Меню Рубрики

Вода анализ микробиологический методические указания

Несоответствие воды микробиологическим нормам, так же как и химическим, делает ее непригодной для питья. Если Ваш источник водоснабжения не защищен от прямого воздействия окружающей среды или коммунальные системы устарели или давно не чистились, то сделать микробиологический анализ воды просто необходимо. От этого зависит Ваше здоровье и безопасность! Особенно это важно для тех, кто пользуется колодцем. Колодезная вода – грунтовая, она на прямую контактирует с почвами, а значит, грозит «напоить» Вас и нитратами, и тяжелыми металлами, и аммиаком, и, конечно, вредными органическими веществами, которые попадают в почву в результате деятельности сельскохозяйственных ферм или угодий.

В таблице 1 представлены микробиологические показатели действующего норматива СанПиН 2.1.4.1074-01 для питьевой воды:

Таблица 1. Микробиологические нормативы для питьевой воды

Показатель Норматив СанПиН 2.1.4.1074-01
Общая микробная численность Не более 50 КОЕ в 1 мл
Общие колиформные бактерии Отсутствие в 100 мл
Термотолерантные колиформные бактерии Отсутствие в 100 мл
Колифаги Отсутствие в 100 мл
Споры сульфитредуцирующих бактерий Отсутствие в 20 мл

Стандартный микробиологический анализ питьевой воды в МГУ включает определение трех показателей: общего микробного числа, количества общих колиформных и термотолерантных колиформных бактерий.

Расширенный микробиологический анализ воды включает анализ пяти показателей: общего микробного числа, количества общих колиформных бактерий, количества термотолерантных колиформных бактерий, титр колифагов и содержание спор сульфитредуцирующих бактерий.

Часто на наших участках или поблизости имеются водоемы, где мы и наши дети с удовольствием любим провести время. Конечно, вода в данных водоемах не является питьевой, но ее безопасность для человека также, как и питьевая, регламентируется. В таблице 2 представлены микробиологические показатели действующего норматива по гигиеническим требованиям к охране поверхностных вод (СанПиН 2.1.5.980-00)

Таблица 2. Микробиологические нормативы для рекреационного водопользования, а также в черте населенных мест

Показатель Норматив СанПиН 2.1.5.980-00
Общие колиформные бактерии Не более 500 КОЕ в 100 мл
Термотолерантные колиформные бактерии Не более 100 КОЕ в 100 мл
Колифаги Не более 100 БОЕ в 100 мл
Возбудители кишечных инфекций (анализ бактерий из сем. Enterobacteriaceae рода Salmonella) Вода не должна содержать возбудителей кишечных инфекций (полное отсутствие в 1000 мл)

Микробиологический анализ воды, предназначенной не для питья, включает определение количества двух показателей: общих колиформных и колиформных термотолерантных бактерий.

Помимо двух основных показателей мы предлагаем провести дополнительный анализ на содержание: колифагов, условно-патогенных дрожжей и микромицетов (частых спутников опортунистических заболеваний) и индекса самоочищения водоёма.

При значительном превышении нормативов СанПиН 2.1.5.980-00, а также возможном фекальном загрязнении водоёма, мы предлагаем провести анализ на наличие возбудителей кишечных инфекций (род Salmonella и Enterococcus).

Метод определяет в питьевой воде общее число мезофильных аэробных и факультативно анаэробных микроорганизмов (ОМЧ), способных образовывать колонии на питательном агаре при температуре 37 °С в течение 24 часов, видимые с увеличением в 2 раза. Данный индикатор выявляет потенциальных бактерий, способных причинить вред здоровью человека.

Общие колиформные бактерии (ОКБ) – грамотрицательные, оксидазоотрицательные, не образующие спор палочки, способные расти на дифференциальных лактозных средах, ферментирующие лактозу до кислоты, альдегида и газа при температуре (37+1) °С в течение (24-48) часов. Многие представители данной группы являются микроорганизмами нормальной микрофлоры желудка, поэтому превышение данной группы микроорганизмов может говорить о возможно антропогенном (в том числе и фекальном) загрязнении воды.

Термотолерантные колиформные бактерии (ТКБ) входят в число общих колиформных бактерий, обладают всеми их признаками и, кроме того, способны ферментировать лактозу до кислоты, альдегида и газа при температуре (44±0,5) °С в течение 24 часов. Также, как и ОКБ являются индикаторной группой, однако более устойчивые в окружающей среде: вот почему обнаружение данной группы микроорганизмов в воде может говорить об однозначном загрязнении ее продуктами жизнедеятельности человека.

Колифаги, определяемые стандартным методом (МУК 4.2.1018-01), являются вирусами кишечной палочки (Escherichia coli) и рассматриваются эпидемиологами как дополнительный, а порой и более чувствительный, метод в определении загрязнения воды микроорганизмами группы кишечной палочки. Вирусные частицы, и в частности колифаги, более устойчивы к окружающей среде, чем их бактерии-хозяева. В связи с этим, наличие колифагов может служить достоверной меткой о более давнем фекальном загрязнении источника воды. Показана прямая корреляция между содержанием колифагов в воде и опасных для человека энтеровирусов, поэтому наличие колифагов в воде может говорить о вирусном заражении источника. Действующий нормативный документ (СанПиН 2.1.4.1074-01) подразумевает отсутствие колифагов в 100 мл воды.

Сульфитредуцирующие клостридии – спорообразующие анаэробные палочковидные микроорганизмы, являющиеся дополнительным микробиологическим показателем фекального загрязнения водоема. В отличие от относительно неустойчивых колиформных и термотолерантных колиформных бактерий, споры клостридий могут сохраняться в водоемах долгое время. Клостридии встречаются в кишечнике человека и домашних животных, однако, при попадании с водой в большом количестве могут вызвать пищевые отравления. К сульфитредуцирующим клостридиям относятся в том числе и опасные для человека клостридии (Clostridiumbotulinum, Clostridium perfringens, Clostridium tetani), вызывающие тяжелейшие заболевания. Согласно действующему нормативу (СанПиН 2.1.4.1074-01) споры клостридий должны отсутствовать в 20 мл воды.

К условно-патогенным дрожжам и микромицетам (плесени) относят большую неоднородную группу грибных организмов, способных сапротрофно расти при 37 °С. В нее входят такие представители, как Candida albicans и Cryptococcus neoformans, которые являются частым фактором оппортунистических заболеваний человека, вызывая кандидозы (грибковые заболевания кожи), молочницы и проч. Другие организмы микромицеты (Cladosporium cladosporioides, Aspergillusniger) могут являться активными сенсебилизаторами аллергических реакций, а иногда и самими аллергенами. В РФ не нормируется вода по плесеням и дрожжевым организмам в воде.

Общее число микроорганизмов не нормируется в воде водоемов в зонах рекреаций, поскольку уровень этой группы микроорганизмов в большей мере зависит от природных особенностей каждого объекта, времени года и т.п.

Однако при выборе нового источника водоснабжения или места рекреации в воде водоёмов дополнительно следует определять общую микробную численность, вырастающую:

  • при температуре 37 °С в течение 24 часов;
  • при температуре 22 °С в течение 72 часов.
  1. ОМЧ при 37 °С представлена большей частью алохтонной микрофлорой (внесенную в водоем в результате антропогенного загрязнения, в том числе фекального);
  2. ОМЧ при 20-22 °С представлена, помимо алохтонной, аборигенной микрофлорой (естественной, свойственной для данного водоёма).

Соотношение численности этих групп микроорганизмов позволяет судить об интенсивности процесса самоочищения. При завершении процесса самоочищения коэффициент ОМЧ 22 °С/ ОМЧ 37 °С. В местах загрязнения хозяйственно-бытовыми сточными водами численные значения обеих групп близки.

Показатель позволяет получить дополнительную информацию о санитарном состоянии водоемов, источниках загрязнения, процессах самоочищения.

источник

Санитарно-микробиологическое исследование воды

Через воду могут передаваться самые различные инфекционные заболевания. При решении вопроса снабжения населения доброкачественной водой необходимо учитывать возможность водного пути передачи инфекций, в частности, брюшного тифа (паратифов), дизентерии, холеры, лептоспироза, туляремии, полиомиелита, вирусных гепатитов А и Е.

В зависимости от предназначения вода может быть классифицирована на:

ü питьевую воду централизованного хозяйственно-питьевого водоснабжения;

ü воду подземных и поверхностных источников централизованного хозяйственно-питьевого водоснабжения;

ü децентрализованную питьевую воду (из колодцев, артезианских скважин и родников);

ü воду объектов в зонах рекреации;

ü воду плавательных бассейнов с пресной и морской водой;

ü хозяйственно-бытовые сточные воды после обеззараживания и очистки.

Для всех видов водопользования имеется нормативно-техническая документация — государственные стандарты (ГОСТы), санитарные нормы и правила (СанПиНы), методические указания, методические рекомендации, информационные письма. Эта нормативно-техническая документация (НТД) включает гигиенические требования, нормативы качества воды и методы исследования.

Среди многочисленных нормируемых показателей следует особо выделить микробиологические и паразитологические. Косвенно данные показатели отражаются и при проведении химического анализа воды. Например, органические соединения азота — показатель загрязнения воды органическими веществами белковой природы, в том числе и за счёт сапрофитных и патогенных мик-ов. Ионы аммония, азотной и азотистой кислот также являются конечными продуктами распада микроорганизмов. Окисляемость воды и биохимическая потребность её в кислороде косвенно свидетельствует о возможном загрязнении воды патогенными микроорганизмами.

Санитарно-микробиологическое исследование воды централизованного хозяйственно-питьевого водоснабжения

Включает определение как патогенных микроорганизмов, так и СПМО (косвенно свидетельствующих о возможном присутствии в воде патогенных микроорганизмов). Определение патогенных микроорганизмов проводят по эпидемиологическим показаниям, а при плановых санитарно-микробиологических исследованиях воды анализ включает в себя следующие показатели по требованиям СанПиН 2.1.4.1074-01

Санитарно-показательные микроорганизмы в воде централизованного хозяйственно-питьевого водоснабжения

Показатель Единица измерения Норматив
ОМЧ Колониеобразующие единицы (КОЕ) в 1 см 3 меньше или равно 50
Общие колиформные бактерии (ОКБ) Число бактерий в 100 см 3 Отсутствует
Термотолерантные колиформные бактерии (ТКБ) Число бактерий в 100 см 3 Отсутствует
Коли-фаги Бляшкообразующие единицы (БОЕ) в 100 см 3 Отсутствует
Споры сульфитредуцирующих клостридий Число спор в 20 см 3 Отсутствует
Цисты лямблий Число цист в 50 см 3 Отсутствует

При этом, оценивая количество ОКБ и ТКБ в 100 см 3 воды, следует анализировать не менее трёх объёмов воды (по 100 см 3 каждый). При оценке ОКБ и ОМЧ превышение норматива не допускается в 95% проб, отбираемых в течение года. Коли-фаги определяют только в системах водоснабжения из поверхностных источников перед подачей воды в распределительную сеть, то же касается и наличия цист лямблий. Содержание спор сульфитредуцирующих клостридий определяют только при оценке эффективности технологии обработки воды. В случае обнаружения ТКБ, ОКБ, коли-фагов вновь проводят экстренное исследование воды на ТКБ, ОКБ и коли-фаги обжиганием.

Определяемые показатели кол-ва и периодичность исследования зависят от типа источника волоснабжения, типа населения. МУК по анализу воды 4.2.1018-01. В данных методических указаниях регламентированы методы санитарно-микробиологического котроля качества питьевой воды.

2.1.1. Отбор, хранение и транспортировка проб воды

Пробы воды отбирают в стерильную одноразовую посуду или ёмкости многократного применения с плотно закрывающимися пробками (силиконовыми, резиновыми), снабжёнными защитным колпачком из алюминиевой фольги или плотной бумаги. Многоразовая посуда, в том числе пробки, должны выдерживать стерилизацию сухим жаром и автоклавирование. Для нейтрализации присутствующего в воде хлора в ёмкость (до стерилизации) вносят серноватисто-кислый натрий из расчёта 10 мг на каждую половину объёма исследуемой воды. Если вода гиперхлорированная, то количество нейтрализатора увеличивают: при концентрации остаточного хлора 2 мг на литр хлора добавляют 20 мг нейтрализатора, 3 мг/л — 30 мг и так далее.

Стерильную ёмкость открывают непосредственно перед отбором воды, удаляя пробку вместе со стерильным колпачком. Во время отбора пробка и края ёмкости не должны соприкасаться с посторонними предметами. При отборе проб из распределительной сети металлический кран стерилизуют обжиганием. Затем воду спускают в течение 10 минут при полностью открытом кране, при постоянном изливании воды или наличии на кране резинового силиконового шланга, отбор проб проводят без предварителного обжигания. Между пробкой и уровнем воды в емкости должно оставаться пространство, чтобы пробка не смачивалась при транспортировке. После отбора пробы емкость закрывают стерлиьной пробкой и колпачком. Пробу маркируют и в сопроводителньом документе указывают место, дату и время отбора пробы, фамилию специалиста и дополнительные сведения при необходимости. Анализ необходимо провести в течение 2 ч после отбора пробы. Если нет возможности доставитьдоставить в эти срокия, то при условии транспортировки и хранения пробы в контейнерах-холодильниках при температуре +4-10градусов, время можно увеличить до 6 часов.

Определение общего числа микроорганизмов

Общее число микроорганизмов (ОМЧ) — это общее число видимых при двукратном увеличении мезофильных, аэробных и факультативно анаэробных мик-ов, которые способны образовывать колонии на питательной среде при температуре +37 °С в течение 24 ч.

определения их количества могут быть использованы бактериологический и микроскопический методы.

Основные этапы бактериологического исследования: гомогенизация образца, десорбция микроорганизмов с плотных частиц, приготовление разведений, посев на питательные среды, идентификация выделенных культур.

Гомогенизацию образца проводят для равномерного распределения бактерий в анализируемом объекте. При исследовании жидких, плотных, сыпучих продуктов, в зависимости от характеристик испытуемого материала, используют перемешивание простым встряхиванием или специальные приборы.

Десорбция бактерий с плотных частиц необходима для анализа объектов твёрдой консистенции. Для этого материал суспензируют в жидкости или с поверхности объекта берут смывы и отпечатки. При суспензировании к навеске образца массой 10г добавляют 90 см 3 воды и интенсивно перемешивают (вручную или в гомогенизаторе). В дальнейшем условно принимают 1 см 3 полученной суспензии эквивалентным 0,1 г исходного материала.

Для определения количества бактерий чаще используют метод 10-кратных разведений, когда концентрация микроорганизмов каждого последующего разведения в 10 раз меньше предыдущего, затем разведения высевают на питательные среды.

Несмотря на кажущуюся техническую простоту, этот этап — один из наиболее существенных источников ошибок при определении количества микроорганизмов в объекте, поэтому в процессе подготовки разведений необходимо строго выполнять регламентированные процедуры.

В стерильные пробирки, соблюдая правила асептики, разливают стерильную воду или специальный раствор по 9 см3. Заранее стерилизовать мерно разлитую жидкость не рекомендуется, так как при автоклавировании её объём может измениться.

Для приготовления 1-го разведения 1:10 1 см 3 анализируемого материала стерильной пипеткой переносят в пробирку с 9 см3 жидкости для разведения. Пипетку нельзя погружать в воду более чем на 3 мм, во избежание смывания микроорганизмов с её наружной поверхности. Новой стерильной пипеткой тщательно перемешивают содержимое пробирки путём многократного заполнения и опорожнения пипетки, набирают 1 см 3 разведения 1:10 и переносят в следующую пробирку с 9 см 3 жидкости, получая разведение 1:100 (10 -2 ). Эти операции повторяют до получения необходимого ряда разведений.

В случаях когда идентификация не требуется используют метод глубинного посева в плотные питательные среды. С этой целью питательную среду расплавляют и охлаждают до температуры 45±5 С. В пустые стерильные чашки Петри, соблюдая правила асептики, стерильной пипеткой вносят 1 см 3 образца (после его перемешивания) или заранее приготовленного разведения. Чашки предварительно маркируют со стороны горлышка, а не крышки.

Разведения выбирают с таким расчётом, чтобы на чашке выросло от 30 до 300 колоний. Из каждой пробы засевают два разведения. Не позднее чем через 15 мин после внесения материала в чашку наливают 10-12 см 3 питательного агара или питательнуой среды, толщина слоя которого должна быть не менее 4—5 мм. Расплавленную среду и посевной материал незамедлительно тщательно перемешивают круговыми движениями, чтобы микроорганизмы равномерно распределились в массе среды. Чашки после этого оставляют на холодной горизонтальной поверхности на 10—15 мин для охлаждения и застывания среды, после чего посевы помещают в термостат и инкубируют при заданной температуре и экспозиции.

Для дальнейшей работы выбирают чашки, на которых выросло от 30 до 300 колоний, а при посеве нативного материала — от 1 до 300 колоний. Количество колоний на поверхности и в глубине агара подсчитывают визуально или при помощи лупы с 2—5-кратным увеличением (для этого чашку помещают вверх дном на поверхность чёрного цвета) либо специального прибора для счёта бактерий, с помощью которого подсчёт колоний осуществляется за 0,2 сек. Если на чашке с посевом максимального разведения выросло более 300 колоний, допустимо вести их подсчёт при помощи пластинки с лупой и сетки из оргстекла со стороной квадрата 1 см при сильном боковом освещении. Колонии считают не менее чем в 20 квадратах, определяют их среднее число на 1 см2 и умножают на площадь поверхности питательной среды в чашке.

В тех случаях, когда после подсчёта колоний может возникнуть необходимость в выделении чистой культуры и её идентификации, для определения кол-ва жизнеспособных мик-ов используют метод поверхностного посева. Питательную среду разливают в чашки Петри и после застывания подсушивают, переворачивая чашки вверх дном и выдерживая их открытыми в термостате 30 минут при температуре 48-50 градусов.

В центр маркированной чашки Петри вносят заданное количество исследуемого материала или его разведения (например, 0,01—0,001 см3) и немедленно равномерно распределяют по поверхности среды стерильным стеклянным или пластиковым шпателем до тех пор, пока на агаре не останется видимых следов жидкости. Засеянные чашки немедленно переворачивают и быстро помещают в термостат, установленный на соответствующий температурный режим. В период нахождения чашек в термостате допускают кратковременные колебания температуры, в частности, при загрузке или разгрузке.

Учёт посевов проводят непосредственно после извлечения чашек из термостата, если это невозможно, их хранят в холодильнике не более 24 ч. При подсчёте колоний учитывают рост микроорганизмов только с заданными культуральными свойствами, а при использовании дифференциальных сред — с соответствующими биохимическими характеристиками.

Из каждой пробы делают посев не менее двух объёмов по 1 см 3 . Кол-во колоний на обеих чашках суммируют делят на два. Результат выражают в КОЕ 1 см 3 пробы. Если на одной из двух чашек подсчёт колоний невозможен, то учитывают колонии, выросшие на одной чашке.

Дата добавления: 2016-03-25 ; просмотров: 1620 | Нарушение авторских прав

источник

Цель занятия.Ознакомить студентов с основными методами и показателями, необходимыми для санитарно-микробиологической оценки объектов внешней среды.

Оборудование и материалы. Прибор для подсчета колоний, колбы с пробами воды, бактериологические пробирки с 9 мл воды, пробирки с 10 мл расплавленного агара, мерные стериль­ные пипетки на 2 мл, стерильные чашки Петри, чашки Петри с МПА, чашки Петри с кровяным МПА, навески почвы, стериль­ная водопроводная вода в колбе — 270 мл, пробирки со средой Кесслера, Вильсона—Блера.

Для оценки санитарно-гигиенического состояния объектов окружающей среды проводят санитарно-бактериологические ис­следования, цель которых состоит в определении эпизоотологической и эпидемиологической безопасности. Показателем небла­гополучия служит выявление патогенных микроорганизмов. Од­нако прямое их обнаружение связано с большими трудностями, и прежде всего с низкой концентрацией данных микробов, кото­рые в основном не могут размножаться в воде, воздухе и почве. Поэтому в санитарно-микробиологической практике используют косвенные методы, направленные на определение микробной обсемененности объекта и обнаружение в нем так называемых санитарно-показательных бактерий. О бактериальной обсеме­ненности судят по микробному числу — общему коли­честву микроорганизмов, содержащихся в единице объема или массы (1 мл воды, 1 г почвы, 1 м 3 воздуха).

Содержание санитарно-показательных бактерий определяют по двум показателям: титру и индексу. Титром называют минимальный объем или массу, в которых выявляют данные бактерии, индексом — количество санитарно-показательных бактерий, содержащихся в соответствующем количестве среды.

К санитарно-показательным бактериям относят представи­телей облигатной микрофлоры организма человека и тепло­кровных животных, для которых среда обитания — кишечник или воздушно-дыхательные пути. Они характеризуются следую­щими свойствами: 1) постоянно выделяются с калом или ка­пельками слизи из воздушно-дыхательных путей; 2) не имеют других мест обитания; 3) способны сохраняться в окружающей среде то же время, что и патогенные бактерии, паразитирующие в кишечнике или воздушно-дыхательных путях; 4) не способны интенсивно размножаться вне организма хозяина и изменять свои свойства.

Перечисленные признаки присущи бактериям, признанным санитарно-показательными для различных объектов окружаю­щей среды.

Санитарно-показательные бактерии группы кишечных пало­чек принадлежат к различным родам семейства энтеробактерий.

Обнаружение кишечной палочки в разных объектах окружаю­щей среды считают наиболее достоверным признаком свежего фекального загрязнения. Наличие в этих же объектах бактерий родов Citrobacter и Enterobacter указывает на относительно давнее фекальное загрязнение.

Присутствие С. perfringens, С. sporogenes и других клостридий в почве свидетельствует о ее фекальном загрязнении, причем как свежем, так и давнем, поскольку эти бактерии образуют споры, что позволяет им длительно переживать в окружающей среде (в частности, в почве).

Обнаружение в объектах окружающей среды Streptococcus faecalis также свидетельствует об их фекальном загрязнении. Рез­кое увеличение количества этих бактерий в саморазогревающем­ся навозе и компостах может свидетельствовать о загрязнении почвы разлагающимися отбросами.

Гемолитические стрептококки, будучи облигатными обитате­лями носоглотки и зева, выделяются с капельками слизи ораль­но-капельным путем. Сроки выживания гемолитических стреп­тококков в окружающей среде практически не отличаются от сроков, характерных для большинства других возбудителей воз­душно-капельных инфекций. Обнаружение гемолитических стрептококков в воздухе помещений указывает на возможное его загрязнение микроорганизмами, содержащимися в зеве, носо­глотке, верхних дыхательных путях и вызывающими инфекции, передаваемые воздушно-капельным путем.

Staphylococcus aureus — также факультативный обитатель но­соглотки и зева. Его присутствие в воздухе помещений служит показателем орально-капельного загрязнения.

Одновременное обнаружение золотистого стафилококка и ге­молитических стрептококков свидетельствует о высокой степени загрязнения воздуха.

Санитарно-микробиологическое исследование воды. Вода — ес­тественная среда обитания микробов, которые в большом коли­честве поступают из почвы, воздуха, с отбросами, стоками. Осо­бенно много микроорганизмов в открытых водоемах и реках. Кроме сапрофитов в воде могут находиться возбудители инфек­ций животных и человека.

При контроле санитарного состояния воды исследованию подлежат: вода централизованного водоснабжения, колодцев, открытых водоемов (реки, озера), плавательных бассейнов, сточ­ные жидкости.

Отбор проб воды. Из открытых водоемов пробы воды отбира­ют с глубины 10. 15 см от поверхности и на расстоянии 10. 15 см от дна. Водопроводную воду набирают в стерильные флаконы объемом 0,5 л с притертой пробкой. Предварительно кран обжи­гают и спускают воду в течение 10. 15 мин. Хлорированную воду перед исследованием нейтрализуют тиосульфатом натрия из рас­чета 10 мл на 1л воды. Бактериологическое исследование проб воды следует проводить в течение двух часов после отбора или шести часов при температуре хранения 1. 5°С.

Читайте также:  Химический анализ воды на железо

Определение микробного числа воды. Водопроводную воду засе­вают в количестве 1мл, воду открытых водоемов — по 1,0; 0,1; 0,01 мл. Все пробы вносят в стерильные чашки Петри, после чего их заливают 10. 12 мл расплавленного и охлажденного до 40. 45 °С питательного агара, который тщательно перемешивают с водой. Посевы инкубируют при 37 °С в течение 1. 2сут. Воду из открытых водоемов засевают параллельно на две серии чашек, одну из которых инкубируют при 37 ºС в течение суток, другую — 2 сут при 20 °С. Затем подсчитывают количество выросших на поверхности и в глубине колоний и вычисляют микробное число воды — количество микроорганизмов в 1 мл.

Определение коли-титра и коли-индекса воды. Минимальное количество воды в мл, в котором обнаруживают бактерии группы кишечных палочек (БГКП), называют коли-титром воды, количество БГКП, содержащихся в 1л исследуемой воды, называют кол и-и ндексом воды. Коли-титр и коли-индекс воды определяют титрационным (бродильным) ме­тодом или методом мембранных фильтров.

Титрационный метод. В глюкозо-пептонную среду (1%-я пептонная вода, 0,5%-й раствор хлорида натрия, 0,5%-й раствор глюкозы, индикатор Андреде и поплавок) проводят посевы различных объемов воды.

Воду открытых водоемов исследуют в объемах 100; 10; 1 и 0,1 мл. Для анализа водопроводной воды делают посевы трех объемов по 100 мл, трех объемов по 10 мл и трех объемов по 1 мл. Посевы инкубируют при 37 °С в течение суток. О брожении судят по образованию пузырьков газа в поплавке. Из забродивших или помутневших проб делают посевы на среду Эндо. Из выросших колоний готовят мазки, окрашивают по Граму и ставят оксидазный тест, с помощью которого дифференцируют бактерии родов Escherichia, Citrobacter и Enterobacter от грамотрицательных бак­терий семейства Pseudomonadaceae и других оксидазоположительных бактерий, обитающих в воде. С этой целью 2. 3 изоли­рованные колонии наносят «штрихом» на фильтровальную бума­гу, смоченную диметил-n-фенилендиамином. При отрицатель­ном оксидазном тесте цвет бумаги не изменяется, при положительном она окрашивается в синий цвет в течение 1 мин. Грамотрицательные палочки, не образующие оксидазу, вновь ис­следуют в бродильном тесте — вносят в полужидкий питатель­ный агар с 0,5 % глюкозы и инкубируют при 37 °С в течение су­ток. При положительном результате определяют коли-титр и коли-индекс по статистической таблице.

Метод мембранных фильтров. Определенный объем воды про­пускают под давлением через мембранный фильтр № 3, предва­рительно стерилизованный кипячением в дистиллированной воде. Водопроводную воду и воду артезианских скважин фильт­руют в объеме 333 мл. Чистую воду открытых водоемов фильтру­ют в объеме 100, 10, 1 и 0,1 мл, более загрязненную воду перед фильтрованием разводят стерильной водой. Фильтры накладыва­ют на агар Эндо в чашки Петри и после инкубации при 37 °С в течение суток подсчитывают количество выросших красных колоний. Из двух-трех колоний делают мазки, окрашивают их по Граму и ставят оксидазный тест. Грамотрицательные палочки, не образующие оксидазу, принадлежат к БГКП. По существующим нормативам (ГОСТ 2874—82) питьевую воду считают качествен­ной, если ее коли-индекс не более 3, а микробное число — не бо­лее 100.

Общепринятым дополнительным показателем фекального загрязнения воды служит количество S.faecalis. Для определе­ния его титра цельную воду и ее 10-кратные разведения засева­ют в жидкую элективную среду (щелочная полимиксиновая сре­да). После инкубирования при 37 ºС в течение двух суток, а за­тем еще через сутки и двое суток делают высевы на плотные элективные среды. Фекальные стрептококки идентифицируют по морфологическим, культуральным и тинкториальным свой­ствам.

Есть данные о корреляции между содержанием в воде фекаль­ных кишечных палочек и фагами бактерий группы кишечных па­лочек. Поэтому определение данных фагов служит косвенным показателем возможного присутствия кишечных палочек в ис­следуемой пробе воды.

Санитарно-микробиологическое исследование воздуха. Мик­рофлора воздуха зависит от микрофлоры почвы и воды. Воз­дух — неблагоприятная среда для обитания микроорганизмов из-за отсутствия питательных веществ, действия солнечных лучей, высушивания. Наряду с сапрофитами в воздухе могут находиться патогенные бактерии, споры грибов родов Aspergillus, Mucor и др.

Санитарную оценку воздуха осуществляют по двум показате­лям: 1) определение микробного числа воздуха; 2) определение количества санитарно-показательных бактерий — гемолитичес­ких стрептококков и стафилококков.

Количественные микробиологические методы исследования воздуха основаны на принципах осаждения (седиментации), ас­пирации или фильтрации.

Седиментационный метод осаждения Коха. Чашки Петри с МПА оставляют открытыми на 5. 10 мин. Для определения са­нитарно-показательных бактерий берут чашки Петри с кровя­ным МПА и время экспозиции увеличивают до 40 мин. Чашки выдерживают при 37 °С и комнатной температуре 24 ч и подсчи­тывают выросшие колонии.

Микробное число воздуха (общее количество бактерий в 1 м3) определяют по формуле Омелянского

Х= а * 100 * 1000 * 5 / (b * 10 * T),

где X— количество микробов в 1 м 3 (1000 л) воздуха; а — количество выросших ко­лоний в чашках; b — площадь чашки; Т— время, в течение которого чашка была открыта; 5 — время по правилу Омелянского; 10 — объем воздуха в литрах. (Прави­ло Омелянского предусматривает, что на поверхности агара в чашке Петри площа­дью 100 см 3 за 5 мин из воздуха оседает такое количество микробов, которое нахо­дится в его 10 л.)

Прямое обнаружение патогенных микробов воздуха проводят только при специальных показаниях.

Аспирационный метод. Более точный количественный способ определения микробного числа воздуха, так как посев микроор­ганизмов из воздуха производят с помощью приборов. При использовании аппарата Кротова воздух с заданной скоростью за­сасывается через щель плексигласовой пластины и ударяется о поверхность питательной среды открытой чашки Петри, находя­щейся на вращающейся подставке, благодаря чему происходит равномерный посев бактерий из воздуха на поверхность МПА (при определении микробного числа) или кровяного МПА (при выделении гемолитических стафилококков и стрептококков). После инкубации в термостате в течение двух суток подсчитыва­ют количество выросших колоний и определяют микробное чис­ло воздуха. При исследовании воздуха могут быть использованы и другие приборы (Дьякова, Киктенко, ПАБ-1 — прибор аэро­зольный бактериологический и ПОВ-1 — прибор для отбора воз­духа). В практику входят ускоренные методы индикации микро­флоры воздуха с помощью мембранных фильтров, каскадных им-пакторов, фильтров Петрякова и др.

Санитарно-микробиологическое исследование почвы. Анализ почвы включает в себя определение микробного числа, коли-тит-ра, перфрингенс-титра и титра термофильных бактерий. По эпи­демиологическим признакам проводят определение в почве па­тогенных микроорганизмов: сальмонелл, шигелл, возбудителей столбняка, ботулизма, злокачественного отека, сибирской язвы. Бактериологический анализ почвы нужен при выборе террито­рии под пастбище, ферму, хозяйственные постройки, детские сады, больницы и др.

Предварительно делают отбор проб почвы. На обследуемой территории площадью до 1000 м 3 выделяют два участка по 25 м 3 (один — вблизи источника загрязнения, другой — в отдалении от него), берут пробы из 5 точек (4 — по углам участка, 1 — в цент­ре) на глубине 10. 20 см стерильным совком (из более глубоких мест — с помощью специального бура Некрасова или Френкеля). Пробы почвы по 200. 300 г отбирают в широкогорлые стеклян­ные банки с ватными пробками (можно все взятые с одного уча­стка пробы перемешать и на исследование направить 1 кг). На банки наклеивают этикетки, отправляют с нарочным и сопрово­дительным письмом. Пробы почвы полагается исследовать сразу же или в течение 6. 18 ч, сохраняя их при температуре не выше 1. 5ºС.

В лаборатории почву измельчают, освобождают от камней, ос­колков стекол, корней растений, просеивают через сито, тща­тельно перемешивают и отвешивают 30 г. В колбу на 500 мл наливают 270 мл стерильной водопроводной воды и вносят в нее отвешенную пробу почвы, все интенсивно встряхивают 10 мин, не давая отстояться частицам суспензии, готовят серию десятикратных последовательных разведений. Для относительно чис­тых почв достаточно 4 степени разведения, для загрязненных — 6. 9 разведений. В штатив ставят нумерованные пробирки с 9 мл стерильной воды в каждой. В первую вносят 1 мл суспензии про­бы почвы, смешивают, затем 1 мл из первой пробирки вносят во вторую, смешивают, из нее — 1 мл в третью и т. д. В результате в пробирке № 1 получается разведение 1 : 100, № 2 — 1 : 1000 и т.д. Подготовленные таким образом пробы почвы исследуют.

Определение общего микробного числа. Из последних 3. 4 про­бирок с разведенной суспензией отдельными стерильными пи­петками вносят по 1 мл в стерильные чашки Петри (каждое раз­ведение в отдельности). В каждую чашку добавляют еще по 10. 15 мл расплавленного и охлажденного до 45 ºС МПА. Равно­мерными осторожными круговыми движениями содержимое ча­шек перемешивают, оставляют на столе для уплотнения (затвердения) агара. С застывшей средой чашки перевертывают вверх дном, надписывают и помещают в термостат для культивирова­ния на 24. 48 ч при 37 °С. Выросшие колонии подсчитывают в каждой чашке, умножают на степень разведения, полученные числа суммируют и вычисляют среднеарифметическое число, что составит количество микробов, содержащихся в 1 г почвы.

Определение коли-титра, перфрингенс-титра и титра термо­фильных бактерий почвы. Для определения коли-титра почвы раз­личные разведения почвенной взвеси засевают по 1 мл в пробир­ки со средой Кесслера (на 1л дистиллированной воды — 10г пептона, 50 мл бычьей желчи — 2,5 г лактозы, 4 мл 1%-го водного раствора генцианвиолета) и инкубируют при 43 ºС в течение 48 ч. В дальнейшем исследования проводят по схеме, применяемой при определении коли-титра воды. Наибольшее разведение поч­венной суспензии, в котором отмечена ферментация лактозы (газообразование), соответствует коли-титру почвы. Для опреде­ления перфрингенс-титра почвы различные разведения почвен­ной суспензии по 1 мл засевают в пробирки со стерильным обез­жиренным молоком или железосульфитной средой Вильсона— Блера, приготовленной ex tempore. Посевы инкубируют при 43 °С в течение 24. 48 ч, после чего учитывают результаты по сверты­ванию молока или по образованию черных колоний С. perfringens в агаровом столбике среды Вильсона—Блера. Из колоний делают мазки, окрашивают по Граму, микроскопируют и вычисляют перфрингенс-титр, который соответствует наибольшему разведе­нию почвы, вызвавшему почернение и разрыв среды Вильсона— Блера в первые 12 ч роста.

Для определения титра термофильных бактерий разведения почвенной суспензии по 1 мл вносят в чашки Петри, заливают расплавленным и охлажденным агаром. Посевы инкубируют в течение суток при 60 ºС, а затем подсчитывают количество вы­росших колоний и пересчитывают на 1 г почвы.

Санитарно-микробиологическую оценку почвы проводят по комплексу показателей, из которых наиболее важный ление степени фекального загрязнения.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

1. Определить микробное загрязнение воздуха.

2. Провести исследование воды с целью установления мик­робного числа и коли-титра.

3. Определить микробное число и перфрингенс-титр почвы.

1. Что такое санитарно-показательные микроорганизмы?

2. Как определяют коли-титр воды?

3. Как определяют микробное число почвы?

4. Как определяют перфрингенс-титр почвы?

5. Какие методы применяют для определения микробного числа воздуха?

6. Что такое санитарно-показательные микробы воздуха и как их определяют?

источник

«МУК 4.2.2029-05. 4.2. Методы контроля. Биологические и микробиологические факторы. Санитарно-вирусологический контроль водных объектов. Методические указания» (утв. Роспотребнадзором 18.11.2005)

службы по надзору в сфере

БИОЛОГИЧЕСКИЕ И МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

САНИТАРНО-ВИРУСОЛОГИЧЕСКИЙ КОНТРОЛЬ ВОДНЫХ ОБЪЕКТОВ

1. Разработаны: ГУ НИИ экологии человека и гигиены окружающей среды им. А.Н. Сысина РАМН (А.Е. Недачин, Р.А. Дмитриева, Т.В. Доскина, Д.В. Лаврова, А.Г. Санамян); ГУ НИИ полиомиелита и вирусных энцефалитов им. М.П. Чумакова РАМН (О.Е. Иванова, Т.П. Еремеева); ГУ Центральный НИИ эпидемиологии (Г.А. Шипулин, В.П. Чуланов, Е.Н. Родионова, А.Т. Подколзин); ГУ Санкт-Петербургский НИИ эпидемиологии и микробиологии им. Пастера (В.В. Малышев, М.А. Бичурина, Н.В. Железнова); Санкт-Петербургской Военно-медицинской академией им. С.М. Кирова (П.И. Огарков); Белорусским НИИ эпидемиологии и микробиологии (Т.В. Амвросьева).

В подготовке материалов принимали участие: ФГУЗ «Федеральный центр гигиены и эпидемиологии» Роспотребнадзора (Т.В. Воронцова); Аналитический Центр ЗАО «РОСА» (В.Б. Конторович); Нижегородский НИИ эпидемиологии и микробиологии им. И.Н. Блохиной (К.В. Блохин, М.И. Попкова); ФГУЗ «Центр гигиены и эпидемиологии в г. Москве» (С.Г. Курибко, Г.М. Бабкина); ФГУЗ «Центр гигиены и эпидемиологии в Вологодской области» (И.Р. Лесников); ФГУЗ «Центр гигиены и эпидемиологии в Воронежской области» (О.Т. Агеева); ФГУЗ «Центр гигиены и эпидемиологии в Оренбургской области» (В.О. Скворцов); ФГУЗ «Центр гигиены и эпидемиологии во Владимирской области» (Н.И. Джакаридзе); ФГУЗ «Центр гигиены и эпидемиологии в Ленинградской области» (Э.В. Маликова); ФГУЗ «Центр гигиены и эпидемиологии в Калужской области» (Е.И. Косолапова); Территориальное управление Роспотребнадзора по Липецкой области (И.А. Ходякова); ФГУЗ «Центр гигиены и эпидемиологии в г. Ростове-на-Дону» (Т.А. Зыкова).

2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека 6 октября 2005 года (протокол N 3).

3. Утверждены и введены в действие Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г. Онищенко 18 ноября 2005 года.

4. С момента введения в действие методических указаний считать утратившими силу пункты 1.1 — 1.3; 3.1.1 — 3.1.3; 3.2; 4 методических рекомендаций «Методические рекомендации по санитарно-вирусологическому контролю объектов окружающей среды», утвержденных Начальником Главного Управления карантинных инфекций В.П. Сергиевым 7 июня 1982 года.

1.1. Методические указания устанавливают методы санитарно-вирусологического контроля качества воды различного вида водопользования и степени загрязнения в отношении ее эпидемической безопасности по санитарно-вирусологическим показателям, регламентируемым СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества»; СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод»; СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников»; СанПиН 2.1.2.1188-03 «Плавательные бассейны. Гигиенические требования к устройству, эксплуатации и качеству воды. Контроль качества»; СанПиН 2.1.4.1116-02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества».

1.2. Методические указания предназначены для специалистов органов и учреждений Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, осуществляющих государственный санитарно-эпидемиологический надзор за качеством питьевой воды, состоянием водоемов в местах водопользования населения, использованием сточных вод в системах промышленного оборотного водоснабжения и для орошения сельскохозяйственных угодий.

1.3. Методические указания также могут использоваться организациями, эксплуатирующими системы централизованного хозяйственно-питьевого водоснабжения, системы канализования и осуществляющими производственный контроль.

2. Гигиенические и эпидемиологические показания

к проведению санитарно-вирусологического контроля качества

2.1. Виды санитарно-вирусологического контроля

В системе государственного санитарно-эпидемиологического надзора за загрязнением кишечными вирусами водных объектов используют следующие виды санитарно-вирусологического контроля:

Плановый санитарно-вирусологический контроль осуществляют в течение года в соответствии с разработанной программой для каждой системы водоснабжения на конкретной территории, согласованной с территориальными органами Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.

В рабочую программу включают перечень контролируемых объектов, показателей, периодичность проведения исследований, перечень используемых методов, план точек отбора проб воды, количество контролируемых проб воды. При этом необходимо учитывать, что предварительную оценку возможного вирусного загрязнения водных объектов осуществляют с использованием косвенных показателей вирусного загрязнения — общей группы колифагов, а также обнаружением антигенов ротавирусов и (или) антигена ВГА методом ИФА.

При обнаружении колифагов либо вирусных антигенов (ВГА, ротавирусов) в исследуемых пробах необходимо исследовать воду на наличие энтеровирусов, а также РНК энтеровирусов, РВ и ВГА методом ОТ-ПЦР.

Внеплановый санитарно-вирусологический контроль предусматривает проведение исследований воды на наличие колифагов, антигенов ротавирусов и ВГА и энтеровирусов в случае внезапных или непредвиденных изменений санитарно-эпидемической ситуации на контролируемой территории:

— каких-либо аварий или нарушений в системах водоснабжения и канализации, в результате которых может произойти массивное микробное загрязнение поверхностных и подземных водоисточников, а также питьевой воды. В этот период все работы заинтересованных организаций, включая и санитарно-вирусологический контроль, координирует Чрезвычайная противоэпидемическая комиссия города, района, субъекта Российской Федерации;

— по санитарно-эпидемиологическим показаниям контроль осуществляют в случае наличия факторов-предшественников в санитарно-эпидемиологической ситуации на территории и последующего подъема заболеваемости населения кишечными вирусными инфекциями, которая превышает уровень круглогодичной заболеваемости, характерной для конкретной местности.

Санитарно-вирусологический контроль в период эпидемического риска предусматривает более частые исследования по сравнению с установленными в программе текущего контроля, его утверждает главный государственный санитарный врач города, района, субъекта Российской Федерации либо его проводят по решению Чрезвычайной противоэпидемической комиссии города, района, субъекта Российской Федерации.

Производственный санитарно-вирусологический контроль проводят постоянно, он предусматривает исследования воды водных объектов в организациях водоснабжения: на этапах водоподготовки, выходе с водоочистных сооружений (после обеззараживания), в разводящей сети; в организациях по производству воды, расфасованной в емкости; при выборе водоисточника; при оценке эффективности работы обеззараживающих установок, режима их работы; при превышении нормативов уровня колифагов либо при обнаружении антигенов ВГА и (или) ротавирусов.

Определение энтеровирусов и (или) РНК РВ и ВГА проводят в санитарно-вирусологических лабораториях, обеспечивающих деятельность государственного санитарно-эпидемиологического надзора, профильных учреждений и других организаций, имеющих разрешение на данный вид деятельности в установленном законодательством Российской Федерации порядке.

Объектами исследования является вода различных водных объектов:

— сточная на этапах очистки и обеззараживания;

— пресных и морских поверхностных водоемов, используемых в рекреационных целях, а также в качестве источников хозяйственно-питьевого водоснабжения;

— питьевая (водопроводная; вода, расфасованная в емкости и др.);

— из децентрализованных водоисточников.

Сточные воды, поступающие на очистные сооружения, исследуют с целью изучения спектра энтеровирусов, циркулирующих среди населения, и по эпидемическим показаниям.

Сточные воды на этапах очистки и обеззараживания исследуют для изучения эффективности работы очистных сооружений в отношении возбудителей кишечных вирусных инфекций в соответствии с санитарно-эпидемиологическими правилами и нормативами СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод».

2.2.2. Вода поверхностных водоемов.

Воду пресных водоемов исследуют на наличие вирусного загрязнения с целью изучения процессов самоочищения, при выборе поверхностных водоемов в качестве водоисточников для централизованного хозяйственно-питьевого водоснабжения, установления зон санитарной охраны, по эпидемическим показаниям.

Контроль воды морских и пресных водоемов за уровнем загрязнения осуществляют при использовании их в рекреационных целях в соответствии с санитарно-эпидемиологическими правилами и нормативами СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод», по эпидемическим показаниям.

2.2.3. Вода подземных водоисточников.

Воду подземных водоисточников исследуют на наличие вирусного загрязнения при выборе источника хозяйственно-питьевого водоснабжения, контроле ее качества в соответствии с ГОСТ 2761-84 «Источники централизованного хозяйственно-питьевого водоснабжения», по эпидемическим показаниям.

2.2.4. Вода плавательных бассейнов и аквапарков.

Контроль за уровнем вирусного загрязнения воды плавательных бассейнов проводят в соответствии с требованиями санитарно-эпидемиологических правил и нормативов СанПиН 2.1.2.1188-03 «Плавательные бассейны. Гигиенические требования к устройству, эксплуатации и качеству воды. Контроль качества», СанПиН 2.1.2.1331-03 «Гигиенические требования к устройству, эксплуатации и качеству вод аквапарков», по эпидемическим показаниям.

Питьевую воду исследуют на наличие вирусного загрязнения в соответствии с требованиями санитарно-эпидемиологических правил и нормативов СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества», СанПиН 2.1.4.1116-02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества», в соответствии с программой исследования воды, утвержденной главным государственным санитарным врачом города, района, субъекта Российской Федерации, по эпидемическим показаниям.

2.2.6. Контроль воды децентрализованных источников.

Исследование воды децентрализованных источников проводят в соответствии с санитарно-эпидемиологическими правилами и нормативами СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана водоисточников», по эпидемическим показаниям.

2.3. Санитарно-вирусологические показатели качества водных объектов

Санитарно-вирусологический контроль воды водных объектов предусматривает исследования по следующим показателям:

— кишечные вирусы (энтеровирусы и аденовирусы в культурах ткани);

— антигены ротавирусов и вируса гепатита А в качестве маркеров вирусного загрязнения;

— РНК вирусов гепатита А, ротавирусов, энтеровирусов и ДНК аденовирусов методом полимеразной цепной реакции со стадией обратной транскрипции (ОТ-ПЦР) для РНК-содержащих вирусов;

— колифаги (исследования проводят бактериологические лаборатории) в качестве косвенных показателей вирусного загрязнения вод различного назначения в соответствии с нормативными и методическими документами.

Выбор показателей осуществляют в соответствии с нормативными и методическими документами или по рекомендациям эпидемиолога.

2.4. Оценка эпидемической безопасности водных объектов

Вода водных объектов и питьевая вода подлежат обязательному санитарно-вирусологическому контролю.

Основным принципом регламентирования вирусного загрязнения воды на настоящем этапе является отсутствие возбудителей кишечных вирусных инфекций в нормируемом объеме воды водных объектов и питьевой воде.

Критерием эпидемической безопасности воды водных объектов является отсутствие спорадической и вспышечной заболеваемости населения, обусловленной кишечными вирусами, распространяющимися водным путем.

Санитарно-вирусологический контроль воды осуществляют в соответствии с положениями раздела 2 с использованием санитарно-показательных микроорганизмов — колифагов, косвенных показателей вирусного загрязнения, что является экономичным и дает быстрый ответ о потенциальной эпидемической опасности водных объектов в отношении вирусного загрязнения и риска заболевания населения вирусными кишечными антропонозами.

Читайте также:  Химический анализ воды на сульфаты

В соответствии с результатами исследований воды на колифаги проводят обязательное прямое определение энтеровирусов и аденовирусов с использованием «культуральных» методов.

Для выявления в пробах воды труднокультивируемых в клеточных культурах вирусов (вирус гепатита А, ротавирусы) проводят анализ воды на наличие их антигенов с использованием методов ИФА, или ОТ-ПЦР — на наличие РНК вирусов. Положительный результат анализа пробы воды в ИФА после обеззараживания хлором или озоном, содержащей только антиген или РНК определенного вируса, оценивают как ориентировочный, свидетельствующий о циркуляции данного возбудителя на изучаемой территории и возможного водного пути передачи в реализации эпидемического процесса данной инфекции.

Наличие в анализируемой пробе помимо антигена или РНК вируса других форм микроорганизмов (общее микробное число — ОМЧ, колиформных бактерий, колифагов) свидетельствует о вирусном загрязнении воды.

Подтверждением этому является развитие соответствующей эпидемической ситуации на изучаемой территории, а также гомологичность РНК вирусов, выделенных из воды и из материалов от больных.

Для получения информации о степени гомологии штаммов вирусов, выделенных из воды и из материалов от больных на исследуемой территории, проводят ПЦР-амплификацию вариабельного фрагмента генома вируса с последующим секвенированием. Полная гомология данных фрагментов генома свидетельствует в пользу водного пути распространения возбудителя, тогда как наличие генетических отличий исключает роль водного фактора в возникновении данной эпидемической вспышки (эти исследования выполняют в специализированных лабораториях, имеющих разрешение на данный вид деятельности в установленном законодательством Российской Федерации порядке).

3. Основные материалы, оборудование, питательные среды

Примечание. Могут использоваться материалы, оборудование, питательные среды, тест-системы с аналогичными характеристиками, разрешенные к применению для этих целей в Российской Федерации в установленном законодательством порядке.

4. Общие правила отбора проб из различных водных объектов

Для отбора проб воды используют специально предназначенную для этих целей одноразовую посуду или стерильные емкости многократного применения, изготовленные из материалов, не оказывающих инактивирующего действия на вирусы. Емкости должны быть оснащены плотно закрывающимися пробками (силиконовыми, резиновыми или из других материалов) и защитным колпачком (из алюминиевой фольги, плотной бумаги). Емкость открывают непосредственно перед отбором, удаляя пробку вместе со стерильным колпачком. Во время отбора пробка и края емкости не должны чего-либо касаться. Ополаскивать посуду не допускается. При исследовании воды из распределительных сетей отбор проб из крана производят после его предварительной стерилизации обжиганием и последующего спуска воды не менее 10 мин. при полностью открытом кране. При отборе пробы напор воды может быть уменьшен. Пробу отбирают непосредственно из крана без резиновых шлангов, водораспределительных сеток и других насадок. Если через пробоотборный кран вода течет постоянно, отбор проб производят без предварительного обжига, не изменяя напора воды и существующей конструкции (при наличии силиконовых или резиновых шлангов).

Если отбирают пробу после обеззараживания химическими реагентами, то для нейтрализации остаточного количества хлорсодержащих дезинфектантов в емкость, предназначенную для отбора проб, вносят до стерилизации натрий серноватистокислый в виде кристаллов или концентрированного раствора из расчета 10 мг на 500 мл воды. После наполнения емкость закрывают стерильной пробкой и колпачком. При отборе проб в одной и той же точке для различных целей, первыми отбирают пробы для бактериологических исследований.

Отобранную пробу маркируют и сопровождают актом отбора проб воды с указанием места, даты, времени отбора и другой необходимой информации.

К исследованию проб воды необходимо приступить сразу же после доставки проб в лабораторию.

5. Методы концентрирования вирусов из воды

В данном разделе представлены современные методы концентрирования вирусов из воды, предназначенные для качественной или количественной оценки вирусного загрязнения. Перечень методов и область применения представлены в табл. 1.

ОБЪЕМ ПРОБ, УСЛОВИЯ И ПЕРИОДИЧНОСТЬ ОТБОРА ПРОБ ВОДЫ ВОДНЫХ

ОБЪЕКТОВ НА ВИРУСОЛОГИЧЕСКИЙ АНАЛИЗ

Выбор того или иного метода в практике контроля вирусного загрязнения определяют эпидемической ситуацией в регионе, задачами региональных планов по снижению заболеваемости кишечными вирусными инфекциями, уровнем оснащенности лабораторий.

Все работы, связанные с концентрированием и выделением вирусов, проводят с соблюдением правил эпидемиологической безопасности, в соответствии с нормативными документами: санитарно-эпидемиологическими правилами СП 1.3.1285-03 «Безопасность работы с микроорганизмами I — II групп патогенности (опасности)», санитарными правилами СП 1.2.731-99 «Безопасность работы с микроорганизмами III — IV групп патогенности и гельминтами».

5.1. Метод концентрирования вирусов с использованием фильтрующих мембран

Метод используют для концентрирования вирусов из питьевой воды различных видов (водопроводной, бутылированной, из родников и др.), воды подземных водоисточников, воды из бассейнов и других чистых вод. Объем исследуемой воды составляет 10 л. При необходимости объем воды может быть увеличен. Время концентрирования данным методом из 10 л составляет в среднем 1,5 — 2,5 ч. Для концентрирования используют фильтрующие мембраны из нитроцеллюлозы типа ФМНЦ, ФМПА и мембраны микропористые капроновые (ММК) или другие, равные по эффективности.

5.1.2. Подготовка мембранных фильтров.

Фильтрующие мембраны должны быть подготовлены к анализу в соответствии с указаниями организации-изготовителя (листовка-аннотация, сопровождающая фильтры). Перед исследованием фильтрующие мембраны смачивают стерильной водопроводной водой в стерильной емкости.

5.1.3. Подготовка фильтровального аппарата.

Для фильтрования исследуемой воды используют установку, например, типа АФ-142 «К» или другую с аналогичными характеристиками, которая состоит из фильтродержателя, емкости на 10 и более литров для исследуемой воды и ее последующей фильтрации и устройства, нагнетающего жидкость.

Перед фильтрацией фильтродержатель протирают ватным тампоном, смоченным спиртом ректификованным 70%, и обжигают. После охлаждения на нижнюю часть фильтродержателя кладут стерильным пинцетом влажный мембранный фильтр, предварительно смоченный в стерильной водопроводной воде. Затем фильтр прижимают верхней частью фильтродержателя и закрепляют зажимами, равномерно завинчивая последние со всех сторон.

Исследуемый объем воды наливают в напорную емкость, крышку тщательно закрепляют зажимами, включают подачу давления (1,5 — 2,0 бара), после чего воду направляют в фильтродержатель со скоростью около 100 мл/мин. и фильтруют через мембрану. При использовании для концентрирования мембран, например, типа ФМНЦ, в исследуемую воду добавляют хлористый магний до конечной концентрации 0,05 М или хлористый алюминий до конечной концентрации 0,0005 М для увеличения сорбционной способности мембраны. При использовании фильтров ММК хлористый магний не добавляют.

5.1.5. Элюция сконцентрированных вирусных частиц.

Элюцию вирусов с мембран проводят 20 мл элюента с соблюдением всех правил эпидемической безопасности (перчатки, маска, спецодежда и т.д.) в ламинарном боксе. После окончания фильтрования откручивают зажимы и снимают верхнюю часть фильтродержателя. Мембрану осторожно приподнимают за край пинцетом, стерилизованным путем обжигания и переносят в стерильную емкость, соответствующую диаметру мембраны (может быть использована тарелка, чашка Петри диаметром не менее 142 мм и др.). Затем на поверхность мембраны наносят 10 мл элюента (3% бифэкстракт на трисбуфере с рН 9,1 — 9,5) и стерильной пипеткой с целым концом проводят механический смыв (соскабливанием и струей) вируса с поверхности мембраны в течение нескольких минут. К концу манипуляции мембрана должна приобрести первоначальный вид. Полученный элюат переносят в стерильный флакон. Затем на эту же мембрану наносят второй объем (10 мл) того же элюента и проводят вторичное смывание вирусов струей с обеих сторон мембраны, и вторую часть элюата помещают в тот же флакон, что и первую. Затем рН полученного элюата доводят до 7,0 — 7,5 1 N раствором соляной кислоты.

Для удаления бактериальной микрофлоры элюат подвергают обработке одним из двух методов: обработкой хлороформом или фильтрацией через стерилизующие мембраны.

5.1.6.1. При использовании хлороформа его добавляют в элюат (1 мл на 10 мл элюата), интенсивно встряхивают 10 мин. и центрифугируют 10 мин. при 2000 об./мин. для разделения фаз. Водную фазу (верхнюю) аккуратно отбирают пипеткой в стерильный флакон, добавляют 100 МЕ/мл пенициллина и 10,0 мг/мл стрептомицина.

5.1.6.2. При использовании стерилизующих насадок с фильтрами 0,22 мкм элюат пробы переносят в стерильный шприц объемом 5 — 20 мл с установленной фильтрующей насадкой и поршнем шприца продавливают в стерильный флакон. Этот способ позволяет избежать использования антибиотиков, токсичного хлороформа и связанных с этим мер безопасности, не требует длительного встряхивания и центрифугирования.

Стерильные элюаты хранят до испытания при 4 °С не более 24 ч. При температуре -20 °С их можно хранить в течение 1 года. При необходимости многократного исследования элюат делят на несколько порций, чтобы избежать повторного замораживания.

5.2. Метод концентрирования вирусов с использованием ионообменных смол

Метод рекомендуется для концентрирования вирусов из чистых вод, воды поверхностных водоемов и сточных вод. Объем проб для исследования определенного вида воды представлен в табл. 1.

5.2.2. Подготовка ионообменной смолы.

Подготовку ионообменных смол (аниониты АВ-17-8, АВ-17-8-чс) осуществляют следующим образом: сухую смолу замачивают в течение 2 — 3-х суток в дистиллированной воде. Затем воду сливают и смолу обрабатывают смесью равных объемов свежеприготовленных растворов 2% соляной кислоты и 10% хлорида натрия из расчета 1 л смеси на 100 г смолы. Продолжительность контакта 24 ч. После этого смолу отмывают дистиллированной водой до нейтрального рН 7,0.

5.2.3. Концентрирования вирусов из проб воды.

Перед концентрированием рН исследуемой пробы воды доводят до значений 5,5 — 6,0 путем добавления концентрированной соляной кислоты.

Для осуществления концентрирования стеклянную бюретку (колонку) диаметром 1,2 — 1,5 см, к нижнему концу которой присоединен резиновый шланг с завинчивающимся зажимом, устанавливают в штативе строго вертикально. На дно колонки помещают небольшой слой стекловаты для удержания смолы. В колонку вносят суспензию смолы, удаляя через нижний резиновый шланг избыток воды. Заполнение колонки следует проводить тщательно, избегая образования пузырьков воздуха в столбике смолы. Высота столбика смолы должна быть 10 — 12 см.

Емкость с пробой воды располагают выше колонок, в нее опускают стерильный резиновый шланг с битой пипеткой на конце. С другой стороны шланга должна быть резиновая пробка с отверстием для прохождения воды. Через резиновый шланг с пробкой на конце воду подают в колонку, закрывая ее пробкой. Винтовым зажимом на нижнем шланге регулируют подачу воды через смолу, создавая скорость 10 — 12 мл в минуту.

5.2.4. Элюция вирусов с ионообменной смолы

После окончания концентрирования (примерно через 16 — 18 ч, при исследовании 10 л) осуществляют элюцию вирусов со смолы 0,5 М раствором фосфатного буфера с рН 8,2. Для этого в колонку вносят 10 мл фосфатного буфера, интенсивно встряхивают и оставляют в горизонтальном положении в течение 1 ч при комнатной температуре. Затем элюат переносят в стерильный флакон и доводят до рН 7,2 1 М раствором соляной кислоты.

Приготовление 0,5 М фосфатного буфера с рН 8,2.

5.3. Двухэтапный метод концентрирования вирусов (сорбция на ионообменной смоле и осаждение с помощью сульфата аммония)

Метод рекомендуется для концентрирования вируса гепатита А и энтеровирусов из проб питьевой воды и воды водоисточников. Объем проб может колебаться от 10 до 50 л.

5.3.2. I этап. Концентрирование и элюция вируса гепатита А и энтеровирусов из проб воды при помощи сорбции на ионообменной смоле.

В качестве сорбента используют смесь, состоящую из ионообменной смолы АВ-17-8 (подготовленной в соответствии с п. 5.2.2) и гидроксида алюминия, которой заполняют стеклянную бюретку (колонку) диаметром 36 — 38 мм и длиной 250 — 300 мм. Колонка должна иметь в нижней части впаянную перегородку из пористого стекла (стеклянный фильтр Шотта N 2) и резиновый шланг, присоединенный к нижнему концу колонки. После установки колонки в штативе в нее вносят ионообменную смолу (высота столбика смолы должна составлять не менее 30 — 40 мм) и навеску гидроксида алюминия (8 — 10 г).

Исследуемую пробу воды в бутылях или канистре подкисляют с помощью соляной кислоты до рН 3,0 — 4,5, располагают выше колонки и через резиновую трубку с пробкой для колонки подают воду в колонку, регулируя скорость прохождения с помощью винта на резиновой трубке, присоединенной к нижнему концу колонки. Скорость прохождения воды через колонку должна составлять 10 — 15 мл/мин.

После прохождения исследуемой воды через колонку нижний резиновый шланг перекрывают и осуществляют элюцию вируса с адсорбента при помощи 0,05 М глицинового буфера с рН 11,5, который вносят в колонку в объеме 100 мл. Адсорбент в колонке и элюент тщательно перемешивают и выдерживают в течение 10 — 15 мин. Затем элюат удаляют из колонки через нижний резиновый шланг и с помощью глицинового буфера с рН 1,5 устанавливают рН элюата на уровне 7,0 — 8,0.

Приготовление глицинового буфера с рН 11,5.

Навеску 0,385 г аминоуксусной кислоты растворяют в 100 мл дистиллированной воды и получают глицин. К 50 мл глицина добавляют 50 мл 0,1 N раствора гидроксида натрия и получают глициновый буфер с рН 11,5.

Для приготовления глицинового буфера (рН 1,5 — 1,6) к 38 мл глицина добавляют 62 мл 0,1 N раствора соляной кислоты.

5.3.3. II этап. Вторичное концентрирование антигена и энтеровирусов — осаждение с помощью сульфата аммония.

5.4. Метод концентрирования вирусов с использованием двухфазного разделения

Метод рекомендован Всемирной организацией здравоохранения (ВОЗ) «Рекомендации по надзору за вирусом полиомиелита в окружающей среде», ВОЗ, 2003.

Метод концентрирования двухфазным разделением используют для индикации вирусов из 1 л очищенных и неочищенных сточных вод.

5.4.2. Подготовка реактивов (для 2-х проб по 1 л).

5.4.2.1. 22% декстран (по весу) — 40 г декстрана Т 40, 142 мл стерильной дистиллированной воды. Для растворения используют магнитную мешалку. Готовый раствор можно хранить 2 недели при 4 °С.

5.4.2.2. 29% ПЭГ 6000 (по весу) — 363 г ПЭГ 6000 и 888 мл стерильной дистиллированной воды. Для растворения используют магнитную мешалку. Готовый раствор можно хранить 2 недели при 4 °С. Раствор можно автоклавировать (15 мин. при 45 °С).

5.4.2.3. 150 мл (примерно) 5 М NaCl.

5.4.2.4. 1 N NaOH и 1 N HCL для установки рН.

5.4.3. Концентрирование пробы по 0,5 л.

5.4.3.1. Пробу центрифугируют в течение 10 мин. при 1000 g. Надосадочную жидкость переносят из пробирок в колбу Эрленмейра емкостью 1 л, осадок хранят при 4 °С.

5.4.3.2. Доводят рН надосадочной жидкости до нейтрального уровня (7,0 — 7,5) 1 N раствором NaOH и измеряют конечный объем надосадочной жидкости.

5.4.3.3. К 500 мл надосадочной жидкости добавляют 39,5 мл 22% раствора декстрана, 287 мл 29% раствора ПЭГ 6000 и 35 мл 5 N раствора NaCl. Тщательно перемешивают и выдерживают 1 ч при температуре 4 °С при непрерывном встряхивании или перемешивании, используя прибор горизонтального встряхивания или магнитную мешалку.

5.4.3.4. Для каждой пробы подготавливают стерильную коническую делительную воронку и закрепляют ее в штативе. Смазывают скользящие поверхности кранов, но так, чтобы не закрыть в них отверстие. Проверяют плотность кранов небольшим количеством воды. Смесь, приготовленную по п. 5.4.3.3, переливают в воронку и оставляют на ночь при 4 °С.

5.4.3.5. Утром осторожно открывают кран воронки, медленно выпускают жидкость и собирают нижний ее слой и промежуточную фазу в стерильную пробирку (обычно 5 — 10 мл от каждой пробы объемом 0,5 л.).

5.4.3.6. В полученную жидкость (п. 5.4.3.5) вносят осадок (п. 5.4.3.1), добавляют хлороформ (20% от объема образовавшейся взвеси) и встряхивают в течение 1 мин. Центрифугируют, отбирают верхнюю водную фазу в стерильную пробирку и добавляют антибиотики (пенициллин G или отечественный аналог и стрептомицин до конечной концентрации 100 МЕ/мл и 100 мг/мл соответственно).

5.4.3.7. Помещают 1 мл полученного концентрата в холодильник с температурой -20 или -70 °С для сохранения (при необходимости дальнейшего исследования). Остаток концентрата исследуют на наличие вирусов на культурах тканей, РНК-методом ОТ-ПЦР и антигена — методом ИФА.

5.5. Метод концентрирования вирусов с помощью флизелиновых пакетов с макропористым стеклом

Метод (качественный) используют для концентрирования вирусов из воды поверхностных водоемов, сточной воды. Время концентрирования вирусов должно составлять 3 — 7 суток.

5.5.2. Подготовка макропористого стекла (МПС) .

Можно использовать готовые стандартные наборы, разрешенные к применению в Российской Федерации в установленном законодательством порядке.

В пакет из флизелина размером 5 х 7 см помещают 3,0 см подготовленного сорбента.

5.5.3. Концентрирование вирусов.

Пакет с сорбентом закрепляют с помощью лески за неподвижный предмет так, чтобы он оказался в токе воды. После экспозиции в течение 3 — 7 суток пакет вынимают, помещают в отдельный новый полиэтиленовый мешочек или стерильный флакон и доставляют в лабораторию в сумке-холодильнике в максимально короткий срок (не более 6 ч). Каждую пробу маркируют с указанием точки отбора, датой установки и времени экспозиции пакета. До обработки пробы можно хранить не более суток при 4 °С.

Пакет с сорбентом извлекают из транспортировочной емкости и помещают в стерильную чашку Петри. Обрезают край пакета, вымывают стекло дистиллированной водой (5 мл) с помощью пипетки в эту же чашку Петри и переносят пипеткой или через воронку в колонку объемом 5 — 10 мл. Вирусы элюируют ступенчато тремя растворами по 3 мл каждый, собирая фракции в отдельные пенициллиновые флаконы. Исследованию подвергают каждую фракцию в отдельности (всего 3 фракции). В качестве элюирующих растворов используют: 1) 0,05 М трис-НС1 рН 9,1; 2) 0,05 М трис-HCl рН 9,1 и 0,5 М NaCl; 3) 3% мясной экстракт на 0,05 М трис-HCl рН 9,1.

5.6. Метод концентрирования вирусов с использованием набора для сбора и концентрирования вирусов из питьевой воды с помощью ловушечного устройства.

Ловушечное устройство состоит из насадки на водопроводный кран, к которой с помощью синтетической трубки прикреплен держатель. В держатель, состоящий из двух свинчивающихся частей с резьбой, вставляется специальная ловушка, внутри которой находится адсорбент, сорбирующий вирусы из воды. Применяемая ловушка является одноразовой, а само устройство может использоваться после стерилизации многократно в соответствии с прилагаемой инструкцией.

Метод используют для концентрирования вирусов из водопроводной воды.

5.6.2. Подготовка ловушечного устройства и фильтрование воды.

Перед использованием в ловушечное устройство вставляют ловушку, после чего его заворачивают в бумагу для стерилизации и стерилизуют сухим жаром при температуре 80 °С 45 мин. Ловушечное устройство с вставленной ловушкой доставляют на место отбора в стерильной упаковке. После трехкратного обжигания водопроводного крана и спуска воды в течение 15 мин. устанавливают необходимую скорость ее протекания — 1 л за

1,5 мин., что составляет 40 — 45 л/ч. Ловушечное устройство извлекают из стерильной упаковки и устанавливают его на кран. Объем пропускаемой воды должен составить 1000 л, что достигается при скорости тока воды 40 — 45 л/ч в течение 24 ч. Спустя 24 ч ловушечное устройство снимают с крана и помещают в стерильный пакет, который доставляют в вирусологическую лабораторию. После извлечения ловушки использованное ловушечное устройство подвергают обеззараживанию в 3% растворе перекиси водорода в течение 12 ч, затем многократно (не менее 10 раз) промывают в проточной воде и высушивают для последующей стерилизации и повторного использования.

5.6.3. Элюция сконцентрированных вирусных частиц.

Ловушку с адсорбентом в стерильных условиях извлекают из ловушечного устройства и помещают в чашку Петри. С помощью ножниц ловушку вскрывают, содержащийся внутри адсорбент вымывают в чашку Петри стерильной дистиллированной водой в объеме 5 — 10 мл. Полученную взвесь адсорбента в дистиллированной воде переносят с помощью пипетки с отпиленным концом в стеклянную колонку. Вытекающую из колонки воду собирают в стерильный пенициллиновый флакон. Элюцию вирусов осуществляют с помощью специального элюента, содержащегося в наборе. Для получения рабочего раствора концентрат разводят стерильной дистиллированной водой в соотношении 1:10 (объем элюента/объем воды). Вирус элюируют путем пропускания 3 мл элюента через адсорбент в колонке. Полученную фракцию (элюат) собирают в стерильный пенициллиновый флакон.

Использованный адсорбент заливают 3% раствором перекиси водорода для обеззараживания на 12 ч.

С целью увеличения эффективности обнаружения вирусов в элюатах проб воды при исследовании методом ПЦР (обнаружение РНК энтеровирусов) и ИФА (обнаружение антигенов энтеровирусов) проводят дополнительное концентрирование элюатов с помощью ультрацентрифугирования либо обрабатывают элюаты полиэтиленгликолем 6000 (ПЭГ 6000).

5.6.3.1. Ультрацентрифугирование элюата.

Ультрацентрифугирование проводят при 40000 — 50000 g в течение 2 ч с использованием угловых или бакет-роторов. В стерильную центрифужную пробирку наливают вируссодержащий элюат, а затем с помощью шприца на дно пробирки наслаивают 10 — 20% раствор сахарозы так, чтобы она занимала 5 — 10% от объема пробирки. После центрифугирования супернатант удаляют. Осадок ресуспендируют в 0,5 мл стерильной дистиллированной воды для ПЦР-исследований или в фосфатно-солевом твинсодержащем буфере (рН 7,2) для ИФА.

5.6.3.2. Обработка элюата полиэтиленгликолем 6000 (ПЭГ 6000).

В элюат добавляют ПЭГ 6000 и хлористый натрий, находящийся непосредственно в пробирках для центрифугирования, до конечных концентраций 10% и 0,5 М соответственно. Смесь тщательно перемешивают до растворения ПЭГ и затем выдерживают в течение 10 — 12 ч при 4 °С. Образовавшуюся суспензию центрифугируют при 10000 g в течение 1 ч или при 6000 g в течение 2 ч. Супернатант удаляют, а осадок ресуспендируют в 0,5 мл стерильной дистиллированной воды для ПЦР-исследований или в фосфатно-солевом твинсодержащем буфере (рН 7) — для ИФА.

Читайте также:  Химический анализ воды на цианиды

6. Методы выделения энтеровирусов в культурах клеток

Исследование полученных элюатов на энтеровирусы проводят в культуре ткани в соответствии с документом «Руководство по вирусологическим исследованиям полиомиелита», рекомендованным Всемирной организацией здравоохранения (1998). При этом следует отметить, что для выделения вирусов используют максимально возможный полученный элюат (кроме 1 мл, заложенного на хранение, и объема, используемого для исследования в ИФА и ПЦР). Для выделения вирусов используют следующие культуры тканей: RD, Hep-2, BGM и другие чувствительные к энтеровирусам линии клеток.

Перевиваемые культуры клеток RD, Hep-2 (Cincinnatti), BGM наиболее пригодны для проведения лабораторных исследований и позволяют выделять достаточно широкий спектр энтеровирусов, которые могут присутствовать в водных объектах окружающей среды.

Культура клеток RD, происходящая из человеческой рабдомиосаркомы, обладает высокой чувствительностью к вирусам полиомиелита, многим типам вируса ECHO, некоторым вирусам Коксаки А. Вирусы полиомиелита и вирусы Коксаки В хорошо размножаются в культуре клеток Нер-2, полученной из эпидермоидной карциномы человека. Культура клеток BGM — перевиваемая культура клеток почек африканской зеленой мартышки — чувствительна к вирусам полиомиелита и вирусам Коксаки В. Использование, по крайней мере, двух культур позволяет выявлять, возможно, больший спектр вирусов, а комбинация клеток, обладающих различной чувствительностью к различным энтеровирусам, может помочь при идентификации выделенного цитопатогенного агента. Чрезвычайно полезным является поддержание и использование в лабораторных исследованиях культуры клеток L20B. Эта культура клеток создана на основе мышиной линии L-клеток, в которую экспрессированы человеческие рецепторы к полиовирусу. Она позволяет селективно выделять только полиовирусы, что делает ее незаменимой культурой при идентификации выделенных цитопатогенных агентов для разделения смесей вирусов. Чувствительность культур клеток к различным энтеровирусам представлена в табл. 2.

ЧУВСТВИТЕЛЬНОСТЬ ПЕРЕВИВАЕМЫХ КУЛЬТУР КЛЕТОК

К РАЗЛИЧНЫМ ЭНТЕРОВИРУСАМ

Культуры клеток для лабораторного исследования следует получать из аттестованного источника, например, из лаборатории, обладающей банком клеток. Необходимо периодически контролировать чувствительность используемых в лаборатории клеток. Для этого после каждых 8 — 10 пассажей клеток на них проводят титрование референс-штаммов вакцинного вируса полиомиелита. После 15 — 20 последовательных пассажей следует перейти на свежую линию из банка клеточных культур или получить ее в референс-лаборатории. Эта процедура позволяет сохранять высокую чувствительность клеток и снижает риск контаминации клеток микоплазмами.

При хорошем состоянии культуры клеток первичное заражение и один пассаж вместе составляют период наблюдения 14 дней. В ряде случаев (например, при выделении агента с низкой цитопатогенной активностью, или при наличии в пробе вируса в небольшом количестве) необходимо сделать последующие пассажи. При этом следует помнить, что каждый последующий пассаж увеличивает риск перекрестной контаминации.

При выделении вирусов из проб воды различного происхождения в культуре клеток можно столкнуться с рядом нежелательных явлений. Если при первичном заражении в культуре клеток развивается быстрая (в течение 1 — 2 дней после внесения исследуемого субстрата) дегенерация клеток, то, скорее всего, это связано с неспецифической токсичностью пробы. Такие культуры нужно заморозить при -20 °С, оттаять и выполнить пассаж. Если признаки токсичности обнаружатся вновь, то следует вернуться к исходной пробе, развести ее ФСБ 1:10 и повторить заражение. Бактериальная контаминация, которая проявляется в виде помутнения среды, приводит к гибели клеток и делает выявление вирусного ЦПЭ затруднительным или невозможным. В этом случае следует вернуться к исходной пробе, обработать ее хлороформом и повторить процедуры заражения.

Особое внимание следует уделять предупреждению перекрестной вирусной контаминации во время процедур заражения и пассирования. Нельзя сливать среду через край флакона или пробирки, в которые вносилась исследуемая проба, даже если ЦПЭ отсутствует. Удаление среды производят пипеткой, которую меняют после каждой процедуры. При заражении с помощью автоматических микропипеток используют только наконечники с фильтрами. Следует избегать процедур, при которых образуются аэрозоли (например, энергичное пипетирование); по возможности не рекомендуется использование посуды с резиновыми пробками, которые помещаются внутрь горлышка флакона или пробирки, целесообразно использовать посуду с внешней резьбой на горлышке, которая закрывается завинчивающимися крышками.

Известно, что в пробах воды присутствуют смеси вирусов, с чем могут быть связаны затруднения при идентификации выделенных изолятов. Для разделения смесей и правильной идентификации выделенных вирусов, а также для того, чтобы избежать потери вирусов полиомиелита, все изоляты, «положительные» на культуре клеток RD, следует пассировать на клетки L20B. Наличие выраженного ЦПЭ указывает на присутствие в пробе вируса полиомиелита. Некоторые реовирусы, аденовирусы, а также неполио-энтеровирусы могут проявлять ЦПЭ на клетках L20B и затруднять идентификацию выделенных изолятов и интерпретацию результатов исследования. Такие изоляты следует направить в соответствующую референс-лабораторию для заключительного исследования.

В лабораторной практике часто используют метод адсорбции исследуемого материала на клеточном монослое. При использовании этого метода из флакона/пробирки удаляют ростовую среду, ополаскивают монослой стерильным ФСБ, вносят исследуемую пробу и инкубируют флакон при температуре 36 °С в течение 1 ч. Таким образом, создают лучшие условия для адсорбции вируса клетками, если он присутствует в пробе. После истечения срока инкубации в каждый флакон/пробирку вносят необходимое количество поддерживающей среды. Применение этого метода может способствовать выявлению вируса при его незначительных количествах в исследуемом материале, а также ускорить проявление ЦПЭ, по крайней мере, на 1 сутки. Следует иметь ввиду, что при использовании этого метода, в результате дополнительных открываний крышек, во много раз возрастает вероятность контаминации (перекрестной вирусной или бактериальной). Его рекомендуется проводить в ламинарном шкафу. Ввиду высокого риска контаминации этот метод не следует использовать для пассирования или инокуляции изолятов вирусов.

7. Идентификация цитопатических агентов, выделенных

Реакцию нейтрализации проводят в панелях для культуры клеток с плоским дном (микрометод). Микрометод позволяет экономить все компоненты, необходимые для постановки опыта, однако при недостаточном опыте возникает опасность перекрестной лабораторной контаминации.

Титрование вирусов, а также постановку реакции нейтрализации выполняют в соответствии с документом «Руководство по вирусологическим исследованиям полиомиелита».

8. Выявление РНК кишечных вирусов (вируса гепатита А,

ротавирусов, энтеровирусов) методом полимеразной цепной

реакции с этапом обратной транскрипции

Организация и постановка полимеразной цепной реакции с этапом обратной транскрипции (ОТ-ПЦР) для выявления РНК энтеровирусов, ротавирусов и вируса гепатита А из концентратов проб воды поверхностных, подземных источников, питьевой и сточных вод может быть осуществлена в лабораториях, оснащенных необходимым оборудованием.

8.1. Меры предосторожности и правила работы при постановке полимеразной цепной реакции с этапом обратной транскрипции

Организацию работы в ПЦР-лаборатории осуществляют в соответствии с документом «Методические рекомендации по проведению работ в диагностических лабораториях, использующих метод полимеразной цепной реакции», утв. Государственным комитетом санитарно-эпидемиологического надзора Российской Федерации 22 июня 1995 года.

8.1.1. Лабораторию разделяют на зоны (комнаты) для каждой из стадий ПЦР-диагностики.

Следует иметь не менее двух комнат:

— пре-ПЦР-помещение, где проводят обработку образцов из объектов окружающей среды (элюаты), выделение нуклеиновых кислот, приготовление реакционной смеси для ПЦР и постановку ПЦР (при наличии условий два последних этапа рекомендуется также проводить в дополнительном отдельном помещении). В этих помещениях не допускается проводить все другие виды работ с инфекционными агентами (микробиологический анализ, ИФА, другие диагностические тесты и т.д.), ПЦР-диагностику которых проводят в данной лаборатории;

— пост-ПЦР-помещение, где проводят детекцию продуктов амплицификации. В пост-ПЦР-помещении допускается использовать другие методы детекции инфекций, диагностика которых проводится в данной лаборатории.

8.1.2. Помещение для детекции продуктов амплификации (пост-ПЦР-помещение) располагают как можно дальше от пре-ПЦР-помещений,

8.1.3. Работу в лаборатории организовывают в одном направлении: от пре-ПЦР-помещений к пост-ПЦР-помещению.

8.1.4. При исследовании материала, зараженного или подозрительного на зараженность возбудителями инфекционных заболеваний I — IV групп, работу проводят в соответствии с нормативно-методическими документами.

8.1.5. Используют одноразовую пластиковую посуду.

8.1.6. Работают в одноразовых перчатках.

8.1.7. Перчатки и халаты меняют при переходе из одной зоны в другую.

8.1.8. Поверхности столов, а также помещения, в которых проводят постановку ПЦР, до начала и после окончания работ обеззараживают ультрафиолетовым излучением.

8.1.9. Для работы в ПЦР-лаборатории допускается персонал, прошедший специальную подготовку.

8.2. Меры предосторожности и правила работы при постановке электрофореза

Реагент бромистый этидий является сильным мутагеном, поэтому все манипуляции проводят с использованием перчаток. Все реагенты, содержащие бромистый этидий, перед утилизацией подвергают специальной обработке.

Отработанные гели и буфер из камеры помещают в пластиковую емкость на 5 л с плотно завинчивающейся крышкой. Добавляют 1 объем 0,5 М раствора калия перманганата и один объем 2,5 М соляной кислоты. Аккуратно перемешивают и оставляют при комнатной температуре на 4 — 6 ч. Добавляют один объем 2,5 М натрия гидроксида, аккуратно перемешивают. Сбрасывают нейтрализованные реактивы в канализацию.

8.3. Контроль полимеразной цепной реакции

Положительный (ПКО) и отрицательный (ОКО) контрольные образцы используют для контроля специфичности ПЦР. В качестве ПКО используют любой штамм энтеровирусов, ротавирусов и вируса гепатита А для выявления соответствующих возбудителей. В качестве ОКО используют стерильную воду, не содержащую вирусной РНК.

8.4. Выявление РНК ротавирусов и вируса гепатита А

Метод ОТ-ПЦР используют для выявления РНК вирусных агентов в исследуемых пробах воды. Исследованию подлежат элюаты проб питьевой воды, воды подземных водоисточников, речной и сточных вод. Для выделения РНК из концентратов проб питьевой воды и воды подземных водоисточников применяют метод афинной сорбции РНК на частицах силикагеля в соответствии с документом «Методические рекомендации по проведению работ в диагностических лабораториях, использующих метод полимеразной цепной реакции», утв. Госкомсанэпиднадзором 22 июня 1995 года (для выделения РНК рекомендуется использовать готовые комплекты, например, типа «Амплисенс» и др.).

Для выделения РНК из концентратов проб воды поверхностных водоисточников и сточных вод необходимо применять метод двустадийного выделения :

— сорбция РНК на частицы силикагеля.

Проводят в соответствии с методическими указаниями МУ 1.3.1888-04 «Организация работы при исследовании методом ПЦР материала, инфицированного патогенными биологическими агентами 3 — 4 группы патогенности».

8.5. Постановка реакции обратной транскрипции, проведение полимеразной цепной реакции и электрофоретический анализ продуктов полимеразной цепной реакции с этапом обратной транскрипции-амплификации (ОТ-ПЦР-амплификации)

Рекомендуется использовать ПЦР-тест-системы на вирус гепатита А и ротавирусы с электрофорезом в агарозном геле (кат. N V4-50-R0,5; V4-50-R0,2; V15-50-R0,5; 15-50-R0,2), разрешенные к применению для этих целей в Российской Федерации в установленном законодательством порядке.

8.6. Обнаружение энтеровирусов методом полимеразной цепной реакции с этапом обратной транскрипции (ОТ-ПЦР) с использованием культуры ткани для выявления репликативной «минус» нити РНК энтеровирусов

Для подтверждения инфекционности выделенных энтеровирусов проводят первичное заражение элюатом культуры клеток, через двое суток после культивирования зараженных клеток проводят ОТ-ПЦР с культуральной жидкостью при наличии ЦПД или с лизатом клеток культур тканей при отсутствии ЦПД. Суть методики состоит в выявлении с помощью ПЦР негативной минус цепи («-» цепи) РНК энтеровирусов после их культивирования в культуре ткани. Негативная цепь является промежуточным продуктом репликации вируса, и ее обнаружение служит косвенным доказательством потенциальной инфекционности вируса.

8.6.1. Заражение культур клеток и их последующая обработка.

Маркируют пробирки (по 2 на каждую исследуемую пробу), вносят в каждую по 0,1 мл элюата и помещают в термостат (36,5 — 37,0 °С). Для контроля оставляют по несколько пробирок с незараженной культурой (со сменой и без смены среды).

Инкубируют зараженные клетки в течение 5 суток, микроскопируя их ежедневно для контроля начала цитопатического действия. При первых признаках деградации культуры (но не позднее 5-х суток) пробирки извлекают из термостата, удаляют из них культуральную среду и промывают физраствором (или раствором Хенкса). После промывки тщательно (пипеткой) удаляют из пробирок остатки промывной жидкости.

Перед началом процедуры выделения РНК пробирки с культурой ткани, освобожденной от промывной жидкости, трижды подвергают замораживанию при -20 °С и размораживанию при 37 °С, что обеспечивает выход энтеровирусов из клеток культуры, после чего переходят к выделению РНК.

Выделение РНК можно осуществлять с использованием стандартных наборов в соответствии с инструкцией производителя, например, типа «Рибозоль», «Рибосорб» и др. РНК можно хранить в течение 1 месяца в изопропаноле при -20 °С. Для длительного хранения к раствору РНК добавляют два объема 70% этанола и помещают для хранения в морозильную камеру (при -70 °С).

8.6.3. Обратная транскрипция.

8.6.3.1. Праймерные последовательности.

Праймерные последовательности можно синтезировать под заказ в организациях-производителях. Для постановки ИКК-ПЦР необходимо специально синтезировать 1 энтеровирусспецифический праймер, используемый на стадии обратной транскрипции (последовательность указана в табл. 3).

Праймеры, необходимые для проведения ПЦР, входят в состав готовой стандартной тест-системы.

8.6.3.2. Расчет рабочих концентраций праймеров.

Поставку праймеров производителем осуществляют в количествах, измеряющихся в оптических единицах (ОЕ) на мл. Для расчета рабочих концентраций праймеров необходимо перевести ОЕ в мкМ. Для праймера длиной А пар нуклеотидов (п.н.), поставляемом в количестве В ОЕ, пересчет осуществляют следующим образом:

— определяют молекулярную массу (ММ) одноцепочечной ДНК (оцДНК) по формуле:

ММ = 330 дальтон (ММ 1 п.н.) х А;

— определяют концентрацию праймера, исходя из того, что 1 ОЕ оцДНК соответствует концентрации 37 мкг/мл, соответственно В ОЕ соответствуют концентрации 37 х В мкг/мл;

— определяют концентрацию праймера С в мкМ:

С = (37 х В х 1000) / (330 х А) (мкМ).

Ряд организаций — производителей обратной транскриптазы в инструкциях по постановке реакции обратной транскрипции указывают не концентрацию праймеров в мкМ, а количество праймера, добавляемое в реакцию (в pmol). В этом случае пересчет ОЕ в pmol следует производить по формуле:

где D — количество праймера (в pmol), содержащееся в 1 мкл раствора.

8.6.3.3. Постановка реакции обратной транскрипции.

Для обратной транскрипции можно использовать готовые стандартные наборы реагентов, разрешенные к применению для этих целей в Российской Федерации в установленном порядке. В состав наборов входят буферный раствор и фермент — обратная транскриптаза (ревертаза) различного происхождения. Ингибитор РНКаз и смесь ДНТФ некоторые производители поставляют отдельно. Все компоненты реакционной смеси для обратной транскрипции можно приобретать по отдельности.

— в 0,2 мл (или 0,5 мл) пробирки вносят: 10,0 — 14,5 мкл РНК пробы, 10 — 20 pmol прямого праймера НП1;

— смесь аккуратно перемешивают, осаждают центрифугированием (5 с при 5000 об./мин. или с использованием вортекса) и помещают в термоциклер на 70 °С 10 мин.;

— по истечении времени нагревания пробирки достают и помещают на лед;

— в пробы добавляют: 5х или 10х буфер для обратной транскрипции (конечная концентрация — 1х), 1 мкл ДНТФ (100 — 200 мкМ), обратную транскриптазу (100 — 200 ед.), ингибитор РНКаз (20 ед.). Общий объем реакционной смеси составляет 20 мкл. Объем реакционной смеси при необходимости доводят с помощью свободной от РНКаз воды;

— смесь перемешивают, осаждают центрифугированием и выдерживают при комнатной температуре 10 — 15 мин.;

— пробирки помещают в термоциклер и выдерживают 50 мин. при 37 — 42 °С (время и температуру, необходимые для работы фермента, указывают в инструкции производителя).

После синтеза кДНК на РНК матрице пробы используют для ПЦР-амплификации.

8.6.3.4. Полимеразная цепная реакция.

Амплификацию полученной в реакции обратной транскрипции кДНК осуществляют с использованием тест-системы для амплификации участка кДНК энтеровирусов длиной 207 п.н. (кат. N V-16-100-R0,5 или кат. N V-16-100-R0,2) в соответствии с прилагаемой инструкцией.

8.6.4. Анализ амплифицированной ДНК, учет результатов.

Для анализа амплифицированной ДНК используют разные методы, наиболее простым из которых является гель-электрофорез. Для постановки электрофореза можно использовать комплект стандартных реагентов для электрофореза в агарозном геле (кат. N К5-200) в соответствии с инструкцией производителя.

Учет результатов проводят визуально с помощью трансиллюминатора. При этом агарозный гель либо достают из кюветы и помещают на стекло трансиллюминатора, либо используют емкости из УФ-проницаемых материалов.

При постановке ОТ-ПЦР для выявления в пробе «минус» цепи РНК энтеровирусов, положительные образцы должны содержать полосу ДНК размером 207 п.н. Размер полосы определяют по соотношению с положительным контролем и ДНК-маркером. Результаты можно документировать посредством фотографирования или видеосъемки геля с использованием ультрафиолетовых фильтров.

8.6.5. Интерпретация результатов, полученных с использованием культур тканей методом ОТ-ПЦР.

Выявление негативной РНК («минус» цепи РНК) энтеровирусов в пробе исследуемой воды с помощью ОТ-ПЦР зараженных культур клеток свидетельствует о присутствии в ней инфекционных энтеровирусов и интерпретируется как положительный результат молекулярного теста на инфекционность энтеровирусов.

9. Определение вирусных антигенов ротавирусов и вирусного

гепатита А в иммуноферментном анализе

Элюаты, полученные после концентрирования исследуемых объемов воды, анализируют методом иммуноферментного анализа (ИФА) в соответствии с инструкциями, прилагаемыми к готовому стандартному диагностическому набору.

10. Библиографические данные

1. Закон Российской Федерации от 30 марта 1999 г. N 52-ФЗ «О санитарно-эпидемиологическом благополучии населения».

2. Закон Российской Федерации от 19 декабря 1991 г. N 96-ФЗ «Об охране окружающей среды».

3. Водный кодекс Российской Федерации от 16 ноября 1995 г. N 167-ФЗ.

4. «Положение о Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека», утвержденное Постановлением Правительства Российской Федерации от 30 июня 2004 г. N 322.

5. СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод».

6. СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества».

7. СанПиН 2.1.4.1116-02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества».

8. СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».

9. СанПиН 2.1.2.1188-03 «Плавательные бассейны. Гигиенические требования к устройству, эксплуатации и качеству воды. Контроль качества».

10. СП 1.3.1285-03 «Безопасность работы с микроорганизмами I — II групп патогенности (опасности)».

11. МУ 2.1.5.800-99 «Организация госсанэпиднадзора за обеззараживанием сточных вод».

12. «Методические рекомендации по проведению работ в диагностических лабораториях, использующих метод полимеразной цепной реакции», утверждены Государственным комитетом санитарно-эпидемиологического надзора Российской Федерации 22 июня 1995 года.

13. МУ 1.3.1888-04 «Организация работы при исследованиях методом ПЦР материала, инфицированного патогенными биологическими агентами III — IV групп патогенности».

14. «Положение о порядке учета, хранения, обращения, отпуска и пересылки культур бактерий, вирусов, риккетсий, грибов, простейших, микоплазм, бактерийных токсинов, ядов биологического происхождения». М., 1980.

15. ГОСТ 2761-84 «Источники централизованного хозяйственно-питьевого водоснабжения».

16. Руководство по вирусологическим исследованиям полиомиелита. М., 1998.

17. Рекомендации по надзору за вирусом полиомиелита в окружающей среде. Женева, 2003.

18. Инструкция по использованию полимеразной цепной реакции для выявления энтеровирусного загрязнения воды. Минск, 2001.

19. Методики по санитарно-вирусологическому контролю питьевой воды и оценке ее эпидемической безопасности от 18.05.99 N 136-9811, Минск.

20. Инструкция по осуществлению санитарно-вирусологического мониторинга питьевых вод в Республике Беларусь от 11.11.00 N 138-0010, Минск.

21. Boom R., C.J.A. Sol, M.M. Salimans, C.L. Jansen, P.M.E. Wertheimvan Dillen, and J. Van der Noordaa. 1990. Rapid and Simple Method for Purification of Nucleic Acids. J. Clin. Microbiol. 28:495-503.

22. Molecular Cloning: A Laboratory Manual. Eds. J. Sambrook, P. MacCallum D. Russell. CSHL Press, London: 2001, 2344 p.

БОЕ — бляшкообразующая единица;

ВГА Аг — антиген вируса гепатита А;

ВОЗ — Всемирная организация здравоохранения;

ИФА — иммуноферментный анализ;

МПС — макропористое стекло;

ОКВИ — острые кишечные вирусные инфекции;

ПЦР — полимеразная цепная реакция;

ОТ-ПЦР — полимеразная цепная реакция с этапом обратной транскрипции;

РН — реакция нейтрализации;

РНК — рибонуклеиновая кислота;

Рота Аг — ротавирусные антигены;

ТЦД 50/мл — тканевая цитопатическая доза вируса, вызывающая ЦПЭ в 50% зараженных клеточных культур;

ЦПА — цитопатический агент;

ЦПЭ — цитопатический эффект;

BGM — перевиваемые клетки почки африканской зеленой мартышки;

Нер-2 — перевиваемые клетки карциномы гортани человека;

RD — перевиваемые клетки рабдомиосаркомы человека;

L20B — перевиваемая мышиная линия L-клеток, в которую экспрессированы человеческие рецепторы к полиовирусу.

Судебная практика и законодательство — «МУК 4.2.2029-05. 4.2. Методы контроля. Биологические и микробиологические факторы. Санитарно-вирусологический контроль водных объектов. Методические указания» (утв. Роспотребнадзором 18.11.2005)

Отбор проб из водных источников и их транспортирование проводят в соответствии с МУ 4.2.2029-05 «Санитарно-вирусологический контроль водных объектов».

Применение молекулярно-генетических методов исследования, а также сбор, упаковка, хранение и транспортирование биологического материала и образцов объектов окружающей среды (ООС) при обследовании очагов острых кишечных инфекций с групповой заболеваемостью различной этиологии регламентированы МУК 4.2.2746-10 «Порядок применения молекулярно-генетических методов при обследовании очагов острых кишечных инфекций с групповой заболеваемостью».

17. МУК 4.2.2029-05 «Санитарно-вирусологический контроль водных объектов».

18. МУК 4.3.2030-05 «Санитарно-вирусологический контроль эффективности обеззараживания питьевых и сточных вод УФ-облучением».

19. МУК 4.2.1018-01 «Санитарно-микробиологический анализ» питьевой воды».

20. МУ 2.1.5.800-99 «Организация госсаэпиднадзора за обеззараживанием сточных вод».

источник