Меню Рубрики

Взвешенные вещества в анализах воды

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВЫХ КОНЦЕНТРАЦИЙ ВЗВЕШЕННЫХ И ПРОКАЛЕННЫХ ВЗВЕШЕННЫХ ВЕЩЕСТВ В ПРОБАХ ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОД ГРАВИМЕТРИЧЕСКИМ МЕТОДОМ

И.о. директора ФГБУ «Федеральный центр анализа и оценки техногенного воздействия» А.Г.Кудрявцев 15 декабря 2017 г.

Методика допущена для целей государственного экологического контроля

Методика измерений аттестована Центром метрологии и сертификации «СЕРТИМЕТ» Уральского отделения РАН (Аттестат аккредитации N RA.RU.310657 от 12.05.2015), рассмотрена и одобрена федеральным государственным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия» (ФГБУ «ФЦАО»).

Настоящее издание методики введено в действие взамен ПНД Ф предыдущего издания и действует со 2 июля 2018 года до выхода нового издания.

Методика зарегистрирована в Федеральном информационном фонде по обеспечению единства измерений. Информация о методике представлена на сайтах www.fundmetrology.ru в разделе «Сведения об аттестованных методиках (методах) измерений» и www.rossalab.ru в разделе «Методики анализа».

Заместитель директора ФГБУ «ФЦАО»

Разработчик:

© ЗАО «РОСА», 2009

Адрес: 119297, г.Москва, ул.Родниковая, 7, стр.35

Телефон: (495) 502-44-22, телефон/факс: (495) 439-52-13

http://www.rossalab.ru

e-mail:quality@rossalab.ru

1 ОБЩИЕ ПОЛОЖЕНИЯ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий нормативный документ устанавливает методику измерений массовых концентраций взвешенных и прокаленных взвешенных веществ гравиметрическим методом.

Взвешенные вещества — это вещества, выделенные из воды путем фильтрования или центрифугирования (ГОСТ 30813).

В настоящей методике взвешенные вещества выделяют фильтрованием после предварительной гомогенизации пробы. Для фильтрования условно чистых проб (питьевых и природных вод) рекомендуется использовать мембранный фильтр, а для фильтрования сточных вод — бумажный фильтр.

Взвешенные вещества могут содержать минеральные вещества (типично для природных и промышленных сточных вод), органические вещества (типично для сточных вод пищевой промышленности) и смесь минеральных и органических веществ (типично для бытовых сточных водах).

Если для решения технологических задач требуется знать содержание органической и/или минеральной части взвешенных веществ, определяют «взвешенные вещества прокаленные». Для этого фильтр прокаливают при температуре выше 500°С. В результате прокаливания органические вещества сгорают, а минеральные остаются. Разность между взвешенными веществами и взвешенными веществами прокаленными позволяет ориентировочно оценить содержание органических взвешенных веществ.

При прокаливании помимо органических веществ частично сгорают неорганические компоненты, удаляется кристаллизационная и гигроскопическая вода, выделяется диоксид углерода из карбонатов кальция и магния, хлороводород, образующийся при гидролизе хлорида магния, и оксиды азота, образующиеся при восстановлении нитратов.

Методика распространяется на следующие объекты анализа: воды питьевые (в том числе расфасованные в емкости), воды природные (поверхностные, в том числе морские и подземные, в том числе источники водоснабжения), воды сточные (производственные, хозяйственно-бытовые, ливневые и очищенные).

Примечание — Допускается применение методики для анализа вод бассейнов и аквапарков, талых вод, технических вод (открытых и закрытых систем технологического водоснабжения, восстановленная), льда и атмосферных осадков (дождь, снег, град).

Диапазон измерений массовых концентраций взвешенных и прокаленных взвешенных веществ в питьевых и природных водах составляет от 0,5 до 5000 мг/дм , для сточных вод — от 0,5 до 50000 мг/дм .

Продолжительность анализа одной пробы на определение взвешенных веществ 14 часов, серии из 10 проб — 15 часов.

Продолжительность анализа одной пробы на определение прокаленных взвешенных веществ 17 часов, серии из 10 проб — 18 часов.

Блок-схема проведения анализа приведена в приложении А.

Определению мешают значительные количества масел и жиров, поэтому при отборе пробы должно быть исключено попадание в нее поверхностной пленки или кусочков жира. Если все-таки в пробе, доставленной в лабораторию, на поверхности присутствуют видимые жир или масло, то перед проведением анализа их удаляют. Жир с поверхности отобранной пробы снимают ложкой или шпателем, а масло кусочком фильтровальной бумаги.

Удаляют так же загрязнения в виде единичных включений, например, мелкие палочки, траву и т.п.

Содержание прокаленных взвешенных веществ дает ориентировочное представление о минеральном составе взвеси в воде, а потери при прокаливании, т.е. разность между массой взвешенных и прокаленных взвешенных веществ — о количестве органических соединений во взвеси.

ГОСТ 12.0.004-2015 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения.

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования.

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности.

ГОСТ 12.4.009-83 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание.

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков.

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия.

ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия.

ГОСТ 4147-74 Реактивы. Железо (III) хлорид 6-водный. Технические условия.

ГОСТ 6709-72 Вода дистиллированная. Технические условия.

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия.

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры.

ГОСТ 30813-2002 Вода и водоподготовка. Термины и определения.

ГОСТ 31861-2012 Вода. Общие требования к отбору проб.

ГОСТ Р 12.1.019-2009. Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты.

ГОСТ Р ИСО 5725-6-2002. Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике.

ГОСТ Р ИСО 7870-2-2015 Статистические методы. Контрольные карты. Часть 2. Контрольные карты Шухарта.

ГОСТ OIML R 76-1-2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р 52501-2005 Вода для лабораторного анализа. Технические условия.

ГОСТ Р 53228-2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р 56237-2014 Вода питьевая. Отбор проб на станциях водоподготовки и в трубопроводных распределительных системах.

ТУ 6-09-1678-86* Фильтры обеззоленные (белая, красная, синяя ленты).
________________
* ТУ, упомянутые здесь и далее по тексту, не приводятся. За дополнительной информацией обратитесь по ссылке. — Примечание изготовителя базы данных.

Примечание — Если ссылочный стандарт заменен (изменен), то следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Настоящая методика обеспечивает получение результатов измерений с погрешностью, не превышающей значений, приведенных в таблице 1.

Таблица 1 — Значения показателей повторяемости, воспроизводимости и точности

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), , %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), , %

Показатель точности (границы относительной погрешности при доверительной вероятности 0,95), , %

источник

Взвешенное вещество – это множество различных частиц, которые могут присутствовать в воде и воздухе. К таким веществам можно отнести различные органические и неорганические соединения. Это могут быть частички пыли, глины, остатки растений, всевозможные микроорганизмы, чаще всего это различные грубодисперсные примеси.

Именно в сточных водах большое количество взвешенных веществ. Их концентрация зависит от множества факторов. Например, один из них – это сезон. В различные времена года сточные воды обладают не только разной концентрацией взвешенных веществ, но также и различными их видами. Также влияет порода, из которой состоит русло водоема. Помимо этого, большое влияние оказывает находящееся поблизости сельское хозяйство, всевозможные застройки, предприятия и т. д.

Взвешенные вещества влияют на различные свойства сточных вод. Так как сточные воды в дальнейшем используются человеком, то необходимо контролировать их концентрацию. На какие же характеристики воды оказывают влияние взвешенные частицы? Прежде всего на прозрачность. Если концентрация сильно превышена, то, даже не пользуясь специальными методами определения, можно заметить, что вода становится менее прозрачной.

Взвешенные частицы влияют на то, как свет проникает в воду. Это является важным фактором при исследовании сточных вод. Взвешенные частицы способны на себе адсорбировать токсичные соединения, а еще они влияют на то, как распределяются отложения, и с какой скоростью будет происходить образование осадка.

Для реакционного использования нельзя брать воду, в которой содержится большое количество сетона. Сетон – это взвешенные вещества, которые являются особенностью экосистемы воды, выполняющие структурную и функциональную роль.

Существуют определенные требования, которые предъявляют к составу питьевых, хозяйственных вод. Необходимо, чтобы концентрация сетона при спуске сточных вод не превышала значения 0,25 мг/дм 3 . Если вода имеет культурно-бытовое значение, то к ней предъявляются требования, чтобы количество взвешенных частиц не превышало норму в 0,75 мг/дм 3 . Для различных водоемов допускается увеличение концентрации до 5 %, но такая поправка возможна в определенных условиях, например если в период межени концентрация сетона не больше 30 мг/дм 3 .

Необходимо проводить контроль сточных вод и водоемов. Важно, чтобы с определенной периодичностью проводилась оценка состояния воды. Такую оценку можно проводить различными способами, применяя либо биологические методы исследования, либо физико-химические.

Определение взвешенных веществ можно проводить различными методами. Главным фактором при выборе метода служит размер примесей. Крупнодисперсные вещества возможно определить при помощи гравиметрии. Данный способ заключается в том, что крупные частички имеют такой размер, что способны оставаться на фильтре во время фильтрования образца воды. Для данного метода используют различную фильтровальную бумагу, которую подбирают, исходя из размера примесей. Например, для воды с прозрачностью 10 см используют фильтровальную бумагу с синей лентой.

Помимо крупных частичек в пробе находятся и тонкодисперсные. Их размер настолько мал, что они свободно проходят сквозь фильтр и не задерживаются на нем, таким образом, гравиметрический способ не подходит для их определения. Такими тонкодисперсными веществами могу быть неорганические и органические соединения, которые образовывают коллоидный раствор. Для определения используют термин «мутность» и «опалесценция». Для воды, пригодной для употребления, есть норма мутности, которая не должна быть больше, чем 1,5 мг/дм 3 по каолину.

Очищение воды от мелкодисперсных частиц может проводиться при помощи колонок со специальным наполнением – специфическим сорбентом. Адсорбенты бывают различные, которые подбираются в зависимости от того, от каких веществ следует очищать пробу воды.

Взвешенные вещества также влияют и на цвет воды. Определяют их содержание при помощи платиново-кобальтовой шкалы. Определение происходит путем сравнения цвета и интенсивности пробы с эталонной водой.

Цвет воды изменяется из-за того, что взвешенные вещества – это гумусовые соединения либо примеси, содержащие в своем составе железо. Количество данных веществ зависит от природных условий, где находится водоем.

ПДК цветности составляет 35 градусов. Из-за присутствия взвешенных частиц насыщение воды кислородом не происходит в нужной мере, так как он расходуется на реакции окисления с железом и другими соединениями. Это приводит к тому, что растения и животные организмы не могут получить необходимое количество кислорода.

Помимо водных сред, взвешенные вещества в воздухе также находятся, и их количество тоже необходимо контролировать. Пыль – взвешенные вещества, находящиеся в воздушных массах. В газовой среде распределены частицы различного размера и разной природы. Существуют различные виды пыли, которую классифицируют для определения нормы содержания взвешенных веществ. Промышленной пыли и саже приписывают 3-й класс опасности. Необходимо следить за содержанием этих веществ на объектах промышленного назначения.

Взвешенные вещества влияют на комфортное существование всех живых организмов и растений. При большой их концентрации в воздухе они способны поглощать часть солнечного света, что приводит к ослаблению адаптивных свойств организмов. Помимо этого, такие примеси оседают на листьях растений, что препятствует прохождению солнечной энергии. Это ведет к замедлению реакции фотосинтеза и ухудшает их общее состояние.

Частицы, которые находятся в воздухе, способны к адсорбции ядовитых и опасных соединений. Это приводит к тому, что они могут распространяться на дальние расстояния. Взвешенные частицы являются переносчиками токсичных соединений.

Таким образом, взвешенные вещества – это крупно- и мелкодисперсные частицы, которые могут находиться в водных системах и в газовых средах. Их количество необходимо контролировать, чтобы существование живых организмов и растений было безопасным и комфортным.

источник

Оборудование, реактивы, материалы

Колба коническая на 250 см 3 ;

В СВ сухой остаток характеризует загрязненность воды примесями, находящимися во всех агрегатных состояниях. Его определяют выпариванием пробы СВ с последующим высушиванием при температуре 105°С. В него входят как растворенная, так и взвешенные вещества.

Ход определения. Отмеренную цилиндром пробу СВ в количестве 100 см 3 выпаривают на водяной бане в предварительно высушенной и взвешенной фарфоровой чашке. Содержимое чашки дополняют по мере выпаривания. После полного выпаривания пробы чашку ставят в сушильный шкаф и сушат при температуре 103-105°С в течение 1 ч. После охлаждения в эксикаторе чашку быстро взвешивают, так как осадок гигроскопичен.

Сухой остаток (в мг/дм 3 ) определяют по формуле 1.

, (1)

где а – масса чашки вместе с сухим остатком,

— объем выпаренной пробы, см 3

2. Прокаленный сухой остаток

Его получают путем прокаливания сухого остатка при температуре 600°С. Он дает представление о соотношении органической и неорганической частей в общей массе примесей.

Ход определения. Высушенную и взвешенную фарфоровую чашку с сухим остатком (х1) ставят в муфельную печь, предварительно нагретую до температуры 500-600°С, и прокаливают в течение 1 ч. Чашку сначала немного охлаждают на открытом воздухе, затем в эксикаторе и после полного охлаждения взвешивают.

Читайте также:  Можно ли провести анализ воды

Прокаленный остаток (мг/дм 3 ) определяют по формуле 2.

, (2)

где с – масса фарфоровой чашки вместе с прокаленным остатком, мг;

— объем выпаренной пробы.

В прокаленном остатке остаются минеральные вещества, тогда содержание органических веществ (х3), мг/дм 3 может быть определено по формуле 3.

Этот показатель характеризует количество осадка, образующегося в процессе очистки СВ при отстаивании и используется при расчете отстойников. Он указывает на количество примесей, остающихся на фильтре после фильтрования СВ и последующего высушивания фильтра до постоянной массы.

Во взвешенных веществах содержатся частицы загрязнений различной степени дисперсности. Количественное определение грубодисперсных примесей следует, по возможности, проводить сразу после отбора проб для анализа.

Для определения таких примесей их отделяют, фильтруя СВ через различные пористые материалы: мембранные фильтры, стеклянные, кварцевые или фарфоровые фильтры.

В данной работе определение взвешенных веществ осуществляют путем фильтрования через бумажный фильтр, укрепленный тканью из муслина.

Ход определения. Складчатый беззольный бумажный фильтр помещают в бюкс, высушивают в сушильном шкафу при температуре 105°С до постоянной массы, охлаждают в эксикаторе в закрытом бюксе и взвешивают на аналитических весах с точностью до четвертого знака после запятой. Высушенный фильтр достают из бюкса расправляют и укладывают в стеклянную воронку для фильтрования на тканевую подложку. Бюкс вместе с крышкой сохраняют. Сточную воду в количестве 100 см 3 профильтровывают через бумажный фильтр. Бумажный фильтр вместе с муслиновой подложкой подсушивают в сушильном шкафу при 105°С. Подсушенный фильтр отделяют от подложки, помещают в прежний бюкс и досушивают до постоянной массы при той же температуре.

Содержание взвешенных веществ (мг/дм 3 ) определяют по формуле 4.

, (4)

где e – масса бюкса вместе с фильтром со взвешенными веществами после высушивания, мг;

f – масса бюкса с высушенным фильтром, мг;

— объем сточной воды, взятой для анализа, см 3 .

4. Прокаленный остаток взвешенных веществ

Он позволяет дать приближенное представление о доли неорганических и органических веществ во взвешенных веществах, так как при прокаливании разрушаются карбонаты, аммиачные соли и др.

Ход определения. Сухой бумажный фильтр со взвешенными веществами сминают в комочек, поджигают и помещают в предварительно прокаленный и взвешенный тигель. Бумажный фильтр в бюксе дожигают на электроплитке до полного обугливания, затем тигель помещают в муфель предварительно нагретый до 500-600°С и выдерживают в течение 1 ч. Тигель некоторое время охлаждают на воздухе, а затем в эксикаторе и после полного охлаждения взвешивают.

Прокаленный остаток взвешенных веществ (мг/дм 3 ) определяют по формуле 5.

, (5)

где g – масса тигля с прокаленным остатком взвешенных веществ, мг;

h – масса пустого прокаленного тигля, мг;

— объем СВ, взятый для анализа взвешенных веществ, см 3 .

В прокаленном остатке от взвешенных веществ содержатся только минеральные вещества, тогда содержание органических веществ (мг/дм 3 ) можно определить по формуле 6:

Он характеризует суммарное количество растворенных органических и неорганических веществ. Его определяют аналогично показателю «сухой остаток», для чего используют фильтрат, полученный при определении взвешенных веществ (п.3).

Ход определения. Весь объем фильтрата, оставшегося от определения взвешенных веществ, выпаривают на водяной бане в предварительно прокаленной в муфеле и взвешенной фарфоровой чашке. После полного выпаривания и подсушивания в сушильном шкафу при температуре 105°С в течение часа, чашку охлаждают в эксикаторе и быстро взвешивают.

Плотный остаток (в мг/дм 3 ) определяют по формуле 7:

Х7 = , (7)

где k – масса чашки вместе с плотным остатком, мг;

— объем сточных вод, взятых для определения взвешенных веществ, см 3 .

6. Прокаленный остаток от плотных веществ.

Этот показатель дает приближенное представление о доли неорганических и органических веществ, находящихся в сточной воде в растворенном состоянии.

Ход определения. Высушенные и взвешенные плотные вещества, находящиеся в фарфоровой чашке (х7) ставят в муфельную печь, предварительно нагретую до температуры 500-600°С, прокаливают в течение 1 ч. Чашку вынимают из муфельной печи и вначале охлаждают на воздухе, затем в эксикаторе. После полного охлаждения взвешивают.

Прокаленный остаток от плотных веществ (мг/дм 3 ) определяют по формуле 8:

Х8 = , (8)

где m – масса фарфоровой чашки с прокаленным остатком, мг;

n – масса пустой фарфоровой чашки, мг;

— объем сточных вод, взятый для определения взвешенных веществ, см 3 .

В прокаленном остатке содержатся минеральные вещества, растворенные в сточной воде. Органические растворенные вещества (мг/дм 3 ) определяют по разности, по формуле 9:

1. Что характеризует в сточной воде показатель «сухой остаток»?

2. Как в сточной воде определяют показатель «сухой остаток»?

3. Как определяют в сточной воде показатель «прокаленный сухой остаток» и для чего это делают?

4. Что характеризует в сточной воде показатель «взвешенные вещества»?

5. Для чего определяют в сточной воде показатель «взвешенные вещества»?

6. Как в сточной воде определяют показатель «взвешенные вещества»?

7. Зачем определяют показатель «прокаленный остаток взвешенных веществ»?

8. Что означает показатель «плотный остаток» в сточной воде, как его определяют?

9. С какой целью, выделенный из сточных вод плотный остаток дополнительно прокаливают в муфельной печи?

10. Как консервируют сточную воду для определения взвешенных, плотных веществ?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8396 — | 7314 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Выпускается в 7-ми различных вариантах исполнения — ручное или автоматическое управление, корпус из армированного пластика или нержавейки, есть вариант нержавеющего корпуса с нижним сливом для простоты консервации на зиму. Посмотреть все варианты исполнения фильтров

Анализ воды из скважины, колодца или водопровода сделать в лаборатории Санкт-Петербурге, стоимость экспертизы питьевой воды, где сделать, цена.

Согласно санитарным нормам питьевая вода должна быть безопасна в эпидемиологическом и радиационном отношении, безвредна по химическому составу, и иметь приятные органолептические свойства. Поэтому, целесообразно проверить качество воды из вашего источника — сделать анализ качества воды на соответствие требованиям санитарных норм и правил на питьевую воду. Для выбора системы очистки воды из скважины или колодца важно проверить воду не менее, чем по 15-ти основным показателям.

Требования (нормативы), которым должна соответствовать вода, изложены в санитарных нормах и правилах РФ (СанПиН) и международных нормативах Всемирной организации здравоохранения (ВОЗ), основные положения которых приведены в представленной ниже таблице. И так, рассмотрим основные показатели качества воды.

К органолептическим свойствам воды относят следующие характеристики: запах, привкус, цветность и мутность.

Запах и привкус воды объясняются присутствием в ней естественных или искусственных загрязнений. Природа запахов и привкусов очень различна, и может быть обусловлена как наличием в воде определенных растворенных солей, так и содержанием различных химических и органических соединений.

Кроме того, следует отметить, что запах и привкус может появиться в воде на нескольких этапах: из исходной природной воды, в процессе водоподготовки (в том числе в водонагревателе), при транспортировке по трубопроводам. Правильное определение источника запахов и привкусов — залог успешности их устранения.

Величина (интенсивность) запаха определяется по 6-ти бальной шкале. Например, запах тухлых яиц обусловлен наличием в воде сероводорода (Н2S), а также присутствием сульфатредуцирующих бактерий, вырабатывающих этот газ, а гнилостный запах обусловлен присутствием в воде природных органических соединений. Химические запахи (например, бензиновый, фенольный) указывают на антропогенный характер загрязнений.

Вкус воды обусловлен растворенными в воде природными веществами, каждое из которых придает воде определенный привкус:

  • солоноватый — хлоридом натрия;
  • горьковатый — сульфатом магния;
  • кисловатый — растворенным углекислым газом или растворенными кислотами.

Приятный или неприятный вкус воды обеспечивается как наличием, так и концентрацией находящихся в ней примесей.

Под цветностью понимается естественная окраска природной и питьевой воды. Цветность косвенно характеризует наличие в воде некоторых органических и неорганических растворенных веществ и является одним из важных показателей, позволяющих правильно выбрать систему водоочистки.

Цветность воды определяется сравнением с растворами специально приготовленной шкалы цветности (на основе определенных концентраций хромово-кобальтового раствора) и выражается в градусах цветности этой шкалы. По требованиям к питьевой воде данный показатель не должен превышать 20 градусов.

Главными «виновниками» цветности воды, являются вымываемые из почвы органические вещества (в основном гуминовые и фульвовые кислоты). Повышенная цветность воды также может свидетельствовать о возможной ее техногенной загрязненности. Наличие гуминовых кислот может приводить к определенной биологической активности воды, повышает проницаемость в кишечнике ионов металлов: железа, марганца и др.

Показатель, характеризующий наличие в воде взвешенных веществ неорганического происхождения (например, карбонаты различных металлов, гидроокиси железа), органического происхождения (коллоидное железо и т.п.), минерального происхождения (песка, глины, ила), а также микробиологического происхождения (бактерио-, фито- или зоопланктона). Мутность выражается в мг/дм3.

Мутность также может быть обусловлена наличием на поверхности и внутри взвешенных частиц различных микроорганизмов, которые защищают их как от химического, так и от ультрафиолетового обеззараживания воды. Поэтому снижение мутности в процессе очистки воды способствует также значительному снижению уровня микробиологического загрязнения.

Химические показатели характеризуют химический состав воды. К данным показателям относят водородный показатель воды рН, жесткость и щелочность, минерализацию (сухой остаток), анионный и катионный состав (неорганические вещества), содержание органических веществ.

Показатель, характеризующий интегральную загрязненность воды, т.е. содержание в воде окисляющихся органических и неорганических примесей, которые в определенных условиях способны окисляться сильным химическим окислителем. К упомянутым выше загрязнителям относятся в основном органические вещества — для воды из поверхностных источников, и неорганические ионы (Fe 2+ ,Mn 2+ , и т.п.) — для воды из артезианских скважин.

Различают несколько видов окисляемости воды: перманганатную (ПМО), бихроматную, иодатную. Как видно из названий — при этом для проведения химического анализа воды используются соответствующие окислители. Показатель окисляемости — мгО2/л. Это количество миллиграмм кислорода, эквивалентное количеству реагента (окислителя), пошедшего на окисление веществ, содержащихся в 1 л воды.

Величина бихроматной окисляемости обычно используется для определения такого важного показателя воды как ХПК — химическая потребность в кислороде. ХПК используется для характеристики загрязненных природных поверхностных вод, а также для сточных вод. Этот показатель свидетельствует о степени биогенной загрязненности воды.

Бихроматная окисляемость позволяет получить значение наиболее полно характеризующее присутствие органических загрязнителей, за исключением таких химически инертных веществ как бензин, керосин, бензол, толуол и т.п. Считается, что при определении этого показателя окисляются до 90% органических примесей.

На практике для характеристики питьевой воды обычно используется показатель перманганатная окисляемость (ПМО) или перманганатный индекс (ПМИ). Чем больше значение ПМО, тем выше концентрация загрязнителей. Отметим, что величина перманганатной окисляемости ниже, чем значение, полученное для бихроматной примерно в 3 раза.

Водородный показатель или рН представляет собой логарифм концентрации ионов водорода, взятый с обратным знаком, т.е. pH = -logH + 1. Величина рН определяется количественным соотношением в воде ионов Н + и ОН — , образующихся при диссоциации воды. Если ионы ОН — в воде преобладают, что соответствует значению рН>7, то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н + , что соответствует рН + >+ HCO3

В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и многие другие ее характеристики.

Обычно уровень рН для воды, используемой в хозяйственных и питьевых целях, нормируется в пределах интервала 6-9.

Эта величина характеризует количество растворенных неорганических и органических веществ. В первую очередь это сказывается на органолептических свойствах воды. Установлено, что до 1000 мг/л вода может быть использована для водопотребления.

Величина сухого остатка влияет на вкусовые качества питьевой воды. Человек может без риска для своего здоровья употреблять воду с сухим остатком до 1000 мг/л. При большем значении вкус воды чаще всего становится неприятным горько-соленым. Следует также отметить, что у воды с низким уровнем сухого остатка вкус может отсутствовать и употреблять ее тоже не очень приятно.

Этот показатель характеризует свойство воды, связанное с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния (так называемых «солей жёсткости»).

Вода с большим содержанием таких солей называется жёсткой, с малым содержанием — мягкой.

Численное выражение жёсткости воды — это концентрация в ней катионов кальция и магния. По ГОСТ Р 52029-2003 жесткость выражается в градусах жесткости (°Ж), что соответствует концентрации щелочноземельного элемента, численно равной 1/2 его моля, выраженной в мг/дм³ (г/м³) (1 °Ж = 1 мг-экв/л).

Читайте также:  Можно ли пить воду перед биохимическим анализом

Различают временную (карбонатную) жёсткость, обусловленную гидрокарбонатами кальция и магния (катионов Ca 2+ и Mg 2+ и анионов HCO3).

При кипячении воды гидрокарбонатные анионы вступают в реакцию с этими катионами и образуют с ними малорастворимые карбонатные соли, которые осаждаются на нагревательных элементах в виде накипи белого цвета, называемой в простонародии известью.

Временную жесткость можно устранить кипячением — отсюда и ее название.

Постоянная (некарбонатная) жесткость воды вызвана присутствием солей, не выпадающих в осадок при кипячении. В основном, это сульфаты и хлориды кальция и магния (CaSO4, CaCl2, MgSO4, MgCl2). Следует отметить, что именно присутствие соли CaSO4, растворимость которой с повышением температуры воды понижается, приводит к образованию плотной накипи.

Вода с высокой жесткостью наносит большой вред бытовым электронагревательным приборам, образуя накипь и тем самым вызывая их перегрев и разрушение, образует неприятные матовые налеты на сантехнике; в ней плохо пенятся мыло и шампуни, а поэтому увеличивается их расход.

Жесткая вода сушит кожу и вредит волосам; отрицательно влияет на качество приготовленной пищи, полезные вещества которой могут образовывать с солями жесткости плохо усваиваемые организмом соединения.

Жесткая вода вредна и для организма человека: увеличивается риск развития мочекаменной болезни, нарушается водно-солевой обмен.

Иногда в качестве характеристики встречается показатель «полная жесткость» воды, равный сумме постоянной и переменной (карбонатной) жесткости.

Его токсичное влияние на организм человека незначительно, но все же употребление питьевой воды с повышенным содержанием железа может привести к отложению его соединений в органах и тканях человека.

В общем случае в воде железо может встречаться в свободной форме в виде двух- и трехвалентных ионов:

Fe 2+ , как правило, в артезианских скважинах при отсутствии растворенного кислорода. Вода с повышенным содержанием такого железа может быть первоначально прозрачна (Fe 2+ ), но при отстаивании или нагреве приобретает желтовато-бурую окраску. Это происходит в результате окисления растворенного железа до Fe 3+ с образованием нерастворимых солей трехвалентного железа:

Fe 3+ — содержится в поверхностных источниках водоснабжения в так называемом окисленном состоянии, и, как правило, в нерастворимом виде.

Существует еще одна форма присутствия железа в природной воде — это органическое железо. Оно встречается в воде в разных формах и в составе различных комплексных соединений трехвалентных ионов железа с растворенными неорганическими и органическими соединениями, и, главным образом, с солями гуминовых кислот — гуматами. Повышенное содержание такого железа наблюдается в болотных водах, и вода имеет бурое или коричневатое окрашивание.

Органические соединения железа, как правило, растворимы или имеют коллоидную структуру (коллоидное железо) и очень трудно поддаются удалению. Коллоидные частицы из-за своего малого размера и высокого поверхностного заряда, который не позволяет частицам сближаться и препятствует их укрупнению, предотвращая образование конгломератов, создают в воде суспензии и не осаждаются, находясь во взвешенном состоянии и, тем самым, обуславливают мутность исходной воды.

На вкус такая вода имеет характерный неприятный металлический привкус, образует ржавые подтеки. Присутствие в воде коллоидного железа способствует развитию железистых бактерий, что еще больше ухудшает вкусовые качества воды и вызывает отложение осадка на внутренней поверхности трубопроводов и санитарно-технического оборудования вплоть до их полного засорения.

Марганец входит в состав многих ферментов, гормонов и витаминов, которые влияют на процессы роста, кровообразование, формирование иммунитета. Однако, повышенное его содержание в воде может оказывать токсический и мутагенный эффект на организм человека.

Вода с повышенным содержанием марганца обладает металлическим привкусом. Его присутствие приводит к значительно более быстрому износу бытовой техники и систем отопления, поскольку он способен накапливаться в виде черного налета на внутренних поверхностях труб с последующим отслаиванием и образованием взвешенного в воде осадка черного цвета. Кроме того, повышенное содержание марганца приводит к образованию черных пятен на посуде, белом белье при стирке, окрашивает ногти и зубы в серовато-черный цвет.

Также существуют «марганцевые» бактерии, которые, как и «железистые» бактерии, могут развиваться в такой воде и становиться причиной зарастания и закупорки трубопроводов.

Показатель, чаще всего характеризующий наличие в воде органических веществ животного или промышленного происхождения. Источниками азота аммонийного являются: животноводческие фермы, хозяйственно бытовые сточные воды, сточные воды с сельскохозяйственных угодий, предприятий пищевой и химической промышленности.

Указанные соединения являются главным образом продуктами распада мочевины и белков. Лимитирующая величина показателя «аммонийный азот» — токсикологическая. По нормам СанПиН содержание в воде аммония не должно превышать 2,0 мг/л.

К микробиологическим показателям безопасности питьевой воды относят общее микробное число, содержание бактерий группы кишечной палочки (общие колиформные бактерии и колифаги), споры сульфитредуцирующих клостридий и цисты лямблий.

В зависимости от характеристик водного источника с целью безопасности воды могут проверяться и такие показатели, как паразитологические и радиологические.

Анализ качества питьевой воды производится исходя из норм показателей по требованиям нормативных документов государств.

В таблице представлены нормативы основных показателей качества по санитарным нормам СанПиН Российской Федерации, указанные в столбце 3 — СанПиН 2.1.4.1074-01 «Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения» и столбце 4 — СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».

Именно по этим показателям следует проверить качество воды из вашего источника и оценить необходимость установки дополнительного оборудования для очистки воды.

Для сравнения приведены нормативы Всемирной организации здравоохранения (ВОЗ).

источник

Наше время создание качественной канализационной системы – это первоочередная задача при постройке абсолютно любого дома. Причем важной ее частью являются очистительные сооружения. Ведь сейчас острой проблемой стало загрязнение окружающей среды, с которым человечество борется всеми силами. Поэтому в нашей стране слив стоков без предварительной очистки запрещен и карается законом. Главным элементом, загрязняющим канализационные воды, являются взвешенные частицы. Именно на их удаление в первую очередь нацелены очистительные системы в виде септиков.

Взвешенными частицами называют те вещества, которые при очистке остаются на мембранах и фильтрах. Обычно они не превышают размер 4 мм. Именно на них нацелена очистка воды.

Неочищенные сточные воду могут нанести вред экологии

Взвешенные вещества встречаются не только в сточных водах, они также присутствуют в жидкости из скважин и колодцев. Поэтому природная вода тоже нуждается в очистке.

Это загрязнение может иметь разные размеры. Также взвешенные частицы делятся на типы по своему составу.

Типы взвешенных веществ:

  1. Минеральные взвешенные частицы наиболее часто встречаются в колодцах и скважинах. Такое определение подразумевает под собой содержащиеся в воде природные частицы. К ним относятся глина, песок, мел, аммонийный элемент и т. д.
  2. Химические взвешенные частицы наиболее опасны. Они могут встречаться в промышленных стоках и в источниках, находящихся рядом с заводами. Именно здесь подразумевается удаление фосфатов и других опасных соединений.
  3. Биологические взвешенные частицы. Они состоят из смеси белков, углеводов, жиров и т. д. При длительном отсутствии кислорода они начинают гнить.

Если говорить о бытовых хозяйственных взвешенных частицах, то они состоят преимущественно из минеральных и органических веществ. Однако там могут присутствовать и химические соединения, например, от средств для мытья посуды. Вещество также может содержать азот и фосфор.

Взвешенные частицы – это вещества, содержащиеся в воде и оседающие на фильтре. Такое определение вы можете увидеть в любом справочнике. Однако если говорить о них более подробно, то описание не уместится в одно предложение.

Очистка взвешенных веществ наиболее проста в исполнении. Намного сложнее удалить из воды микроэлементы. Однако от сточных вод этого и не требуется.

Чтобы изучить подробнее сточные воды, нужно знать, на какие характеристики нужно обращать внимание:

  1. Плотность взвешенных частиц – их главный параметр. Неорганические соединения обычно плотнее воды, поэтому они быстро оседают. Однако органические соединения зачастую имеют меньшую плотность, поэтому они всплывают.
  2. Концентрация взвешенных веществ. Этот параметр можно определить путем взвешивания фильтра, на котором они осели, определением мутности и прозрачности воды.
  3. Форма частиц. Для этого они сравниваются со сферой.
  4. Размер частиц. Существуют мелкодисперсные и крупнодисперсные вещества. Этот параметр выясняется путем просеивания высушенного осадка через сито с отверстиями разного размера.

На каждый из этих показателей указывает свой признак. Однако если планируется просто установка канализационной системы, то все эти параметры знать незачем. Нужен лишь общий показатель состава взвешенных веществ. То есть необходимо определить процент органики, минералов и химии.

Очень важно ответственно подойти к очищению сточных вод. Ведь от этого зависит состояние экологии. Кроме того, пренебрежение этим этапом карается законом и предполагает наказание в виде штрафа.

Очистка сточных и питьевых вод осуществляется разными способами. В случае с питьевой водой удаление частиц и микроэлементов должно быть более качественным и безопасным.

Очистка сточных вод от взвеси может осуществляться разными способами:

  1. Самым простым и популярным методом для удаления крупных частиц является отстаивание. Этот способ работает на принципах силы тяжести. Частицы, которые плотнее воды, выпадают в осадок.
  2. Преаэрация – это насыщение кислородом воды в отстойнике. Этот метод помогает более эффективно пройти отстаивание.
  3. Перемешивание стоков тоже очень эффективно. Быстрое вращение заставляет осаждаться более мелкие взвеси, разрушая их структуру.
  4. Введение в резервуар коагулянта – один из самых эффективных методов очистки стоков от взвешенных частиц. Раствор склеивает взвесь. Причем попадаются и мелкие, и крупные частицы. Таким образом, осадок образуется быстрее, и в воде остается меньше веществ.
  5. Флокуляция – это современный и качественный метод очищения стоков. За счет этого все частицы превращаются в большие хлопья. Это позволяет очистить воду практически на 80%.
  6. Фильтрация стоков. Вода без осадков переливается через фильтр в следующий резервуар.
  7. Активный ил. Он представляет сбой комплекс аэробных или анаэробных бактерий. Они растворяют биологические взвешенные вещества. Продукты их жизнедеятельности вновь выпадают в осадок.
  8. На последнем этапе происходит еще одна фильтрация. При этом воды пропускаются либо через искусственный фильтр, либо через систему, созданную из мелкого песка и гравия.

Частицы из сточных вод удаляются с помощью специальных фильтров

Такие методы позволяют шаг за шагом начисто очистить сточные воды. Это позволит без зазрения совести слить их в грунт.

Также стоит выяснить характер загрязнения вод взвешенными частицами. Существует несколько вариантов:

  1. Первым видом взвешенных веществ являются частицы большой величины. У них наиболее большая плотность, поэтому они оседают на дно резервуаров первыми.
  2. Форма взвешенных частиц тоже может отличаться. Существуют элементы, которые не оседают и не всплывают. Некоторые частицы сразу оседают на дно. Другие, напротив, всплывают. В этом случае все зависит от плотности веществ.

Эти параметры очень важны. Ведь именно от них зависит, какой способ очистки подойдет лучше всего. Проверить это можно, отправив стоки в лабораторию. Также можно заглянуть в сточную яму и оценить скорость их оседания.

Взвешенные частицы – это вещества, которые содержатся в воде и имеют достаточно крупные размеры. Именно от них прежде всего избавляются при очистки сточных вод. И лучше всего для этих целей подходят многоуровневые системы.

источник

Настоящий нормативный документ устанавливает методику количественного химического анализа различных типов вод, с цепью измерения содержания взвешенных и прокаленных взвешенных веществ гравиметрическим методом. Методика распространяется на следующие объекты анализа: воды питьевые; воды природные, в том числе поверхностных и подземных источников водоснабжения; воды сточные производственные, хозяйственно-бытовые, ливневые и очищенные. Методика может быть использована д ля анализа проб снежного покрова и талых вод.

Диапазон измерений содержания взвешенных и прокаленных взвешенных веществ от 0,5 до 5000 мг/дм 3 .

Продолжительность анализа одной пробы на содержание взвешенных веществ 14 часов, серии из 10 образцов — 15 часов.

Продолжительность анализа одной пробы на содержание прокаленных взвешенных веществ 17 часов, серии из 10 образцов — 18 часов.

Блок-схема проведения анализа приведена в приложении.

Определению мешают значительные количества масел и жиров, поэтому при отборе пробы должно быть исключено попадание в нее поверхностной пленки или кусочков жира. Если все-таки в пробе, доставленной в лабораторию, на поверхности присутствуют видимые жир или масло, то перед проведением анализа их удаляют. Жир с поверхности отобранной пробы снимают ложкой или шпателем, а масло кусочком фильтровальной бумаги.

Удаляют так же загрязнения в виде единичных включений, например, мелкие палочки, траву и т.п.

Содержание прокаленных взвешенных веществ дает ориентировочное представление о минеральном составе взвеси в воде, а потери при прокаливании, т.е. разность между массой взвешенных и прокаленных взвешенных веществ — о количестве органических соединений во взвеси.

ГОСТ 12.0.004-90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

Читайте также:  Можно ли самому сделать анализ воды

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.4.009-83 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия

ГОСТ 4147-74 Реактивы. Железо (III) хлорид 6-водный. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 27384-2002 Вода. Нормы погрешностей измерений показателей состава и свойств

ГОСТ Р 12.1.019-2009. Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ Р ИСО 5725-6-2002. Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности

ГОСТ Р 50779.42-99 (ИСО 8258-91) Статистические методы. Контрольные карты Шухарта

ГОСТ Р 51592-2000 Вода. Общие требования к отбору проб

ГОСТ Р 52501-2005 Вода для лабораторного анализа. Технические условия

ГОСТ Р 53228-2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

Настоящая методика обеспечивает получение результатов измерений с погрешностью, не превышающей значений, приведенных в таблице 1, при доверительной вероятности 0,95. Приписанные погрешности измерений не превышают нормы погрешностей, установленные ГОСТ 27384.

Методика определения взвешенных веществ основана на выделении их из пробы путем фильтрования воды через предварительно взвешенный бумажный или мембранный фильтр и определении веса осадка на фильтре, высушенного до постоянной массы при (105 ± 2) °С.

Методика определения прокаленных взвешенных веществ основана на выделении их из пробы путем фильтрования воды через предварительно взвешенный бумажный или мембранный фильтр, высушивании до постоянной массы при (105 ± 2) °С и далее определении веса осадка на фильтре, прокаленного до постоянной массы в муфельной печи при (600 ± 15) °С.

Таблица 1 — Значения показателей повторяемости, воспроизводимости и точности

Диапазон измерений, мг/дм 3

Показатель повторяемости (стандартное отклонение повторяемости), σ r , %

Показатель воспроизводимости (стандартное отклонение воспроизводимости) σ R , %

Показатель точности (границы относительной погрешности при Р = 0,95), ±δ, %

Прокаленные взвешенные вещества

Примечание — Показатель точности измерений соответствует расширенной неопределенности при коэффициенте охвата k = 2.

5.1.1 Бюксы стеклянные СН-45/13, СН-60/14 по ГОСТ 25336.

5.1.2 Весы лабораторные с максимальной нагрузкой 210 г высокого класса точности по ГОСТ Р 53228.

5.1.3 Воронки лабораторные, В-56-80 ХС, В-75-110 ХС по ГОСТ 25336.

5.1.4 Гомогенизатор, например, марки IKA фирмы Labortechnic (Германия), модель Ultra-Turrax Т 25 или любой другой.

5.1.5 Дистиллятор или установка любого типа для получения воды дистиллированной по ГОСТ 6709 или воды для лабораторного анализа степени чистоты 2 по ГОСТ Р 52501.

5.1.6 Колбы конические вместимостью 500 и 1000 см 3 по ГОСТ 25336.

5.1.7 Печь муфельная с рабочей камерой футерованной керамическим муфелем, обеспечивающая температуру (600 ± 15) °С.

5.1.8 Пинцет металлический с острыми концами.

5.1.10 Установка фильтровальная с вакуумным насосом.

5.1.11 Флаконы с притертой пробкой (для хранения растворов реактивов).

5.1.12 Холодильник бытовой, обеспечивающий хранение проб при температуре (2 — 10) °С.

5.1.13 Цилиндры мерные вместимостью 500 и 1000 см 3 по ГОСТ 1770, 2 класса точности.

5.1.14 Шкаф сушильный общелабораторного назначения, обеспечивающий температуру (105 ± 2) °С.

5.1.16 Шпатель или ложка любая.

Допускается использование средств измерения, вспомогательного оборудования, лабораторной посуды с аналогичными или лучшими метрологическими и техническими характеристиками.

5.2.1 Вода дистиллированная по ГОСТ 6709 или для лабораторного анализа по ГОСТ Р 52501 (2-ой степени чистоты), (далее вода дистиллированная).

5.2.2 Кислота соляная по ГОСТ 3118, х.ч.

5.2.3 Железо (III) хлорид (хлорное железо), 6-водное по ГОСТ 4147, ч., насыщенный раствор (для маркировки бюксов).

5.2.5 Фильтры мембранные с диаметром пор 0,45 мкм.

Допускается использование реактивов более высокой квалификации, а также материалов с аналогичными или лучшими характеристиками.

6.1 При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

6.2 При работе с оборудованием необходимо соблюдать требования электробезопасности при работе с электроустановками по ГОСТ Р 12.1.019 и требования техники безопасности при работе с муфельной печью в соответствии с инструкцией по эксплуатации.

6.3 Организация обучения работающих безопасности труда должна проводиться по ГОСТ 12.0.004.

6.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

К выполнению измерений и обработке их результатов допускают лиц, владеющих техникой гравиметрического анализа.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

относительная влажность воздуха

9.1 Отбор проб производится в соответствии с ГОСТ Р 51592 и ГОСТ Р 51593. Отбор проб воды осуществляют в стеклянные или пластиковые флаконы. Пробы снега в соответствии с ГОСТ 17.1.5.05 переводят в талую воду при комнатной температуре.

9.2 Объём отбираемый пробы должен быть (1000 — 2000) см 3 для питьевой и природной воды и не менее 250 см 3 — для сточной или загрязненной пробы воды.

9.3 Срок хранения пробы 24 часа при температуре (2 — 10) °С.

9.4 При отборе проб составляют сопроводительный документ по утвержденной форме, в котором указывают:

— место, дату и время отбора;

— должность, фамилию сотрудника, отбирающего пробу.

30 см 3 соляной кислоты смешивают со 170 см 3 дистиллированной воды. Смесь хранят под тягой во флаконе с притертой пробкой. Срок хранения — 6 месяцев.

Тонкой деревянной палочкой или спичкой на фарфоровые тигли наносят идентификационные метки (номера) насыщенным раствором хлорного железа. Затем тигли ставят в муфельную печь, предварительно нагретую до (600 ± 15) °С на (5 — 10) минут. Метки приобретают коричневую окраску и не смываются водой и растворами кислот.

10.2.2 Прокаливание и взвешивание тиглей

Промаркированные фарфоровые тигли промывают раствором соляной кислоты, приготовленной по 10.1, затем — дистиллированной водой, подсушивают на воздухе и прокаливают при (600 ± 15) °С в течение 1 часа, охлаждают в эксикаторе и взвешивают. Прокаливание повторяют до тех пор, пока разница между двумя последними взвешиваниями не будет превышать 0,5 мг. Значение массы тигля записывают в рабочем журнале.

Примечание — Если одни и те же тигли используют ежедневно, при этом их массы изменяются в допустимых пределах (± 0,5 мг) достаточно проведения одного прокаливания в течение часа.

В маркированные стеклянные бюксы помещают мембранные фильтры и сушат в сушильном шкафу при температуре (105 ± 2) °С не менее 1 часа. Допускается выдерживание фильтров в сушильном шкафу в течение (3 — 5) часов. Значение массы бюкса с фильтром записывают в рабочем журнале. Если фильтры не были использованы в течение рабочего дня, процедуру сушки повторяют на следующий день, причем первая выдержка в сушильном шкафу должна быть не менее 1 часа.

Примечание — При необходимости подготавливают к проведению анализа мембранные фильтры в соответствии с инструкцией по их применению.

Фильтры складывают конусом по форме воронки, и промывают на воронке 250 — 300 см 3 дистиллированной воды. Фильтры подсушивают на воздухе досуха, вынимают из воронки, помещают в сложенном виде в маркированный бюкс и сушат в сушильном шкафу при (105 ± 2) °С с открытой крышкой не менее 2,5 часов.

Примечание — Если промытый фильтр после высушивания на воздухе остается слегка влажным, то на его высушивание до постоянной массы в сушильном шкафу потребуется не менее 5 часов.

Затем закрывают бюкс крышкой, охлаждают в эксикаторе и взвешивают на аналитических весах. Повторяют процедуру сушки, с выдержками в сушильном шкафу по 30 минут до тех пор, пока разница между двумя последними результатами взвешивания не будет превышать 0,5 мг. Значение массы бюкса с фильтром записывают в рабочем журнале после каждого взвешивания. Последний результат взвешивания используют для расчетов.

Подготовленные к анализу фильтры хранят в закрытом эксикаторе не более 7 дней. В течение указанного срока хранения повторное взвешивание фильтра перед фильтрованием не требуется. По окончании срока хранения фильтры высушивают ещё раз при (105 ± 2) °С в течение 1 часа. Значение массы бюкса с фильтром записывают в рабочем журнале.

Перед проведением анализа пробу тщательно гомогенизируют. В зависимости от ожидаемого содержания взвешенных веществ для анализа используют от 50 до 2000 см 3 пробы. Объём пробы подбирают таким образом, чтобы масса взвешенных веществ на фильтре (привеса) составляла не менее 0,0010 г. Питьевую и природную воду рекомендуется фильтровать через мембранный, а сточную воду через бумажный фильтр.

Через подготовленный фильтр пропускают анализируемую воду.

При использовании мембранного фильтра частицы, приставшие к стенке воронки для фильтрования, смывают на фильтр дважды порциями фильтрата по 10 см 3 .

При работе с бумажным фильтром фильтр с осадком трижды промывают дистиллированной водой порциями по 10 см 3 .

Фильтр подсушивают на воздухе (2 — 3) часа и помещают в тот же бюкс, где проводилось предварительное взвешивание. Мембранный фильтр высушивают в течение 1 часа, а бумажный в течение 4 часов в сушильном шкафу при (105 ± 2) °С. Фильтр с бюксом охлаждают в эксикаторе и взвешивают. Повторяют процедуру сушки до тех пор, пока разница между двумя последними результатами взвешиваниями не будет превышать 0,5 мг. Значения каждого взвешивания записывают в рабочий журнал.

Высушенный фильтр (11.1) с взвешенными веществами помещают в подготовленный фарфоровый тигель, который затем устанавливают в муфельную печь и прокаливают при температуре (600 ± 15) °С в течение 1 часа. Тигель охлаждают в эксикаторе и взвешивают. Повторные прокаливания проводят в течение 1 часа до тех пор, пока разница между результатами двух последних взвешиваний не будет превышать 0,5 мг. Значения каждого взвешивания записывают в рабочий журнал.

Примечание — В случае, если требуется определение только прокаленных веществ, то доведение бюкса с фильтром после высушивания при (105 ± 2) °С до постоянной массы не требуется. После высушивания фильтра в сушильном в шкафу, его сразу помещают в подготовленный тигель и далее проводят анализ как описано в 11.2.

12.1 Содержание взвешенных веществ в анализируемой пробе воды рассчитывают по формуле

где X1 — содержание взвешенных веществ, мг/дм 3 ;

m2 — масса бюкса с мембранным или бумажным фильтром со взвешенными веществами, г;

m1 — масса бюкса с подготовленным мембранным или бумажным фильтром, г;

V — объём пробы воды, взятой для анализа, дм 3 .

12.2 Содержание прокаленных взвешенных веществ в анализируемой пробе воды рассчитывают по формуле

где Х2 — содержание прокаленных взвешенных веществ, мг/дм 3 ;

m4 — масса тигля с остатком после прокаливания, г;

m3 — масса прокаленного тигля, г;

m — масса золы бумажного фильтра (указана на упаковке фильтра), г;

Примечание — В случае использования мембранного фильтра масса золы не учитывается.

V — объём пробы воды, взятой для анализа, дм 3 .

Результаты количественного анализа в протоколах анализов представляют в виде:

где Δ = δ × 0,01 × X — значение характеристики погрешности (см. таблицу 1).

Результат анализа округляют с точностью: при содержании взвешенных и/или прокаленных взвешенных веществ

14.1 При получении двух результатов измерений (X1, Х2) в условиях повторяемости (сходимости) осуществляют проверку приемлемости результатов в соответствии с требованиями ГОСТ Р ИСО 5725-6 (раздел 5).

Результат измерений считают приемлемым при выполнении условия:

Значения пределов повторяемости (r) приведены в таблице 2.

14.2 При получении результатов измерений в двух лабораториях (Хлаб1, Хлаб2) проводят проверку приемлемости результатов измерений в соответствии с требованиями ГОСТ Р ИСО 5725-6 (раздел 5).

Результат измерений считают приемлемым при выполнении условия:

Значения пределов воспроизводимости (R) приведены в таблице 2.

Контроль точности результатов измерений при реализации методики в лаборатории проводят с использованием рабочих проб.

При регулярном выполнении анализов по методике проводят контроль стабильности среднеквадратического отклонения внутрилабораторной прецизионности с использованием контрольных карт с периодичностью, установленной в лаборатории. Расчет контрольных границ проводят в соответствии с рекомендациями ГОСТ Р 50779.42 и ГОСТ Р ИСО 5725.

При эпизодическом выполнении анализов по методике проводят оперативный контроль показателя повторяемости. Для этого одну пробу из серии рабочих проб тщательно гомогенизируют, делят на две части и проводят анализ в условиях повторяемости. Далее результаты оценивают по 14.1.

Таблица 2 — Пределы повторяемости и воспроизводимости результатов измерений (при вероятности Р = 0,95)

Диапазон измерений, мг/дм 3

Предел повторяемости (при n = 2 и Р = 0,95), r ,%

Предел воспроизводимости (при n = 2 и Р = 0,95), R , %

источник