Меню Рубрики

Вода для анализа органических соединений

В воде источников водоснабжения обнаружено несколько тысяч органических веществ разных химических классов и групп. Органические соединения природного происхождения (гуминовые вещества, различные амины и другие) — способны изменять органолептические свойства воды, и по этой причине они должны быть удалены в процессе водоподготовки.

Несомненно, что органические вещества техногенного происхождения при поступлении их с питьевой водой могут неблагоприятно действовать на организм. Аналитический контроль их содержания в питьевой воде затруднен не только ввиду громадного их числа, но и вследствие того, что многие из них весьма неустойчивы и в воде происходит их непрерывная трансформация. Поэтому при аналитическом контроле невозможно идентифицировать все органические соединения, присутствующие в питьевой воде.

Однако многие органические вещества обладают выраженными органолептическими свойствами (запахом, вкусом, цветом, способностью к пенообразованию), что позволяет их выявить и ограничить их содержание в питьевой воде. Примерами таких веществ являются: синтетические поверхностно-активные вещества (СПАВ), в незначительных (нетоксических) концентрациях образующие пену; фенолы, придающие воде специфический запах; многие фосфорорганические соединения.

В природной воде водоемов всегда присутствуют органические вещества. Их концентрации могут быть иногда очень малы (например, в родниковых и талых водах). Природными источниками органических веществ являются разрушающиеся останки организмов растительного и животного происхождения, как живших в воде, так и попавших в водоем с листвы, по воздуху, с берегов. Кроме природных, существуют также техногенные источники органических веществ: транспортные предприятия (нефтепродукты), целлюлозно-бумажные и лесоперерабатывающие комбинаты (лигнины), мясокомбинаты (белковые соединения), сельскохозяйственные и фекальные стоки и т.д. Органические загрязнения попадают в водоем разными путями, главным образом со сточными водами и дождевыми поверхностными смывами с почвы.

Интегральное содержание органических веществ оценивается по показателям БПК и ХПК.

Биохимическое и химическое потребление кислорода — БПК и ХПК , принятые в гигиене, гидрохимии и экологии, интегральные показатели, характеризующие содержание в воде нестабильных (неконсервативных) органических веществ, трансформирующихся в воде путем гидролиза, окисления и других процессов. Содержание таких веществ выражается через количество кислорода, необходимое для их окисления в резко кислой среде перманганатом (БПК) или бихроматом (ХПК). К таким веществам относят алифатические кислоты, некоторые эфиры, амины, спирты.

В естественных условиях находящиеся в воде органические вещества разрушаются бактериями, претерпевая аэробное биохимическое окисление с образованием CO2. При этом на окисление потребляется растворенный в воде кислород (РК). В водоемах с большим содержанием органических веществ большая часть кислорода потребляется на биохимическое окисление, лишая, таким образом, кислорода другие организмы. Поэтому увеличивается количество организмов, более устойчивых к низкому содержанию кислорода, исчезают кислородолюбивые виды. Таким образом, в процессе биохимического окисления органических веществ в воде происходит уменьшение концентрации кислорода, и эта убыль косвенно является мерой содержания в воде органических веществ. Соответствующий показатель качества воды, характеризующий суммарное содержание в воде органических веществ, называется биохимическим потреблением кислорода (БПК).

БПК — это количество кислорода в (мг), требуемое для окисления находящихся в 1 литре воды органических вещества в аэробных условиях, без доступа света, при 20 °С, за определённый период в результате протекающих в воде биохимических процессов.

Определение БПК основано на измерении концентрации РК в пробе воды непосредственно после отбора, а также после инкубации пробы. Инкубацию пробы проводят без доступа воздуха в кислородной склянке (то есть в той же посуде, где определяется значение РК) в течение времени, необходимого для протекания реакции биохимического окисления. Так как скорость биохимической реакции зависит от температуры, инкубацию проводят в режиме постоянной температуры (20±1) °С, причем от точности поддержания значения температуры зависит точность выполнения анализа на БПК. Обычно определяют БПК за 5 суток инкубации (БПК5). Может определяться также БПК10 за 10 суток и БПКполн. за 20 суток (при этом окисляется около 90 % и 99 % органических веществ соответственно). Ориентировочно принимают, что БПК5 составляет около 70 % БПКполн., но может составлять от 10 % до 90 % в зависимости от окисляющегося вещества. Погрешность в определении БПК может внести также освещение пробы, влияющее на жизнедеятельность микроорганизмов и способное в некоторых случаях вызывать фотохимическое окисление. Поэтому инкубацию пробы проводят без доступа света.

В поверхностных водах величина БПК5 колеблется в пределах от 0,5 до 5,0 мг/л; она подвержена сезонным и суточным изменениям, которые, в основном, зависят от изменения температуры и от физиологической и биохимической активности микроорганизмов. Весьма значительны изменения БПК5 природных водоемов при загрязнении сточными водами.

Таблица 1. Величины БПК5 в водоемах с различной степенью загрязненности

Степень загрязнения (классы водоемов) БПК5, мг O2/дм 3
Очень чистые 0,5–1,0
Чистые 1,1–1,9
Умеренно загрязненные 2,0–2,9
Загрязненные 3,0–3,9
Грязные 4,0–10,0
Очень грязные 10,0

Норматив на БПКполн. не должен превышать: для водоемов хозяйственно-питьевого водопользования — 3 мг/л для водоемов культурно-бытового водопользования — 6 мг/л. Соответственно можно оценить предельно-допустимые значения БПК5 для тех же водоемов, равные 2 мг/л и 4 мг/л.

Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях, называется окисляемостью или ХПК. Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая.

Являясь интегральным (суммарным) показате­лем, ХПК в настоящее время считается одним из наиболее инфор­мативных показателей антропогенного загрязнения вод. Этот по­казатель, в том или ином варианте, используется повсеместно при контроле качества природных вод, исследовании сточных вод и др. Результаты определения окисляемости выражаются в милли­граммах потребленного кислорода на 1 литр воды (мгО/л).

В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает как характеристика, отражающая режим поступления сточных вод. Для природных малозагрязненных вод рекомендовано определять перманганатную окисляемость; в более загрязненных водах определяют, как правило, бихроматную окисляемость (ХПК).

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования величина ХПК не должна превышать 15 мг О/дм 3 ; в зонах рекреации в водных объектах допускается величина ХПК до 30 мг О/дм 3 .

В программах мониторинга ХПК используется в качестве меры содержания органического вещества в пробе, которое подвержено окислению сильным химическим окислителем. ХПК применяют для характеристики состояния водотоков и водоемов, поступления бытовых и промышленных сточных вод (в том числе, и степени их очистки), а также поверхностного стока.

Таблица 2. Величины ХПК в водоемах с различной степенью загрязненности

Степень загрязнения (классы водоемов) ХПК, мг О/дм 3
Очень чистые 1
Чистые 2
Умеренно загрязненные 3
Загрязненные 4
Грязные 5–15
Очень грязные >15

Однако не все органические вещества в равной степени уча­ствуют в реакции химического окисления. Так же, как и при биохи­мическом окислении, при химическом окислении можно выделить группы легко, нормально и тяжело окисляющихся органических веществ. Поэтому всегда существует разница между теоретически возможным и практически достигаемым значениями ХПК. Мешают точному определению ХПК в первую очередь, хлорид-анионы, как правило, содержащиеся в природных и, особенно, в сточных водах. Определению также мешают нитриты, часто присутствующие в водах, прошедших биохимическую очистку.

Нормативы на ХПК в воде водоемов: для питьевой воды – 5,0 мгО/л (для перманганатной окисляемости), ХПК – 15 мгО/л.

источник

Выпускается в 7-ми различных вариантах исполнения — ручное или автоматическое управление, корпус из армированного пластика или нержавейки, есть вариант нержавеющего корпуса с нижним сливом для простоты консервации на зиму. Посмотреть все варианты исполнения фильтров

Анализ воды из скважины, колодца или водопровода сделать в лаборатории Санкт-Петербурге, стоимость экспертизы питьевой воды, где сделать, цена.

Согласно санитарным нормам питьевая вода должна быть безопасна в эпидемиологическом и радиационном отношении, безвредна по химическому составу, и иметь приятные органолептические свойства. Поэтому, целесообразно проверить качество воды из вашего источника — сделать анализ качества воды на соответствие требованиям санитарных норм и правил на питьевую воду. Для выбора системы очистки воды из скважины или колодца важно проверить воду не менее, чем по 15-ти основным показателям.

Требования (нормативы), которым должна соответствовать вода, изложены в санитарных нормах и правилах РФ (СанПиН) и международных нормативах Всемирной организации здравоохранения (ВОЗ), основные положения которых приведены в представленной ниже таблице. И так, рассмотрим основные показатели качества воды.

К органолептическим свойствам воды относят следующие характеристики: запах, привкус, цветность и мутность.

Запах и привкус воды объясняются присутствием в ней естественных или искусственных загрязнений. Природа запахов и привкусов очень различна, и может быть обусловлена как наличием в воде определенных растворенных солей, так и содержанием различных химических и органических соединений.

Кроме того, следует отметить, что запах и привкус может появиться в воде на нескольких этапах: из исходной природной воды, в процессе водоподготовки (в том числе в водонагревателе), при транспортировке по трубопроводам. Правильное определение источника запахов и привкусов — залог успешности их устранения.

Величина (интенсивность) запаха определяется по 6-ти бальной шкале. Например, запах тухлых яиц обусловлен наличием в воде сероводорода (Н2S), а также присутствием сульфатредуцирующих бактерий, вырабатывающих этот газ, а гнилостный запах обусловлен присутствием в воде природных органических соединений. Химические запахи (например, бензиновый, фенольный) указывают на антропогенный характер загрязнений.

Вкус воды обусловлен растворенными в воде природными веществами, каждое из которых придает воде определенный привкус:

  • солоноватый — хлоридом натрия;
  • горьковатый — сульфатом магния;
  • кисловатый — растворенным углекислым газом или растворенными кислотами.

Приятный или неприятный вкус воды обеспечивается как наличием, так и концентрацией находящихся в ней примесей.

Под цветностью понимается естественная окраска природной и питьевой воды. Цветность косвенно характеризует наличие в воде некоторых органических и неорганических растворенных веществ и является одним из важных показателей, позволяющих правильно выбрать систему водоочистки.

Цветность воды определяется сравнением с растворами специально приготовленной шкалы цветности (на основе определенных концентраций хромово-кобальтового раствора) и выражается в градусах цветности этой шкалы. По требованиям к питьевой воде данный показатель не должен превышать 20 градусов.

Главными «виновниками» цветности воды, являются вымываемые из почвы органические вещества (в основном гуминовые и фульвовые кислоты). Повышенная цветность воды также может свидетельствовать о возможной ее техногенной загрязненности. Наличие гуминовых кислот может приводить к определенной биологической активности воды, повышает проницаемость в кишечнике ионов металлов: железа, марганца и др.

Показатель, характеризующий наличие в воде взвешенных веществ неорганического происхождения (например, карбонаты различных металлов, гидроокиси железа), органического происхождения (коллоидное железо и т.п.), минерального происхождения (песка, глины, ила), а также микробиологического происхождения (бактерио-, фито- или зоопланктона). Мутность выражается в мг/дм3.

Мутность также может быть обусловлена наличием на поверхности и внутри взвешенных частиц различных микроорганизмов, которые защищают их как от химического, так и от ультрафиолетового обеззараживания воды. Поэтому снижение мутности в процессе очистки воды способствует также значительному снижению уровня микробиологического загрязнения.

Химические показатели характеризуют химический состав воды. К данным показателям относят водородный показатель воды рН, жесткость и щелочность, минерализацию (сухой остаток), анионный и катионный состав (неорганические вещества), содержание органических веществ.

Показатель, характеризующий интегральную загрязненность воды, т.е. содержание в воде окисляющихся органических и неорганических примесей, которые в определенных условиях способны окисляться сильным химическим окислителем. К упомянутым выше загрязнителям относятся в основном органические вещества — для воды из поверхностных источников, и неорганические ионы (Fe 2+ ,Mn 2+ , и т.п.) — для воды из артезианских скважин.

Различают несколько видов окисляемости воды: перманганатную (ПМО), бихроматную, иодатную. Как видно из названий — при этом для проведения химического анализа воды используются соответствующие окислители. Показатель окисляемости — мгО2/л. Это количество миллиграмм кислорода, эквивалентное количеству реагента (окислителя), пошедшего на окисление веществ, содержащихся в 1 л воды.

Величина бихроматной окисляемости обычно используется для определения такого важного показателя воды как ХПК — химическая потребность в кислороде. ХПК используется для характеристики загрязненных природных поверхностных вод, а также для сточных вод. Этот показатель свидетельствует о степени биогенной загрязненности воды.

Бихроматная окисляемость позволяет получить значение наиболее полно характеризующее присутствие органических загрязнителей, за исключением таких химически инертных веществ как бензин, керосин, бензол, толуол и т.п. Считается, что при определении этого показателя окисляются до 90% органических примесей.

На практике для характеристики питьевой воды обычно используется показатель перманганатная окисляемость (ПМО) или перманганатный индекс (ПМИ). Чем больше значение ПМО, тем выше концентрация загрязнителей. Отметим, что величина перманганатной окисляемости ниже, чем значение, полученное для бихроматной примерно в 3 раза.

Водородный показатель или рН представляет собой логарифм концентрации ионов водорода, взятый с обратным знаком, т.е. pH = -logH + 1. Величина рН определяется количественным соотношением в воде ионов Н + и ОН — , образующихся при диссоциации воды. Если ионы ОН — в воде преобладают, что соответствует значению рН>7, то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н + , что соответствует рН + >+ HCO3

В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и многие другие ее характеристики.

Обычно уровень рН для воды, используемой в хозяйственных и питьевых целях, нормируется в пределах интервала 6-9.

Эта величина характеризует количество растворенных неорганических и органических веществ. В первую очередь это сказывается на органолептических свойствах воды. Установлено, что до 1000 мг/л вода может быть использована для водопотребления.

Величина сухого остатка влияет на вкусовые качества питьевой воды. Человек может без риска для своего здоровья употреблять воду с сухим остатком до 1000 мг/л. При большем значении вкус воды чаще всего становится неприятным горько-соленым. Следует также отметить, что у воды с низким уровнем сухого остатка вкус может отсутствовать и употреблять ее тоже не очень приятно.

Этот показатель характеризует свойство воды, связанное с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния (так называемых «солей жёсткости»).

Вода с большим содержанием таких солей называется жёсткой, с малым содержанием — мягкой.

Численное выражение жёсткости воды — это концентрация в ней катионов кальция и магния. По ГОСТ Р 52029-2003 жесткость выражается в градусах жесткости (°Ж), что соответствует концентрации щелочноземельного элемента, численно равной 1/2 его моля, выраженной в мг/дм³ (г/м³) (1 °Ж = 1 мг-экв/л).

Читайте также:  Анализ на инфекции околоплодных вод

Различают временную (карбонатную) жёсткость, обусловленную гидрокарбонатами кальция и магния (катионов Ca 2+ и Mg 2+ и анионов HCO3).

При кипячении воды гидрокарбонатные анионы вступают в реакцию с этими катионами и образуют с ними малорастворимые карбонатные соли, которые осаждаются на нагревательных элементах в виде накипи белого цвета, называемой в простонародии известью.

Временную жесткость можно устранить кипячением — отсюда и ее название.

Постоянная (некарбонатная) жесткость воды вызвана присутствием солей, не выпадающих в осадок при кипячении. В основном, это сульфаты и хлориды кальция и магния (CaSO4, CaCl2, MgSO4, MgCl2). Следует отметить, что именно присутствие соли CaSO4, растворимость которой с повышением температуры воды понижается, приводит к образованию плотной накипи.

Вода с высокой жесткостью наносит большой вред бытовым электронагревательным приборам, образуя накипь и тем самым вызывая их перегрев и разрушение, образует неприятные матовые налеты на сантехнике; в ней плохо пенятся мыло и шампуни, а поэтому увеличивается их расход.

Жесткая вода сушит кожу и вредит волосам; отрицательно влияет на качество приготовленной пищи, полезные вещества которой могут образовывать с солями жесткости плохо усваиваемые организмом соединения.

Жесткая вода вредна и для организма человека: увеличивается риск развития мочекаменной болезни, нарушается водно-солевой обмен.

Иногда в качестве характеристики встречается показатель «полная жесткость» воды, равный сумме постоянной и переменной (карбонатной) жесткости.

Его токсичное влияние на организм человека незначительно, но все же употребление питьевой воды с повышенным содержанием железа может привести к отложению его соединений в органах и тканях человека.

В общем случае в воде железо может встречаться в свободной форме в виде двух- и трехвалентных ионов:

Fe 2+ , как правило, в артезианских скважинах при отсутствии растворенного кислорода. Вода с повышенным содержанием такого железа может быть первоначально прозрачна (Fe 2+ ), но при отстаивании или нагреве приобретает желтовато-бурую окраску. Это происходит в результате окисления растворенного железа до Fe 3+ с образованием нерастворимых солей трехвалентного железа:

Fe 3+ — содержится в поверхностных источниках водоснабжения в так называемом окисленном состоянии, и, как правило, в нерастворимом виде.

Существует еще одна форма присутствия железа в природной воде — это органическое железо. Оно встречается в воде в разных формах и в составе различных комплексных соединений трехвалентных ионов железа с растворенными неорганическими и органическими соединениями, и, главным образом, с солями гуминовых кислот — гуматами. Повышенное содержание такого железа наблюдается в болотных водах, и вода имеет бурое или коричневатое окрашивание.

Органические соединения железа, как правило, растворимы или имеют коллоидную структуру (коллоидное железо) и очень трудно поддаются удалению. Коллоидные частицы из-за своего малого размера и высокого поверхностного заряда, который не позволяет частицам сближаться и препятствует их укрупнению, предотвращая образование конгломератов, создают в воде суспензии и не осаждаются, находясь во взвешенном состоянии и, тем самым, обуславливают мутность исходной воды.

На вкус такая вода имеет характерный неприятный металлический привкус, образует ржавые подтеки. Присутствие в воде коллоидного железа способствует развитию железистых бактерий, что еще больше ухудшает вкусовые качества воды и вызывает отложение осадка на внутренней поверхности трубопроводов и санитарно-технического оборудования вплоть до их полного засорения.

Марганец входит в состав многих ферментов, гормонов и витаминов, которые влияют на процессы роста, кровообразование, формирование иммунитета. Однако, повышенное его содержание в воде может оказывать токсический и мутагенный эффект на организм человека.

Вода с повышенным содержанием марганца обладает металлическим привкусом. Его присутствие приводит к значительно более быстрому износу бытовой техники и систем отопления, поскольку он способен накапливаться в виде черного налета на внутренних поверхностях труб с последующим отслаиванием и образованием взвешенного в воде осадка черного цвета. Кроме того, повышенное содержание марганца приводит к образованию черных пятен на посуде, белом белье при стирке, окрашивает ногти и зубы в серовато-черный цвет.

Также существуют «марганцевые» бактерии, которые, как и «железистые» бактерии, могут развиваться в такой воде и становиться причиной зарастания и закупорки трубопроводов.

Показатель, чаще всего характеризующий наличие в воде органических веществ животного или промышленного происхождения. Источниками азота аммонийного являются: животноводческие фермы, хозяйственно бытовые сточные воды, сточные воды с сельскохозяйственных угодий, предприятий пищевой и химической промышленности.

Указанные соединения являются главным образом продуктами распада мочевины и белков. Лимитирующая величина показателя «аммонийный азот» — токсикологическая. По нормам СанПиН содержание в воде аммония не должно превышать 2,0 мг/л.

К микробиологическим показателям безопасности питьевой воды относят общее микробное число, содержание бактерий группы кишечной палочки (общие колиформные бактерии и колифаги), споры сульфитредуцирующих клостридий и цисты лямблий.

В зависимости от характеристик водного источника с целью безопасности воды могут проверяться и такие показатели, как паразитологические и радиологические.

Анализ качества питьевой воды производится исходя из норм показателей по требованиям нормативных документов государств.

В таблице представлены нормативы основных показателей качества по санитарным нормам СанПиН Российской Федерации, указанные в столбце 3 — СанПиН 2.1.4.1074-01 «Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения» и столбце 4 — СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».

Именно по этим показателям следует проверить качество воды из вашего источника и оценить необходимость установки дополнительного оборудования для очистки воды.

Для сравнения приведены нормативы Всемирной организации здравоохранения (ВОЗ).

источник

Методические указания к практикуму «Анализ обектов окружающей среды»

Министерство образования Республики Башкортостан Государственное образовательное учреждение среднего профессионального образования

Акъярский горный колледж имени И. Тасимова

К ПРАКТИКУМУ «АНАЛИЗ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ»

ОПРЕДЕЛЕНИЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ

Методические указания предназначены для студентов старших курсов специальности «Обогащения полезных ископаемых», изучающих факультативный курс «Анализ объектов окружающей среды».

Методические указания содержат краткие теоретические основы методов определения качества природных вод и практические работы, соответствующие требованиям, которые предъявляются на практике к методам определения обязательных показателей качества воды в природоохранных организациях, осуществляющих экологический контроль

1. ОРГАНИЧЕСКИЕ ВЕЩЕСТВА В ПРИРОДНЫХ ВОДАХ

В природной воде всегда присутствуют органические вещества. Образующиеся в водном объекте и поступающие в него извне органические вещества весьма разнообразны по своей химической природе и свойствам и существенно влияют на качество воды и ее пригодность для тех или иных нужд. Поэтому всегда важно знать содержание органических веществ в воде. Обычно эта информация представляется на трех уровнях:

1. общее содержание органических веществ в воде;

2. содержание органических веществ по их классам;

3. содержание индивидуальных органических веществ.

Последние обычно определяются только для наиболее распространенных и токсичных веществ.

Так, в перечень веществ, которые обязательны к определению при анализе воды, включены нефтепродукты, анионные синтетические поверхностно-активные вещества, пестициды и фенолы.

Однако, во многих случаях для оценки качества воды и пригодности ее для использования достаточно знать общее содержание органических веществ в воде. Последнее характеризуется содержанием органического углерода в воде, т.к. в среднем органический углерод составляет 50% массы органического вещества.

Для оценки содержания органического углерода в воде широко используется такой общий показатель, как окисляемость воды, а также такой показатель, как биологическое потребление кислорода.

Содержание органического углерода в природных водах изменяется в широких пределах от 1 мг/л до 10-20 мг/л для чистых вод, а в загрязненных может достигать сотен мг/л.

Окисляемость воды (ОВ) — величина, характеризующая содержание в воде органических веществ, окисляемых одним из самых сильных химических окислителей при определенных условиях. ОВ выражается в миллиграммах атомарного кислорода, пошедшего на окисление веществ, содержащихся в литре воды. Разделяют перманганатную и бихроматную окисляемость. Степень окисления органических веществ, присутствующих в поверхностных водах, бихроматом в крепком растворе серной кислоты близка к 100%. Бихроматная окисляемость служит для определения суммарного содержания органических веществ. Суммарное содержание органического углерода рассчитывают по формуле:

где a — величина бихроматной окисляемости, С — содержание органического углерода.

Содержание органического вещества находят, умножая полученное значение С на 2.

Перманганатная окисляемость характеризует легкоокисляемую часть органических веществ (преимущественно алифатику). В среднем 1 мг кислорода перманганатной окисляемости соответствует 1 мг углерода органического вещества. Соотношение перманганатной и бихроматной окисляемости позволяет судить о природе органических веществ в воде. Чем меньше это отношение, тем больше в воде трудноокисляемой ароматики.

1.1.1. ОПРЕДЕЛЕНИЕ ПЕРМАНГАНАТНОЙ ОКИСЛЯЕМОСТИ

Принцип метода. Окисление проводится раствором перманганата калия в сернокислой среде при кипячении:

MnO 4 — + 8H + + 5e —  Mn 2+ + 4H 2 O

Избыток перманганата калия после кипячения определяют иодометрически. Метод рекомендуется для анализа пресных вод, содержащих не более 300 мг Cl — /л.

1. Раствор перманганата калия, С (KMnO 4 ) = 0,01 М

2. Раствор тиосульфата натрия Na 2 S 2 O 3 . 5H 2 O, C (Na 2 S 2 O 3 ) = 0,01 М

4. Иодистый калий кристаллический

5. Раствор серной кислоты H 2 SO 4 , х.ч., 1:3.

1. Электроплитки с закрытой спиралью — 2 шт.;

2. Колбы конические 250 мл — 2 шт.;

3. Обратные холодильники — 2 шт.;

Ход определения. В коническую колбу на 250 мл наливают 100 мл исследуемой воды, добавляют 2-3 капилляра, приливают 5 мл H 2 SO 4 (1:3) и нагревают. В самом начале кипения в колбу добавляют пипеткой 20 мл 0,01 М раствора KMnO 4 , закрывают колбу пробкой-холодильником и после этого кипятят 10 минут. Если во время кипячения розовая окраска в колбе, свойственная перманганату, исчезает, определение надо повторить вновь, разбавив исследуемую воду бидистиллятом. По окончании кипячения пробу охлаждают, добавляют около 0,5 г иодистого калия и выделившийся иод титруют 0,01 М раствором тиосульфата, пока жидкость не приобретет слабо-желтый цвет. Затем добавляют 1 мл раствора крахмала и продолжают титрование до исчезновения синей окраски раствора. Аналогично проводят холостое определение с 100 мл бидистиллята.

Расчет. Величина перманганатной окисляемости в мг О 2 /л рассчитывается по формуле

где М — молярность раствора тиосульфата; n 1 — количество миллилитров раствора тиосульфата, пошедшего на титрование холостой пробы; n 2 — количество миллилитров раствора тиосульфата, пошедшего на титрование пробы; V — объем пробы воды, мл.

1.1.2. БИХРОМАТНАЯ ОКИСЛЯЕМОСТЬ

(ХИМИЧЕСКОЕ ПОТРЕБЛЕНИЕ КИСЛОРОДА)

Принцип метода. Окисление бихроматом калия протекает в кислой среде в присутствии катализатора:

Cr 2 O 7 2- + 14H + + 6e —  2 Cr 3+ + 7H 2 O

Избыток бихромата калия, добавленный к пробе, титруют раствором железоаммонийных квасцов. Метод предназначен для анализа пресных вод с содержанием органических веществ, соответствующих 5 и более мг О 2 /л.

1. Дважды дистиллированная вода

2. Раствор бихромата калия C (K 2 Cr 2 O 7 ) = 0,025 М

3. Раствор железоаммонийных квасцов , 0,025 М

4. Раствор сернокислого серебра в концентрированной серной кислоте

5. Раствор серной кислоты 1:1

6. Раствор N-фенилантраниловой кислоты

1. Электроплитка с закрытой спиралью — 2 шт.

3. Колбы круглодонные объемом 250 мл с пришлифованными обратными холодильниками — 2 комплекта

5. Мерные цилиндры 50 мл — 1 шт.;

Ход определения. Пробу исследуемой воды объемом 20 мл или меньший ее объем , доведенный бидистиллятом до 20 мл, помещают в колбу со шлифом для кипячения. Прибавляют 20 мл 0,025 М раствора бихромата, осторожно приливают 30 мл раствора сернокислого серебра и для равномерного кипения бросают 2-3 стеклянных капилляра. К колбе присоединяют обратный холодильник и смесь равномерно кипит 2 часа. После охлаждения снимают холодильник, промывают его стенки 25 мл бидистиллята, переносят в коническую колбу на 750 мл и смесь вновь охлаждают. Затем прибавляют 15 капель раствора индикатора и избыток непрореагировавшего бихромата калия титруют раствором железоаммонийных квасцов до перехода окраски индикатора из красно-синей в синевато-зеленую, перемешивая раствор энергичным взбалтыванием.

Таким же образом производят холостое определение.

Расчет. Величину бихроматоной окисляемости в мг О 2 /л рассчитывают по формуле

где М — молярность раствора железоаммонийных квасцов; n 1 — количество миллилитров раствора железоаммонийных квасцов, пошедшего на титрование холостой пробы; n 2 — количество миллилитров раствора железоаммонийных квасцов, пошедшего на титрование пробы; V — объем пробы воды, мл.

1.2. БИОХИМИЧЕСКОЕ ПОТРЕБЛЕНИЕ КИСЛОРОДА

При хранении воды в склянке с притертой пробкой в условиях полной темноты содержание растворенного кислорода в ней убывает. Он затрачивается в результате жизнедеятельности микроорганизмов на окисление имеющегося в воде органического вещества и, в первую очередь, нестойкого (легкоусвояемого) органического вещества.

Наблюдаемая в аэробных условиях убыль растворенного кислорода за определенный промежуток времени называется биохимическим потреблением кислорода (в мг О 2 /л). Обычно инкубация производится в течение 5 суток, в темноте, при 20 о С и обозначается БПК 5 . Это определение дает относительное представление о содержании в воде легкоокисляющихся органических веществ. Чем выше их концентрация, тем больше потребление кислорода. В поверхностных водах БПК 5 колеблется обычно в пределах от 0,5 до 4 мгО 2 /л и характеризует степень загрязнения водоема.

Значения БПК 5 от 0,5 до 1,0 мгО 2 /л — очень чистые воды; 1,1-1,9 — чистые воды; 2,0-2,9 — умеренно загрязненные; 4-10 — грязные; 10 и более — очень грязные.

Из методов, предложенных для определения БПК, наибольшее применение получил скляночный метод. Суть этого метода состоит в определении БПК при определенной температуре в изолированных водных микросистемах, в предположении, что аналогичные процессы, связанные с утилизацией имеющихся в воде органических веществ и потреблением кислорода, развиваются и в макросистемах.

1.2.1. СКЛЯНОЧНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ БПК 5

Определение БПК производят по разности между содержанием кислорода до и после инкубации проб в темноте в течение 5 суток при 20 о С, без доступа воздуха.

Анализируемую воду с рН в интервале 6-8 единиц доводят до 20 о С и взбалтывают в течение 1 мин для насыщения воды воздухом. Затем заполняют анализируемой водой 3 склянки с притертыми пробками до краев, предварительно ополоснув их этой водой. В одной из склянок определяют растворенный кислород. Две другие склянки с испытываемой водой ставят в термостат в темное место на 5 суток, по прошествии которых в них определяют оставшийся растворенный кислород и вычисляют среднюю величину.

Разность между начальным и конечным определениями, пересчитанная на литр, дает количество кислорода, пошедшего на окисление органических веществ в испытываемой воде в течение 5 суток.

Читайте также:  Анализ на кальций в воде

Величину БПК 5 в мгО 2 /л рассчитывают по формуле

где Q 1 -cодержание кислорода в день определения БПК, мгО 2 /л; Q 2 — то же, спустя 5 суток.

Поскольку определение БПК 5 базируется на определении содержания растворенного кислорода, ниже приводится методика определения кислорода иодометрическим методом.

1.2.2. ОПРЕДЕЛЕНИЕ КИСЛОРОДА

Метод основан на взаимодействии в щелочной среде гидроксида марганца с растворенным кислородом. Гидроксид марганца количественно связывает растворенный в воде кислород, переходит в нерастворимое соединение марганца со степенью окисления +4 коричневого цвета.

При подкислении раствора в присутствии избытка иодида калия образуется иод, количество которого эквивалентно содержанию растворенного кислорода и учитывается титрованием тиосульфатом.

2Mn(OH) 2 + O 2  2 MnO(OH) 2 (коричневый)

MnO(OH) 2 +4H + +3I —  Mn 2+ + I 3 — +3H 2 O

I 3 — + 2S 2 O 3 2-  3I — + S 4 O 6 2-

1. Раствор хлористого марганца

2. Щелочной раствор иодида калия

3. Раствор соляной кислоты (2:1)

5. Раствор тиосульфата натрия С (Na 2 S 2 O 3 ) = 0,02 М

1. Кислородные склянки на 200-250 мл — 6 шт.;

2. Колбы конические на 250 мл — 6 шт.;

Ход определения. Анализируемую пробу воды из батометра или склянки с тубусом через резиновые трубки наливают в кислородные склянки, при этом трубка должна касаться дна склянки. После заполнения горлышка ее наполнение продолжают до тех пор, пока не выльется приблизительно 100 мл воды. Трубку вынимают, не прекращая тока воды из батометра. Склянка должна быть заполнена пробой до краев и не иметь внутри на стенках пузырьков воздуха.

Затем в склянки с пробой вводят по 1 мл щелочного раствора иодида калия. При этом пользуются отдельными пипетками. Пипетку каждый раз погружают до половины склянки и по мере выливания раствора поднимают вверх. Затем быстро закрывают склянку стеклянной пробкой таким образом, чтобы в ней не оставалось пузырьков воздуха и склянку тщательно перемешивают.

Образовавшемуся осадку гидроксида марганца дают отстояться не менее 10 минут. Потом приливают 5 мл соляной кислоты. Пипетку погружают до осадка и медленно поднимают вверх.

Склянку закрывают пробкой и содержимое тщательно перемешивают.

Добиваются полного растворения коричневого осадка. отбирают пипеткой 50 мл раствора и переносят в коническую колбу на 250 мл. Раствор титруют раствором тиосульфата натрия С (Na 2 S 2 O 3 ) = 0,02 М до светло-желтой окраски, добавляют 1 мл свежеприготовленного раствора крахмала и продолжают титрование до исчезновения синей окраски.

Расчет. Содержание растворенного кислорода С х в мгО 2 /л находят по формуле

где М — молярность раствора Na 2 S 2 O 3 ; n — объем тиосульфата, пошедшего натитрование, мл; V — объем склянки, мл; 2 — объем пробы, вылившейся при фиксации кислорода, мл.

1.3.СИНТЕТИЧЕСКИЕ ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА (СПАВ)

СПАВ представляют собой обширную группу соединений, различных по своей структуре, относящихся к различным классам химических соединений.

Молекула СПАВ состоит из малополярного радикала и полярной группы.

В зависимости от свойств, проявляемых СПАВ при растворении их в воде, их делят на анионоактивные, катионоактивные и амфолитные, неионогенные СПАВ.

Большая часть применяемых СПАВ — анионоактивные вещества, ионизирующие в водном растворе с образованием отрицательно заряженных органических ионов. Из АСПАВ широкое применение нашли соли сернокислых эфиров (сульфаты) и соли сульфокислот (сульфонаты); R-O-SO 3 -Me и R-SO 3 -Me.

Радикал может быть алкильным или арильным. В качестве стандартного вещества обычно принято использовать лаурилсульфат и лаурилсульфонат натрия.

В водоемы СПАВ поступают с бытовыми и промышленными сточными водами. В поверхностных водах концентрация АСПАВ колеблется от тысячных до сотых долей миллиграмма в литре. В зонах загрязнения она может достигать десятых долей миллиграмма в литре. Предельно допустимая концентрация для АСПАВ составляет 50-100 мкг/л.

Определение АСПАВ в природных водах включено в список обязательных определений. Из многих способов определения АСПАВ наиболее широкое распространение получил метод экстракционно-фотометрического определения с метиленовым синим. Поскольку СПАВ — неустойчивые компоненты, определение их следует проводить сразу после отбора пробы. В противном случае пробу надо консервировать прибавлением 2 мл хлороформа на литр исследуемой воды.

1.3.1. ОПРЕДЕЛЕНИЕ АНИОННЫХ СПАВ С МЕТИЛЕНОВЫМ СИНИМ

Принцип метода. Метод основан на образовании окрашенного соединения при взаимодействии анионоактивных веществ с метиленовым синим, экстрагируемого хлороформом.

Для устранения мешающего влияния хлоридов, нитратов, роданидов и белков хлороформный экстракт промывают кислым раствором метиленового синего и затем измеряют его оптическую плотность при  =650 нм.

Линейная зависимость между оптической плотностью растворов и концентрацией анионоактивных веществ сохраняется в пределах от 15 до 250 мкг/л

1. Нейтральный раствор метиленового синего

2. Кислый раствор метиленового синего

3. Фосфатный буферный раствор, рН = 10

5. Стандартные растворы лаурилсульфоната натрия:

а) основной стандартный раствор 0,5 г/л. 0,5 г лаурилсульфоната натрия, ч.д.а., растворяют в дистиллированной воде (0,5 л), добавляют 1 мл хлороформа и доводят объем раствора дистиллированной водой до 1 л. Раствор можно хранить при температуре 3-5 о С в течение месяца в склянке с притертой пробкой;

б) рабочий стандартный раствор, 1 мг/л. 1 мл основного стандартного раствора разбавляют дистиллированной водой в мерной колбе емкостью 0,5 л. Раствор необходимо готовить непосредственно перед анализом.

Фотоэлектроколориметр (красный светофильтр) — 1 шт.

1. Делительные воронки на 250 мл — 2 шт.;

2. Пробирки с притертыми пробками

на 20 мл с делениями по 0,1 мл — 6 шт.;

10 мл с делениями по 0,1 мл — 2 шт.;

5. Мерные цилиндры на 1 л с делениями по 10 мл — 2 шт.

Ход определения. 100 мл исследуемой воды, содержащей 15-250 мкг/л анионоактивных СПАВ, помещают в делительную воронку на 250 мл, приливают 10 мл фосфатного буферного раствора (рН=10) и 5 мл нейтрального раствора метиленового синего. Содержимое воронки перемешивают и оставляют на 15 мин. Затем добавляют 8 мл хлороформа, смесь энергично встряхивают в течение 1 минуты и после расслоения смеси хлороформный экстракт сливают в другую делительную воронку, содержащую 110 мл дистиллированной воды и 5 мл кислого раствора метиленового синего. В первую воронку добавляют 5 мл хлороформа, взбалтывают в течение 1 мин и хлороформный экстракт также сливают в делительную воронку.

Третью экстракцию проводят аналогичным образом с 4 мл хлороформа. Затем содержимое второй воронки встряхивают в течение 1 минуты и оставляют до расслоения жидкостей. Экстракт сливают в пробирку, фильтруя через воронку с кусочком ваты для отделения мути. Объем его доводят хлороформом до 17 мл и измеряют оптическую плотность на фотоэлектроколориметре (красный светофильтр) в кюветах с толщиной слоя 3 см против хлороформа. Синяя окраска экстрактов устойчива в течение длительного времени.

Содержание анионоактивных СПАВ определяют по калибровочной кривой.

Построение калибровочной кривой

В мерные колбы емкость 100 мл наливают 0; 2,0; 5,0; 10,0; 25,0 мл рабочего раствора и доводят объем раствора до метки дистиллированной водой. Концентрации растворов соответственно равны: 0; 2; 3; 10; 25 мкг лаурилсульфоната в пробе. Приготовленные растворы переливают из мерных колб в делительные воронки и проводят определение, как описано выше. Оптическую плотность растворов измеряют против хлороформа. Оптическую плотность раствора без добавки рабочего стандартного раствора вычитают из результатов измерений оптической плотности остальных растворов. Строят калибровочную кривую, откладывая по оси абсцисс концентрацию лаурилсульфоната натрия (в мкг в пробе), по оси ординат — значения оптической плотности — значения оптической плотности.

Расчет. Содержание анионоактивных СПАВ (С х ) в мкг/л находят по формуле

где С — концентрация анионоактивных СПАВ (в мкг в пробе), найденная по калибровочной кривой; V — объем пробы, мл.

Загрязненную метиленовым синим посуду промывают азотной кислотой, а затем — водой.

Нефтепродукты относятся к числу наиболее распространенных и опасных веществ, загрязняющих поверхностные воды. Нефть и продукты ее переработки представляют собой сложную и разнообразную смесь веществ. По ряду соображений понятие “нефтепродукты” условно ограничивается только углеводородной фракцией, которая составляет 70-90% от суммы всех веществ, присутствующих в нефти и продуктах ее переработки. Наибольшее количество нефтепродуктов поступает в поверхностные воды при перевозке нефти водным путем и со сточными водами. Нефтепродукты находятся в воде в различных миграционных формах: растворенной, эмульгированной, сорбированной на твердых частицах взвесей и донных отложений, в виде пленки на поверхности. Содержание нефтепродуктов в чистых поверхностных водах колеблется от сотых долей мг до миллиграммов, и в загрязненных — может достигать десятков и сотен мг/л. ПДК нефтепродуктов составляет 0,3 мг/л (санитарная) и 0,05 мг/л (рыбохозяйственная). В обычном анализе эмульгированные, растворенные и сорбированные на взвесях нефтепродукты определяются суммарно.Из всех описанных в литературе методов определения нефтепродуктов наибольшее распространение получил метод тонкослойной хроматографии с люминесцентным окончанием.

1.4.1. МЕТОД ОПРЕДЕЛЕНИЯ НЕФТЕПРОДУКТОВ ТОНКОСЛОЙНОЙ

ХРОМАТОГРАФИЕЙ С ЛЮМИНЕСЦЕНТНЫМ ОКОНЧАНИЕМ

Принцип метода. Метод основан на выделении нефтепродуктов из воды экстракцией четыреххлористым углеродом, концентрировании экстракта и хроматографическом отделении нефтепродуктов в тонком слое окиси алюминия в смеси органических растворителей: петролейный эфир : четыреххлоритстый углерод : уксусная кислота (70:30:2). Количественное определение нефтепродуктов производится люминесцентным методом. Метод предназначен для анализа вод с содержанием нефтепродуктов выше 0,02 мг/л. Люминесцентное определение основано на способности входящих в состав нефтепродуктов ароматических, особенно полициклических конденсированных углеводородов под действием ультрафиолетовых лучей (  возб. =300-400 нм) интенсивно люминесцировать в коротковолновой области спектра (  измер. =343 нм,  =23040 см -1 ).

1. Окись алюминия, безводная

2. Четыреххлористый углерод, CСl 4 , ч.д.а.

3. Сернокислый натрий Na 2 SO 4 , безводный, х.ч.

6. Уксусная кислота, СН 3 СООН, ледяная, ч

7. Подвижный растворитель (петролейный эфир (или гексан) : четыреххлористый углерод : ледяная уксусная кислота)

70 г петролейного эфира или гексана, 30 мл четыреххлористого углерода и 2 мл ледяной уксусной кислоты встряхивают в склянке с притертой пробкой. Готовят непосредственно перед употреблением, используют в течение рабочего дня.

8. Фильтры бумажные, белая лента, d = 6 см

1. Флюориметр (для люминесцентного определения), первичный светофильтр (  возб. = 300-400 нм), вторичный светофильтр (  люмен. = 434 нм) с эталоном.

2. Осветитель ртутно-кварцевый с лампой ПРК-4 и синим светофильтром (  =400 нм) типа ОЛД-1 -1 шт.

3. аппарат для встряхивания жидкостей типа АВУ-1 — 1 шт.

4. Приспособление для нанесения тонкого слоя окиси алюминия (незакрепленного) толщиной 1 мм — валик — 1 шт.

1. Хроматографические пластинки 9х12 — 2 шт.

2. Делительные воронки на 1 л — 1шт.

3. Колбы конические 50 мл — 1 шт.

4. Колба мерная 100 мл — 1 шт.

5. Пробирка с притертой пробкой, с отметкой 10 мл — 1 шт.

7. Микропипетка с оттянутым концом и капилляр — 1 шт.

8. Тигель стеклянный, d внутр . = 0,15 мм, h = 25 мм

9. Кристаллизатор, d = 20см с притертой крышкой — 1 шт.

Ход определения. Пробу воды объемом 0,5-1 л помещают в делительную воронку, добавляют 25 мл четыреххлористого углерода и смесь встряхивают несколько раз, открывая пробку для выпускания паров растворителя. Затем пробу помещают в аппарат для встряхивания и экстрагируют в течение 30 мин. Делительную воронку укрепляют в штативе и оставляют на 15-20 минут до полного расслоения слоев жидкости. Затем открывают кран и слой четыреххлористого углерода сливают в коническую колбу с притертой пробкой.

Экстракт сушат 5 г безводного сульфата натрия в течение 30 минут и сливают в стеклянный тигель. Растворитель в тигле удаляют испарением при комнатной температуре под током воздуха от вентилятора. Эту операцию следует проводить в вытяжном шкафу.

После полного испарения растворителя находящийся в тигле концентрат количественно (омывая несколько раз стенки тигля малыми порциями четыреххлористого углерода) переносят на предварительно подготовленную хроматографическую пластинку с незакрепленным слоем окиси алюминия. Концентрат помещают на середину полосы сорбента на расстоянии 0,6-0,7 см от нижнего края так, чтобы диаметр пятна не превышал 0,5 см. Для этого концентрат наносят малыми (0,005 мл) порциями после испарения растворителя из предыдущей порции экстракта. Не следует наносить на одну полосу более 0,5 мг нефтепродуктов, так как при этом ухудшается разделение смеси.

Хроматографичесую пластинку с нанесенными на ее полосы пробами помещают в стеклянную хроматографичесую камеру, насыщенную парами подвижного растворителя под углом 20 о . Толщина слоя подвижного растворителя 0,5 см. Пятна с нанесенными пробами на должны быть ниже слоя растворителя. Через 3 минуты, когда фронт подвижного растворителя достигнет верхнего слоя окиси алюминия, пластинку вынимают и выдерживают в вытяжном шкафу в течение 10-15 минут для испарения растворителя.

Пластинку помещают под ультрафиолетовый осветитель и наблюдают хроматографические зоны: голубую с R f = 0,9 (углеводороды), желтую с R f = 0,4 (смолы) и коричневую с R f = 0 (асфальтены и др.). Отмечают границы голубой зоны (нефтепродуктов), количественно переносят ее в воронку с бумажным фильтром и элюируют нефтепродукты 4 мл четыреххлористого углерода.

Измеряют интенсивность люминесценции элюатов в ультрафиолетовой области спектра.

Интенсивность люминесценции измеряют на флюориметре с первичным светофильтром  =320+390 нм и вторичным  =400+580 нм. Установку диафрагмы производят по эталону.

Содержание нефтепродуктов находят по соответствующему калибровочному графику.

Фенолы — производные бензола с одной или несколькими гидроксильными группами. Их принято делить на две группы — летучие с паром фенолы (фенол, крезолы, ксиленолы, гваякол, тимол) и нелетучие фенолы (резорцин, пирокатехин, гидрохинон, пирогаллол).

Фенолы — один из наиболее распространенных загрязнений, поступающих в воду с промышленными стоками, в которых их может содержаться до 20 г/л. В загрязненных поверхностных водах содержание фенолов обычно не превосходит 20 мкг/л. В загрязненных речных водах их содержание колеблется от десятков до сотен микрограммов. Чаще всего при анализе определяют суммарное содержание летучих фенолов.

1.5.1. ЛЕТУЧИЕ С ПАРОМ ФЕНОЛЫ

После отбора пробы определение фенолов производят не позднее, чем через 4 часа. Если это сделать нельзя, то пробу консервируют добавлением 4 г NaOH на 1 л воды. Летучие фенолы отделяют от нелетучих и др. веществ, мешающих определению.

Для отгонки летучих фенолов объем пробы отбирают в зависимости от их концентрации в воде. Так, при содержании фенолов от 5 до 50 мкг/л объем пробы, взятый для отгона, составляет 500 мл, а объем отгона 450 мл. К пробе воды, помещенной в колбу прибора для отгонки, приливают раствор сульфата меди и концентрированную серную кислоту из расчета 1 мл на 100 мл пробы.

В приемную колбу приливают 10 мл 0,05 М раствора NaOH и устанавливают ее так, чтобы нижний конец трубки холодильника был погружен в этот раствор. Отгонку ведут при умеренном нагреве. Если отгон окажется кислым, его нейтрализуют по индикаторной бумаге несколькими каплями 1 М раствора NaOH.

Читайте также:  Анализ на качество воды инвитро

Реактивы, приборы и посуда:

2. Серная кислота концентрированная

4. Раствор NaOH — 0,05 моль/л

5. Прибор для отгонки фенолов — 1 шт.

6. Колба мерная на 1 л — 1 шт.

7. Колба коническая на 1 л — 1 шт.

1.5.2. ОПРЕДЕЛЕНИЕ СУММАРНОГО СОДЕРЖАНИЯ

С ПРИМЕНЕНИЕМ ДИМЕТИЛАМИНОАНТИПИРИНА

Принцип метода основан на взаимодействии фенолов с диметиламиноантипирином в щелочной среде (рН = 9,3) в присутствии персульфата аммония с образованием антипиринового красителя.

Метод обеспечивает определение фенола в воде в интервале концентраций от 1 мкг/л до 50 мкг/л. При этом продукт реакции экстрагируется смесью изоамиловый спирт : хлороформ (2:1).

1. Раствор диметиламиноантипирина

2. Раствор персульфата аммония

3. Буферный раствор с рН = 9,3

4. Экстракционная смесь (изоамиловый спирт и хлороформ)

5. Основной рабочий раствор фенола С = 10 мг/мл

6. I-й рабочий раствор фенола С = 100 мкг/мл

7. II-й рабочий раствор фенола С = 1 мкг/мл

8. Дистиллированная бесфенольная вода

1. Фотоколориметр любой марки (синий светофильтр)

2. Перегонный аппарат на шлифах

3. Прибор для отгонки фенола

1. Делительные воронки на 1 л — 1 шт.

2. Мерные колбы на 500 мл — 1 шт.

3. Мерные колбы на 250 мл — 1 шт.

4. Мерные колбы на 100 мл — 1 шт.

6. Стаканчики на 50 мл — 1 шт.

Ход определения. 450 мл отгона, полученного описанным выше способом, доводят дистиллированной водой до 500 мл, переносят в делительную воронку на 1 л и прибавляют 10 мл буферного раствора, 1,5 мл диметиламиноантипирина и 15 мл раствора персульфата аммония. Содержимое воронки перемешивают после добавления каждого реактива, после чего оставляют на 45 мин. Затем приливают 20 мл экстракционной смеси и энергично встряхивают в течение 2 минут. После расслоения жидкости экстракт отделяют и фильтруют через бумажный фильтр. Оптическую плотность экстракта измеряют на фотоэлектроколориметре с синим светофильтром в кюветах с толщиной слоя 1 см. Содержание фенолов находят по калибровочному графику.

Построение калибровочного графика. В мерные колбы на 500 мл приливают 0,0; 1,0; 2,5; 10,0; 15,0; 25,0 мл рабочего стандартного раствора. Полученные растворы с концентрацией 0; 2; 5; 10; 20; 30; 50 мкг/г фенола обрабатывают так же, как пробы. Оптическую плотность измеряют против экстракционной смеси. Строят калибровочный график, откладывая по оси ординат значения оптической плотности, а по оси абсцисс — концентрацию фенолов в мкг/л.

Расчет. Содержание фенолов С х в мкг/л находят по формуле

где С — концентрация фенолов, найденная по калибровочному графику, мкг/л; n — степень разбавления исследуемой пробы.

1.5.3. ОПРЕДЕЛЕНИЕ ЛЕТУЧИХ ФЕНОЛОВ

Сущность метода. При высоких содержаниях фенолов в воде (мг и десятки мг на литр) определение проводится титриметрическим методом. В анализируемую пробу воды, содержащую фенолы, вводят бромид-броматную смесь. В кислой среде проходит реакция:

BrO 3 — + 5Br — + 6H +  3 Br 2 + 3H 2 О

Образующийся бром реагирует с фенолом по уравнению:

C 6 H 5 OH + 4Br 2  4H + + 4Br — + C 6 H 2 Br 3 OBr

Затем к раствору прибавляют KI. Непрореагировавший бром вытесняет иод из KI, и кроме того 2 эквивалента иода выделяется под действием одной молекулы C 6 H 2 Br 3 OBr.

C 6 H 2 Br 3 OBr + H + +2I —  C 6 H 2 Br 3 OH + I 2 + Br —

В результате этих реакций на каждый эквивалент фенола связывает один эквивалент брома, а одна молекула фенола взаимодействует с 6 атомами брома. Эквивалент фенола равен 1/6 молекулярной массы фенола, т.е. 15,667 г.

Ход определения. Летучие фенолы отгоняют с паром. В конденсате определяют фенол. 50 мл полученного конденсата отбирают в коническую колбу с притертой пробкой, добавляют 25 мл бромид-броматной смеси (KBr + KBrO 3 ) и 10 мл H 2 SO 4 (1:3), закрывают пробкой и оставляют на 30 мин. Затем добавляют 1 г сухого KI, перемешивают, закрывают притертой пробкой и через 10 минут титруют выделившийся иод раствором тиосульфата натрия (Na 2 S 2 O 3 — 0,05 н.), прибавляя в конце титрования раствор крахмала (1%).

В другую такую же колбу заливают 50 мл дистиллированной воды и прибавляют 25 мл бромид-броматной смеси, 10 мл H 2 SO 4 (1:3) и 1 г KI и через 10 минут титруют Na 2 S 2 O 3 .

С фенолов = (г в 50 мл воды),

где N — нормальность раствора Na 2 S 2 O 3 ; 15,667 — масса 1 г-экв. фенола; а — объем Na 2 S 2 O 3 , израсходованный на титрование пробы, мл; b — объем Na 2 S 2 O 3 , израсходованный на титрование при холостом опыте, мл. Определив количество фенолов в г, можно рассчитать его концентрацию в любом объеме.

2. ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Какие химические реакции лежат в основе перманганатометрического и бихроматометрического методов определения ХПК? Напишите уравнения реакций и укажите условия их проведения.

2. Что характеризуют такие показатели воды, как ХПК и БПК?

3. Какие выводы следует сделать, если результаты определения общих показателей качества воды дали следующие цифры:

ХПК перманганатн. =5,0 мг О 2 /л;

БПК бихроматн. = 10,5 мг О 2 /л;

4. Какие химические реакции лежат в основе скляночного метода определения кислорода (по Винклеру) ? Напишите уравнения реакций и укажите условия их проведения.

5. Что такое процент насыщения кислородом? Какие выводы следует сделать об экологическом состоянии водоема, если получены следующие данные:

2-й случай — 8,8 мг мг О 2 /л.

(температура водоема 20 о С; С о кисл. = 9,02 мг О 2 /л)

6. Какие вещества используются для консервации воды при отборе проб для анализа нефтепродуктов, АСПАВ, фенолов, тяжелых металлов? В какую посуду следует отбирать пробы?

1. Руководство по химическому анализу поверхностных вод суши (под редакцией А.Д. Семенова) // Л.: Гидрометеоиздат. — 1977. — 540 с.

2. Унифицированные методы анализа вод. Под редакцией Ю.Ю. Лурье // М.:Химия. — 1973. — 376 с.

3. Лурье Ю.Ю. Аналитическая химия промышленных и сточных вод. // М.: Химия. — 1984. — 447 с.

4. Таубе П.Р., Баранова А.Г. Химия и микробиология воды // М.: Высшая школа . — 1983. — 275 с.

1. Вода питьевая. Методы анализа. Государственные стандарты Союза ССР // М.: Издательство стандартов. — 1984. — 240 с.

2. Лурье Ю.Ю., Рыбникова А.И. Химический анализ производственных сточных вод. // М.: Химия. — 1974. — 336 с.

3. Предельно допустимые концентрации вредных веществ в воздухе и воде. // Л.: Химия. — 1975 . — 200 с.

4. Зенин А.А., Белоусова Н.В. Гидрохимический словарь. // Л.: Гидрометеоиздат. — 1988.-238 с.

источник

Методические указания по определению концентраций химических веществ в воде предназначены для использования органами государственного санитарно-эпидемиологического надзора при осуществлении государственного контроля за соблюдением требований к качеству воды централизованного хозяйственно-питьевого водоснабжения, водохозяйственными организациями, производственными лабораториями предприятий, контролирующими состояние водных объектов, а также научно-исследовательскими институтами, работающими в области гигиены водных объектов.

Включенные в сборник методические указания разработаны в соответствии с требованиями ГОСТа 8.010-90 «Методики выполнения измерений», ГОСТа 17.0.0.02-79 «Охрана природы. Метрологическое обеспечение контроля загрязненности атмосферы, поверхностных вод и почвы. Основные положения». В сборнике приведены методики по измерению концентраций 40 химических веществ.

Методические указания одобрены и приняты на совместном заседании группы Главного эксперта Комиссии по санитарно-гигиеническому нормированию «Лабораторно-инструментальное дело и метрологическое обеспечение» Госкомсанэпиднадзора России и бюро секции по физико-химическим методам исследования объектов окружающей среды Проблемной комиссии «Научные основы экологии человека и гигиены окружающей среды».

Первым заместителем Председателя

заместителем Главного государственного

санитарного врача Российской Федерации

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Методические указания
по хромато-масс-спектрометрическому определению
летучих органических веществ в воде

Настоящие методические указания устанавливают количественный хромато-масс-спектрометрический анализ воды водных объектов хозяйственно-питьевого и культурно-бытового водоснабжения для определения в ней содержания летучих органических соединений в диапазоне концентраций 0,001 — 0,2 мг/дм 3 .

Физико-химические свойства веществ и их гигиенические нормативы представлены в табл. 1.

Методика обеспечивает выполнения измерений с погрешностью, не превышающей ± 25 %, при доверительной вероятности 0,95.

Измерение концентраций летучих органических соединений основано на извлечении их из воды газовой экстракцией, концентрации на твердом полимерном адсорбенте, последующей термической десорбции, криогенном фокусировании в капилляре, газохроматографическом разделении на стеклянной капиллярной колонке и идентификации по масс-спектрам.

Нижний предел измерения ароматических углеводородов в объеме пробы 0,05 мкг; галогенсодержащих соединений 0,07 мкг; четыреххлористого углерода 0,1 мкг; кислородосодержащих соединений 0,1 мкг.

Определению не мешают присутствие диоксида углерода, этанола, пентана, гексана, 2-й 3-метилоктанов, нонана.

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы.

Хромато-масс-спектрометр с магнитным или квадрупольным масс-анализатором

Компьютерная система, обеспечивающая сбор и хранение всех масс-спектров в процессе проведения хромато-масс-спектрометрического анализа

Весы аналитические ВЛА-200

Посуда стеклянная лабораторная

Шприц стеклянный вместимостью 100 см 3

Гайки накидные с прокладками из витона (диаметр отверстия 6,3 мм)

Колонка стеклянная капиллярная хроматографическая длиной 50 м, внутренним диаметром 0,36 мм, покрытая неподвижной фазой SE-30 с толщиной пленки 0,25 мкм

Капилляр стеклянный U-образный длиной 140 мм и диаметром 0,7 мм

Капилляр стеклянный толстостенный длиной 200 мм, наружным диаметром 6,3 мм и внутренним диаметром 0,5 мм

Прибор стеклянный с пористой пластинкой для газовой экстракции длиной 550 мм и диаметром 20 мм

Сосуд Дьюара стеклянный высотой 80 мм и внутренним диаметром 25 мм

Трубки сорбционные из молибденового стекла длиной 200 мм и диаметром 5 и 6 мм

Электропечь трубчатая длиной 160 мм и диаметром 13 мм

Гелий газообразный марки А в баллоне

Заглушки из фторопласта для сорбционных трубок

Мешочки для активированного угля марлевые

Активированный уголь любой марки

Вода артезианская (дополнительно очищенная кипячением)

Силикагель КСК, крупнозернистый

Физико-химические свойства и гигиенические нормативы соединений

Тенакс GC, зернением 0,2 — 0,25 мм фирмы «Alltech Associates», США

Углерод четыреххлористый, х.ч.

Хлороформ, бромдихлорметан, дибромхлорметан, трихлорэтилен, тетрахлорэтилен, бромоформ — реагенты для хроматографии фирмы «Alltech Assotiates» (США)

4.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТу 12.1.005-88.

4.2. При выполнении измерений с использованием хромато-масс-спектрометра соблюдают правила электробезопасности в соответствии с ГОСТом 12.1.019-79 и инструкцией по эксплуатации прибора.

К выполнению измерений допускают лиц, имеющих квалификацию не ниже инженера-химика, с опытом работы на хромато-масс-спектрометре.

При выполнении измерений соблюдают следующие условия:

6.1. Процессы приготовления растворов и подготовки проб к анализу проводят в нормальных условиях согласно ГОСТу 15150-69 при температуре воздуха (20 ± 10) °С, атмосферном давлении 630 — 800 мм рт. ст. и влажности воздуха не более 80 %.

6.2. Выполнение измерений на хромато-масс-спектрометре проводят в условиях, рекомендуемых технической документацией к прибору.

Перед выполнением измерений проводят следующие работы: приготовление сорбционных трубок, приготовление растворов, подготовка хроматографической системы, установление градуировочной характеристики, отбор проб.

Сорбционную трубку заполняют полимерным сорбентом тенакс, закрывают концы тампонами из стекловаты, помещают в нагретую до 300 °С трубчатую электропечь и выдерживают в токе гелия при скорости 15 см 3 /мин в течение 24 часов. По окончании кондиционирования трубки с заглушёнными концами помещают для хранения в промытый и тщательно просушенный эксикатор, на дно которого насыпан слой сухого силикагеля КСК, а по бокам расположены марлевые мешочки с активированным углем.

Исходный раствор ацетона в воде (с = 1 мг/см 3 ). 50 мг ацетона вносят в мерную колбу вместимостью 50 см 3 , доводят артезианской водой до метки и перемешивают. Срок хранения — 1 месяц при 4 °С.

Рабочий раствор ацетона в воде (с = 4 мг/дм 3 ). 1 см 3 исходного раствора вносят в мерную колбу вместимостью 250 см 3 , доводят артезианской водой до метки и перемешивают. Срок хранения — 1 месяц при 4 °С.

Исходный раствор бензола, толуола, этилбензола, о-, м-, п-ксилолов и стирола (с = 1 мг/см 3 ). 50 мг каждого из ароматических соединений вносят в мерную колбу вместимостью 50 см 3 , доводят этиловым спиртом до метки и перемешивают. Срок хранения — 1 месяц при 4 °С.

Рабочий раствор бензола, толуола, этилбензола, о-, м-, п-ксилолов и стирола (с = 4 мг/дм 3 ). 1 см 3 исходного раствора вносят в мерную колбу вместимостью 250 см 3 , доводят артезианской водой до метки и перемешивают. Срок хранения — 1 месяц при 4 °С.

Исходный раствор галогенсодержащих веществ (с = 1 мг/см 3 ). 50 мг каждого из соединений вносят в мерную колбу вместимостью 50 см 3 , доводят этиловым спиртом до метки и перемешивают. Срок хранения — 1 месяц при +4 °С.

Рабочий раствор галогенсодержащих веществ (с = 4 мг/дм 3 ). 1 см 3 исходного раствора вносят в мерную колбу вместимостью 250 см 3 , доводят артезианской водой до метки и перемешивают. Срок хранения — 1 месяц при 4 °С.

7 .3. Подготовка хроматографической системы

На крышке термостата газового хроматографа устанавливают штатив с вертикально закрепленной на нем трубчатой электропечью, внутри которой помещают толстостенный стеклянный капилляр, к которому подводят газ-носитель гелий. Выход капилляра с помощью накидных гаек с прокладками из витона соединяют с U -образным стеклянным капилляром, который, в свою очередь, подсоединяют непосредственно к стеклянной капиллярной хроматографической колонке. После того, как газовая линия хроматографической системы проверена на отсутствие утечек гелия, закрывают дверцу термостата хроматографа и проводят кондиционирование хроматографической колонки в токе гелия, поднимая температуру термостата со скоростью 6 °С/мин до 250 ° С. Колонку выдерживают при этой температуре в течение суток. После охлаждения термостата хроматографа до комнатной температуры выход колонки подсоединяют к молекулярному сепаратору масс-спектрометра и записывают нулевую линию. При отсутствии заметных флуктуаций система готова к работе.

7 .4. Установление градуировочной характеристики

Градуировочную характеристику устанавливают на градуировочных растворах летучих органических соединений в воде. Она выражает зависимость площади пика (безразмерные компьютерные единицы) от концентраций (мг/дм 3 ) каждого соединения и строится по 4-м сериям градуировочных растворов. Для этого в мерную колбу вместимостью 1000 см 3 в соответствии с табл. 2 помещают исходные растворы каждого из соединений, доводят артезианской водой до метки и перемешивают.

Градуировочные растворы для установления градуировочной характеристики при определении концентраций летучих органических веществ

источник