Меню Рубрики

Технологический анализ очистки сточных вод

Деятельность человека, как и любого другого живого существа, всенепременно сопровождается выделением немалого количества отходов жизнедеятельности. В современных условиях практически все из них уносятся вдаль водами канализационных рек. Наконец, нашу цивилизацию практически невозможно себе представить без огромного количества заводов и прочих предприятий, которые также во множестве продуцируют сточные воды.

Очистка сточных вод является процессом, после прохождения которого стоки пригодны для использования в технических целях или же возврата в окружающую среду без ущерба для последней. Словом, способ зависит от дальнейшего использования жидкости. К примеру, сточные воды от раковин – не то же самое, что содержимое сливных ям, куда спускается содержимое унитаза.

В апреле 1993 года более 400 тысяч человек в Милуоки оказались на больничной койке в результате попадания в питьевую воду криптоспоридии. После этого случая, который получил мощный резонанс в ВОЗ, мировая общественность стала намного осторожнее относиться к той жидкости, которая течет из-под кранов под видом «питьевой воды». Это мнение только окрепло после обнародования некоторых случаев эпидемий в Индии, в результате которых сотни человек умерли. А ведь дело было в обычной кишечной палочке, попавшей в водопровод из плохо очищенных стоков! Так что очистка сточных вод – чрезвычайно важный процесс, который сохраняет жизнь и здоровье людей.

Любые загрязнители коренным образом меняют вкус, цвет и запах жидкости, не говоря уже о ее пригодности для использования в пищевых или технических целях. Наиболее опасными являются промышленные стоки, так как в них нередко содержатся такие концентрации тяжелых металлов и иных веществ, которые в десятки и сотни раз превышают самые «оптимистичные» ПДК. Конечно, в этом случае все зависит от конкретного производства, которое сбрасывает сточные воды. Канализация среднестатистического города по сравнению с ними может показаться «родником», так как в ней, по крайней мере, не бывает радиоактивных изотопов или огромного количества тяжелых металлов.

Опасные загрязнения, которые делают воду непригодной для питья и использования в бытовых целях, можно квалифицировать как физические, химические, биологические факторы. Особняком стоит выброс радиоактивных изотопов. Соответственно, классификация загрязнений будет идентична причинам, которые их вызывают:

  • Механические факторы. Характеризуются резким увеличением мельчайшей механической взвеси в жидкости.
  • Химические. В воде повышено содержание любых химических соединений. При этом не имеет значения, могут ли эти вещества оказывать негативное влияние на здоровье человеческого организма.
  • Биологические и бактериологические (бытовые сточные воды). Очень опасный вид загрязнений, так как в этом случае в воде превышено содержание микроорганизмов. В самом начале статьи мы уже говорили, чем это чревато.
  • Тепловые загрязнения. Так называется сброс в реки и другие водоемы воды из прудов-охладителей при ТЭЦ и АЭС. Не стоит относиться к этой разновидности легкомысленно, так как подобные явления приводят к массовой гибели эндемиков, приспособленных к низким температурам воды, которые характерны именно для нашей местности.
  • Радиоактивные. В воде и донных осадках обнаруживаются радиоактивные изотопы. Такое бывает, когда неисправна система сточных вод на некоторых промышленных предприятиях или АЭС.

В наших условиях наиболее распространены стоки трех типов:

  • Примеси неорганического происхождения, включая даже нетоксические соединения.
  • Вещества органического происхождения.
  • Смешанные стоки.

Очень опасны отходы металлургических производств, так как в них содержится огромное количество тяжелых металлов и прочих токсичных соединений. Они изменяют физические свойства воды. В тех водоемах, куда попадает эта отрава, погибает все живое, включая деревья и прочую растительность по берегам. Органику же сбрасывают нефтеперерабатывающие комплексы и подобные производства. В стоках есть не только сравнительно безопасная нефть, но и предельно ядовитые фенолы и подобные им вещества. Кроме того, не следует сбрасывать со счетов предприятия животноводческого типа.

Они выбрасывают гигантское количество органики. Последний вызывает резкое ухудшение органолептических свойств воды. В водоемах, куда попадают сточные воды предприятий, происходит резкое развитие микроскопических водорослей, цветение, в жидкости до минимума падает содержание кислорода. Рыбы и прочие гидробионты погибают. Производство электроники, в том числе травление печатных плат и выпуск радиотехнической продукции различных типов, дает стоки смешанного типа. В их составе имеются красители, тяжелые металлы, ацетон, фенолы и прочие соединения.

В настоящее время ученые всего мира бьют тревогу, так как в Мировой океан попадает гигантское количество нефти. Она образует на поверхности воды тончайшую пленку, которую порой можно заметить только по радужным разводам. Это не только приводит к значительному ухудшению органолептических свойств жидкости, но и к резкому снижению поступления кислорода, который попадает в океан путем диффузии. Опять-таки страдают гидробионты, причем особенно бьет нехватка этого вещества по кораллам, численность которых в морях и океанах катастрофически падает с каждым годом. Всего лишь 10 мг нефти и нефтепродуктов делают воду абсолютно непригодной для питья и жизни живых существ.

Чрезвычайно опасны фенолы, о которых мы неоднократно упоминали выше. Они присутствуют в стоках практически всех промышленных предприятий. Особенно это относится к тем из них, которые занимаются производством кокса. В присутствии этих веществ происходит массовая гибель обитателей прудов, рек, морей и океанов, а сама вода приобретает крайне неприятный, гнилостный запах.

На очистные сооружения сточных вод попадают стоки следующего состава:

  • Белки – 28%.
  • Углеводы – 17,5%.
  • Жирные кислоты – 10%.
  • Масла, жиры – 27%.
  • Детергенты – 7%.

Как можно заметить, основная доля загрязняющих веществ – органика. В промышленных условиях обсуждать какой-то состав сточных вод бессмысленно, так как в каждом случае он свой. В частности в некоторых случаях прямо в реку (!) сбрасывается якобы очищенная «вода», которая по внешнему виду и составу напоминает использованное моторное масло.

Как правило, в загрязнении среды виноваты промышленные и социальные объекты, а также животноводческие и птицеводческие фермы. Очень опасны твердые отходы, которые образуются при открытой разработке месторождений полезных ископаемых, а также стоки, образующиеся в процессе деревопереработки. Водный и железнодорожный транспорт дают немало отходов биологического происхождения. При попадании в водные источники они вызывают их обсеменение кишечной палочкой или яйцами глистов. Особенно опасно, когда выше по течению реки стоит какое-то медицинское учреждение.

Обработка включает в себя следующие способы:

  • Механические. Сюда относится фильтрация, которую используют все очистные сооружения сточных вод, а также отстаивание.
  • Физические. Это электролиз, аэрация, обработка стоков ультрафиолетовым излучением.
  • Химические методы. Применяются специальные составы для осаждения и обеззараживания веществ, которые могут содержаться в стоках.
  • Биологическая очистка сточных вод. В этом случае используются растения, усваивающие органику, а также некоторые виды простейших, улиток и рыб.

Перед началом обработки проводится подготовительная работа. Точнее, анализ сточных вод. Специалисты химических лабораторий определяют, какие именно загрязнители в них содержатся. Это помогает выбрать лучшую стратегию по их нейтрализации. Общая процедура очистки сточных вод включает отсеивание: твердых частиц, бактерий, морских водорослей, растений, неорганических примесей и органических веществ. Удаление твердых частиц – самый простой этап. Он включает в себя фильтрацию и осаждение путем отстаивания. Куда сложнее очистить сточные воды от тонких взвесей, которые обычными фильтрующими материалами не задерживаются.

Одним из наиболее простых и дешевых методов, который, тем не менее, обеспечивает высокую степень очистки, является использование активированного угля. Фильтры с этим материалом используются практически на всех предприятиях, руководство которых серьезно относится к защите окружающей среды.

Главным преимуществом угля является его высокая способность к абсорбции. Проще говоря, на поверхности частичек этого вещества имеется такое количество пор, что они могут задержать такое количество загрязняющих воду соединений, которое в несколько раз превышает объем самого угля. Именно процесс улавливания, связывания загрязняющих реагентов и называется абсорбцией. Следует отметить, что с целью очистки питьевой воды уголь использовался еще до нашей эры. Активное исследование и производство этого материала началось во время двух мировых войн. Факторами, влияющими на поглощение, являются размер частицы, площадь поверхности, структура связываемого вещества, кислотность среды (pH-фактор), температура, которую имеют сточные воды.

Древесный уголь поглощает много веществ, начиная от цветных металлов и заканчивая сложными органическими соединениями (к примеру, фенолами). Конечно, от радиоактивных соединений он не защитит, но основные виды неорганических и органических примесей с его помощью удалить можно.

В некоторых случаях для очистки могут быть использованы специальные жидкости, в состав которых входят частицы коллоидных веществ. Для чего они нужны? Все просто – микроскопические частицы, объединяясь с молекулами загрязняющих веществ, заставляют их выпадать в осадок. Явление известно как коагуляция. В некоторых очистных сооружениях используется также метод электролиза. Метод схож с предыдущим, так как ионы, образующиеся при этом процессе, также способствуют осаждению загрязняющих примесей.

Напротив, современные исследователи все чаще предлагают методы, при которых используются массивные молекулы, которые с большей эффективностью могут связывать и осаждать загрязнители. Такой процесс называют флокуляцией.

Как мы уже и говорили, очистка сточных вод может предусматривать использование отрицательно заряженных ионов. Исторически для этих целей используется сульфат алюминия, а также известь. Эти соединения вызывают резкое изменение рН воды, что приводит к гибели патогенных микроорганизмов, которые во множестве содержатся в стоках. В некоторых случаях могут использоваться вещества на основе трехвалентного железа. Некоторые химики считают, что подобные методы могли использовать еще египтяне за две тысячи лет до нашей эры. Отлично осаждает органику также перманганат калия.

Как бы там ни было, но связанная органика выпадает в виде хлопьев или геля. Эти осадки сточных вод могут быть с легкостью отловлены при помощи простейшего механического фильтра. Данный метод работает лучше всего с относительно плотными частицами (например, илом и прочими тяжелыми органическими примесями), в то же время более легкие частицы (например, микроскопические морские водоросли) лучше удаляются при помощи отстаивания. Осадительный чан должен быть достаточно большим, дабы заполнение его шло как можно медленнее. Связано это с тем, что для нормального протекания процесса требуется не менее четырех часов. После того как органические и неорганические примеси осядут на дно, воду можно считать условно очищенной, годной для использования в технических целях. Этот метод чаще используется при предварительной обработке стоков.

Затем приходит черед аэрации. Вода поступает в гигантские чаны, куда попадает сжатый воздух под большим давлением, выводимый в жидкость посредством распылителей. Вы когда-нибудь видели, как работает компрессор в обычном аквариуме? В этом случае происходит практически то же самое. Аэрация позволяет насытить воду кислородом и вывести в осадок оставшиеся органические примеси. После такой обработки жидкость чаще всего подается в специальные пруды, засаженные высшей водной растительностью (биологическая очистка сточных вод). И только потом вода считается пригодной для использования в технических целях. Ею можно поливать посадки овощей и фруктов, а также сбрасывать в природные водоемы.

источник

Передовые технологии очистки сточных вод на основе разработок Инженерно-технологического центра АО «Мосводоканал»

1. Козлов Михаил Николаевич, АО «Мосводоканал», начальник управления новой техники и технологий, 115487, г. Москва, пр-т Андропова, д. 38, корп. 4. Тел. 8 (499) 263-93-64, E-mail: kozlov@mosvodokanal.ru.

2. Кевбрина Марина Владимировна, АО «Мосводоканал», начальник отдела очистки сточных вод Инженерно-технологического центра управления новой техники и технологий, 115487, г. Москва, пр-т Андропова, д. 38, корп. 4. Тел. 8 (499) 263-93-50, E-mail: kevbrina_mv@mosvodokanal.ru.

3. Дорофеев Александр Геннадиевич, АО «Мосводоканал», главный специалист отдела очистки сточных вод Инженерно-технологического центра управления новой техники и технологий, 115487, г. Москва, пр-т Андропова, д. 38, корп. 4, тел. 8 (499) 261-01-27, E-mail: dorofeev_ag@mosvodokanal.ru

4. Асеева Вера Георгиевна, АО «Мосводоканал», главный специалист отдела водоподготовки Инженерно-технологического центра управления новой техники и технологий, 115487, г. Москва, пр-т Андропова, д. 38, корп. 4. Тел. 8 (499) 261-16-51, E-mail: aseeva_vg@mosvodokanal.ru.

5. Жарков Алексей Вячеславович, АО «Мосводоканал», инженер 1 категории отдела новой техники и технологий управления новой техники и технологий, 115487, г. Москва, пр-т Андропова, д. 38, корп. 4. Тел. 8 (499) 261-01-27, E-mail: zharkov_av@mosvodokanal.ru

Внедрение современных методов очистки сточных вод является приоритетной задачей для АО «Мосводоканал». В течение длительного периода в АО «Мосводоканал» проходила разработка и адаптация под условия московских очистных сооружений технологической схемы очистки сточных вод с удалением биогенных элементов – азота и фосфора, позволившая внедрить данную технологию на Люберецких и Курьяновских очистных сооружениях. Практический опыт внедрения, накопленный в АО «Мосводоканал», позволяет распространить эту практику и на очистных сооружениях других городов. Специалисты АО «Мосводоканал» провели предпроектную разработку реконструкции аэротенков очистных сооружений г. Череповца и локальных очистных сооружений монастыря Оптина Пустынь (г. Козельск, Калужская область) и внедрения технологии удаления биогенных элементов на этих объектах.

Ключевые слова: Инженерно-технологический центр, АО «Мосводоканал», сточные воды, удаление биогенных элементов.

Анализ работы очистных сооружений городских сточных вод показывает, что современные технологии очистки сточных вод, обеспечивающие удаление азота и фосфора, применяются только на небольшом количестве (менее 10%) очистных сооружений России. При переходе на технологическое нормирование на основе наилучших доступных технологий (по Федеральному закону №219-ФЗ) перед многими водоканалами встанет вопрос модернизации очистных сооружений для внедрения современных технологий. Для выбора оптимальной технологической схемы очистки полезен любой практический опыт водоканалов, где на очистных сооружениях уже внедрены наилучшие доступные технологии.

В данной статье рассматривается практический опыт внедрения специалистами АО «Мосводоканал» технологий с биологическим удалением азота и фосфора на коммунальных очистных сооружениях г. Москвы, г. Череповца и г. Козельска (монастырь Оптина Пустынь), который поможет масштабировать внедрение технологий очистки сточных вод с удалением биогенных элементов на другие очистные сооружения России.

АО «Мосводоканал» является крупной водной компанией, обеспечивающей водоснабжение и водоотведение 13-миллионного мегаполиса — Москвы. Внедрение новых технологий является приоритетной задачей АО «Мосводоканал», позволяющей решать экологические проблемы города.

Внедрение на Московских очистных сооружениях современных технологий очистки сточных вод с удалением азота и фосфора началось в 90-х годах прошлого века. В 1995 и 1997 годах на основе зарубежного опыта (фирма «Ковиконсалт», Дания) была реконструирована линия экспериментального блока комплексной очистки воды Курьяновских очистных сооружений (КОС) производительностью 40 тыс. м 3 /сут под удаление соединений азота и фосфора, а также проведено переоборудование аэротенка № 3 КОС в биореактор производительностью 50 тыс. м 3 /сут. с удалением биогенных элементов.

В 1998 году на основе собственных разработок специалистов АО «Мосводоканал» на базе аэротенков № 14 и 15 третьей очереди Люберецких очистных сооружений (ЛОС) созданы опытно-промышленные линии очистки сточных вод с удалением азота, производительностью 80 тыс. м 3 /сут каждая. В 2000 году выполнена модернизация аэротенка №15 с внедрением технологии удаления соединений азота и фосфора.

В 2001 году по проекту, разработанному СХВ «Хельтер» (Германия), выполнена модернизация опытной линии аэротенка №13 третьей очереди ЛОС внедрением технологии удаления соединений азота и фосфора BioBalance.

Отработка различных технологических схем велась в научно-исследовательском подразделении АО «Мосводоканал» — Инженерно-технологическом центре. Вначале проводилась работа на лабораторных исследовательских установках, затем — апробация на экспериментальных промышленных аэротенках. Испытания показали, что конфигурация биореактора-вытеснителя с насосными рециклами (аэротенк №14) является более стабильной по сравнению с использованием «карусельной» конфигурации реактора с частичным смешением. В исследованиях была определена оптимальная для четырехкоридорных аэротенков Москвы схема организации рециклов UCT -процесса [ [1]].

Читайте также:  Анализы проб воды с водоема

В результате проведенных исследований было принято решение о строительстве на ЛОС крупного блока мощностью до 500 тыс м 3 /сут, работающего по схеме UCT с удалением азота и фосфора. В 2006 году блок с удалением биогенных элементов (БУБЭ) был введен в эксплуатацию (рис.1). Работа нового блока позволила получить качество очистки по соединениям азота и фосфора, соответствующее нормативам. Это позволило сократить сброс биогенных элементов в водные объекты города в целом на 15%.

В настоящий момент происходит поэтапная реконструкция Ново-Курьяновских очистных сооружений (НКОС) общей производительностью 1,2 млн.м 3 /сут. по технологии удаления биогенных элементов с использованием классического UCT-процесса, организованного в биореакторах-вытеснителях [1]. Первый блок (НКОС-1) был реконструирован и запущен в 2014 г (рис.2), запуск второго блока (НКОС-2) запланирован на конец 2017 г.

Параллельно исследованиям и внедрению схемы очистки с удалением биогенных элементов на КОС и ЛОС в 1998 г был введен в эксплуатацию комплекс очистных сооружений Южное Бутово производительностью 80 тыс. м 3 /сут, с технологией очистки сточных вод от биогенных элементов, построенный по системе ВООТ («строить, владеть, эксплуатировать, передавать»). Это первый российский опыт реализации международного инвестиционного проекта в водопроводно-канализационном хозяйстве. В технологической схеме заложены процессы нитри- и денитрификации, процесс биолого-реагентного удаления фосфатов. В 2000 году введены в строй новые очистные сооружения производительностью 140 м 3 /сут в городе Зеленограде с технологией очистки сточных вод от биогенных элементов, также построенные по системе ВООТ. Технологическая схема аналогична схеме Южно-Бутовских очистных сооружений.

При очистке воды от азота и фосфора важно наличие достаточного количества органического вещества для прохождения процессов денитрификаци и дефосфотации. Московские сточные воды являются низкоконцентрироваными по органическим веществам, поэтому применение такого метода, как ацидификация (преферментация) первичного осадка, увеличивающего количество легкоразлагаемого органического вещества в стоке, поступающем на биологическую очистку, повышает стабильность очистки от фосфора фосфатов. В зарубежных странах существует опыт промышленного применения преферментации (ацидофикации) сырого осадка [[2], [3], [4], [5]]. В отечественной практике данный метод применятся очень редко в связи с отсутствием широкого распространения технологий очистки воды с удалением биогенных элементов.

Лабораторные и пилотные исследования, проведенные на московских очистных сооружениях показали, что осадки московских сточных вод обладают средним ацидификационным потенциалом и применение ацидофикации сырого осадка обогащает сточную воду легкоразлагаемым органическим веществом, что приводит к повышению эффективности удаления фосфора фосфатов из сточной воды [[6], [7]]. В промышленном эксперименте на ЛОС при переводе двух первичных отстойников в режим ацидофикации первичного осадка было показано увеличение стабильности удаления фосфора фосфатов в аэротенках блока УБЭ. Содержание летучих жирных кислот в воде, поступающей на блок БУБЭ, увеличилось с 17–22 до 25–30 мг/л (на 30%), и эффективность удаления фосфора возросла до 93–98%. Аналогичное увеличение стабильности и эффективности удаления фосфора было показано при новой форме проведения процесса: проведение ацидификации органического вещества, сорбированного активным илом, в анаэробной зоне аэротенка [[8]].

На основании полученных данных разработан проект реконструкции отстойников ЛОС для проведения ацидификации первичного осадка с целью обогащения легкоразлагаемым органическим веществом осветленной воды, поступающей на очистку блока УБЭ. В настоящее время происходит реконструкция нового блока КОС с внедрением схемы кейптаунского университета (UCT) с удалением азота и фосфора, в которой также предусмотрен процесс ацидификации.

Специалистами АО «Мосводоканал» была проведена разработка предпроектной документации по реконструкции и модернизации сооружений биологической очистки сточных вод Комплексных очистных сооружений канализации г.Череповца (КОСК) для внедрения технологии удаления биогенных элементов. В состав работ входило исследование очистки стоков на пилотной установке, разработка рекомендаций и эскизного проекта по модернизации аэротенков, подбор оборудования для реализации технологии, разработка рекомендаций по автоматизации процесса.

На основании проведенной работы МУП «Водоканал» г. Череповца проводит постадийную реконструкцию 8-ми аэротенков: 1-й очереди Левобережных очистных сооружений (ЛБУ, проектная производительность 50 тыс. м3/сут), 1-й и 2-й очередей Правобережных очистных сооружений (ПБУ, проектная производительность 124 тыс. м3/сут).

В настоящее время реконструированы два аэротенка: 1-я секция 1-й очереди ЛБУ производительностью 15000 м 3 /сут. и 3-я секция 1-й очереди ПБУ производительностью 22 000 м 3 /сут (рис. 3). До 2022 года планируется реконструкция и ввод в работу еще 6-ти аэротенков. Специалистами АО «Мосводоканал» на реконструированных сооружениях проведены пусконаладочные работы, ведется постоянная консультационная поддержка, технологическое и инженерное сопровождение эксплуатационных служб.

До реконструкции аэротенки работали по технологии окисления, не обеспечивая нормативное качество очистки по азоту и фосфору. После реконструкции 1-я секция 1-й очереди ЛБУ вначале была запущена по технологии нити-денитрификации, затем переведена на схему Кейптаунского университета UCT. На рис.4 и в таблице 1 представлены результаты, полученные во время работы реконструированного аэротенка. Фактически с первых дней работы аэротенка по технологии нитри-денитрификации было достигнуто высокое качество очистки по минеральным соединениям азота: по аммонийному азоту эффективность удаления составила 90%, суммарно по азоту нитритов и нитратов – 59%. После перехода на схему UCT качество очистки сточной воды по азоту стало соответствовать нормативному. Эффективность удаления фосфора фосфатов составила 77% и качество очистки сточной воды по фосфору стало близко к нормативному.

3-я секция 1-й очереди ПБУ после реконструкции сразу была запущена по схеме Кейптаунского университета (UCT). Эффективность удаления по аммонийному азоту составила 99%, суммарно по азоту нитритов и нитратов – 66%, по фосфору фосфатов – 98% (Рис.5, таб. 2). Качество очищенной воды по биогенным элементам соответствовало нормативному (ПДКрыбхоз). Оба реконструированных аэротенка работают стабильно, обеспечивая высокое качество очистки.

источник

Контроль за работой очистных сооружений и сбросом сточ­ных вод проводится для предупреждения и прекращения загряз­нения водных объектов неочищенными и недостаточно очищен­ными сточными водами, а также повторного их использования в промышленности и сельском хозяйстве. Он включает в себя учет и регистрацию очистных сооружений; проверку эффектив­ности очистки сточных вод; определение влияния сбрасываемых сточных вод на водные объекты и технологические процессы; выдачу предписаний по совершенствованию работы очистных сооружений.

Обследование очистных сооружений предполагает изучение проектных данных, технологической схемы и регламента работы очистных сооружений, а также их паспортов; ознакомление с ра­нее выданным разрешением на сброс очищенных сточных вод; проверку выполнения ранее выданных предписаний по улучше­нию работы очистных сооружений. Одновременно ведут контроль работы лаборатории, осуществляющей ведомственный контроль за эксплуатацией очистных сооружений. Причем особое внимание обращают на укомплектованность ее квалифицированными кад­рами, оснащенность необходимым оборудованием, соблюдение согласованных с органами водоохраны методик, периодичности и объема анализов сточных вод, а также точек и порядка взятия проб, ведение отчетной документации, изучение данных лабора­торного анализа сточных вод, поступающих на очистные соору­жения, и сравнение их с проектными данными.

Во время обследования проверяют соблюдение регламентов на эксплуатацию каждого сооружения и организацию учета ко­личества очищаемой воды, обращают внимание на степень ав­томатизации технологических процессов, подачу и дозирование реагентов, работу насосных станций, скребковых механизмов в отстойниках, регулирование работы аэрационных сооружений, метантенков, механического обезвоживания осадков, обеззара­живания хлором и других процессов, устанавливают соответ­ствие находящихся в эксплуатации сооружений запроектиро­ванным.

При необходимости отбирают пробы и проводят анализ сточ­ных вод для определения степени их очистки как на очистных сооружениях в целом, так и по отдельным ступеням. Место, вре­мя и способ взятия проб зависят от цели осуществляемой проверки и определяются в каждом конкретном случае с учетом режима работы очистных сооружений и возможных колебаний по време­ни состава и расхода сточных вод (рис. 2.1—2.3).

Рис. 2.1. Схема сооружений биологической очистки сточных вод в естествен­ных условиях с указанием мест взятия проб (1-6) для лабораторного контроля: I — сети водоотведения; II — насосная станция перекачки; III — напорный водовод; IV — колодец-успокоитель; V — песколовка; VI — первичный отстойник; VII — биологические пруды, поля фильтрации; VIII — песковые площадки; IX — иловые площадки; X — дренажный канал; ■=> — места взятия проб сточной воды

В табл. 2.1 дана характеристика состава указанных на рис. 2.1—2.3 проб и перечень определений, которые должны выполняться с их содержимым.

Необходимо отметить, что взятие проб производится в обяза­тельном порядке на входе и выходе из очистных сооружений или проверяемой ступени очистки с учетом времени прохождения сточных вод через сооружения. По результатам контрольных ана­лизов определяют эффективность работы очистных сооружений и оценивают достаточность очистки сточных вод на них.

В последние годы одновременно с физико-химическими ана­лизами обрабатываемой воды проводят биологические ее иссле­дования с использованием живых организмов. В качестве тест — объектов выбирается один организм из следующих четырех кате­горий:

• беспозвоночные (чаще всего ракообразные, но также черви, простейшие и т. д.);

• рыбы (форель, гольян, гуппии, карп и Brachydanio).

Рис. 2.2. Схема сооружений механической очистки сточных вод в естественных условиях с указанием мест взятия проб (1-9 ) для лабораторного контроля: I-VI — те же, что на рис. 2.1; VII — хлораторная; VIII — смеситель ершового типа; IX — вторичный отстойник; X — сбросной коллектор;

XI — песковые площадки; XII — иловые площадки; с> — места взятия проб сточной воды

Эти тесты могут быть либо статическими, либо динамически­ми. В статике изучаются, например, поведение и физиологичес­кие рефлексы рыб в лабораторном аквариуме, заполненном иссле­дуемой водой. Наблюдение за жизнедеятельностью подопытных рыб производится с помощью приборов, размещенных также в аквариуме и работающих в автономном режиме. Если в воду вве­дены токсичные вещества, то физическое состояние рыб ухудша­ется, что фиксируется этими приборами.

В динамических условиях биологические тесты применяют для определения случайного загрязнения водотока. Обычно исполь­зуются рыбы (чаще всего форель или карп).

Согласно п. 2 ст. 23 закона РФ №7-ФЗ «Об охране окружающей среды» нормативы контроля сбросов сточных вод должны уста­навливаться на основе наилучших существующих технологий (НСТ) с учетом экономических и социальных факторов. В насто­ящее время в Российской Федерации достаточно широко приме­няются следующие НСТ: полная биологическая очистка (НСТ-1), полная биологическая очистка с доочисткой (НСТ-2), биологи­ческая очистка с полным окислением (НСТ-3), биологическая очистка с нитри-денитрификацией (НСТ-4) и физико-химичес­кая очистка (НСТ-5). Показатели, которые достигаются при этих технологиях, приведены в табл. 2.2. Из таблицы видно, что при­меняемые в нашей стране НСТ по основным показателям, за ис­ключением фосфатов, соответствуют нормативам, установленным в странах ЕЭС. Следует, однако, отметить, что для большинства регионов Российской Федерации удаление фосфатов до концент­рации ниже 2 мг/дм3 нецелесообразно, так как 70—80% данного биогенного элемента поступает в водные объекты с неорганизо­ванными стоками.

Рис. 2.3. Схема сооружений биологической очистки сточных вод в искусственно созданных условиях с указанием мест взятия проб (1-10) для лабораторного контроля: I-VI — те же, что на рис. 2.1 и 2.2; VII — биофильтр; VIII — хлораторная; IX — смеситель ершового типа; X — вторичный отстойник; XI — сбросной коллектор; XII — песковые площадки; XIII — иловые площадки; с> — места взятия проб сточной воды

Из существующих технологий наилучшие показатели по уда­лению органических веществ и аммонийного азота обеспечивают

Характеристика указанных на рис. 2.1-2.3 мест взятия проб и перечень соответствующих определений

источник

Контроль за работой очистных сооружений и сбросом сточных вод проводится для предупреждения и прекращения загрязнения водных объектов неочищенными и недостаточно очищенными сточными водами, а также повторного их использования в промышленности и сельском хозяйстве. Он включает в себя учет и регистрацию очистных сооружений; проверку эффективности очистки сточных вод; определение влияния сбрасываемых сточных вод на водные объекты и технологические процессы; выдачу предписаний по совершенствованию работы очистных сооружений.

Обследование очистных сооружений предполагает изучение проектных данных, технологической схемы и регламента работы очистных сооружений, а также их паспортов; ознакомление с ранее выданным разрешением на сброс очищенных сточных вод; проверку выполнения ранее выданных предписаний по улучшению работы очистных сооружений. Одновременно ведут контроль работы лаборатории, осуществляющей ведомственный контроль за эксплуатацией очистных сооружений. Причем особое внимание обращают на укомплектованность ее квалифицированными кадрами, оснащенность необходимым оборудованием, соблюдение согласованных с органами водоохраны методик, периодичности и объема анализов сточных вод, а также точек и порядка взятия проб, ведение отчетной документации, изучение данных лабораторного анализа сточных вод, поступающих на очистные сооружения, и сравнение их с проектными данными.

Во время обследования проверяют соблюдение регламентов на эксплуатацию каждого сооружения и организацию учета количества очищаемой воды, обращают внимание на степень автоматизации технологических процессов, подачу и дозирование реагентов, работу насосных станций, скребковых механизмов в отстойниках, регулирование работы аэрационных сооружений, метантенков, механического обезвоживания осадков, обеззараживания хлором и других процессов, устанавливают соответствие находящихся в эксплуатации сооружений запроектированным.

При необходимости отбирают пробы и проводят анализ сточных вод для определения степени их очистки как на очистных сооружениях в целом, так и по отдельным ступеням. Место, время и способ взятия проб зависят от цели осуществляемой проверки и определяются в каждом конкретном случае с учетом режима работы очистных сооружений и возможных колебаний по времени состава и расхода сточных вод (рис. 2.1—2.3).

Рис. 2.1. Схема сооружений биологической очистки сточных вод в естественных условиях с указанием мест взятия проб (1 -6) для лабораторного контроля:

I — сети водоотведения; II — насосная станция перекачки;

III — напорный водовод; IV — колодец-успокоитель; V — песколовка;

VI — первичный отстойник; VII — биологические пруды, поля фильтрации;

VIII — песковые площадки; IX — иловые площадки; X — дренажный канал;

?=> — места взятия проб сточной воды

В табл. 2.1 дана характеристика состава указанных на рис. 2.1— 2.3 проб и перечень определений, которые должны выполняться с их содержимым.

Необходимо отметить, что взятие проб производится в обязательном порядке на входе и выходе из очистных сооружений или проверяемой ступени очистки с учетом времени прохождения сточных вод через сооружения. По результатам контрольных анализов определяют эффективность работы очистных сооружений и оценивают достаточность очистки сточных вод на них.

Характеристика указанных на рис. 2.1 -2.3 мест взятия проб и перечень соответствующих определений

Точки взятия проб в процессе очистки сточных вод

источник

Исследование качественного и количественного состава сточных вод, поступающих на очистку, и сбрасываемых в водоем. Определение показателей реки Сухона в связи со спуском в нее сточных вод г. Тотьма. Анализ технологических процессов очистки сточных вод.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования Российской Федерации

Читайте также:  Анализы проводимые при определение качества воды

«Оценка качества очистки сточных вод»

студент 5 курса Астепкин Р.Е.

Вода — самое распространенное неорганическое соединение на нашей планете. Это ценнейший природный ресурс. Она играет исключительно важную роль в процессах обмена веществ, составляющих основу жизни. Огромное значение вода имеет в промышленном и сельскохозяйственном производствах. Общеизвестна необходимость ее для бытовых потребностей. Вода входит в состав организма человека, всех растений и животных. Для многих живых существ она служит средой обитания.

Вода — непременный агент фотосинтеза. Она имеет высокую диэлектрическую проницаемость, благодаря чему присоединяет и удерживает почти все вещества. Это отличительный теплоноситель и охладитель. Вода обладает таким уникальным качеством, как большое поверхностное натяжение, вследствие чего способна подниматься по капиллярам в почве.

Совершая круговорот в природе, вода участвует в формировании поверхности Земли. Она разрушает, растворяет и транспортирует неорганические вещества, способствует отложению осадочных пород и образованию почвы.

Вода оказывает существенное влияние на климат и погоду, так как обладает высокой теплоемкостью и низкой теплопроводностью. Аккумулируя солнечное тепло, она при больших скоплениях выравнивает годичные и суточные колебания температуры.

В мире на одного человека ежегодно расходуется в среднем 30 м3 воды, из них 1 м3 для питья. В некоторых странах на одного человека приходится всего 2 м3 воды в год. Здесь она оказывается одним из самых дорогих ресурсов. В нашей стране в мелких населенных пунктах потребление воды не превышает 30 л в сутки на 1 человека, в некоторых районах — даже 5-6 л. В жилищах с канализацией и водопроводом оно достигает 200 л/сут, а в домах, оборудованных горячим водоснабжением, — еще выше.

Водная среда, водоемы в зависимости от санитарного состояния могут быть местами развития организмов, которые по-разному приспособлены к уровню загрязнения и процессам, происходящим в этих условиях.

Речная вода более или менее постоянного состава, однако, во время весенних паводков, ливневых дождей в результате большого стока вода делается мутной, в ней нередко появляются химические вещества, используемые для удобрения. Качество зависит от сезона года, а так же местности, в которой протекают реки.

Соленые воды составляют 94,2 % всех водных ресурсов Земли. Они занимают свыше 70% поверхности земного шара, но используются недостаточно. Запасы же пресной воды на Земле незначительны: с учетом части подземных вод их около 30 млн км3. Причем большая часть этой воды (97%) приходится не ледники Антарктиды, Гренландии, полярных островов и гор. Если бы весь лед распределить равномерно по поверхности Земли, то образовался бы слой толщиной 53 м.

Цель работы — оценить качество очистки сточных вод МУП «Водоканал» г. Тотьма.

· Исследовать качественный и количественный состав сточных вод, поступающих на очистку, и сбрасываемых в водоем.

· Определить качественные показатели реки Сухона в связи со спуском в нее сточных вод г. Тотьма.

Вода является основным компонентом любой живой ткани. Вода в организме находится в трех жидкостных фазах: внутриклеточной, внеклеточной, трансцеллюлярной. Содержание воды в различных тканях и секретах колеблется в очень широких пределах: в скелете-22%, в печени, мышцах, мозге, сердце, коже и соединительной ткани 70-80%, в плазме крови 90%, в поте, слюне 99,5%. Таким образом, вода является основной составной частью многих тканей и секретов организма.

Обмен веществ тесно связан с водой. Она является растворителем для большинства соединений и служит средой, в которой протекают все реакции обмена веществ. Основные процессы, связанные с обменом веществ (ассимиляция, диссимиляция, диффузия, осмос, резорбция, фильтрация и другие), протекают только в водных растворах органических и неорганических веществ. В водной среде осуществляются пищеварение и усвоение пищи в желудочно-кишечном тракте, транспортировка питательных веществ к различным тканям. Вода является непосредственным участником процессов окисления, гидролиза и других реакций обмена. Она необходима для выведения различных вредных веществ, образующихся в результате обмена. В связи с этим при недостаточном поступлении воды возникает интоксикация организма. Испаряясь с поверхности кожных покровов и дыхательных путей, она играет важную роль в процессах терморегуляции организма.

Вода участвует в обмене веществ, непрерывно выделяется из организма через почки, легкие, кишечник и кожу (готовые железы).

При дефиците воды наступает расстройство многих физиологических функций организма: нарушается обмен веществ, нарастает количество молочной кислоты, в тканях снижаются окислительные процессы, увеличивается вязкость крови, повышается температура тела, учащается дыхание и резко снижается аппетит.

Вода в организме выполняет механическую роль, облегчая скольжение трущихся поверхностей (суставы, связки, серозные и слизистые покровы.

Поверхностные водные системы — ручьи, реки, озера, пруды — загрязняются в основном бытовыми промстоками. На чистоту поверхностных вод в сельской местности влияют стоки, смывающие с полей, ядохимикаты, удобрения, а зачастую бытовой мусор и навоз из сел и ферм. Качество воды большинства водных объектов не отвечает нормативным требованиям. Многолетние наблюдения за динамикой качества поверхностных вод обнаруживают тенденцию увеличения числа створов с высоким уровнем загрязненности (более 10 ПДК) и числа случаев экстремально высокого содержания (Свыше 100 ПДК) загрязняющих веществ в водных объектах.

Состояние водных источников и систем централизованного водоснабжения не может гарантировать требуемого качества питьевой воды, а в ряде регионов (Южный Урал, Кузбасс, некоторые территории Севера) это состояние достигло опасного уровня для здоровья человека. Службы санитарно-эпидемиологического надзора постоянно отмечают высокое загрязнение поверхностных вод.

Около 1/3 всей массы загрязняющих веществ вносится в водоисточники с поверхностными и ливневыми стоками с территории санитарно неблагоустроенных населенных мест, сельскохозяйственных объектов и угодий, что влияет на сезонное, в период весеннего паводка, ухудшение качества питьевой воды. В связи с этим проводится гиперхлорирование питьевой воды, что, однако небезопасно для здоровья населения в связи с образованием хлорорганических соединений. Наиболее распространенными загрязняющими веществами поверхностных вод остаются нефтепродукты, фенолы, легкоокисляемые органические вещества, соединения металлов, аммонийный и нитридный азот. Основным источником загрязнения являются сточные воды различных производств, предприятий сельского и коммунального хозяйства, поверхностный сток.

Из-за нестабильной работы большинства предприятий, их тяжелого финансового положения, а также неудовлетворительного бюджетного финансирования выполнение водоохранных мероприятий в стране ведется крайне низкими темпами.

Неблагополучное состояние малых рек, особенно в зонах крупных промышленных центров, из-за поступления в них с поверхностным стоком и сточными водами больших количеств загрязняющих веществ. Значительный ущерб малым рекам наносится в хозяйственной деятельности из-за нарушения режима хозяйственной деятельности в водоохранных зонах и попадания в водотоки органических и минеральных загрязнении, а также смыва почвы в результате водной эрозии.

Огромное количество загрязняющих веществ вносится в поверхностные воды со сточными водами предприятий черной и цветной металлургии, химической, нефтехимической, нефтяной, газовой, угольной, лесной и целлюлозно-бумажной промышленности, предприятий сельского и коммунального хозяйства, поверхностным стоком с прилегающих территорий. Существенное влияние оказывают сельскохозяйственные угодья, а так же пастбища и животноводческие фермы.

Размеры бытовых городских стоков, подобно промышленности, сбрасываемые в канализацию. Концентрация органических веществ в этих отходах зачастую выше, чем в бытовых. Особенно много сточных вод образуется на бойнях, молочных фермах, пивоваренных и винных заводах, кондитерских фабриках. За счет загрязнения промышленными водами ослабляется жизнедеятельность организмов. Сточные воды промышленных, кожевенных предприятий и текстильных фабрик не только отравляют воду но и расходуют содержащийся в ней кислород. Сточные воды каменоломен делают воду мутной, в результате ухудшается проникновение света, а в связи с этим падает биологическая продукция кислорода. Современный уровень очистки сточных вод таков, что даже в водах, прошедших биологическую очистку, содержание нитратов и фосфатов достаточно для интенсивного эвтрофирования водоемов.

Эвтрофикация — обогащение водоема биогенами, стимулирующее рост фитопланктона. От этого вода мутнеет, гибнут бентосные растения, сокращается концентрация растворенного кислорода, задыхаются обитающие на глубине рыбы и моллюски.

Под загрязнением водоемов понимают снижение их биосферных функций и экологического значения в результате поступления в них вредных веществ. Загрязнение вод проявляется в изменении физических и органолептических свойств, увеличение содержание сульфатов, хлоридов, нитратов, токсичных тяжелых металлов, сокращение растворенного в воде кислорода воздуха, появление болезнетворных бактерий и других загрязнителей

Россия обладает одним из самых высоких водных потенциалов в мире. На каждого жителя России приходится свыше 30 000 мі/год воды. Однако в настоящее время из — за загрязнения или засорения около 70% рек и озер России утратили свои качества питьевого водоснабжения, в результате около половины населения потребляют загрязненную воду. Установлено, что более 400 видов веществ могут вызвать загрязнение вод.

В случае превышения нормы допустимой хотя бы по одному из трех показателей вредности: санитарно — токсикологическому, общесанитарному или органолептическому, вода считается загрязненной.

Различают естественные и антропогенные источники загрязнения вод. Первые в отличие от вторых сбалансированы процессами самоочищения вод за счет круговорота веществ в природе. Этим механизмом природа пользуется в течение всей истории существования биосферы. Антропогенные загрязнения связано с хозяйственной деятельностью человека. Сюда относят биологическое, химическое и физическое загрязнение.

Биологическое загрязнение вызывается микроорганизмами и способными к брожению органическими веществами. Такое загрязнение приводит к бактериологическому заражению (инфекционный гепатит, холера, тиф, дизентерия, кишечная инфекция). Здесь возникает проблема гигиены.

Бактериологические показатели питьевой воды. Питьевая вода не должна содержать болезнетворных микробов. Санитарным показателем качества воды по ГОСТ 2874- является титр (колититр) кишечной палочки, т. е наименьшее количество воды, в которой обнаруживается одна кишечная палочка.

Для водопроводной воды титр 300. это означает, что в 300 мл воды допускается 1 кишечная палочка.

Определяется индекс кишечной палочки (наименьшее количество кишечных палочек в 1л воды). Для водопроводной воды он должен равняться 3м. Большое количество их указывает на возможность попадания в воду болезнетворных микробов, которые вызывают кишечное инфекционное заболевание.

Общее количество микробов в воде так же служит показателем её санитарного качества. В одном мл питьевой воды по ГОСТ 2874-82 «вода питьевая допускается не более 100 микробов».

Источниками загрязнения органикой являются пищевые предприятия, молочные сахарные заводы, сыроварни, животноводство и т.д. Например, один целлюлозно-бумажный комбинат загрязняет воду, что и город с населением 500 тыс. человек. Химическое загрязнение природных вод представляет собой изменение естественных химических свойств воды за счет увеличения в ней вредных примесей как неорганической (минеральные соли, кислоты, щелочи, глиняные частицы) так и органической природы (нефть, нефтепродукты, ПАВ, пестициды).

Органическое загрязнение обычно оценивается биохимическим потреблением кислорода БПК 5,10,25 суток. Это, позволяет определить какое, количество кислорода необходимо организмам — деструкторам для полной минерализации всего нестойкого органического вещества, содержащегося в 1л воды в течение 5-10 или 25 суток .

Вынос в гидросферу органического вещества оценивается в 300-380 млн. т. Сточные воды, содержащие суспензии органического происхождения или растворенное органическое вещество, пагубно влияют на состояние водоемов. Осаждаясь, суспензии заливают дно и задерживают развитие или полностью прекращают жизнедеятельность донных микроорганизмов, участвующих в процессе самоочищения вод. При гниении донных осадков могут образовываться вредные соединения и отравляющие вещества, такие как сероводород, которые приводят к полному загрязнению воды в реке. Наличие суспензий затрудняет так же проникновение света на глубину и замедляет процессы фотосинтеза.

Значительный объем органических веществ, большинство которых не свойственно природным водам, сбрасывается в реки вместе с промышленными и бытовыми стоками. Нарастающие загрязнения водоемов и водостоков наблюдается во всех промышленных странах.

Хлориды: в воде могут быть минерального и органического происхождения. В некоторых зонах повышенное содержание их в воде (до 100-300 мг/л) связано с засоленностью грунтов, богатых хлористыми соединениями. Такая вода не является опасной в санитарном отношении и пригодна для поения животных и хозяйственных целей.

В питьевой воде содержание хлоридов органического происхождения не должно превышать 20-30 мг/л. при отсутствии других загрязнений в воде допускается содержание хлоридов минерального происхождения до 350мг/л. вода, в которой хлоридов содержится более 500 мг/л, имеет солоноватый привкус и неблагоприятно влияет на желудочную секрецию.

Питьевая вода при содержании хлоридов 500 мг/л и выше усиливает эвакуаторную деятельность желудка и уменьшает количество, кислотность и переваривающую способность желудочного сока, что приводит к нарушению процессов пищеварения. При длительном потреблении воды с наличием хлоридов в количестве 1.0- 2.5г/л у животных изменяются некоторые показатели водно-солевого обмена, повышается артериальное давление и наблюдается расстройство пищеварения.

Сульфаты: (соли серной кислоты) могут быть в воде органического происхождения, что свидетельствует о ее загрязнении. Однако в некоторых зонах в воде содержится большое количество (до 2000-3000 мг/л) сульфатов минерального происхождения. Они придают воде горький вкус и вызывают расстройства деятельности желудочно-кишечного тракта (обладают слабительным действием, угнетают деятельность желудочных желез и др.). оптимальное содержание сульфатов в воде составляет около 50 мг/л. однако при отсутствии других показателей загрязнения допускается наличие в воде сульфатов минерального происхождения до 500 мг/л.

Активная реакция или рН: обуславливают наличием в ней органических солей животного и растительного происхождения, процессами их гниения, а так же содержанием минеральных веществ. Вода хорошего качества чаще всего нейтральной реакции, а иногда слабощелочной рН (6.5-8.5). Если в воде повышено содержание органического происхождения, а тем более имеются процессы животного происхождения, гниения, то она приобретает, кислую реакцию. Повышенное содержание солей, жесткость воды способствует сдвигам к щелочной реакции.

Неорганическое загрязнение. Основными неорганическими (минеральными) загрязнителями пресных и морских вод являются разнообразные химические соединения, токсичные для обитателей водной среды. Это соединение свинца, кадмия, ртути, хрома, меди, фтора. Большинство из них попадают в воду в результате человеческой деятельности. Тяжелые металлы поглощаются фитопланктоном, а затем передаются по пищевой цепи организмом. Среди основных источников загрязнения гидросферы минеральными веществами и биогенными элементами следует упоминать предприятия пищевой промышленности и сельского хозяйства. Например, с орошаемых земель ежегодно вымывается около 12 млн.т солей.

В связи с быстрыми темпами урбанизации и несколько замедленным строительством очистных сооружений водные бассейны и почва загрязняются бытовыми отходами. Особенно ощутимо загрязнение в водоемах с замедленным течением или непроточным (водохранилища, озера). Ежегодно в реки сбрасывается около 160 кмі промышленных стоков, а так как большая часть сточных вод не очищается или очищается недостаточно, то они загрязняют 4000 кмі речных вод — более 12% всего речного стока.

Значительных размеров достигает концентрация загрязнений дождевых сточных вод — ливневых и талых. Текущие по улицам дождевые стоки бывают более ядовитыми, чем в сточных трубах промышленных предприятий. Попадая через канализационную сеть в открытые водоемы эти стоки отравляют природные воды.

Физическое загрязнение. Связано со сбросом тепла в воду, что приводит к потрясению всего биоценоза водоема. К физическим относят также радиоактивное загрязнение вод, попадание в водные системы различных взвесей, что приводит к изменению прозрачности воды. Неприятный запах, вкус так же относят к физическому загрязнению.

Источником теплового загрязнения служат подогретые сбросные воды теплоэлектростанций и промышленности. Повышение температуры природных вод изменяет естественные условия для водных организмов, снижает количество растворенного кислорода, изменяет скорость обмена веществ.

Читайте также:  Анализы сдают натощак можно ли пить воду

Прозрачность: воды зависит от наличия или отсутствия в ней взвешенных частиц различных веществ. Вода хорошего качества должна иметь прозрачность не менее 25 см, через который свободно читается шрифт Снеллена. Большая мутность воды (как от повышенной концентрации взвешенных минеральных и органических веществ, так и от растворенных в воде солей) нередко требует специальных методов обработки, улучшающих её качество.

Сточными называются воды, которые были использованы для тех или иных нужд и получили при этом дополнительные примеси (загрязнения), изменившие их первоначальный химический состав и физические свойства.

В зависимости от происхождения, вида и качественной характеристики примесей сточные воды подразделяются на три основные категории: бытовые (хозяйственно-фекальные); производственные (промышленные); атмосферные или дождевые.

Состав и свойства воды, водных объектов должны контролироваться в створе, расположенном на водотоках на 1 км выше ближайших по течению пунктов водопользования (водозабор для хозяйственно-питьевого водоснабжения, места купания, организованного отдыха, населенные пункты и тому подобное), а на непроточных водоемах и водохранилищах — на 1 км в обе стороны от пункта водопользования.

Запрещается сбрасывать в водные объекты сточные воды, содержащие возбудителей инфекционных заболеваний. Сточные воды, опасные в эпидемическом отношении, могут сбрасываться в водные объекты только после соответствующей очистки и обеззараживания.

Запрещается сброс в водные объекты, на поверхность ледяного покрова водосбора пульпы, концентрированные кубовые остатки образующееся в результате обезвреживания сточных вод, в том числе содержащие радионуклиды, другие технологические и бытовые отходы.

Сброс сточных вод в водные объекты в черте населенных пунктов запрещается.

Место выпуска сточных вод должно быть расположено ниже по течению реки от границы населенного пункта и всех мест водопользования населения с учетом возможности обратного течения при нагонных ветрах.

Сброс сточных вод в водные объекты в черте населенного пункта через существующие выпуски допускается лишь в исключительных случаях при соответствующем технико-экономическом обосновании и по согласованию с органами государственного санитарного надзора. В этом случае нормативные требования, установленные к составу и свойствам воды водных объектов, должны быть отнесены к самим сточным водам.

Условия отведения сточных вод в водные объекты определяются с учетом: а) степени возможного смещения и разбавления сточных вод водой водного объекта на участке от места выпуска сточных вод до расчетных (контрольных) створов ближайших пунктов хозяйственно-питьевого, культурно-бытового водопользования населения; б) фонового качества воды водного объекта выше места рассматриваемого выпуска сточных вод по анализам не более двухлетней давности; при наличии других — существующих и (или) проектируемых — выпусков сточных вод между рассматриваемым и ближайшим пунктом водопользования в качестве фонового применяется уровень загрязнения воды водного объекта с учетом вклада указанных выпусков сточных вод; в) нормативов качества воды водных объектов (ПДК).

Строительство очистных сооружений предусматривается в полном объеме с полной механической и биологической очисткой сточных вод.

На сооружениях механической очистки происходит осветление сточной жидкости за счет удаления из нее крупных взвесей, песка, жира и других нерастворимых веществ, путем пропуска через решетки и отстаивания при малых скоростях притока.

В состав сооружений механической очистки входят: решетки, песколовки с круговым движением сточных вод и первичные отстойники.

Состав сооружений биологической очистки:

Аэротенки предназначенные для биологического окисления органических веществ с помощью активного ила и продуваемого через сточную жидкость воздуха;

вторичные отстойники, которые служат для задержания ила после аэротенков.

В биологической очистке выделяют следующие стадии.

На первой стадии, сразу же после смешения сточных вод с активным илом, на его поверхности происходят адсорбция загрязняющих веществ и их коагуляция (укрупнение частиц несущих органические вещества), причем адсорбция обеспечивается как хемосорбцией, так и биосорбцией с помощью полисахаридного геля активного ила и благодаря огромной поверхности ила, один грамм которого занимает 100 м2. Таким образом, на первой стадии очистки, загрязняющие вещества в сточных водах удаляются благодаря механическому изъятию их активным илом из воды и началу процесса биоокисления наиболее легкоразлагающейся органики. На первой стадии за 0,5-2,0 часа содержание органических загрязняющих веществ, характеризуемых показателем БПК5, снижается на 50-60%

На второй стадии продолжается биосорбция загрязняющих веществ и идет их активное окисление экзоферментами (ферментами, выделяемыми активным илом в окружающую среду). Благодаря снизившейся концентрации загрязняющих веществ, начинает восстанавливаться активность ила. Продолжительность этой стадии составляет от 2,0 до 4,0 часов.

На третьей стадии очистки происходит окисление загрязняющих веществ эндоферментами (внутри клетки), доокисление сложноокисляемых соединений, превращение азота аммонийных солей в нитриты и нитраты, регенерация активного ила. Именно на этой стадии (стадии внутриклеточного питания активного ила) происходит образование полисахаридного геля, выделяемого бактериальными клетками. Продолжительность третьей стадии от 4-6 часов при очистке бытовых сточных вод и может удлиняться до 15 часов для сточных вод сложного промышленного состава.

Исследования проводили в лаборатории МУП «Водоканал» г. Тотьма.

Материалом для исследований служили пробы сточных вод, сбрасываемых в систему канализации г. Тотьма, и очищенных сточных вод до и после сброса в р. Сухона. Отбор проб проводили в соответствии с требованиями ГОСТ РФ 5.592-2000 «Вода. Общие требования к отбору проб».

Результаты анализа сравнивали с перечнем ПДК вредных веществ в водных объектах согласно СанПиН 2.1.5.980-00. «Гигиенические требования к охране поверхностных вод» и нормативами ПДС загрязняющих веществ в р. Сухона.

Для определения качества речной воды и степени очистки сточных вод путем определения контролируемых показателей были выбраны из числа органолептических — прозрачность, запах, цветность; из гидрохимических — взвешенные вещества, водородный показатель (рН), азот аммония, нитраты, нитриты, фосфаты, сульфаты, хлориды, биохимическое потребление кислорода (БПКполн), содержание растворенного кислорода, перманганатная окисляемость, тяжелые металлы.

Цветность определяли в пробе воды после ее центрифугирования фотометрически по 100-градусной хромово-кобальтовой шкале цветности и выражали в градусах цветности. Степень прозрачности определяли по высоте столба жидкости в см, через который отчетливо виден специальный шрифт.

Запах определяли качественно и описывали как фекальный, гнилостный, керосиновый, фенольный и т.д. Интенсивность запаха оценивали в баллах по 5-бальной шкале.

Содержание взвешенных веществ определяли гравиметрическим методом (ПНД Ф 14.1:2.110-97), который основан на выделении их из пробы фильтрованием воды через мембранный фильтр с диаметром пор 0,45 мкм или бумажный фильтр «синяя лента» и взвешивании осадка на фильтре после высушивания его до постоянной массы.

Концентрацию водородных ионов (pH) устанавливали потенциометрическим методом с помощью pH-метра. Метод основан на измерении разности потенциалов, возникающих на границах между внешней поверхностью стеклянной мембраны электрода и исследуемым раствором, с одной стороны, и внутренней поверхностью мембраны и стандартным раствором — с другой. Внутренний стандартный раствор стеклянного электрода имеет постоянную концентрацию ионов водорода, поэтому потенциал на внутренней поверхности мембраны не меняется. Измеряемая разность потенциалов определяется потенциалом, возникающим на границе внешней поверхности электрода и исследуемого раствора.

Концентрацию ионов аммония определяли методом фотометрии по реакции с реактивом Несслера (ПНД Ф 14.1.1- 95). Принцип метода основан на том, что аммоний с реактивом Несслера образует йодид меркураммония, который окрашивает раствор в желто-коричневый цвет. Интенсивность окраски пропорциональна содержанию аммония в воде.

Массовую концентрацию нитрат-ионов определяли фотометрическим методом с салициловой кислотой (ПНД Ф 14.1:2.4- 95). Фотометрический метод основан на взаимодействии нитрат-ионов с салициловой кислотой с образованием комплексного соединения желтого цвета.

Содержание нитритов определяли фотометрическим методом с реактивом Грисса (ПНД Ф 14.1:23-95). Определение основано на способности нитритов диазотировать сульфаниловую кислоту и на образовании красно-фиолетового красителя диазосоеденения с б — нафталамином. Интенсивность окраски пропорциональна концентрации нитритов. Протекание реакции в значительной степени зависит от pH-среды.

Измерение массовой концентрации сульфат-ионов проводили турбидиметрическим методом (ПНД Ф 14.1:2.159-2000). Метод измерения массовой концентрации сульфат-ионов основан на образовании стабилизированной суспензии сульфата бария в солянокислой среде с последующим измерением светорассеяния в направлении падающего луча ( в единицах оптической плотности).

Измерение содержания хлоридов проводили аргентометрическим методом (ПНД Ф 14.1:2.96-97). Титриметрический метод определения массовой концентрации хлоридов основан на образовании трудноратворимого осадка хлорида серебра при прибавлении раствора нитрата серебра к анализируемой воде. После полного осаждения хлоридов избыток ионов серебра реагирует с индикатором — хроматом калия — с образованием красновато — оранжевого осадка хромата серебра. Титрование проводят в нейтральной или слабощелочной среде (pH=7-10), поскольку в кислой среде не образуется хромат серебра, а в сильнощелочной возможно образование оксида серебра Ag2О.

Измерение массовой концентрации фосфат-ионов проводили фотометрическим методом восстановлением аскорбиновой кислотой ( ПНД Ф 14.1:2.112- 97). Метод определения основан на взаимодействий фосфат-ионов в кислой среде с молибдатом аммония и образованием фосфорно-молибденовой гетерополикислоты, которая восстанавливается аскорбиновой кислотой в присутствии сурьмяно-виннокислого калия до фосфорно-молибденового комплекса, окрашенного в голубой цвет.

Метод перманганатной окисляемости основан на окислении органических загрязнений (с помощью кислорода, который эквивалентен загрязнению) перманганатом калия в мягких условиях при кипячении, которое проводят только в очищенное воде.

Измерение массовой концентрации общего железа проводили фотометрическим методом с сульфосалициловой кислотой (ПНД Ф 14.1:2.50 -96). Фотометрический метод определения массовой концентрации общего железа основан на образовании сульфосалициловой кистой и ее натриевой солью с солями железа окрашенных комплексных соединений, причем, в слабокислой среде сульфосалициловая кислота реагирует только с солями железа (3 + ) (красное окрашивание), а в слабощелочной среде — солями железа (2 + ) и (3 + ) (желтое окрашивание).

Выполнение измерений биохимического потребления кислорода (ПНД Ф 14.1:2:3:4.123- 97) основано на способности микроорганизмов потреблять кислород при биохимическом окислении органических веществ и неорганических веществ в воде. Биохимическое потребление кислорода определяют количеством кислорода в мг/дмі, которое требуется для окисления находящихся в воде углеродосодержащих органических веществ в аэробных условиях в результате биохимических процессов.

Содержание растворенного кислорода устанавливали йодометрическим методом (ПНД Ф 14.1:2.101- 97), в основе которого лежит реакция кислорода с гидроксидом марганца (II) в щелочной среде. Последний количественно связывает кислород, переходя при этом в соединения марганца (IV). При подкислении пробы в присутствии избытка иодида калия образуется йод, количество которого эквивалентно содержанию растворенного кислорода и определяется титрованием раствором тиосульфата натрия .

Концентрацию тяжелых металлов устанавливали методом атомно-абсорбционной спектрофотометрии. Способ основан на полном разложении органических веществ путем сжигания пробы сырья или продукта в электропечи при контролируемом температурном режиме и атомизации распыленного раствора (ГОСТ 26929-94) [4, 26].

Характеристика технологических процессов очистки сточных вод

Приемником очищенных сточных вод является река Сухона. Выпуск сточных вод расположен на правом берегу реки.

Тотьма канализована частично. Протяженность главных канализационных коллекторов — 18,3 км, уличной канализационной сети — 35,7 км, внутриквартальной канализационной сети — 24,1 км. На сети расположено 8 канализационных насосных станций, которые перекачивают сточные воды на главную канализационную насосную станцию (ГКНС), откуда они поступают в приемную камеру очистных сооружений канализации (ОСК) г. Тотьма.

Сточные воды из выгребов на очистные сооружения канализации вывозятся ассенизационными машинами. Вывозом сточных вод занимается МУП «Водоканал» г. Тотьма.

Площадка очистных сооружений канализации расположена в черте города и имеет полный цикл механической и биологической очистки сточных вод. Проектная мощность ОСК — 20 тыс. м3/сут., фактическая — 12 тыс. м3/сут.

Сточные воды через главную канализационную насосную станцию перекачиваются в приемную камеру очистных сооружений по коллектору диаметром 1000 мм. Камера оборудована аварийным переливным трубопроводом. Из камеры сточные воды поступают по лоткам в здание решеток, где происходит удаление крупных примесей решеткой РМУ-2 и агрегатом механической очистки сточных вод ХЖ 2.966.021 ПС (г. Владимир). Из здания решеток сточные воды, проходя лоток Вентури, поступают на горизонтальные песколовки с круговым движением воды.

Песколовки предназначены для выделения тяжелых минеральных примесей из сточной воды. Осадок из песколовок удаляется гидроэлеваторами и направляется в песковые бункеры (2 бункера), размещенные в сливной станции, откуда по мере наполнения вывозится грузовой машиной за пределы станции. Из песколовок сточные воды по лоткам поступают в распределительные камеры, и подаются на первичные отстойники.

Первичные отстойники входят в состав технологических сооружений блока емкостей, состоящего из нескольких секций шириной 15 м каждая и объединяющего в себе илоперегниватели, аэротенки, аэробные минерализаторы, вторичные отстойники и контактные резервуары. Первичные отстойники служат для дальнейшего удаления неосевших в песколовках минеральных и органических веществ, способных к осаждению путем длительного отстаивания. Отстойники радиального типа, квадратные в плане (10х10 м), четырехконусные, без скребковых механизмов. Сточная вода подается в центральную часть отстойника и собирается периферийным лотком. Выпадающий в отстойнике сырой осадок удаляется из конусов эрлифтами и направляется в илоперегниватель, где происходит анаэробное сбраживание осадка. Из первичных отстойников сточная вода отводится в аэротенки.

Аэротенки предназначены для биологического окисления органических веществ с помощью активного ила и воздуха. Аэротенки — двухкоридорные с регенерацией 50 % активного ила. Подача стоков осуществляется рассредоточено через впускные окна распределительного лотка. Циркуляционный активный ил подается в аэротенк сосредоточенно. Распределение воздуха в аэротенках осуществляется дырчатыми полимерными аэраторами (мелкопузырчатая аэрация).

Пройдя биологическую очистку, иловая смесь по дюкеру подается в центральную часть вторичного отстойника, где происходит отделение очищенной воды от ила. Выпадающий ил удаляется из конусной части эрлифтами и направляется в аэротенк (циркуляционный ил), избыточный активный ил сбрасывают в аэробный минерализатор. Аэробные минерализаторы — сооружения, где происходит аэробное сбраживание избыточного ила. Воздух распределяется дырчатыми трубами. Для удаления осадка и отделения иловой воды предусматривается зона отстаивания. Отстоянная жидкость отводится в регенератор аэротенка. Минерализованный ил насосами перекачивается на иловые поля.

Из сборного лотка вторичного отстойника очищенная сточная жидкость поступает в контактный резервуар. Емкость контактных резервуаров определена из расчета контакта хлора со сточной водой в резервуаре не менее 30 минут. Обеззараживание не производится.

Иловые поля — площадки — уплотнители, представляют собой железобетонные резервуары, в которые осадок 98%-й влажности подается по лотку. После отстаивания иловая вода выпускается через отверстия, снабженные шиберами и расположенные в продольной стенке уплотнителя на разных глубинах в открытый лоток, размещенный в продольной галерее. Из галереи иловая вода поступает самотеком в сеть и подается иловой насосной станцией на полный цикл очистки. Осадок складируется на иловые поля очистных сооружений. Иловый осадок нетоксичен и относится к 5 классу опасности.

Эксплуатируемые очистные сооружения находятся в аварийном состоянии, требуют капитального ремонта и реконструкции.

Характеристика поступающих на очистку сточных вод

При оценке сточных вод, сбрасываемых в водоемы, большое внимание уделяется органолептическим и физико-химическим показателям.

Одним из таких показателей является прозрачность сточных вод, мерой которой служит высота столба воды, при которой сквозь нее можно читать шрифт определенного размера и типа. Хозяйственно-бытовые сточные воды поступающие на очистку должны иметь прозрачность не менее 10 см. Прозрачность сточной воды обусловлена наличием в ней нерастворенных и коллоидных примесей.

Результаты органолептических исследований представлены в таблице 1.

1. Органолептические показатели сточных вод

источник