Меню Рубрики

Санитарно микробиологический анализ сточных вод

Цель занятия.Ознакомить студентов с основными методами и показателями, необходимыми для санитарно-микробиологической оценки объектов внешней среды.

Оборудование и материалы. Прибор для подсчета колоний, колбы с пробами воды, бактериологические пробирки с 9 мл воды, пробирки с 10 мл расплавленного агара, мерные стериль­ные пипетки на 2 мл, стерильные чашки Петри, чашки Петри с МПА, чашки Петри с кровяным МПА, навески почвы, стериль­ная водопроводная вода в колбе — 270 мл, пробирки со средой Кесслера, Вильсона—Блера.

Для оценки санитарно-гигиенического состояния объектов окружающей среды проводят санитарно-бактериологические ис­следования, цель которых состоит в определении эпизоотологической и эпидемиологической безопасности. Показателем небла­гополучия служит выявление патогенных микроорганизмов. Од­нако прямое их обнаружение связано с большими трудностями, и прежде всего с низкой концентрацией данных микробов, кото­рые в основном не могут размножаться в воде, воздухе и почве. Поэтому в санитарно-микробиологической практике используют косвенные методы, направленные на определение микробной обсемененности объекта и обнаружение в нем так называемых санитарно-показательных бактерий. О бактериальной обсеме­ненности судят по микробному числу — общему коли­честву микроорганизмов, содержащихся в единице объема или массы (1 мл воды, 1 г почвы, 1 м 3 воздуха).

Содержание санитарно-показательных бактерий определяют по двум показателям: титру и индексу. Титром называют минимальный объем или массу, в которых выявляют данные бактерии, индексом — количество санитарно-показательных бактерий, содержащихся в соответствующем количестве среды.

К санитарно-показательным бактериям относят представи­телей облигатной микрофлоры организма человека и тепло­кровных животных, для которых среда обитания — кишечник или воздушно-дыхательные пути. Они характеризуются следую­щими свойствами: 1) постоянно выделяются с калом или ка­пельками слизи из воздушно-дыхательных путей; 2) не имеют других мест обитания; 3) способны сохраняться в окружающей среде то же время, что и патогенные бактерии, паразитирующие в кишечнике или воздушно-дыхательных путях; 4) не способны интенсивно размножаться вне организма хозяина и изменять свои свойства.

Перечисленные признаки присущи бактериям, признанным санитарно-показательными для различных объектов окружаю­щей среды.

Санитарно-показательные бактерии группы кишечных пало­чек принадлежат к различным родам семейства энтеробактерий.

Обнаружение кишечной палочки в разных объектах окружаю­щей среды считают наиболее достоверным признаком свежего фекального загрязнения. Наличие в этих же объектах бактерий родов Citrobacter и Enterobacter указывает на относительно давнее фекальное загрязнение.

Присутствие С. perfringens, С. sporogenes и других клостридий в почве свидетельствует о ее фекальном загрязнении, причем как свежем, так и давнем, поскольку эти бактерии образуют споры, что позволяет им длительно переживать в окружающей среде (в частности, в почве).

Обнаружение в объектах окружающей среды Streptococcus faecalis также свидетельствует об их фекальном загрязнении. Рез­кое увеличение количества этих бактерий в саморазогревающем­ся навозе и компостах может свидетельствовать о загрязнении почвы разлагающимися отбросами.

Гемолитические стрептококки, будучи облигатными обитате­лями носоглотки и зева, выделяются с капельками слизи ораль­но-капельным путем. Сроки выживания гемолитических стреп­тококков в окружающей среде практически не отличаются от сроков, характерных для большинства других возбудителей воз­душно-капельных инфекций. Обнаружение гемолитических стрептококков в воздухе помещений указывает на возможное его загрязнение микроорганизмами, содержащимися в зеве, носо­глотке, верхних дыхательных путях и вызывающими инфекции, передаваемые воздушно-капельным путем.

Staphylococcus aureus — также факультативный обитатель но­соглотки и зева. Его присутствие в воздухе помещений служит показателем орально-капельного загрязнения.

Одновременное обнаружение золотистого стафилококка и ге­молитических стрептококков свидетельствует о высокой степени загрязнения воздуха.

Санитарно-микробиологическое исследование воды. Вода — ес­тественная среда обитания микробов, которые в большом коли­честве поступают из почвы, воздуха, с отбросами, стоками. Осо­бенно много микроорганизмов в открытых водоемах и реках. Кроме сапрофитов в воде могут находиться возбудители инфек­ций животных и человека.

При контроле санитарного состояния воды исследованию подлежат: вода централизованного водоснабжения, колодцев, открытых водоемов (реки, озера), плавательных бассейнов, сточ­ные жидкости.

Отбор проб воды. Из открытых водоемов пробы воды отбира­ют с глубины 10. 15 см от поверхности и на расстоянии 10. 15 см от дна. Водопроводную воду набирают в стерильные флаконы объемом 0,5 л с притертой пробкой. Предварительно кран обжи­гают и спускают воду в течение 10. 15 мин. Хлорированную воду перед исследованием нейтрализуют тиосульфатом натрия из рас­чета 10 мл на 1л воды. Бактериологическое исследование проб воды следует проводить в течение двух часов после отбора или шести часов при температуре хранения 1. 5°С.

Определение микробного числа воды. Водопроводную воду засе­вают в количестве 1мл, воду открытых водоемов — по 1,0; 0,1; 0,01 мл. Все пробы вносят в стерильные чашки Петри, после чего их заливают 10. 12 мл расплавленного и охлажденного до 40. 45 °С питательного агара, который тщательно перемешивают с водой. Посевы инкубируют при 37 °С в течение 1. 2сут. Воду из открытых водоемов засевают параллельно на две серии чашек, одну из которых инкубируют при 37 ºС в течение суток, другую — 2 сут при 20 °С. Затем подсчитывают количество выросших на поверхности и в глубине колоний и вычисляют микробное число воды — количество микроорганизмов в 1 мл.

Определение коли-титра и коли-индекса воды. Минимальное количество воды в мл, в котором обнаруживают бактерии группы кишечных палочек (БГКП), называют коли-титром воды, количество БГКП, содержащихся в 1л исследуемой воды, называют кол и-и ндексом воды. Коли-титр и коли-индекс воды определяют титрационным (бродильным) ме­тодом или методом мембранных фильтров.

Титрационный метод. В глюкозо-пептонную среду (1%-я пептонная вода, 0,5%-й раствор хлорида натрия, 0,5%-й раствор глюкозы, индикатор Андреде и поплавок) проводят посевы различных объемов воды.

Воду открытых водоемов исследуют в объемах 100; 10; 1 и 0,1 мл. Для анализа водопроводной воды делают посевы трех объемов по 100 мл, трех объемов по 10 мл и трех объемов по 1 мл. Посевы инкубируют при 37 °С в течение суток. О брожении судят по образованию пузырьков газа в поплавке. Из забродивших или помутневших проб делают посевы на среду Эндо. Из выросших колоний готовят мазки, окрашивают по Граму и ставят оксидазный тест, с помощью которого дифференцируют бактерии родов Escherichia, Citrobacter и Enterobacter от грамотрицательных бак­терий семейства Pseudomonadaceae и других оксидазоположительных бактерий, обитающих в воде. С этой целью 2. 3 изоли­рованные колонии наносят «штрихом» на фильтровальную бума­гу, смоченную диметил-n-фенилендиамином. При отрицатель­ном оксидазном тесте цвет бумаги не изменяется, при положительном она окрашивается в синий цвет в течение 1 мин. Грамотрицательные палочки, не образующие оксидазу, вновь ис­следуют в бродильном тесте — вносят в полужидкий питатель­ный агар с 0,5 % глюкозы и инкубируют при 37 °С в течение су­ток. При положительном результате определяют коли-титр и коли-индекс по статистической таблице.

Метод мембранных фильтров. Определенный объем воды про­пускают под давлением через мембранный фильтр № 3, предва­рительно стерилизованный кипячением в дистиллированной воде. Водопроводную воду и воду артезианских скважин фильт­руют в объеме 333 мл. Чистую воду открытых водоемов фильтру­ют в объеме 100, 10, 1 и 0,1 мл, более загрязненную воду перед фильтрованием разводят стерильной водой. Фильтры накладыва­ют на агар Эндо в чашки Петри и после инкубации при 37 °С в течение суток подсчитывают количество выросших красных колоний. Из двух-трех колоний делают мазки, окрашивают их по Граму и ставят оксидазный тест. Грамотрицательные палочки, не образующие оксидазу, принадлежат к БГКП. По существующим нормативам (ГОСТ 2874—82) питьевую воду считают качествен­ной, если ее коли-индекс не более 3, а микробное число — не бо­лее 100.

Общепринятым дополнительным показателем фекального загрязнения воды служит количество S.faecalis. Для определе­ния его титра цельную воду и ее 10-кратные разведения засева­ют в жидкую элективную среду (щелочная полимиксиновая сре­да). После инкубирования при 37 ºС в течение двух суток, а за­тем еще через сутки и двое суток делают высевы на плотные элективные среды. Фекальные стрептококки идентифицируют по морфологическим, культуральным и тинкториальным свой­ствам.

Есть данные о корреляции между содержанием в воде фекаль­ных кишечных палочек и фагами бактерий группы кишечных па­лочек. Поэтому определение данных фагов служит косвенным показателем возможного присутствия кишечных палочек в ис­следуемой пробе воды.

Санитарно-микробиологическое исследование воздуха. Мик­рофлора воздуха зависит от микрофлоры почвы и воды. Воз­дух — неблагоприятная среда для обитания микроорганизмов из-за отсутствия питательных веществ, действия солнечных лучей, высушивания. Наряду с сапрофитами в воздухе могут находиться патогенные бактерии, споры грибов родов Aspergillus, Mucor и др.

Санитарную оценку воздуха осуществляют по двум показате­лям: 1) определение микробного числа воздуха; 2) определение количества санитарно-показательных бактерий — гемолитичес­ких стрептококков и стафилококков.

Количественные микробиологические методы исследования воздуха основаны на принципах осаждения (седиментации), ас­пирации или фильтрации.

Седиментационный метод осаждения Коха. Чашки Петри с МПА оставляют открытыми на 5. 10 мин. Для определения са­нитарно-показательных бактерий берут чашки Петри с кровя­ным МПА и время экспозиции увеличивают до 40 мин. Чашки выдерживают при 37 °С и комнатной температуре 24 ч и подсчи­тывают выросшие колонии.

Микробное число воздуха (общее количество бактерий в 1 м3) определяют по формуле Омелянского

Х= а * 100 * 1000 * 5 / (b * 10 * T),

где X— количество микробов в 1 м 3 (1000 л) воздуха; а — количество выросших ко­лоний в чашках; b — площадь чашки; Т— время, в течение которого чашка была открыта; 5 — время по правилу Омелянского; 10 — объем воздуха в литрах. (Прави­ло Омелянского предусматривает, что на поверхности агара в чашке Петри площа­дью 100 см 3 за 5 мин из воздуха оседает такое количество микробов, которое нахо­дится в его 10 л.)

Прямое обнаружение патогенных микробов воздуха проводят только при специальных показаниях.

Аспирационный метод. Более точный количественный способ определения микробного числа воздуха, так как посев микроор­ганизмов из воздуха производят с помощью приборов. При использовании аппарата Кротова воздух с заданной скоростью за­сасывается через щель плексигласовой пластины и ударяется о поверхность питательной среды открытой чашки Петри, находя­щейся на вращающейся подставке, благодаря чему происходит равномерный посев бактерий из воздуха на поверхность МПА (при определении микробного числа) или кровяного МПА (при выделении гемолитических стафилококков и стрептококков). После инкубации в термостате в течение двух суток подсчитыва­ют количество выросших колоний и определяют микробное чис­ло воздуха. При исследовании воздуха могут быть использованы и другие приборы (Дьякова, Киктенко, ПАБ-1 — прибор аэро­зольный бактериологический и ПОВ-1 — прибор для отбора воз­духа). В практику входят ускоренные методы индикации микро­флоры воздуха с помощью мембранных фильтров, каскадных им-пакторов, фильтров Петрякова и др.

Санитарно-микробиологическое исследование почвы. Анализ почвы включает в себя определение микробного числа, коли-тит-ра, перфрингенс-титра и титра термофильных бактерий. По эпи­демиологическим признакам проводят определение в почве па­тогенных микроорганизмов: сальмонелл, шигелл, возбудителей столбняка, ботулизма, злокачественного отека, сибирской язвы. Бактериологический анализ почвы нужен при выборе террито­рии под пастбище, ферму, хозяйственные постройки, детские сады, больницы и др.

Предварительно делают отбор проб почвы. На обследуемой территории площадью до 1000 м 3 выделяют два участка по 25 м 3 (один — вблизи источника загрязнения, другой — в отдалении от него), берут пробы из 5 точек (4 — по углам участка, 1 — в цент­ре) на глубине 10. 20 см стерильным совком (из более глубоких мест — с помощью специального бура Некрасова или Френкеля). Пробы почвы по 200. 300 г отбирают в широкогорлые стеклян­ные банки с ватными пробками (можно все взятые с одного уча­стка пробы перемешать и на исследование направить 1 кг). На банки наклеивают этикетки, отправляют с нарочным и сопрово­дительным письмом. Пробы почвы полагается исследовать сразу же или в течение 6. 18 ч, сохраняя их при температуре не выше 1. 5ºС.

В лаборатории почву измельчают, освобождают от камней, ос­колков стекол, корней растений, просеивают через сито, тща­тельно перемешивают и отвешивают 30 г. В колбу на 500 мл наливают 270 мл стерильной водопроводной воды и вносят в нее отвешенную пробу почвы, все интенсивно встряхивают 10 мин, не давая отстояться частицам суспензии, готовят серию десятикратных последовательных разведений. Для относительно чис­тых почв достаточно 4 степени разведения, для загрязненных — 6. 9 разведений. В штатив ставят нумерованные пробирки с 9 мл стерильной воды в каждой. В первую вносят 1 мл суспензии про­бы почвы, смешивают, затем 1 мл из первой пробирки вносят во вторую, смешивают, из нее — 1 мл в третью и т. д. В результате в пробирке № 1 получается разведение 1 : 100, № 2 — 1 : 1000 и т.д. Подготовленные таким образом пробы почвы исследуют.

Определение общего микробного числа. Из последних 3. 4 про­бирок с разведенной суспензией отдельными стерильными пи­петками вносят по 1 мл в стерильные чашки Петри (каждое раз­ведение в отдельности). В каждую чашку добавляют еще по 10. 15 мл расплавленного и охлажденного до 45 ºС МПА. Равно­мерными осторожными круговыми движениями содержимое ча­шек перемешивают, оставляют на столе для уплотнения (затвердения) агара. С застывшей средой чашки перевертывают вверх дном, надписывают и помещают в термостат для культивирова­ния на 24. 48 ч при 37 °С. Выросшие колонии подсчитывают в каждой чашке, умножают на степень разведения, полученные числа суммируют и вычисляют среднеарифметическое число, что составит количество микробов, содержащихся в 1 г почвы.

Определение коли-титра, перфрингенс-титра и титра термо­фильных бактерий почвы. Для определения коли-титра почвы раз­личные разведения почвенной взвеси засевают по 1 мл в пробир­ки со средой Кесслера (на 1л дистиллированной воды — 10г пептона, 50 мл бычьей желчи — 2,5 г лактозы, 4 мл 1%-го водного раствора генцианвиолета) и инкубируют при 43 ºС в течение 48 ч. В дальнейшем исследования проводят по схеме, применяемой при определении коли-титра воды. Наибольшее разведение поч­венной суспензии, в котором отмечена ферментация лактозы (газообразование), соответствует коли-титру почвы. Для опреде­ления перфрингенс-титра почвы различные разведения почвен­ной суспензии по 1 мл засевают в пробирки со стерильным обез­жиренным молоком или железосульфитной средой Вильсона— Блера, приготовленной ex tempore. Посевы инкубируют при 43 °С в течение 24. 48 ч, после чего учитывают результаты по сверты­ванию молока или по образованию черных колоний С. perfringens в агаровом столбике среды Вильсона—Блера. Из колоний делают мазки, окрашивают по Граму, микроскопируют и вычисляют перфрингенс-титр, который соответствует наибольшему разведе­нию почвы, вызвавшему почернение и разрыв среды Вильсона— Блера в первые 12 ч роста.

Для определения титра термофильных бактерий разведения почвенной суспензии по 1 мл вносят в чашки Петри, заливают расплавленным и охлажденным агаром. Посевы инкубируют в течение суток при 60 ºС, а затем подсчитывают количество вы­росших колоний и пересчитывают на 1 г почвы.

Санитарно-микробиологическую оценку почвы проводят по комплексу показателей, из которых наиболее важный ление степени фекального загрязнения.

Читайте также:  Когда нужен микробиологический анализ воды

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

1. Определить микробное загрязнение воздуха.

2. Провести исследование воды с целью установления мик­робного числа и коли-титра.

3. Определить микробное число и перфрингенс-титр почвы.

1. Что такое санитарно-показательные микроорганизмы?

2. Как определяют коли-титр воды?

3. Как определяют микробное число почвы?

4. Как определяют перфрингенс-титр почвы?

5. Какие методы применяют для определения микробного числа воздуха?

6. Что такое санитарно-показательные микробы воздуха и как их определяют?

источник

Вода является естественной средой обитания разнообразных.микроорганизмов (различные виды бактерий, грибы, простейшие и водоросли). Совокупность всех водных организмов называется микробиальный планктон. На количественный состав микрофлоры основное влияние оказывает происхождение воды – пресные поверхностные (проточные воды рек, ручьев; и стоячие озер, прудов, водохранилищ), подземные (почвенные, грунтовые, артезианские), атмосферные и соленые воды. По характеру пользования выделяют питьевую воду (централизованного и местного водоснабжения), воду плавательных бассейнов, лед медицинский и хозяйственную. Особого внимания требуют сточные воды.

Микрофлору водоемов образуют две группы:

-аллохтонные (попадающие извне при загрязнении из различных источников) микроорганизмы.

1. Автохтонная микрофлора – совокупность микроорганизмов, постоянно живущих и размножающихся в воде. Как правило, микрофлора воды напоминает микробный состав почвы, с которой вода соприкасается. В ее состав входят микрококки, сарцины, некоторые виды Proteus и Leptospira. Из анаэробов – Bacillus cereus и некоторые виды клостридий. Эти микроорганизмы играют значительную роль в круговороте веществ, расщепляя органические отходы, клетчатку и др.

2. Биологическое загрязнение водоемов.

Со сточными, ливневыми, талыми водами в водоемы попадают многие виды микроорганизмов, резко изменяющих микробный биоценоз. Основной путь микробного загрязнения – попадание неочищенных городских отходов и сточных вод. Также – при купании людей, скота, стирке белья и др. В воду могут попадать представители нормальной микрофлоры человека, УП, патогенной (возбудители кишечных инфекций, лептоспирозов, иерсиниозов, вирусы полиомиелита, гепатита А и т.д.). Следует помнить, что вода не является благоприятной средой для размножения патогенных микроорганизмов, для которых биотопами являются организм человека или животных.

Самоочищение водоемов

Освобождение от контаминирующих микроорганизмов наблюдается после органического загрязнения водоемов за счет конкурентной активации сапрофитной микрофлоры, что приводит к быстрому разложению органических веществ, уменьшению численности бактерий, особенно «фекальных». Существует термин «сапробность» — (sapros – гнилой, греч.) обозначает комплекс особенностей водоема, в том числе состав и количество микроорганизмов в воде, содержащей органические и неорганические вещества в определенных концентрациях. Процессы самоочищения воды в водоемах происходят последовательно и непрерывно. Различают полисапробные, мезасапробные и олигосапробные зоны.

Полисапробные зоны – зоны сильного загрязнения. Содержат большое количество органических веществ и почти лишены кислорода. Количество бактерий в 1 мл воды в полисапробной зоне достигает миллиона и более.

Мезасапробные зоны – зоны умеренного загрязнения. Количество микроорганизмов – сотни тысяч в 1 мл.

Олигосапробные зоны – зоны чистой воды. Характеризуются окончившимся процессом самоочищения. Количество бактерий от 10 до 1000в 1 мл воды.

Таким образом, патогенные микроорганизмы, попадающие в водоем, достаточно обильны в полисапробных зонах, постепенно отмирают в мезосапробных и практически не обнаруживаются в олигосапробных зонах.

При санитарно-микробиологическом исследовании воды выделяют ОКБ, энтерококки, стафилококки и патогенные микроорганизмы (сальмонеллы, холерные вибрионы, лептоспиры, шигеллы и др.). Все санитарно-микробиологические исследования воды регламентируют соответствующие ГОСТ.

Основания для санитарно-микробиологического исследования воды:

  1. Выбор источника централизованного водоснабжения и контроль за ним;
  2. Контроль эффективности обеззараживания питьевой воды централизованного водоснабжения;
  3. Наблюдение за подземными источниками водоснабжения (артезианские скважины, почвенные воды и т.д.);
  4. Наблюдение за источниками индивидуального водопользования (колодцы, родники и др.);
  5. Наблюдение за санитарно-эпидемиологическим состоянием воды открытых водоемов;
  6. Контроль эффективности обеззараживания воды плавательных бассейнов;
  7. Проверка качества очистки и обеззараживания сточных вод;
  8. Расследование водных вспышек инфекционных болезней.

Санитарно-микробиологический анализ питьевой воды

В настоящее время регламентируется Методическими указаниями МУК 4.2.1018-01.

1. Определение ОМЧ – общее число мезофильных аэробных и факультативно-анаэробных микроорганизмов, способных образовывать колонии на питательном агаре при t 0 37 0C в течение 24 часов.

Из каждой пробы делают посев не менее двух объемов по 1 мл в 2 чашки Петри по 1 мл воды + 8-12 мл расплавленного остуженного (45-49 0 С) питательного агара, перемешивают, дают застыть, ставят в термостат 37 0 С, 24 часа. Затем подсчитывают все выросшие на чашке колонии при увеличении в 2 раза (но не более 300 колоний на чашке). Количество колоний на чашках суммируют и делят на 2 – результат выражают в КОЕ на 1 мл воды. Допускается до 50 КОЕ на 1 мл воды.

  1. Определение общих и термотолерантных колиформных бактерийметодом мембранной фильтрации (основной метод).

Общие колиформные бактерии — ОКБ – грам-, оксидаза-, не образующие спор палочки, способные расти на дифференциальных лактозных средах, ферментирующие лактозу до КГ при t 0 37 0 С в течение 24 часов.

Термотолерантные колиформные бактерии — ТКБ – входят в число ОКБ, обладают всеми их признаками, кроме того, способны ферментировать лактозу до КГ при t 0 44 0 С в течение 24 часов.

Метод основан на фильтрации установленного объема воды через мембранные фильтры, выращивании посевов на дифференциальной питательной среде с лактозой и последующей идентификации колоний по культуральным и биохимическим признакам.

Анализируют 3 объема по 100 мл, можно дробить объемы (10, 40, 100, 150 мл). Отмеренный объем воды фильтруют через мембранные фильтры. Фильтры помещают на среду Эндо (до трех фильтров на 1 чашку) и инкубируют t 0 37 0 С в течение 24 часов.

Если нет роста – отрицательный результат – ОКБ и ТКБ не обнаружены. Если есть типичные лактозопозитивные колонии с отпечатком на обратной стороне фильтра, подсчитывают, подтверждают их принадлежность к ОКБ и ТКБ. Для этого исследуется

-принадлежность к грамотрицательным бактериям

-ферментация лактозы до КГ (в двух пробирках – при t 0 37 0 С и 44 0 С).

Результат высчитывают по формуле Х=а∙100/V, где

Х – число колоний в 100 мл воды.

Результат выражают в КОЕ ОКБ (ТКБ) в 100 мл воды. В норме ОКБ (ТКБ) в 100 мл воды питьевой не должны определяться.

Споры сульфитредуцирующих клостридий– спорообразующие анаэробные палочковидные бактерии, редуцирующие сульфит натрия на железо-сульфитном агаре при t 0 44 0 С в течение 16-18 часов. Метод основан на выращивании посевов в железо-сульфитном агаре в условиях, приближенных к анаэробным, и подсчете числа черных колоний.

Объем воды 20 мл прогревают на водяной бане 75-80 0 С в течение 15 минут для исключения вегетативных форм, затем фильтруют через бактериальный фильтр, который помещают в пробирку с расплавленным железо-сульфитным агаром (70-80 0 С), остужают, помещают в термостат t 0 44 0 С на 16-18 часов.

Определение колифагов.

Колифаги – вирусы бактерий, способные лизировать E.coli и формировать при t 0 37 0 С через 18-20 часов зоны лизиса бактериального газона (бляшки) на питательном агаре. Число бляшек не подсчитывается – анализ качественный.

Исследование сточных водрегламентируется МУ 2.1.5.800 – 99 «Организация Госсанэпиднадзора за обеззараживанием сточных вод», 1999 год. Применяют прямой посев на 4 чашки со средой Эндо по 0,5 мл (2 мл – весь объем). Затем подсчитывают количество КОЕ ОКБ и ТКБ, делают перерасчет на 100 мл воды.

Вода бассейновисследуется по Санитарно-эпидемиологическим правилам и нормативам — СанПиН 2.1.2.1188-03. В 100 мл воды бассейнов допускается не более 1 КОЕ ОКБ, не допускается ТКБ, колифаги, золотистый стафилококк, возбудители кишечных инфекций, синегнойная палочка. Лабораторный контроль по основным микробиологическим показателям (ОКБ, ТКБ, колифаги и золотистый стафилококк) проводится 2 раза в месяц. Исследования на наличие возбудителей кишечных инфекций проводятся при неблагоприятной эпидемической ситуации.

При появлении спорадических случаев пневмоний неясной этиологии или возникновении среди посетителей бассейна эпидемических внесезонных вспышек ОРЗ проводятся исследования воды на наличие легионелл (Legionella pneumophilia), размножению которых способствует теплая вода и брызги. При дыхании мелкодисперсный аэрозоль, содержащий легионеллы, попадает в легкие, что может вызвать «болезнь легионеров» или понтиакскую лихорадку.

Получение неудовлетворительных результатов исследований воды по основным микробиологическим, паразитологическим показателям; обнаружение возбудителей кишечных инфекционных или паразитарных заболеваний, синегнойной палочки является основанием для полной смены воды в ванне. Смена воды в ванне бассейна должна сопровождаться механической чисткой ванны, удалением донного осадка и дезинфекцией с последующим отбором проб на анализ.

ЗАБОЛЕВАНИЯ ИНФЕКЦИОННОЙ ПРИРОДЫ,

КОТОРЫЕ МОГУТ ПЕРЕДАВАТЬСЯ ЧЕРЕЗ ВОДУ ПЛАВАТЕЛЬНЫХ БАССЕЙНОВ

Заболевания Степень связи с водным фактором
1.Адено-вирусная фаринго-конъюктивальная лихорадка +++
2.Эпидермофития («чесотка пловцов») +++
3.Вирусный гепатит А ++
4.Коксаки-инфекция ++
5.Дизентерия ++
6.Отиты, синуситы, тонзиллиты, конъюктивиты ++
7.Туберкулез кожи ++
8.Грибковые заболевания кожи ++
9.Легионеллез ++
10.Энтеробиоз ++
11.Лямблиоз ++
12.Криптоспоридиоз ++
13.Полиомиелит +
14.Трахома +
15.Гоноррейный вульвовагинит +
16.Острые сальмонеллезные гастроэнтериты +
Связь с водным фактором: +++ — высокая, ++ — существенная, + — возможная

Микробиологический анализ воды открытых водоемов регламентируется МУК 4.2.1884-04 «Санитарно-микробиологический и санитарно-паразитологический анализ воды поверхностных водных объектов».

Последнее изменение этой страницы: 2016-09-18; Нарушение авторского права страницы

источник

Несоответствие воды микробиологическим нормам, так же как и химическим, делает ее непригодной для питья. Если Ваш источник водоснабжения не защищен от прямого воздействия окружающей среды или коммунальные системы устарели или давно не чистились, то сделать микробиологический анализ воды просто необходимо. От этого зависит Ваше здоровье и безопасность! Особенно это важно для тех, кто пользуется колодцем. Колодезная вода – грунтовая, она на прямую контактирует с почвами, а значит, грозит «напоить» Вас и нитратами, и тяжелыми металлами, и аммиаком, и, конечно, вредными органическими веществами, которые попадают в почву в результате деятельности сельскохозяйственных ферм или угодий.

В таблице 1 представлены микробиологические показатели действующего норматива СанПиН 2.1.4.1074-01 для питьевой воды:

Таблица 1. Микробиологические нормативы для питьевой воды

Показатель Норматив СанПиН 2.1.4.1074-01
Общая микробная численность Не более 50 КОЕ в 1 мл
Общие колиформные бактерии Отсутствие в 100 мл
Термотолерантные колиформные бактерии Отсутствие в 100 мл
Колифаги Отсутствие в 100 мл
Споры сульфитредуцирующих бактерий Отсутствие в 20 мл

Стандартный микробиологический анализ питьевой воды в МГУ включает определение трех показателей: общего микробного числа, количества общих колиформных и термотолерантных колиформных бактерий.

Расширенный микробиологический анализ воды включает анализ пяти показателей: общего микробного числа, количества общих колиформных бактерий, количества термотолерантных колиформных бактерий, титр колифагов и содержание спор сульфитредуцирующих бактерий.

Часто на наших участках или поблизости имеются водоемы, где мы и наши дети с удовольствием любим провести время. Конечно, вода в данных водоемах не является питьевой, но ее безопасность для человека также, как и питьевая, регламентируется. В таблице 2 представлены микробиологические показатели действующего норматива по гигиеническим требованиям к охране поверхностных вод (СанПиН 2.1.5.980-00)

Таблица 2. Микробиологические нормативы для рекреационного водопользования, а также в черте населенных мест

Показатель Норматив СанПиН 2.1.5.980-00
Общие колиформные бактерии Не более 500 КОЕ в 100 мл
Термотолерантные колиформные бактерии Не более 100 КОЕ в 100 мл
Колифаги Не более 100 БОЕ в 100 мл
Возбудители кишечных инфекций (анализ бактерий из сем. Enterobacteriaceae рода Salmonella) Вода не должна содержать возбудителей кишечных инфекций (полное отсутствие в 1000 мл)

Микробиологический анализ воды, предназначенной не для питья, включает определение количества двух показателей: общих колиформных и колиформных термотолерантных бактерий.

Помимо двух основных показателей мы предлагаем провести дополнительный анализ на содержание: колифагов, условно-патогенных дрожжей и микромицетов (частых спутников опортунистических заболеваний) и индекса самоочищения водоёма.

При значительном превышении нормативов СанПиН 2.1.5.980-00, а также возможном фекальном загрязнении водоёма, мы предлагаем провести анализ на наличие возбудителей кишечных инфекций (род Salmonella и Enterococcus).

Метод определяет в питьевой воде общее число мезофильных аэробных и факультативно анаэробных микроорганизмов (ОМЧ), способных образовывать колонии на питательном агаре при температуре 37 °С в течение 24 часов, видимые с увеличением в 2 раза. Данный индикатор выявляет потенциальных бактерий, способных причинить вред здоровью человека.

Общие колиформные бактерии (ОКБ) – грамотрицательные, оксидазоотрицательные, не образующие спор палочки, способные расти на дифференциальных лактозных средах, ферментирующие лактозу до кислоты, альдегида и газа при температуре (37+1) °С в течение (24-48) часов. Многие представители данной группы являются микроорганизмами нормальной микрофлоры желудка, поэтому превышение данной группы микроорганизмов может говорить о возможно антропогенном (в том числе и фекальном) загрязнении воды.

Термотолерантные колиформные бактерии (ТКБ) входят в число общих колиформных бактерий, обладают всеми их признаками и, кроме того, способны ферментировать лактозу до кислоты, альдегида и газа при температуре (44±0,5) °С в течение 24 часов. Также, как и ОКБ являются индикаторной группой, однако более устойчивые в окружающей среде: вот почему обнаружение данной группы микроорганизмов в воде может говорить об однозначном загрязнении ее продуктами жизнедеятельности человека.

Колифаги, определяемые стандартным методом (МУК 4.2.1018-01), являются вирусами кишечной палочки (Escherichia coli) и рассматриваются эпидемиологами как дополнительный, а порой и более чувствительный, метод в определении загрязнения воды микроорганизмами группы кишечной палочки. Вирусные частицы, и в частности колифаги, более устойчивы к окружающей среде, чем их бактерии-хозяева. В связи с этим, наличие колифагов может служить достоверной меткой о более давнем фекальном загрязнении источника воды. Показана прямая корреляция между содержанием колифагов в воде и опасных для человека энтеровирусов, поэтому наличие колифагов в воде может говорить о вирусном заражении источника. Действующий нормативный документ (СанПиН 2.1.4.1074-01) подразумевает отсутствие колифагов в 100 мл воды.

Сульфитредуцирующие клостридии – спорообразующие анаэробные палочковидные микроорганизмы, являющиеся дополнительным микробиологическим показателем фекального загрязнения водоема. В отличие от относительно неустойчивых колиформных и термотолерантных колиформных бактерий, споры клостридий могут сохраняться в водоемах долгое время. Клостридии встречаются в кишечнике человека и домашних животных, однако, при попадании с водой в большом количестве могут вызвать пищевые отравления. К сульфитредуцирующим клостридиям относятся в том числе и опасные для человека клостридии (Clostridiumbotulinum, Clostridium perfringens, Clostridium tetani), вызывающие тяжелейшие заболевания. Согласно действующему нормативу (СанПиН 2.1.4.1074-01) споры клостридий должны отсутствовать в 20 мл воды.

К условно-патогенным дрожжам и микромицетам (плесени) относят большую неоднородную группу грибных организмов, способных сапротрофно расти при 37 °С. В нее входят такие представители, как Candida albicans и Cryptococcus neoformans, которые являются частым фактором оппортунистических заболеваний человека, вызывая кандидозы (грибковые заболевания кожи), молочницы и проч. Другие организмы микромицеты (Cladosporium cladosporioides, Aspergillusniger) могут являться активными сенсебилизаторами аллергических реакций, а иногда и самими аллергенами. В РФ не нормируется вода по плесеням и дрожжевым организмам в воде.

Общее число микроорганизмов не нормируется в воде водоемов в зонах рекреаций, поскольку уровень этой группы микроорганизмов в большей мере зависит от природных особенностей каждого объекта, времени года и т.п.

Читайте также:  Когда лучше брать воду для анализа

Однако при выборе нового источника водоснабжения или места рекреации в воде водоёмов дополнительно следует определять общую микробную численность, вырастающую:

  • при температуре 37 °С в течение 24 часов;
  • при температуре 22 °С в течение 72 часов.
  1. ОМЧ при 37 °С представлена большей частью алохтонной микрофлорой (внесенную в водоем в результате антропогенного загрязнения, в том числе фекального);
  2. ОМЧ при 20-22 °С представлена, помимо алохтонной, аборигенной микрофлорой (естественной, свойственной для данного водоёма).

Соотношение численности этих групп микроорганизмов позволяет судить об интенсивности процесса самоочищения. При завершении процесса самоочищения коэффициент ОМЧ 22 °С/ ОМЧ 37 °С. В местах загрязнения хозяйственно-бытовыми сточными водами численные значения обеих групп близки.

Показатель позволяет получить дополнительную информацию о санитарном состоянии водоемов, источниках загрязнения, процессах самоочищения.

источник

Санитарно-микробиологическое исследование воды

Общая характеристика микрофлоры воды

Типичными водными экосистемами являются океаны, моря, озера, пруды и проточные водоемы. Вода – естественная среда обитания микроорганизмов.

Микрофлора природных вод различается по качественному и количественному составу. В большинстве это сапротрофы, но могут встречаться патогенные и условно патогенные виды. В основном это бактерии овальной и цилиндрической формы, среди которых преобладают пигментообразующие кокки, присутствуют микроорганизмы, встречающиеся в почве, где расположены водоемы.

Каждый водоем имеет характерные особенности распределения микроорганизмов как по вертикали, так и по горизонтали. В количественном отношении содержание их достаточно велико. В морской воде и иле пресноводных водоемов от 10 млн. до 3 млрд. клеток в 1 мл. Основная масса расположена в прибрежных зонах. На глубине 1 км встречаются единичные представители, а до 4 км они практически отсутствуют.

Подземные воды, родниковые и воды глубоких артезианских колодцев содержат единичные микробные клетки. Подземные воды обычных колодцев содержат значительное количество микроорганизмов; чем ближе к поверхности расположены грунтовые воды, тем обильнее их микрофлора.

В воде открытых водоемов (поверхностные воды) количество микроорганизмов изменяется в зависимости от метеоусловий и времени года. Зимой микрофлора воды в 4–12 раз беднее, чем летом.

В вертикальном направлении микроорганизмы распределены в воде более равномерно, чем в почве. На глубине 21 м микроорганизмов только в 2

раза меньше, чем на глубине 3 м.

В сточных водах содержится много биогенных фосфор-, углерод-, азотсодержащих соединений, которые попадают в водоемы. По мере удаления от населенных пунктов и предприятий, содержание органики и количество микроорганизмов в воде уменьшается. Этот процесс называется самоочищением воды. Основную роль в самоочищении вод от органических,

синтетических веществ играют сапротрофные микроорганизмы, грибы, гидробионты, высшие растения. При этом микроорганизмы обладают высокой

пластичностью, имеют мощные ферментные системы, благодаря которым

загрязняющие вещества минерализуются и разрушаются.

Установлено, что под влиянием загрязняющих веществ в пресноводных экосистемах отмечается падение их устойчивости вследствие нарушения пищевой пирамиды и ломки сигнальных связей в биоценозе, микробиологического загрязнения, эвтрофирования и других крайне неблагоприятных процессов.

Сапробность – комплекс особенностей водоема, отличающихся степенью загрязненности органическими веществами и определяющих развитие соответствующих организмов в воде. Различают три типа сапробности.

1. Полисапробная зона – сильно загрязненная, характеризуется большим количеством высокомолекулярных органических соединений, незначительным содержанием кислорода. Преобладают анаэробные бактерии, вызывающие гниение и брожение. В 1 мл воды содержится несколько миллионов бактерий.

2. Мезосапробная зона – умеренно загрязненная. Идут интенсивные процессы минерализации, но преобладают окислительные процессы. За счет

минерализации органических веществ уменьшается количество сапротрофных бактерий. В этой зоне содержатся аммиак и метан.

3. Олигосапробная зона – зона чистой воды, органических веществ нет,

окислительные процессы прекращаются. Численность бактерий снижается до 10–100 кл/мл.

В естественных незагрязненных проточных водоемах часто бывает так

мало одноклеточных организмов, что вода кажется кристально прозрачной.

Состав микрофлоры и микрофауны в водоеме служит хорошим индикатором степени его загрязнения. Если в водоеме еще встречаются дафнии – значит, вода чистая. Присутствие Sphaerotilus natans указывает на сильное загрязнение органическими веществами, а запах сероводорода свидетельствует об анаэробной сульфатредукции, т. е. служит сигналом тревоги.

Интенсивность и направленность микробиологических процессов зависит от температуры и содержания в воде молекулярного кислорода. В зависимости от количества кислорода в водоемах выделяют три зоны.

1. Аэробная – поверхностная зона, содержит много кислорода. Ее населяют водоросли и микроорганизмы, осуществляющие процессы минерализации: Pseudomonas, Artrobacter, миксобактерии. Толщина слоя зависит от количества органики. Если органических веществ мало, то аэробы растут медленно, кислород проходит вглубь и зона увеличивается. Если органики много, то происходит быстрый рост микроорганизмов и кислород не проходит.

2. Анаэробная – содержит мало кислорода. Обитают факультативные и облигатные анаэробы. Нет процесса нитрификации – выделяется аммиак, вода бедна нитратами. Выделяется много метана. Если содержится много сульфатов, то образуется сероводород. Если мало сульфатов, то сероводород образуется за счет расщепления серосодержащих аминокислот. В этой зоне обнаруживаются пурпурные и зеленые серобактерии, сульфатредуцирующие бактерии, можно найти формы, обладающие газовыми вакуолями, такие как: Lamprocystis, Amoebobacter, Thiodictyon, Thiopedia, Pelodictyon и Ancalochloris, а также передвигающиеся с помощью жгутиков виды Chromatium и Thiospirillum.

3. Микроаэрофильная – промежуточная между первой и второй. Сверху немного кислорода, снизу – метан, аммиак, окислы металлов. Обитают хемолитоавтотрофы: водород-, метан-, железоокисляющие бактерии. Для зоны также характерна высокая биологическая активность. Здесь развиваются некоторые цианобактерии, способные переносить присутствие сероводорода и отсутствие О2, в том числе Oscillatoria limnetica.

Скорость использования веществ в анаэробных условиях невысока.

При этом накапливаются продукты брожения, которые ингибируют последующие процессы разложения органики, и она оседает на дно.

При санитарно-микробиологическом исследовании воды определяют микробное число (численность микроорганизмов в 1 мл), коли-титр или коли-индекс в 1 л воды и наличие энтерококков в 50 мл воды. При специальном санитарно-микробиологическом исследовании воды наряду с этим учитывают патогенные микроорганизмы: возбудителей дизентерии, брюшного тифа, паратифа А, Б и холеры.

Установление микробного числа проводят методом культивирования или методом фильтрации с использованием мембранных фильтров. Последний является более точным. При определении микробного числа методом культивирования делают посев воды на МПА.

Водопроводную воду засевают в количестве 1 мл, из естественных водоемов для засева используют разведения 1:10, 1:100 и 1:1000. Посевы инкубируют при 37 °С в течение двух суток, ведут подсчет выросших колоний в чашках и делают пересчет количества микроорганизмов на 1 мл воды.

Вода считается хорошего качества, если число микроорганизмов менее 100 на 1 мл воды, сомнительной – 100–150 микроорганизмов на 1 мл, загрязненной – 150–500 микроорганизмов на 1 мл, грязной – более 500 микроорганизмов на 1 мл воды. Вода, содержащая в 1 мл 100 и более микроорганизмов, считается непригодной для питья.

После установления общего микробного числа определяют бактерии группы кишечной палочки. У нас в стране действуют следующие нормативы для питьевой воды централизованного водоснабжения СанПиН 2.1.4.1074–01, для питьевой воды нецентрализованного водоснабжения СанПиН 2.1.4.544–96, согласно которым допускается не более трех кишечных палочек на 1000 мл воды. По международному стандарту вода считается превосходной, когда в 100 мл воды нет ни одной кишечной палочки; удовлетворительной – одна–три кишечные палочки; сомнительного качества – четыре–десять и неудовлетворительного качества – более десяти кишечных палочек.

Кишечные палочки в санитарной микробиологии воды используются в

качестве: показателя чистоты; индикатора фекального загрязнения воды; косвенного показателя загрязнения воды патогенными микроорганизмами – возбудителями кишечных инфекций.

После обнаружения кишечной палочки в воде определяют энтерококки. В качестве санитарно-показательных используется два вида стрептококков: Enterococcus faecalis и Enterococcus faecium.

Через мембранный фильтр пропускают 50 мл воды и мембранные фильтры выкладывают на агаризованные диагностические среды. Для обнаружения энтерококков используют среды, содержащие 40 % желчи (рН 9.6–10.2) или среды с азидом натрия и азидом калия. На этих средах колонии энтерококков имеют черный цвет. По ГОСТу в питьевой воде не должно содержаться ни одного энтерококка в 50 мл воды.

Для отбора проб используют специально предназначенную для этих целей: одноразовую посуду или емкости многократного применения, изготовленные из материалов, не влияющих на жизнедеятельность микроорганизмов. Емкости оснащены плотно закрывающимися пробками (силиконовыми, резиновыми) и защитным колпачком. Многоразовая посуда и пробки должны выдерживать стерилизацию сухим жаром или автоклавированием. При отборе проб в одной и той же точке для различных целей первыми отбирают пробы для бактериологических исследований.

Отобранную пробу маркируют и сопровождают документом отбора проб воды с указанием места, даты, времени забора, фамилии специалиста, отбиравшего пробу и цели исследования. Указывают особые обстоятельства: глубину отбора, условия транспортировки, время спуска воды из крана и т. д.

Доставку проб питьевой воды осуществляют в контейнерах-холодильниках при температуре 4-100 С. При соблюдении указанных условий срок начала исследований от момента отбора проб не должен превышать 6 ч.

Определение микробного числа воды

С флаконов с пробкой снимают бумажные колпачки, вынимают пробки, горлышки фламбируют, после чего воду тщательно перемешивают. Из каждой пробы делают посев с таким расчетом, чтобы число выросших на чашках колоний колебалось в пределах от 30 до 300.

По 1 мл каждого разведения вносят в 2 стерильные чашки Петри, после чего их заливают 10-15 мл расплавленного и остуженного до 45-500С МПА (РПА), который тщательно круговыми движениями перемешивают. Среде дают застыть и инкубируют при 370С. Воду из открытых водоемов засевают параллельно на две серии чашек, одну из которых инкубируют при 370С в течение суток, а другую – 2 суток при 200С. Затем подсчитывают количество выросших на поверхности и глубине среды колоний и вычисляют микробное число воды – количество микроорганизмов в 1 мл.

Определение общих и термотолерантных колиформных бактерий

К общим термотолерантным бактериям (ОКБ) относятся аэробные и факультативно-анаэробные не образующие спор грамотрицательные оксидазоотрицательные палочки, сбраживающие лактозу с образованием кислоты и газа при температуре 37(±1)0С в течение 24-48 ч. Термотолерантные колиформные бактерии (ТКБ) в дополнение к вышеперечисленному сбраживают лактозу до кислоты и газа при 44(±0,5)0С в течение 24 ч.

ОКБ и ТКБ определяют титрационным (бродильным) и мембранными методами. Арбитражным является метод мембранной фильтрации.

Задания для самостоятельной подготовки по теме занятия.

1. Описать проведение титрационного (бродильного)метода определения ОКБ и ТКБ

2. Записать рецепты питательных сред: МПА, глюкозо-петонной среды, среды Эндо, железо-сульфитного агара (среды Вильсон-Блера), энтерококковый агар, желточно-солевой агар.

3. Знать последователльность этапов проведения санитарно-микробиологических исследований воды

источник

УТВЕРЖДАЮ
Главный государственный
санитарный врач
Российской Федерации
Г.Г. Онищенко
27 декабря 1999 г.
Дата введения: 01.06.00

2.1.5. ВОДООТВЕДЕНИЕ НАСЕЛЕННЫХ МЕСТ, САНИТАРНАЯ ОХРАНА ВОДОЕМОВ

Организация госсанэпиднадзора за обеззараживанием сточных вод

1.1. Настоящие методические указания устанавливают гигиенические требования к организации и контролю за обеззараживанием сточных вод.

1.2. Методические указания предназначаются для организаций, предприятий и иных хозяйственных субъектов (независимо от подчиненности и форм собственности), эксплуатирующих системы канализации и осуществляющих производственный контроль, занимающихся проектированием, строительством, реконструкцией очистных сооружений, а также органов и учреждений санитарно-эпидемиологической службы, обеспечивающих государственный и ведомственный надзор за состоянием водоемов в местах водопользования населения, использованием сточных вод в системах промышленного водоснабжения и для орошения сельскохозяйственных угодий.

1.3. Методические указания не распространяются на требования к организации и контролю за обеззараживанием стоков от возбудителей паразитарных заболеваний и яиц гельминтов.

2.1. Закон Российской Федерации «О санитарно-эпидемиологическом благополучии населения» № 52-ФЗ от 30.04.99 г.

2.2. Закон Российской Федерации «Об охране окружающей среды» № 96-ФЗ от 19.12.91.

2.3. Водный кодекс Российской Федерации № 167-ФЗ от 16.11.95.

2.4. Закон Российской Федерации «О лицензировании отдельных видов деятельности» № 158-ФЗ от 25.09.98 г.

2.5. «Положение о государственной санитарно-эпидемиологической службе Российской Федерации», Постановление Правительства Российской Федерации № 680 от 30.07.1998 г.

2.6. «Порядок разработки, экспертизы, утверждения, издания и распространения нормативных и методических документов системы Государственного санитарно-эпидемиологического нормирования: Сборник Р 1.1.001-1.1.005-96

3.1. Сточные воды являются основным источником микробного загрязнения объектов окружающей среды, в т.ч. поверхностных пресных и морских вод, подземных водоносных горизонтов, питьевой воды и почвы, что является фактором риска распространения возбудителей инфекций с фекально-оральным механизмом передачи.

3.2. К наиболее опасным в эпидемическом отношении относят следующие виды сточных вод: (приложение 1):

хозяйственно-бытовые сточные воды;

городские смешанные (промышленно-бытовые) сточные воды;

сточные воды инфекционных больниц;

сточные воды от животноводческих и птицеводческих объектов и предприятий по переработке продуктов животноводства, стоки шерстомоек, биофабрик, мясокомбинатов и т.д.;

шахтные и карьерные сточные воды;

3.3. Для хозяйственно-бытовых сточных вод характерно относительно стабильное качество (при соблюдении норм водопользования). Эти стоки отличаются высоким уровнем микробного загрязнения на фоне значительной концентрации взвешенных частиц и органических веществ. Поэтому перед обеззараживанием необходима их механическая и биологическая очистка.

Состав и свойства городских смешанных сточных вод (промышленно-бытовых) определяются соотношением хозяйственно-бытовых и промышленных стоков и спецификой предприятий, формирующих эти стоки. Дополнительные трудности при их обеззараживании возникают в связи с тем, что микробное загрязнение этих вод сочетается с разнообразными органическими и неорганическими веществами, которые сами по себе могут быть как дополнительными бактерицидами и бактериостатиками, так и служить благоприятной средой для размножения микроорганизмов.

Сточные воды инфекционных больниц и отделений характеризуются небольшим объемом, неравномерностью образования и состава в течение суток, значительной обсемененностью возбудителями инфекций.

Сточные воды от животноводческих и птицеводческих комплексов имеют высокое органическое и микробное загрязнение. При подготовке этих сточных вод к обеззараживанию должно быть предусмотрено отстаивание с последующей очисткой.

Для поверхностно-ливневых вод характерна неравномерность объема по сезонам года, а уровень микробного загрязнения зависит от степени благоустройства территории.

Шахтные и карьерные сточные воды формируются из подземных и поверхностных вод, попадающих в горные выработки и загрязняющихся в процессе их эксплуатации. В этих водах высокое микробное загрязнение сочетается с наличием крупнодисперсной взвеси, которую перед обеззараживанием обычно удаляют.

Дренажные воды отличаются наличием микробного загрязнения и высоким уровнем минеральных солей.

Практически все перечисленные виды сточных вод могут содержать патогенные микроорганизмы — возбудители таких инфекций как холера, брюшной тиф, паратиф А и В, сальмонеллезы, дизентерия, вирусные гепатиты А и Е, полиомиелиты 1-3 типов и другие энтеровирусные и аденовирусные заболевания, амебиаз, лямблиоз, лептоспироз, бруцеллез, туляремия, туберкулез, гельминтозы, кампилобактериозы.

3.4. Интенсивная циркуляция возбудителей кишечных инфекций в воде водоемов при сбросе необеззараженных сточных вод приводит к риску возникновения заболеваний при водопользовании населения, который возрастает в летний период при активном использовании водоемов в целях рекреации и ирригации.

В зимний период возрастает риск микробного загрязнения водоемов у мест водозаборов из-за снижения их самоочищающей способности. Следствием этого является более длительная выживаемость и сохранение вирулентных свойств патогенных микроорганизмов в холодной воде. Кроме того, одновременное ухудшение условий очистки и обеззараживания на водопроводных станциях при низкой температуре может привести к нарушению безопасности хозяйственно-питьевого водопользования населения.

Читайте также:  Когда нужен химический анализ воды

3.5. В соответствии с санитарными правилами по охране поверхностных вод от загрязнения, сточные воды, опасные в эпидемическом отношении, должны подвергаться обеззараживанию.

Необходимость обеззараживания сточных вод указанных категорий обосновывается условиями их отведения и использования при согласовании с органами госсанэпиднадзора в территориях.

Обязательному обеззараживанию подвергаются сточные воды при сбросе в водоемы рекреационного и спортивного назначения, при их повторном промышленном использовании и т.д.

3.6. Обеззараживание сточных вод следует организовывать на заключительном этапе их очистки, поскольку эффект существенно зависит от качества поступающего на обеззараживание стока. Основное значение имеет вид и уровень микробного загрязнения, способ дезинфекции, доза, время контакта, условия внесения дезинфектанта, степень смешения и т.п. Кроме того, в зависимости от используемого способа дезинфекции имеют значение рН, температура воды, концентрация взвешенных веществ и другие факторы.

3.7. К наиболее распространенным методам обеззараживания сточных вод в настоящее время относятся: хлорирование, озонирование, ультрафиолетовое облучение (УФО) и их сочетание. Кроме того, перспективны разрабатываемые обеззараживающие технологии сточных вод, такие как гамма-облучение, электрический импульсный разряд, виброакустический, термический и другие способы.

3.8. Устойчивость микроорганизмов при любом способе обеззараживания во многом определяется различиями в механизмах процессов воздействия дезинфектанта.

Механизм окислительного бактерицидного действия хлора связан с повреждением клеточной оболочки, подавлением ферментной системы бактерий, разрушением нуклеиновых кислот.

Инактивирующее действие озона обусловлено высоким окислительно-восстановительным потенциалом, в результате чего происходит разрушение протоплазмы, стенок и цитоплазматических мембран бактерий, протеиновых оболочек вирусов.

Бактерицидное действие УФО основано преимущественно на повреждении структур ДНК и РНК микробной клетки, нарушении проницаемости клеточных мембран. При фотохимическом воздействии лучистой энергии изменяются и разрываются химические связи органической молекулы.

3.9. Полученные в экспериментальных исследованиях большие различия в устойчивости содержащихся в сточных водах индикаторных и патогенных микроорганизмов к обеззараживающему агенту необходимо учитывать при выборе показателей для организации опытно-промышленных испытаний, заключении об эпидемической надежности обеззараживания в отношении того или иного возбудителя на основании индикаторных бактерий. Общее представление о сравнительной устойчивости основных групп микроорганизмов (по мере возрастания) следующее: кишечные бактерии, колифаги, вирусы, споры, цисты простейших.

3.10. При выборе метода обеззараживания сточных вод необходимо учитывать гигиеническую надежность бактерицидного и вирулицидного эффекта, медико-биологические последствия при дальнейшем использовании обеззараженных стоков, эксплуатационную и экономическую целесообразность.

Обеззараживание сточных вод хлором и озоном относится к реагентным способам.

Обеззараживание сточных вод хлором является наиболее простым технологическим решением. В результате хлорирования возможно образование нескольких десятков высокотоксичных веществ, включая канцерогенные, мутагенные, с величинами ПДК на уровне сотых и тысячных мг/л (приложение 2). Появление таких веществ в сточных водах после хлорирования ужесточает условия сброса в водоем, влияет на здоровье населения при водопользовании.

При отведении хлорированных сточных вод в водоем поступают значительные концентрации хлора. В результате может иметь место гибель водных биоценозов (планктона, сапрофитной микрофлоры) и практически полное прекращение процессов самоочищения, в т.ч. и от патогенной микрофлоры. Решить эту проблему можно путем адекватного дехлорирования обеззараженных хлором стоков перед их сбросом в водоемы. Необходимо учитывать также попадание в водоемы хлорустойчивых штаммов как индикаторных, так и патогенных микроорганизмов, что создает проблему при водоподготовке питьевой воды на водопроводных станциях.

Применение озона на крупных очистных станциях может быть целесообразным, так как образуется гораздо меньше новых вредных веществ, в основном альдегидов и кетонов, не обладающих высокой токсичностью (приложение 2). Озон, как сильный окислитель, обеспечивает не только обеззараживание, но и при озонировании некоторых видов стоков (в зависимости от их состава) происходит улучшение органолептических свойств воды, а при озонировании других — возможно ухудшение физико-химических показателей.

При использовании УФО бактерицидный эффект, как правило, не сопровождается образованием токсичных продуктов трансформации химических соединений сточных вод, в следствии чего нет необходимости обезвреживания их после обработки. Отсутствие пролонгированного биоцидного действия также является существенным преимуществом метода УФО, т.к. сток при сбросе в водоем не оказывает влияния на водные биоценозы.

При обеззараживании стоков УФО необходимо учитывать возможность репарации (фотореактивации) под действием солнечного света микроорганизмов, поврежденных в процессе облучения.

4. Гигиеническая оценка эффективности обеззараживания сточных вод

4.1. Основная цель обеззараживания сточных вод это обеспечение эпидемической безопасности при их отведении в водные объекты, используемые для хозяйственно-питьевого, культурно-бытового и рыбохозяйственного водопользования, при применении в промышленном водоснабжении в открытых и закрытых системах, а также при отведении на поля орошения.

4.2. В основе оценки эффективности обеззараживания сточных вод заложен принцип соответствия качества обеззараженного стока требованиям, указанным в приложении 3, с учетом условий его отведения или использования.

При отведении обеззараженных сточных вод в поверхностные водные объекты необходимо соблюдать требования санитарных правил по охране поверхностных вод от загрязнения.

При использовании стока для орошения руководствуются гигиеническими требованиями к использованию сточных вод и их осадков для орошения и удобрения.

При применении обеззараженного стока в системах оборотного и повторного водоснабжения следует соблюдать требования методических указаний по гигиенической оценке использования доочищенных городских сточных вод в промышленном водоснабжении.

Сточные воды инфекционных больниц подлежат обеззараживанию в соответствии с правилами приема производственных сточных вод в системы канализации населенных пунктов.

Хлорированные сточные воды перед сбросом в водоем должны подвергаться дехлорированию (реагентный метод, аэрация и др.). В том случае, когда дехлорирование невозможно обеспечить, должны применяться другие способы обеззараживания.

4.3. Комплекс показателей, по которым проводят оценку эффективности обеззараживания сточных вод при сбросе в водные объекты, при использовании в промышленном водоснабжении и для орошения сельскохозяйственных земель, должен гарантировать эпидемическую безопасность и безвредность.

4.4. Основным критерием эпидемической безопасности является отсутствие патогенных микроорганизмов — возбудителей инфекционных заболеваний.

4.5. Согласно действующим санитарным правилам по охране поверхностных вод от загрязнения, индикаторными микробиологическими показателями эффективности обеззараживания являются:

общие колиформные бактерии (лактозоположительные кишечные палочки), как микробиологические показатели, характеризующие уровень фекального загрязнения сточных вод и степень вероятности присутствия возбудителей бактериальных кишечных инфекций;

колифаги, как индикаторы вирусного загрязнения хозяйственно-бытовых сточных вод.

В качестве индикаторных микроорганизмов в ряде стран рекомендуется использовать термотолерантные (фекальные) колиформные бактерии, Е. coli , фекальные стрептококки.

4.6. Наряду с микробиологическими показателями, контроль за обеззараживанием сточных вод хлором и озоном осуществляется по определению их остаточных концентраций (после завершения процесса обеззараживания).

4.7. Эффективную обеззараживающую дозу выбирают опытным путем для конкретной сточной жидкости, подлежащей обеззараживанию. При этом эффективная доза реагента слагается из хлорпоглощаемости или озонопотребности (абсорбированная доза озона) и остаточных количеств соответствующего реагента после контакта в течение необходимого времени. Хлорпоглощаемость и озонопотребность сточной жидкости зависят от ее качества.

4.8. Эффективность УФО, как метода обеззараживания, определяется дозой УФО (интенсивностью потока излучения) и длительностью воздействия. Надежность контроля за процессом обеззараживания УФО обеспечивается в соответствии с методическими указаниями по санитарно-эпидемиологическому надзору за обеззараживанием сточных вод УФ излучением.

4.9. При введении этапа обеззараживания необходимо предусмотреть очистку или доочистку сточных вод до качества, при котором может быть достигнута эффективная инактивация микробного загрязнения. Сточные воды, поступающие на обеззараживание, по основным показателям должны удовлетворять требованиям, указанным в приложении 4. При превышении уровней этих показателей или одного из них требуется проведение исследований по обоснованию режимов обеззараживания, обеспечивающих необходимый эффект.

5. Требования к производственному контролю за эффективностью обеззараживания

5.1. При эксплуатации очистных сооружений необходимо контролировать:

качество стока, поступающего на обеззараживание;

эффективность обеззараживания сточных вод;

соблюдение технологических правил, режимов обеззараживания, установленных в технических условиях;

соблюдение мер по обеспечению безопасности труда персонала.

5.2. В соответствии с действующим законодательством производственный контроль за эффективностью обеззараживания сточных вод выполняют лаборатории предприятий и учреждений, в ведении которых находится очистное сооружение.

При отсутствии производственной лаборатории исследования осуществляются на договорной основе аккредитованными в установленном порядке лабораториями.

5.3. Программа производственного лабораторного контроля за эффективностью обеззараживания должна быть согласована с центрами госсанэпиднадзора на территориях.

При разработке программы производственного контроля следует использовать рекомендации, представленные в приложении 5.

5.4. Пробы отбирают до и после обеззараживания сточной жидкости. Правила отбора, хранения и транспортирования проб на микробиологические показатели должны соответствовать методическим указаниям по методам санитарно-микробиологического анализа питьевой воды.

При использовании реагентных методов обеззараживания необходимо немедленно после отбора нейтрализовать остаточные количества дезинфектанта.

Допуск к отбору проб осуществляется только после инструктажа по технике безопасности работы с источниками инфекции.

5.5. Для установления влияния сброса обеззараженных сточных вод на качество воды водоема периодически осуществляется контроль по микробиологическим и химическим показателям в створах выше и ниже выпуска после полного смешения.

5.6. При несоответствии результатов анализа обеззараженных сточных вод гигиеническим критериям по индикаторным микробиологическим показателям организуют повторный отбор проб до и после обеззараживания.

При несоблюдении нормативов по индикаторным показателям в трижды последовательно отобранных пробах (через сутки) воду анализируют на наличие патогенных микроорганизмов.

При обнаружении возбудителей инфекционных заболеваний в обеззараженной воде необходимо немедленно поставить в известность центры госсанэпиднадзора и провести коррекцию технологического процесса обеззараживания.

5.7. В процессе производственного контроля определяется соответствие эксплуатационного режима обеззараживания регламенту, зафиксированному в технологических картах.

5.8. При использовании в качестве дезинфектантов хлора и озона на стадии внедрения обеззараживания проводят определение веществ, которые могут образоваться в процессе хлорирования или озонирования. Для этой цели следует использовать современные инструментальные методы.

5.9. Условия отведения в водоемы сточных вод, содержащих токсиканты, которые образовались в результате обеззараживания, должны соответствовать требованиям санитарных правил по охране поверхностных вод от загрязнения.

5.10. На действующих очистных сооружениях определение специфических показателей осуществляют согласно приложению 5 в зависимости от согласованных условий сброса стоков.

5.11. Лабораторный контроль проводят по микробиологическим показателям методами, изложенными в приложении 6-8.

Перечень санитарно-химических показателей, необходимых для производственного контроля, устанавливают исходя из применяемого способа обеззараживания и результатов опытно-промышленных испытаний с последующей коррекцией в процессе работы.

Перечень приоритетных показателей должен быть согласован с центрами ГСЭН на территориях.

6. Санитарно-эпидемиологический надзор за эффективностью обеззараживания

6.1. Государственный Санитарно-эпидемиологический надзор за эффективностью обеззараживания сточных вод включает:

согласование условий отведения и использования сточных вод;

согласование технологий обеззараживания сточных вод, программ производственного контроля (показатели, кратность и точки отбора проб, методы определения);

регулярный анализ результатов, полученных в процессе производственного контроля;

внесение предложений об изменении условий отведения обеззараженного стока;

своевременная информация органов местного самоуправления об угрозе возникновения или наличия эпидемического неблагополучия;

лабораторный контроль (при отведении сточных вод в водные объекты) за эффективностью обеззараживания в створах хозяйственно-питьевого и культурно-бытового водопользования населения в соответствии с требованиями санитарных правил по охране поверхностных вод от загрязнения.

6.2. Для согласования технологий обеззараживания сточных вод должны быть представлены:

данные по эффективности обработки сточных вод на этапах очистки и доочистки;

санитарно-микробиологические и санитарно-химические характеристики воды, поступающей на обеззараживание;

параметры обеззараживания (доза реагента, время контакта и др.);

результаты экспериментальных (на новые методы) и опытно-промышленных испытаний;

гигиенические заключения и сертификаты соответствия на технологию и оборудование.

6.3. Материалы экспериментальных исследований, предоставленные для выдачи санитарно-эпидемиологических заключений на новые методы обеззараживания, должны включать дозо-временные параметры, обеспечивающие необходимый эффект в соответствии с гигиеническими требованиями по индикаторным (из реального стока) и патогенным бактериям и вирусам, добавленным в виде чистых культур в количестве, на порядок меньшем, чем число индикаторных. При этом набор показателей должен быть расширен: помимо основных (общие колиформные бактерии и колифаги) в исследования включают дополнительные индикаторные и другие показатели с учетом специфических особенностей стока, например, от туберкулезных больниц. Эксперименты должны быть выполнены при различных условиях, влияющих на процесс обеззараживания (рН, температура, качественный состав стока, исходные концентрации микроорганизмов, видовые и штаммовые различия и др.).

6.4. При опытно-промышленных испытаниях должны быть выполнены аналогичные исследования на очистных сооружениях, где рекомендуется введение обеззараживания с учетом конкретных факторов и местных условий, колебаний качественного состава стока. Помимо бактерицидного эффекта должны быть даны материалы лабораторных исследований на наличие новых веществ в результате трансформации химических соединений конкретного стока (при реагентных методах обеззараживания) и учетом отрицательного влияния при его отведении. При оценке результатов опытно-промышленных испытаний эффективность обеззараживания следует считать удовлетворительной при следующих условиях: не более 15 % проб может превышать норматив по каждому из индикаторных показателей в серии не менее 10 последовательно отобранных проб; при этом превышение норматива допускается не более чем в 2,5 раза; отсутствие патогенных микроорганизмов в 1 л воды в любой отобранной пробе.

6.5. При анализе данных, полученных из производственных лабораторий и центров ГСЭН, обращается внимание на:

соответствие обнаруженных величин нормативным требованиям;

противоречивость результатов анализов производственной лаборатории и лаборатории центров ГСЭН;

уровни загрязнения обеззараженных стоков по индикаторным микроорганизмам, что позволяет судить о степени их потенциальной эпидемической опасности при сбросе в водные объекты.

6.6. Постоянно проводимый центрами ГСЭН скрининг инфекционной заболеваемости на территории населенного пункта позволяет ориентироваться в выборе адекватных патогенных микроорганизмов, подлежащих контролю в обеззараженных сточных водах.

При изменении эпидемической ситуации в населенном пункте следует проводить корректировку программы производственного лабораторного контроля с обязательным исследованием на соответствующую патогенную микрофлору.

6.7. При осуществлении центрами госсанэпиднадзора контроля за эффективностью обеззараживания сточных вод проверяется ведение документации, где регистрируются результаты санитарно-микробиологических и санитарно-химических анализов по согласованным показателям, а также технологические параметры обеззараживания (остаточные количества хлора или озона, доза УФО) и т.п.

Кроме того, центрами ГСЭН осуществляется выборочный лабораторный контроль за эффективностью обеззараживания сточных вод по программе и в сроки, установленные с учетом санитарно-эпидемической обстановки и по эпидемическим показаниям.

6.8. При контроле за соблюдением гигиенических требований к условиям труда персонала, работающего на сооружениях по очистке и обеззараживанию сточных вод, необходимо проведение исследований воздуха рабочей зоны на содержание хлора и (или) озона, предельно допустимые концентрации которых 1,0 мг/м 3 и 0,1 мг/м 3 соответственно.

Помимо соблюдения общих правил и инструкций по технике безопасности должны проводиться специальные мероприятия применительно к конкретному методу обеззараживания, а также с учетом безопасности работы с микроорганизмами III и IV групп патогенности.

Интенсивность загрязнения сточных вод по микробиологическим показателям (ориентировочные данные)

источник