография.

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

  • Исключить из рациона алкоголь в течение 24 часов до исследования.
  • Не принимать пищу в течение 8 часов до исследования, можно пить чистую негазированную воду.
  • Полностью исключить прием лекарственных препаратов в течение 24 часов перед исследованием (по согласованию с врачом).
  • Исключить физическое и эмоциональное перенапряжение в течение 30 минут до исследования.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Аминокислоты – органические вещества, содержащие карбоксильные и аминные группы. Известно около 100 аминокислот, но в синтезе белка участвуют только 20. Данные аминокислоты называются «протеиногенными» (стандартными) и по возможности синтеза в организме классифицируются на заменимые и незаменимые. К незаменимым аминокислотам относятся аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин. Заменимыми аминокислотами являются аланин, аспарагин, аспартат, глицин, глутамат, глутамин, пролин, серин, тирозин, цистеин. Протеиногенные и нестандартные аминокислоты, их метаболиты участвуют в различных обменных процессах в организме. Дефект ферментов на различных этапах трансформации веществ может приводить к накоплению аминокислот и их продуктов превращения, оказывать отрицательное влияние на состояние организма.

Нарушения метаболизма аминокислот могут быть первичными (врождёнными) или вторичными (приобретенными). Первичные аминоацидопатии обычно наследуются аутосомно-рецессивно или сцеплено с Х-хромосомой и проявляются в раннем детском возрасте. Заболевания развиваются вследствие генетически обусловленного дефицита ферментов и/или транспортных белков, связанных с метаболизмом определенных аминокислот. В литературе описано более 30 вариантов аминоацидопатий. Клинические проявления могут варьироваться от легких доброкачественных нарушений до тяжелого метаболического ацидоза или алкалоза, рвоты, задержки умственного развития и роста, летаргии, комы, синдрома внезапной смерти новорождённых, остеомаляции и остеопороза. Вторичные нарушения обмена аминокислот могут быть связаны с заболеваниями печени, желудочно-кишечного тракта (например, язвенный колит, болезнь Крона), почек (например, синдром Фанкони), недостаточным или неадекватным питанием, новообразованиями. Ранняя диагностика и своевременное лечение позволяют предупредить развитие и прогрессирование симптомов заболевания.

Данное исследование позволяет комплексно определить концентрацию в крови стандартных и непротеиногенных аминокислот, их производных и оценить состояние аминокислотного обмена.

Аланин (ALA) способен синтезироваться в организме человека из других аминокислот. Он участвует в процессе глюконеогенеза в печени. По некоторым данным, повышенное содержание аланина в крови ассоциировано с повышением артериального давления, холестерина, индекса массы тела, АЛТ.

Аргинин (ARG) в зависимости от возраста и функционального состояния организма относится к полузаменимым аминокислотам. В связи с незрелостью ферментных систем недоношенные дети не способны к его образованию, поэтому нуждаются во внешнем источнике поступления данного вещества. Повышение потребности в аргинине возникает при стрессе, оперативном лечении, травмах. Данная аминокислота участвует в делении клеток, заживлении ран, высвобождении гормонов, образовании окиси азота и мочевины.

Аспарагиновая кислота (ASP) может образовываться из цитруллина и орнитина и являться предшественником некоторых других аминокислот. Аспарагиновая кислота и аспарагин (ASN) участвуют в глюконеогенезе, синтезе пуриновых основ, азотистом обмене, функции АТФ-синтетазы. В нервной системе аспарагин играет роль нейротрансмиттера.

Цитруллин (CIT) может образовываться из орнитина или аргинина и является важным компонентом цикла образования мочевины в печени (орнитинового цикла). Цитруллин входит в состав филаггрина, гистонов и играет роль в аутоиммунном воспалении при ревматоидном артрите.

Глутаминовая кислота (GLU) – заменимая аминокислота, которая имеет большое значение в азотистом обмене. Свободная глутаминовая кислота используется в пищевой промышленности в качестве усилителя вкуса. Глутаминовая кислота и глутамат являются важными возбуждающими нейротрансмиттерами в нервной системе. Снижение высвобождения глутамата отмечается при классической фенилкетонурии.

Глицин (GLY) является заменимой аминокислотой, которая может образовываться из серина под действием пиридоксина (витамина В6). Он принимает участие в синтезе белков, порфиринов, пуринов и является тормозным медиатором в центральной нервной системе.

Метионин (MET) – незаменимая аминокислота, максимальное содержание которой определяется в яйцах, кунжуте, злаках, мясе, рыбе. Из него может образовываться гомоцистеин. Дефицит метионина приводит к развитию стеатогепатита, анемии.

Орнитин (ORN) не кодируется человеческим ДНК и не включается в синтез белка. Данная аминокислота образуется из аргинина и играет ключевую роль в синтезе мочевины и выведении аммиака из организма. Содержащие орнитин препараты применяются для лечения цирроза, астенического синдрома.

Фенилаланин (PHE) – незаменимая аминокислота, которая является предшественником тирозина, катехоламинов, меланина. Генетический дефект метаболизма фенилаланина приводит к накоплению аминокислоты и ее токсических продуктов и развитию аминоацидопатии – фенилкетонурии. Заболевание ассоциировано с нарушениями умственного и физического развития, судорогами.

Тирозин (TYR) поступает в организм с пищей или синтезируется из фенилаланина. Является предшественником нейротрансмиттеров (дофамина, норадреналина, адреналина) и пигмента меланина. При генетических нарушениях метаболизма тирозина возникает тирозинемия, которая сопровождается повреждением печени, почек и периферической нейропатией. Важное дифференциально диагностическое значение имеет отсутствие повышения уровня тирозина в крови при фенилкетонурии, в отличие от некоторых других патологических состояний.

Валин (VAL), лейцин (LEU) и изолейцин (ILEU) – незаменимые аминокислоты, которые являются важными источниками энергии в мышечных клетках. При ферментопатиях, которые нарушают их метаболизм и приводят к накоплению данных аминокислот (особенно лейцина), возникает «болезнь кленового сиропа» (лейциноз). Патогномоничным признаком данного заболевания служит сладкий запах мочи, который напоминает кленовый сироп. Симптомы аминоацидопатии возникают с раннего возраста и включают рвоту, обезвоживание, летаргию, гипотонию, гипогликемию, судороги и опистотонус, кетоацидоз и патологию центральной нервной системы. Заболевание нередко заканчивается летально.

Гидроксипролин (HPRO) образовывается при гидроксилировании пролина под воздействием витамина С. Данная аминокислота обеспечивает стабильность коллагена и является главной его составляющей. При дефиците витамина С нарушается синтез гидроксипролина, снижается стабильность коллагена и возникает повреждение слизистых оболочек – симптомы цинги.

Серин (SER) входит в состав практически всех белков и участвует в формировании активных центров многих ферментов организма (например, трипсина, эстераз) и синтезе других заменимых аминоксилот.

Глутамин (GLN) является частично заменимой аминокислотой. Потребность в нем значительно возрастает при травмах, некоторых желудочно-кишечных заболеваниях, интенсивных физических нагрузках. Он принимает участие в азотистом обмене, синтезе пуринов, регуляции кислотно-щелочного баланса, выполняет нейромедиаторную функцию. Данная аминокислота ускоряет процессы заживления и восстановления после травм и операций.

Гамма-аминомасляная кислота (GABA) синтезируется из глутамина и является важнейшим тормозным нейромедиатором. Препараты ГАМК используются для лечения различных неврологических нарушений.

Бета-аминоизомасляная кислота (BAIBA) является продуктом метаболизма тимина и валина. Повышение ее уровня в крови наблюдается при дефиците бета-аминоизобутират-пируват-аминотрансферазы, голодании, отравлении свинцом, лучевой болезни и некоторых новообразованиях.

Альфа-аминомасляная кислота (AABA) – предшественник синтеза офтальмовой кислоты, являющейся аналогом глутатиона в хрусталике глаза.

Бета-аланин (BALA), в отличие от альфа-аланина, не участвует в синтезе белков в организме. Данная аминокислота входит в состав карнозина, который в качестве буферной системы препятствует накоплению кислот в мышцах во время физических нагрузок, уменьшает мышечную боль после тренировок, ускоряет процессы восстановления после травм.

Гистидин (HIS) – незаменимая аминокислота, которая является предшественником гистамина, входит в состав активных центров многих ферментов, содержится в гемоглобине, способствует восстановлению тканей. При редком генетическом дефекте гистидазы возникает гистидинемия, которая может проявиться гиперактивностью, задержкой развития, трудностями при обучении и в некоторых случаях умственной отсталостью.

Читайте также:  Бронхиальная астма у детей лечение анализы

Треонин (THRE) – эссенциальная аминокислота, необходимая для синтеза белка и образования других аминокислот.

1-метилгистидин (1MHIS) является производным ансерина. Концентрация 1-метилгистидина в крови и моче коррелирует с употреблением мясной пищи и возрастает при дефиците витамина Е. Повышение уровня данного метаболита возникает при дефиците карозиназы в крови и наблюдается при болезни Паркинсона, рассеянном склерозе.

3-метилгистидин (3MHIS) является продуктом метаболизма актина и миозина и отражает уровень распада белков в мышечной ткани.

Пролин (PRO) синтезируется в организме из глутамата. Гиперпролинемия вследствие генетического дефекта ферментов или на фоне неадекватного питания, повышенного содержания молочной кислоты в крови, заболеваний печени может приводить к судорогам, умственной усталости и другой неврологической патологии.

Лизин (LYS) – эссенциальная аминокислота, которая участвует в формировании коллагена и восстановлении тканей, функции иммунной системы, синтезе белков, ферментов и гормонов. Недостаточность глицина в организме приводит к астении, снижении памяти и нарушению репродуктивных функций.

Альфа-аминоадипиновая кислота (AAA) – промежуточный продукт метаболизма лизина.

Цистеин (CYS) является незаменимой аминокислотой для детей, пожилых и людей с нарушением всасывания питательных веществ. У здоровых людей данная аминокислота синтезируется из метионина. Цистеин входит в состав кератинов волос, ногтей, участвует в формировании коллагена, является антиоксидантом, предшественником глутатиона и защищает печень от повреждающего действия метаболитов алкоголя. Цистин является димерной молекулой цистеина. При генетическом дефекте транспорта цистина в почечных канальцах и стенках кишечника возникает цистинурия, которая приводит к формированию камней в почках, мочеточниках и мочевом пузыре.

Цистатионин (CYST) – промежуточный продукт обмена цистеина при его синтезе из гомоцистеина. При наследственном дефиците фермента цистатионазы или приобретенном гиповитаминозе В6 уровень цистатионина в крови и моче повышается. Данное состояние описывается как цистатионинурия, которая протекает доброкачественно без явных патологических признаков, однако в редких случаях может проявляться дефицитом интеллекта.

Цистеиновая кислота (CYSA) образовывается при окислении цистеина и является предшественником таурина.

Таурин (TAU) синтезируется из цистеина и, в отличие от аминокислот, является сульфокислотой, содержащей сульфогруппу вместо карбоксильной группы. Таурин входит в состав желчи, участвует в эмульгации жиров, является тормозным нейромедиатором, улучшает репаративные и энергетические процессы, обладает кардиотоническими и гипотензивными свойствами.

В спортивном питании аминокислоты и протеины нашли широкое распространение и используются для увеличения мышечной массы. У вегетарианцев же в связи с отсутствием в рационе животного белка может возникнуть дефицит некоторых незаменимых аминокислот. Данное исследование позволяет оценить адекватность таких видов питания и при необходимости провести их коррекцию.

Для чего используется исследование?

  • Диагностика наследственных и приобретенных заболеваний, связанных с нарушением метаболизма аминокислот;
  • дифференциальная диагностика причин нарушений азотистого обмена, выведения аммиака из организма;
  • мониторинг соблюдения диетотерапии и эффективности лечения;
  • оценка пищевого статуса и модификация питания.

Когда назначается исследование?

  • При подозрении на нарушение метаболизма аминокислот у детей, в т. ч. новорождённых (рвота, диарея, метаболический ацидоз, особый запах и окраска пеленок, нарушение умственного развития);
  • при гипераммониемии (увеличении уровня аммиака в крови);
  • при отягощенном семейном анамнезе, наличии врождённых аминоацидопатий у родственников;
  • при контроле за соблюдением диетических рекомендаций, эффективности лечения;
  • при обследовании спортсменов (например, бодибилдеров), употребляющих спортивное питание (протеины и аминокислоты);
  • при обследовании вегетарианцев.

Основной частью протеинов (белков) являются органические соединения, называемые аминокислотами. Нарушение их обмена может привести ко многим заболеваниям печени и почек. Для определения степени усвоения пищевого белка и лежащего в основе многих хронических нарушений метаболического дисбаланса делают анализ крови. Всего есть 20 аминокислот, и клиническими признаками нарушения их обмена есть сочетание умственной отсталости с нарушением зрения у детей, плюс периодически возникающие судороги, различные поражения кожи, изменения запаха и цвета мочи.

Сейчас известно более 70 врождённых нарушений обмена и синтеза аминокислот, и хоть они встречаются довольно редко, но их суммарная частота значительно выше.

Некоторые аминокислоты не синтезируются в организме, поэтому их необходимо вводить с пищей, некоторые – образовываются эндогенно.

Аланин является важным источником энергии для ЦНС и головного мозга; берёт активное участие в метаболизме органических кислот и сахаров; укрепляет иммунитет путём выработки антител. Также может быть сырьём для вырабатывания глюкозы в крови, поэтому аланин — регулятор сахара в крови. При повышенной концентрации может быть подагра, белковая непереносимость, болезнь Кушинга. При чересчур низком уровне возможна кетотическая гипогликемия и хронические болезни почек.

Участвует в выведении из организма конечного азота, и является условно заменимой аминокислотой. При слишком высоком уровне может быть гиперинсулинемия 2 типа. При пониженном — ревматоидный артрит, хроническая почечная недостаточность.

Она есть в составе белков. При повышении её концентрации в моче возможна дикарбоксильная аминоацидурия.

Синтезируется в организме и поступает с пищей; берёт участие в углеводном и белковом обмене, повышает устойчивость организма к гипоксии, стимулирует окислительные процессы, приводит в норму обмен веществ, оказывает дезинтоксикационное воздействие, способствует выведению и обезвреживанию аммиака, и многое другое. При повышенном уровне глутаминовой аминокислоты может быть рак поджелудочной, ревматоидный артрит, подагра. При пониженном уровне в анализе крови — хроническая почечная недостаточность.

Это регулятор обмена веществ, который обладает антистрессовым эффектом, нормализует процессы торможения и возбуждения в ЦНС, повышает умственную работоспособность. Если анализ показывает слишком большую концентрацию в крови, то это может указывать на: гипераммониемию 1 типа, гипогликемию, тяжелые ожоги, голодание, хроническую почечную недостаточность. Пониженный уровень глицина сигнализирует о подагре или сахарном диабете.

Обезвреживает аммиак, повышает энергообеспечение, стимулирует иммунную систему. При повышенном уровне могут быть нарушение толерантности к белку, болезни печени, дефицит пируват-карбоксилазы, интоксикация аммонием.

Необходим для дезинтоксикации ксенобиотиков; активирует действие гормонов, витаминов, белков, ферментов; берёт участие в обмене серосодержащих аминокислот. При повышенной концентрации могут быть тяжёлые заболевания печени, гомоцистинурия, карциноидный синдром. Анализ показал пониженную концентрацию аминокислоты — в наличии гомоцистинурия, нарушение белкового питания.

Одна из незаменимых аминокислот: может синтезироваться самим организмом. Когда анализ показывает повышенную концентрацию — возможен сепсис. Пониженная — сигнализирует о микседеме, ревматоидном артрите, гипотиреоидизме, поликистозе почек, гипотермии, хронической почечной недостаточности, фенилкетонурии, карциноидном синдроме.

Также незаменимая аминокислота, которая является одним из основных компонентов синтеза и роста тканей тела, стимулирует координацию, активность и умственную деятельность. Валин необходим для восстановления повреждённых тканей и метаболизма в мышцах. При недостатке данной аминокислоты нарушается координация, повышается чувствительность кожи к раздражителям. При повышенном уровне возможно острое голодание, карциноидный синдром, недостаточное белковое питание. Если анализ крови показывает пониженный уровень — печёночная энцефалопатия.

Эта аминокислота уменьшает боль, улучшает память и способность к обучению, влияет на настроение, подавляет аппетит. Повышение концентраций сигнализирует от фенилкетонурии, преходящей тирозинемии новорожденных, сепсисе, вирусном гепатите, печёночной энцефалопатии, гиперфенилаланинемии.

Также принадлежат к перечню незаменимых аминокислот, и действуют вместе. Являются источниками энергии и защищают мышечные ткани. Изолейцин определяет психическую и физическую выносливость, и регулирует процессы энергообеспечения организма; необходим для выработки гемоглобина, регулирует в крови уровень сахара. Крайне важен при психических заболеваниях, проблемах с психикой, и при физических нагрузках. Лейцин способствует восстановлению кожи, мышц, костей, так как стимулирует гормон роста.

Врачи считают, что анализ на аминокислоты необходим всем младенцам, так как он позволяет вовремя выявить проблему и начать её решение.

Кроме того, спортсменам, людям, имеющим повышенную физическую активность, вегетарианцам, и сидящим на диете также нужно знать, что их организм особенно нуждается в аминокислотах, поэтому важно время от времени делать анализ крови на их концентрацию и соотношение.

За 4 часа до взятия крови нельзя ничего кушать, поэтому родителям придётся хорошо всё объяснить ребёнку, или потерпеть его плач для его же блага, если он совсем маленький. Доктор прокалывает пятку, набирает необходимое количество крови, и придавливает место прокола ватным шариком. В случае образования гематомы могут быть назначены согревающие компрессы. Обычно анализ делается около 16 дней. Потом назначается соответствующее данному случаю решение.

  • А Абакан
  • Азов
  • Аксай
  • Алушта
  • Апрелевка
  • Аргун
  • Ардон
  • Арзамас
  • Армянск
  • Архангельск
  • Архипо-Осиповка
  • Астрахань
  • Б Баксан
  • Балаково
  • Балашиха
  • Балашов
  • Барнаул
  • Батайск
  • Бахчисарай
  • Белгород
  • Белогорск
  • Беслан
  • Бишкек
  • Бор
  • Боровск
  • Бронницы
  • Брянск
  • Бузулук
  • Буйнакск
  • Булатниковское
  • Быково
  • В Видное
  • Вилино
  • Владикавказ
  • Владимир
  • Волгоград
  • Волжский
  • Волоколамск
  • Вольск
  • Воронеж
  • Воротынск
  • Воскресенск
  • Всеволжск
  • Вязники
  • Вязьма
  • Г Гай
  • Гвардейское
  • Георгиевск
  • Глубокий
  • Глухово
  • Грозный
  • Гудермес
  • Д Дедовск
  • Дербент
  • Джанкой
  • Дзержинск
  • Дзержинский
  • Дмитров
  • Долгопрудный
  • Домодедово
  • Дрожжино
  • Дубна
  • Е Евпатория
  • Егорьевск
  • Екатеринбург
  • Елец
  • Елизово
  • Ессентуки
  • Ж Железноводск
  • Жуков
  • Жуковка
  • Жуковский
  • З Заречный
  • Звенигород
  • Зеленоград
  • Златоуст
  • И Иваново
  • Ивантеевка
  • Ижевск
  • Избербаш
  • Икша
  • Истра
  • Ишим
  • Ишимбай
  • Й Йошкар-Ола
  • К Казань
  • Калининград
  • Калуга
  • Каменск-Уральский
  • Каменск-Шахтинский
  • Камешково
  • Канаш
  • Карабулак
  • Каспийск
  • Керчь
  • Киевский
  • Кимовск
  • Кимры
  • Киров
  • Кировское
  • Кисловодск
  • Климовск
  • Ковров
  • Ковылкино
  • Когалым
  • Кокошкино
  • Коломна
  • Кольчугино
  • Коммунарка
  • Кондрово
  • Коркмаскала
  • Королев
  • Кострома
  • Котельники
  • Красногвардейское
  • Красногорск
  • Краснодар
  • Красноперекопск
  • Красноярск
  • Кременки
  • Кстово
  • Кубинка
  • Курск
  • Л Лангепас
  • Ленино
  • Лесной городок
  • Липецк
  • Лобня
  • Лопатино
  • Лыткарино
  • Люберцы
  • Людиново
  • М Майский
  • Малгобек
  • Махачкала
  • Мегион
  • Миасс
  • Минеральные воды
  • Минусинск
  • Мисайлово
  • Михайловск
  • Михнево
  • Можайск
  • Моздок
  • Москва
  • Московский
  • Муром
  • Мытищи
  • Н Назрань
  • Нальчик
  • Наро-Фоминск
  • Нарткала
  • Невинномысск
  • Нижневартовск
  • Нижнегорский
  • Нижний Новгород
  • Нижний Тагил
  • Новоивановское
  • Новокузнецк
  • Новопавловск
  • Новороссийск
  • Новосибирск
  • Новотроицк
  • Новочеркасск
  • Ногинск
  • Нягань
  • О Обнинск
  • Одинцово
  • Октябрьский
  • Омск
  • Орел
  • Оренбург
  • Орехово-Зуево
  • Орск
  • Осинники
  • П Пенза
  • Первомайское
  • Первоуральск
  • Петропавловск-Камчатский
  • Подольск
  • Починок
  • Прохладный
  • Псков
  • Путилково
  • Пушкино
  • Пущино
  • Пятигорск
  • Р Раздольное
  • Раменское
  • Реутов
  • Рославль
  • Ростов-на-Дону
  • Рощинский
  • Рузаевка
  • Рыбинск
  • Рязань
  • С Саки
  • Салехард
  • Самара
  • Санкт-Петербург
  • Сапроново
  • Саранск
  • Саратов
  • Севастополь
  • Сергокала
  • Серебряные Пруды
  • Серпухов
  • Симферополь
  • Смоленск
  • Советский
  • Совхоз имени Ленина
  • Солнечногорск
  • Солнечный
  • Сочи
  • Ставрополь
  • Старая Купавна
  • Старый Крым
  • Старый Оскол
  • Стерлитамак
  • Стрелецкое
  • Строитель
  • Струнино
  • Ступино
  • Суворов
  • Судак
  • Сунжа
  • Сураж
  • Сургут
  • Сухиничи
  • Сходня
  • Т Тамбов
  • Таруса
  • Тбилисская станица
  • Тверь
  • Терек
  • Тобольск
  • Токмок
  • Тольятти
  • Томск
  • Троицк
  • Тула
  • Тырныауз
  • Тюмень
  • У Узловая
  • Улан-Удэ
  • Ульяновск
  • Успенское
  • Уфа
  • Ухта
  • Ф Федоровский
  • Феодосия
  • Фрязино
  • Фурманов
  • Х Ханты-Мансийск
  • Хасавюрт
  • Химки
  • Ц Цхинвал
  • Ч Чебоксары
  • Челябинск
  • Череповец
  • Черкесск
  • Черногорск
  • Чехов
  • Чита
  • Ш Шали
  • Шатура
  • Шебекино
  • Шелехов
  • Шилово
  • Шира
  • Щ Щелково
  • Э Электросталь
  • Энгельс
  • Ю Южно-Сахалинск
  • Я Ялта
  • Ярославль
  • Ясногорск
  • Пересчет единиц изменения

    Аминокислоты — органические соединения, являющиеся основной составляющей частью протеинов (белков). Нарушение обмена аминокислот является причиной многих заболеваний (печени и почек). Анализ аминокислот (мочи и крови) является основным средством оценки степени усвоения пищевого белка, а также метаболического дисбаланса, лежащего в основе многих хронических нарушений.

    Биоматериалом для комплексного анализа на аминокислоты в Лаборатории Гемотест может служить кровь или моча.

    Исследуется следующие незаменимые аминокислоты: аланин, аргинин, аспарагиновая кислота, цитруллин, глутаминовая кислота, глицин, метионин, орнитин, фенилаланин, тирозин, валин, лейцин, изолейцин, гидроксипролин, серин, аспарагин, α-аминоадипиновая кислота, глутамин, β-аланин, таурин, гистидин, треонин, 1-метилгистидин, 3-метилгистидин, γ-аминомасляная кислота, β-аминоизомасляная кислота, α-аминомасляная кислота, пролин, цистатионин, лизин, цистин, цистеиновая кислота.

    Аланин – важный источник энергии для головного мозга и центральной нервной системы; укрепляет иммунную систему путем выработки антител;активно участвует в метаболизме сахаров иорганических кислот. Может быть сырьем для синтеза глюкозы в организме, это делает его важным источником энергии и регулятором уровня сахара в крови.

    Снижение концентрации: хронические болезни почек, кетотическая гипогликемия.

    Повышение концентрации: гипераланинемия, цитруллинемия (умеренное повышение), болезнь Кушинга, подагра, гипероротининемия, гистидиемия, дефицит пируваткарбоксилазы,лизинурическая белковая непереносимость.

    Аргинин является условно заменимой аминокислотой. Участвует в цикле переаминирования и выведения из организма конечного азота, то есть продукта распада отработанных белков. От мощности работы цикла (орнитин — цитруллин — аргинин) зависит способность организма создавать мочевину и очищаться от белковых шлаков.

    Снижение концентрации :3 дня после оперативного вмешательства на брюшной полости, хроническая почечная недостаточность, ревматоидный артрит.

    Повышение концентрации: гипераргининемия, в некоторых случаях гиперинсулинемии II типа.

    Аспарагиновая кислота входит в состав белков, играет важную роль в реакциях цикла мочевины и переа-минирования, участвует в биосинтезе пуринов и пиримидинов.

    Снижение концентрации: 1 сутки после оперативного вмешательства.

    Повышение концентрации: моча – дикарбоксильная аминоацидурия.

    Цитруллин повышает энергообеспечение, стимулирует иммунную систему, в процессах обмена веществ превращается в L-аргинин. Обезвреживает аммиак, повреждающий клетки печени.

    Повышение концентрации цитруллина: цитруллинемия, болезни печени, интоксикация аммонием, дефицит пируват-карбоксилазы, лизинурическое нарушение толерантности к белку.

    Моча — цитруллинемия, болезнь Хартнупа, аргининосукцинат-ацидурия.

    Глутаминовая кислота является нейромедиатором, передающим импульсы в центральной нервной системе. Играет важную роль в углеводном обмене и способствует проникновению кальция через гематоэнцефалический барьер. Снижение концентрации: гистидинемия, хроническая почечная недостаточность.

    Повышение концентрации: рак поджелудочной железы, подагра, глутаминовая ,ацидурия, ревматоидный артрит. Моча – дикарбоксильная аминоацидурия.

    Глицин является регулятором обмена веществ, нормализует процессы возбуждения и торможения в центральной нервной системе, обладает антистрессорным эффектом, повышает умственную работоспособность.

    Снижение концентрации: подагра, сахарный диабет.

    Повышение концентрации: септицемия, гипогликемия, гипераммониемия 1 типа, тяжелые ожоги, голодание, пропионовая ацидемия, метилмалоновая ацидемия, хроническая почечная недостаточность. Моча – гипогликемия, цистинурия, болезнь Хартнупа, беременность, гиперпролинемия,глицинурия, ревматоидный артрит.

    Метионин незаменимая аминокислота, помогающая переработке жиров, предотвращая ихотложение в печени и стенках артерий. Синтез таурина и цистеина зависит от количества метионина в организме. Способствует пищеварению, обеспечивает дезинтоксикационныепроцессы, уменьшает мышечную слабость, защищает от воздействия радиации,полезна при остеопорозе и химической аллергии.

    Снижение концентрации: гомоцистинурия, нарушение белкового питания.

    Повышение концентрации: карциноидный синдром, гомоцистинурия, гиперметионинемия, тирозинемия, тяжелые заболевания печени.

    Орнитин помогает высвобождению гормона роста, который способствует сжиганию жиров в организме. Необходим для иммунной системы, участвует в дезинтоксикационных процессах и восстановлении пече-ночных клеток.

    Снижение концентрации: карциноидный синдром, хроническая почечная недостаточность.

    Повышение концентрации: спиральная атрофия хориоидной оболочки и сетчатки, тяжелые ожоги,гемолиз.

    Фенилаланин — незаменимая аминокислота, в организме она может превращаться в тирозин, который, в свою очередь, используется в синтезе двух основных нейромедиаторов: допамина и норадреналина. Влияет на настроение, уменьшает боль, улучшает память и способность к обучению, подавляет аппетит.

    Повышение концентрации: преходящая тирозинемия новорожденных, гиперфенилаланинемия,сепсис, пе-ченочная энцефалопатия, вирусный гепатит, фенилкетонурия.

    Тирозин является предшественником нейромедиаторов норадреналина и дофамина.Участвует в регуляциинастроения; недостаток тирозина приводит к дефициту норадреналина, что приводит к депрессии. Подавляет аппетит, уменьшает отложения жиров, способствует выработке мелатонина и улучшает функции надпочечников, щитовидной железы и гипофиза, также участвует в обмене фенилаланина. Тиреоидные гормоны образуются при при-соединении к тирозину атомов йода.

    Снижение концентрации: поликистоз почек, гипотермия, фенилкетонурия, хроническая почечная недоста-точность, карциноидный синдром, микседема, гипотиреоидизм, ревматоидный артрит.

    Повышение концентрации: гипертирозинемия, гипертиреоидизм, сепсис.

    Валин незаменимая аминокислота, оказывающая стимулирующее действие. Необходима для метаболизма в мышцах, восстановления поврежденных тканей и для поддержания нормального обмена азота в организме, может быть использован мышцами в качестве источника энергии.

    Снижение концентрации: гиперинсулинизм, печеночная энцефалопатия.

    Повышение концентрации: кетоацидурия, гипервалинемия,недостаточное белковое питание, карциноидный синдром, острое голодание.

    Лейцин и изолейцин — защищают мышечные ткани и являются источниками энергии, а также способствуют восстановлению костей, кожи, мышц. Способны понижать уровень сахара в крови и стимулировать выделение гормона роста.

    Снижение концентрации: острое голодание, гиперинсулинизм, печеночная энцефалопатия.

    Повышение концентрации: кетоацидурия, ожирение, голодание, вирусный гепатит.

    Гидроксипролин содержится в тканях практически всего организма, входит в состав коллагена, на долю которого приходится большая часть белка в организме млекопитающих. Синтез гидроксипролина нару- шается при дефиците витамина С.

    Повышение концентрации: гидроксипролинемия, уремия, цирроз печени.

    Серин относится к группе заменимых аминокислот, участвует в образовании активных центров ряда ферментов, обеспечивая их функцию. Важен в биосинтезе других заменимых аминокислот : глицина, цистеина, метионина, триптофана.Серин является исходным продуктом синтеза пуриновых и пиримидиновых оснований, сфинголипидов, этаноламина, и других важных продуктов обмена веществ.

    Снижение концентрации: недостаточность фосфоглицерат дегидрогеназы, подагра.

    Повышение концентрации серина: непереносимость белка. Моча – ожоги, болезнь Хартнупа.

    Аспарагин необходим для поддержания баланса в процессах, происходящих в центральной нервной

    системе; препятствует как чрезмерному возбуждению, так и излишнему торможению, участвует в процессах синтеза аминокислот в печени.

    Повышение концентрации: ожоги, болезнь Хартнупа, цистиноз.

    Альфа-аминоадипиновая кислота — метаболит основных биохимических путей лизина.

    Повышение концентрации: гиперлизинемия, альфа-аминоадипиновая ацидурия, альфа-кетоадипиновая ацидурия, синдром Рея.

    Глутамин выполняет ряд жизненно важных функций в организме: участвует в синтезе аминокислот, углеводов, нуклеиновых кислот, цАМФ и ц-ГМФ, фолиевой кислоты, ферментов, осуществляющих окислительно-восстановительные реакции (НАД), серотонина, н-аминобензойной кислоты; обезвреживает аммиак; превращается в аминомасляную кислоту (ГАМК); способен повышать проницаемость мышечных клеток для ионов калия.

    Снижение концентрации глутамина: ревматоидный артрит

    Повышение концентрации: Кровь – Гипераммониемия, вызванная следующими причинами: печеночная кома, синдром Рея, менингит, кровоизлияние в мозг, дефекты цикла мочевины, недостаточность орнитинтранскарбамилазы, карбамоилфосфатсинтазы, цитруллинемия, аргининсукциновая ацидурия, гиперорнитинемия,гипераммониемия, гомоцитруллинемия (HHH syndrome), в некоторых случаях гиперлизиемия 1 типа, лизинурическая белковая непереносимость. Моча – Болезнь Хартнупа, генерализованная аминоацидурия, ревматоидый артрит.

    β-аланин – является единственной бета-аминокислотой, образуется из дигидроурацила и карнозина.

    Повышение концентрации: гипер-β -аланинемия.

    Таурин — способствуют эмульгированию жиров в кишечнике, обладает противосудорожной активностью, оказывает кардиотропное действие, улучшает энергетические процессы, стимулирует репаративные процессы при дистрофических заболеваниях и процессах, сопровождающихся нарушением метаболизма тканей глаза, способствует нормализации функции клеточных мембран и улучшению обменных процессов.

    Снижение концентрации таурина: Кровь — Маниакально-депрессивный синдром, депрессивные неврозы

    Повышение концентрации таурина: Моча — Сепсис, гипер-β-аланинемия, недостаточность фолиевой кислоты (В9), первый триместр беременности, ожоги.

    Гистидин входит в состав активных центров множества ферментов, является предшественником в био-синтезе гистамина. Способствует росту и восстановлению тканей. В большом количестве содержится в гемоглобине; используется при лечении ревматоидных артритов, аллергий, язв и анемии. Недостаток гистидина может вызвать ослабление слуха.

    Снижение концентрации гистидина: Ревматоидный артрит

    Повышение концентрации гистидина: Гистидинемия, беременность, болезнь Хартнупа, генерализован-

    Треонин — это незаменимая аминокислота, способствующая поддержанию нормального белкового обмена в организме, важна для синтеза коллагена и эластина, помогает работе печени, участвует в обмене жиров, стимулирует иммунитет.

    Снижение концентрации треонина: Хроническая почечная недостаточность, ревматоидный артрит.

    Повышение концентрации треонина: Болезнь Хартнупа, беременность, ожоги, гепатолентикулярная дегенерация.

    1-метилгистидин основное производное ансерина. Фермент карнозиназа превращает ансерин в β-аланин и 1-метилгистидин. Высокие уровни 1-метилгистидина, как правило, подавляют фермент карнозиназу и увеличивают концентрации ансерина. Уменьшение активности карнозиназ также встречается у пациентов с болезнью Паркинсона, рассеянным склерозом и у пациентов после инсульта. Дефицит витамина Е может привести к 1–метилгистидинурии, вследствие увеличения окислительных эффектов в скелетных мышцах.

    Повышение концентрации: хроническая почечная недостаточность, мясная диета.

    3-метигистидин является показателем уровня распада белков в мышцах.

    Снижение концентрации: голодание, диета.

    Повышение концентрации: хроническая почечная недостаточность, ожоги, множественные травмы.

    Гамма-аминомасляная кислота — содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге. Лиганды рецепторов ГАМК рассматриваются, как потенциальные средства для лечения различных расстройств психики и центральной нервной системы, к которым относятся болезнь Паркинсона и Альцгеймера, расстройства сна (бессонница, нарколепсия), эпилепсия. Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение.

    Бета (β) — аминоизомасляная кислота — небелковая аминокислота является продуктом катаболизма тимина и валина. Повышение концентрации: различные типы новообразований, болезни, сопровождающиеся усиленным разрушением нуклеиновых кислот в тканях, синдром Дауна, белковое недоедание, гипер-бета-аланинемия, бета-аминоизомасляная ацидурия, отравление свинцом.

    Альфа (α) -аминомасляная кислота является основным промежуточным продуктом биосинтеза офталь-мовой кислоты. Повышение концентрации: неспецифические аминоацидурии, голодание.

    Пролин — одна из двадцати протеиногенных аминокислот, входит в состав всех белков всех организмов.

    Снижение концентрации: Хорея Хантингтона, ожоги

    Повышение концентрации: Кровь – гиперпролинемия тип 1 (недостаточность пролиноксидазы), гиперпролинемия тип 2 (недостаточность пирролин-5-карбоксилат дегидрогеназы), недостаточность белкового питания у новорожденных. Моча – гиперпролиемия 1 и 2 типов, синдром Джозефа (тяжелая пролинурия), карциноидный синдром, иминоглицинурия, болезнь Вильсона-Коновалова (гепатолентикулярная дегенерация).

    Цистатионин — cepоcoдержащая аминокислота, участвует в биосинтезе цистеина изметионина и серина.

    Лизин – это незаменимая аминокислота, входящая в состав практически любых белков, необходима для роста, восстановления тканей, производства антител, гормонов, ферментов, альбуминов, оказывает противовирусное действие, поддерживает уровень энергии, участвует в формировании коллагена и восстановлении тканей, улучшает усвоение кальция из крови и транспорт его в костную ткань.

    Снижение концентрации: карциноидный синдром, лизинурическая протеиноваянепереносимость.

    Повышение концентраций: Кровь – гиперлизинемия, глутаровая ацидемия тип 2. Моча – цистинурия, гиперлизинемия, первый триместр беременности, ожоги.

    Цистин в организме является важной частью белков, таких как иммуноглобулины, инсулин и соматостатин, укрепляет соединительную ткань. Снижение концентрации цистина: белковое голодание, ожоги.Повышение концентраций цистина: Кровь — сепсис, хроническая почечная недостаточность. Моча – Цистиноз, цистинурия, цистинлизинурия, первый триместр беременности.

    Цистеиновая кислота — серосодержащая аминокислота. Промежуточный продукт обмена цистеина и цистина. Принимает участие в реакциях переаминирования, является одним из предшественников таурина.

    В организме человека синтезируется лишь половина необходимых аминокислот, а остальные амино-кислоты – незаменимые (аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, трип-тофан, фенилаланин) — должны поступать с пищей. Исключение из рациона какой-либо незаменимой аминокислоты из рациона ведет к развитию отрицательного азотистого баланса, клинически проявляющегося нарушением функций нервной системы, мышечной слабостью и другими признаками патологии обмена веществ и энергии.

    Показания к назначению анализа:

    • Диагностика заболеваний, связанных с нарушением аминокислотного обмена.
    • Оценка состояния организма человека.

    Необходимо соблюдать общие правила подготовки. Кровь на исследование необходимо сдавать натощак. Между последним приёмом пищи и взятием крови должно пройти не менее 8 часов.

    Мочу для исследования собрать среднюю утреннюю порцию.

    источник