Меню Рубрики

Результат анализа воды в пруду

Контроль над средой обитания — важнейшее условие успешного выращивания и содержания рыб. Гидрохимический и бактериологический анализ должен осуществляться регулярно не реже 1 раза в месяц, а в критических ситуациях — ежедневно. Самый ответственный момент в осуществлении гидрохимических исследований — правильный отбор проб. Отобранная проба должна адекватно отражать солевой состав воды в водоеме. Водная масса в пруду не однородна по глубинам и по площадям, застойные зоны могут сильно отличаться от областей с высокой проточностью. Ошибки в отборе проб воды сделают все исследования бессмысленными. Отбор проб воды следует поручить специалисту.

Наряду с гидрохимическими исследованиями настоятельно рекомендуется проводить и бактериологические. Эти весьма чувствительные методы позволяют своевременно выявить загрязнение водоема хозфекальными стоками и оценить безопасность водоема с позиций санитарных требований.

Однократные нерегулярные анализы воды мало информативны. По ним трудно оценить состояние водоема и найти причину гибели рыбы. Необходимо знать, какова динамика того или иного соединения в течение года. Сравнение показателей химического анализа воды с рыбохозяйственными ПДК (предельно допустимая концентрация) — самый первый и самый простой этап прочтения результатов исследований воды. Гораздо важнее понять, какие процессы протекают в водоеме, и в каком направлении они идут. Это позволит сделать прогноз и принять предупреждающие меры.

Как показывает статистика, около 90% всех случаев гибели рыбы в рыбхозах России вызвано нарушениями кислородного режима, 5% является следствием токсикозов, и 5% вызвано заболеваниями.

Некоторые сведения, полезные для оценки результатов анализа воды, приводятся ниже, однако целесообразно для прочтения их привлечь специалиста, знакомого с рыбохозяйственной гидрохимией. Мы проводим анализы воды в сертифицированной гидрохимической лаборатории. Исследуются следующие показатели: рН, цветность, мутность, перманганатная окисляемость, жесткость, сульфаты, хлориды,нитраты, нитриты, аммонийный азот, СПАВ, общая минерализация, окислительно-восстановительный потенциал. В необходимых случаях число исследуемых показателей может быть существенно расширено.

Как показал анализ причин гибели рыбы, проведенный в 1980 году по материалам Центральной лаборатории ихтиопатологической службы, более 90% случаев гибели рыбы в рыбоводных хозяйствах Российской Федерации объяснялись заморами. В наше время эта проблема по-прежнему остается актуальной. В современных жестких экономических условиях ошибка в определении концентрации кислорода в рыбоводных емкостях может привести к экономическому краху предприятия. В 70е годы прошлого века в подавляющем большинстве рыбоводных хозяйств измерение содержания кислорода в воде проводилось точным и надежным, но сравнительно трудоемким методом Винклера, требовавшим хорошо оснащенной лаборатории и опытного персонала. Но в рыбхозе трудно организовать гидрохимическую лабораторию, отвечающую всем необходимым условиям, по этому результаты анализов часто страдали низкой точностью. В частности, систематические ошибки возникали при отборе проб воды непосредственно в кислородные склянки, а именно такой способ отбора практиковался повсеместно в рыбхозах. При низком содержании кислорода вода очень быстро насыщается им при контакте с воздухом, что и происходит при отборе пробы сразу в кислородную склянку. Существовали и другие проблемы: дефицит батометров для отбора проб с разных глубин, сложности с отбором проб зимой, и пр. По этому, когда появились оксиметры, рыбоводы безоговорочно сделали выбор в их пользу. Сейчас в рыбоводстве о иодометрическом методе определения кислорода по Винклеру практически забыли. Повсеместное распространение получили термооксиметры, причем импортные приборы из-за высокой цены занимают на рынке отнюдь не доминирующие позиции.

Первые оксиметры со стрелочными приборами, еще в деревянных футлярах, изготовленные в Тартусском госуниверситете, поразили удобством и простотой измерений. Поскольку в этих приборах не было термокомпенсации, конечный результат получали путем несложных упражнений с номограммой и линейкой, предварительно измерив температуру воды. Добрым словом можно вспомнить самые массовые в советское время термооксиметры Н20 ИОА, появившиеся почти во всех рыбоводных хозяйствах. Хорошо зарекомендовали себя оксиметры Гомельского приборного завода, однако, они не получили в рыбоводстве широкого распространения. Наряду с преимуществами (портативность, быстрота измерений, возможность измерения кислорода на разных глубинах, непрерывная регистрация, возможность включения и отключения систем аэрации) есть у термооксиметров и слабые стороны. К ним можно отнести высокую чувствительность пленочной мембраны зонда к механическим повреждениям, сравнительно быстрое старение самой измерительной ячейки, «живущей», как правило, менее 2 лет, инерционность при измерениях, особенно высокую зимой, необходимость периодических калибровок, чувствительность самого прибора к температуре окружающей среды (один из отечественных приборов). Некоторые приборы требуют высококвалифицированного оператора и могут калиброваться только в условиях хорошо оснащенной лаборатории.

Измерительные зонды термооксиметров обычно бывают двух типов: с боковой или торцевой мембраной. Зонды с боковой мембраной не разборные и не подлежат ремонту при повреждении. Особенностью таких зондов является более высокая инерционность и чувствительность к скорости течения воды. Для получения правильных показаний необходимо, чтобы вода непрерывно омывала мембрану зонда. Зонды с торцевой мембраной, как правило, разборные, при этом в комплекте с прибором поставляется электролит, шприц для заправки измерительной ячейки, мембраны, нитки для ее закрепления. Несложная на первый взгляд процедура замены мембраны и заправки датчика требует известной сноровки и обычно получается не с первого раза. Кроме того, разборные зонды, как показывает наш опыт, требуют, по меньшей мере, еженедельной калибровки. Достоинством зондов с торцевой мембраной является низкая инерционность и возможность ремонта.

Проводя измерение содержания кислорода с помощью термооксиметра, необходимо соблюдать некоторые правила. Перед началом замера надо хотя бы примерно оценить достоверность показаний прибора. Делается это путем сравнения показания прибора « на воздухе» с табличным значением равновесной концентрации кислорода при данной температуре. Если отклонение выше 1-2 мг/л скорее всего, требуется калибровка оксиметра. При проведении замера следует дождаться, пока не перестанет изменяться значение температуры, лишь после этого переключать прибор в режим измерения кислорода. Датчик оксиметра должен омываться водой, а если в месте замера течения нет, необходимо вручную перемещать зонд вверх-вниз, пока показания прибора не перестанут «ползти».

Концентрация кислорода в природных водоемах обычно колеблется в течение суток. Самое низкое содержание – ранним утром, когда растения в водоеме еще не начали вырабатывать кислород, а запасы его за ночь сократились. Во время измерений надо следить, чтобы зонд прибора ни за что не зацепился. Если же это произошло, ни в коем случае нельзя дергать за кабель. Следует осторожно освободить зонд с помощью какого-либо инструмента или вручную. Абсолютное большинство проблем, возникающих с оксиметрами, связано с механическими повреждениями зонда и кабеля. Сами измерительные блоки очень надежны и выдерживают даже падение в воду. Если эта неприятность произошла, надо, не разбирая прибора, положить его в теплое (но не горячее!) место на 1-2 суток, вынув перед этим батарейку. При измерении содержания кислорода самое важное – правильно оценить результаты замера и сделать верные выводы.

Наиболее чувствительны к кислороду холодноводные рыбы: лососевые, сиговые, осетровые, а также окунь, судак, другие хищные рыбы. Наименее требовательны карась, линь, карп. Зона физиологического комфорта для большинства видов рыб – от 70% до 100% от нормального насыщения. Если содержание кислорода ниже, рыба хуже растет, менее продуктивно использует корма, снижается ее физиологическая активность. Падение кислорода ниже допустимого уровня – сильный стресс, вслед за которым часто возникают те или иные заболевания. При оценке содержания кислорода важно учитывать не только абсолютное значение концентрации кислорода в мг/л или мл/л, но и относительное – в процентах от нормального насыщения.

Рыба хорошо переносит повышенную концентрацию кислорода, которая возникает в водоеме из-за развития фитопланктона. В летнее время относительное содержание кислорода может доходить до 150-180% от нормального без каких-либо вредных последствий. При перевозках рыбы уровень кислорода иногда достигает 250-300% насыщения, однако «ожога» жабр, которого иногда боятся рыбоводы, не возникает. Более вероятно в таких случаях газо-пузырьковое заболевание, но для его появления нужны дополнительные факторы. В зимовальных прудах концентрация кислорода на вытоке из пруда обычно ниже, чем на втоке, хотя бывает и наоборот. При невысоких плотностях посадки и при массовом развитии в водоеме «зимних» форм фитопланктона содержание кислорода на вытоке из пруда может быть и выше.

Среди оксиметров отечественного производства наиболее удачными для рыбоводов по нашему мнению можно считать приборы КиТ . Прежде всего, их отличает очень долговечный зонд, стабильно работающий 2,5-3 года. При этом в течение первого года он практически не нуждается в калибровке. Кабель прочный, не дает микротрещин и не «замокает», а длина его (5м) достаточна для того, чтобы произвести замер в любом рыбоводном пруду. Важной положительной чертой этого прибора является то, что в случае повреждения датчика его легко заменить вместе с небольшой платой. Сам измерительный блок мало чувствителен к низкой температуре, и его не надо греть за пазухой, чтобы получить достоверные показания. Случайное падение в воду не будет фатальным, прибор сохранит работоспособность после просушки.

Очень удобен режим автоматического измерения, который позволяет контролировать и температуру, и кислород, не прикасаясь к прибору. Калибруется прибор по одной точке, при этом сама калибровка может быть легко осуществлена в походных условиях без использования специальных реактивов. В обращении прибор очень прост и не вызывает ни малейших затруднений у пользователя. Для того чтобы пользоваться им, не требуется специального химического образования. Футляр-кейс с «липучками» хорошо защищает прибор и с ним удобно работать. В случае выхода из строя прибора, что случается редко, оксиметр будет отремонтирован в организации – изготовителе за весьма умеренную плату. Прибор можно использовать для измерений кислорода в живорыбных емкостях при перевозках живой рыбы. Прочный и надежный зонд выдерживает длительное пребывание в емкостях с рыбой. На наш взгляд, соотношение цена-качество у самарского оксиметра оптимальна. Этот оксиметр хорошо известен в рыбхозах, и пользуется устойчивым спросом.

Двуокись углерода попадает в воду из атмосферы, выделяется живыми организмами, появляется в результате разложения органического вещества. Растения в процессе дыхания выделяют двуокись углерода, а в процессе фотосинтеза поглощают ее. Растворившийся в воде углекислый газ частично взаимодействует с водой, образуя угольную кислоту, которая затем диссоциирует на карбонатные и бикарбонатные ионы.

h3O + CO2 = h3CO3-HCO3- -2H+ + CO32- Соотношения форм угольной кислоты зависят от содержания ионов водорода (рН).
В пресноводных водоемах концентрация растворенной двуокиси углерода обычно не превышает 20-30 мг/л, но может повышаться до 50 мг/л и более.
Двуокись углерода является регулятором дыхательных движений рыб. Растворенная в крови, она влияет на сродство гемоглобина с кислородом.

Чувствительность разных видов рыб к углекислоте не одинакова. Отравление таких рыб, как окуня, плотвы, ерша, пескарей отмечается при ее содержании 120 мг/л. Для лосося токсическая концентрация — 100 мг/л. Но уже при 30 мг/л многие рыбы проявляют беспокойство, при длительном воздействии возможно нарушение координации движений.
При перевозках рыбы концентрация двуокиси углерода обычно не контролируется, хотя этот показатель может быть в ряде случаев определяющим успех или неудачу перевозки.

Большинство рыб переносят рН в диапазоне от 5 до 9, однако, оценивая значения рН, необходимо учитывать влияние этого показателя на вещества, токсичность которых зависит от рН (например, соединения аммония и серы). При интенсивном «цветении» воды рН обычно сдвигается в щелочную сторону, достигая 8-9 единиц и выше. В этом случае опасность для рыб представляет свободный аммиак, в который переходят ионы аммония при увеличении рН. Сдвиг рН в кислую сторону повышает токсичность сульфидов.

При снижении рН до 4 единиц и ниже у рыб возникает ослизнение кожных покровов и жабр. Очень чувствительны к кислой реакции среды карпы. При рН ниже 5 у них развивается кислотное заболевание, проявляющееся в разрушении жаберных лепестков.

Аммиак появляется в воде в результате разложения органического вещества, попадания в водоем хозфекальных стоков, удобрений. Аммонийный азот выделяется рыбами в воду как конечный продукт метаболизма азотсодержащих веществ.


Аммиак и соли аммония

Ионы аммония (NH4+) для рыб менее токсичны, чем свободный аммиак (NH3). Предельно допустимая концентрация NH4+ для рыбохозяйственных водоемов равна 0,5 мг/л, а для NH3 — 0,05 мг/л.
Между ионами аммония и свободным аммиаком, растворенным в воде, существует подвижное равновесие, зависящее от рН и температуры воды. Эту зависимость иллюстрирует рисунок 1.

Нитриты образуются в процессе окисления азотосодержащих органических веществ и свидетельствуют о свежем органическом загрязнении водоема. Попадают в воду в результате загрязнения хозбытовыми стоками, смывами с полей, при проведении удобрения прудов. Могут восстанавливаться из нитратов в анаэробных условиях, например в грунтах водоемов. При повышенном содержании нитритов обычно отмечают низкий уровень растворенного кислорода.

Нитриты токсичны для рыб. Они нарушают связывание кислорода гемоглобином. Предельно допустимая концентрация составляет по азоту нитритов 0,02 мг/л. Однако технологические нормы допускают в рыбоводных прудах содержание нитритов на уровне 0,2 мг/л, а допустимый предел — 0,3 мг/л.

Нитраты образуются из нитритов в результате процесса нитрификации, либо попадают в водоемы в результате смыва удобрений с полей, с атмосферными осадками, различными стоками. Повышенный уровень нитратов свидетельствует о том, что в водоеме имело место в недалеком прошлом органическое загрязнение.

Нитраты значительно менее токсичны, чем нитриты. В рыбоводных прудах допустимо содержание нитратов до 3мг/л, а норма — до 2 мг/л .

Фосфаты — соли ортофосфорной кислоты. Соединения фосфора — важнейшие биогенные элементы. В зависимости от рН соединения фосфора в воде присутствуют в виде НРО42- или в виде РО43- . Повышенное содержание фосфатов — признак органического загрязнения водоемов. Обычно фосфаты присутствуют в количестве нескольких десятых миллиграмм на литр. Часто именно фосфаты лимитируют развитие фитопланктона. Фосфаты малотоксичны, в рыбоводных прудах норма фосфатов — от 0,2 до 0,5 мг/л, допустимый предел — 2 мг/л.

Железо присутствует в воде в двух формах: закисной и окисной. Соединения закисного железа растворимы в воде, однако они не устойчивы и при наличии кислорода быстро окисляются. Окисное железо мало растворимо и осаждается на дно и различные поверхности ( в некоторых случаях и на жабрах рыб). Соединения железа накапливаются в грунтах, особенно если для водоснабжения применяют артезианские воды, богатые железом. В ряде регионов страны почвы богаты соединениями железа. В анаэробных условиях окисное железо восстанавливается, и образовавшиеся закисные соединения железа растворяются в воде. Закисное железо опасно для молоди рыб, так как при его наличии в воде на жабрах рыб развиваются железобактерии.

Биохимическое потребление кислорода показывает, сколько кислорода в миллиграммах нужно для того, чтобы за некоторый промежуток времени окислить органические вещества, содержащиеся в воде. Пробу воды выдерживают либо 5 суток (БПК5), либо 20 (БПК20 или БПК полное). Для карповых прудов нормой является БПК5 4-9мг/л, допустимые значения — до 15 мг/л.

источник

В настоящее время, естественные водоемы все шире используются человеком не только для нужд экономики, но и для активного отдыха на природе, закаливания организма и совершенствования своего физического развития. При наступлении жары, большинство людей стремятся вырваться на природу к водоёмам, не обращая внимания какой это водоём, с проточной водой (река) или с застойной (пруд, карьер). Берега водоемов — одно из наиболее излюбленных мест отдыха населения города, особенно в совокупности с зелеными насаждениями. Вместе с тем необходимо отметить, что общение человека с водой не всегда бывает безопасным, а именно, постоянно существует возможность заражения людей через воду различными инфекционными заболеваниями [1,2].

Основная причина загрязнения водоисточников, является сброс в водоемы неочищенных или недостаточно очищенных сточных вод промышленными предприятиями, а также предприятиями коммунального и сельского хозяйства, железнодорожными объектами [3].

Для организации зон рекреации используют водные объекты и их берега, выбор которых согласовывается в установленном порядке. К зонам рекреации водных объектов предъявляются следующие требования:

  • Соответствие качества воды водного объекта и санитарного состояния территории требованиям настоящего стандарта;
  • Наличие или возможность устройства удобных и безопасных подходов к воде;
  • Наличие подъездных путей в зону рекреации;
  • Безопасный рельеф дна (отсутствие ям, зарослей водных растений, острых камней и пр.);
  • Благоприятный гидрологический режим (отсутствие водоворотов, течений более 0,5 м/с, резких колебаний уровня воды);
  • Отсутствие возможности неблагоприятных и опасных процессов (оползней, обвалов, селей, лавин).

Зона рекреации с учетом местных условий должна быть удалена от портов и портовых сооружений, шлюзов, гидроэлектростанций, от мест сброса сточных вод, стойбищ и водопоя скота, а также других источников загрязнения.

Зона рекреации должна быть размещена за пределами санитарно-защитных зон промышленных предприятий и с наветренной стороны по отношению к источникам загрязнения окружающей среды и источникам шума [5].

Расстояние от автомобильных дорог общей сети до зон рекреации следует принимать в соответствии с главой СНиП по планировке и застройке городов, поселков и населенных пунктов как до границ санитарно-курортных учреждений и домов отдыха.

Оборудование зоны рекреации и обеспечение безопасности использования водоема и пляжа осуществляются организациями и предприятиями, в ведении которых находится или будет находиться зона рекреации, предъявляются следующие требования.

Требования к благоустройству зон рекреации. При расчете необходимой площади территории пляжа следует исходить из норм не менее 5 м 2 для морского пляжа и не менее 8 м 2 для пляжа на водотоках и водоемах на одного человека.

При расчете площади детского сектора следует исходить из норм не менее 4 м 2 на 1 человека. Граница зоны купания должна быть обозначена опознавательными знаками.

На территории пляжа должны быть выделены следующие функциональные зоны:

  • 40-60%- зона отдыха (аэрарий, солярий, теневые навесы). Затенение отдельных участков пляжа должно обеспечиваться теневыми навесами, зонтами, тентами с учетом пользования последними до 40% отдыхающих на пляже;
  • 5-8% — зона обслуживания (гардеробные, здание проката, буфеты, киоски и пр.);
  • 10% — спортивная зона (площадки для настольного тенниса, волейбола, бадминтона, вышки для прыжков в воду, лодочная станция и т.п.);
  • 20-40%- зона озеленения;
  • 5-7%- детский сектор (песочницы, качели и пр.) [10].

При устройстве туалетов должно быть предусмотрено канализование с отводом сточных вод на очистные сооружения. При отсутствии канализации необходимо устройство водонепроницаемых выгребов.

На пляже должно быть предусмотрено помещение медицинского пункта и спасательной станции с наблюдательной вышкой.

Контейнеры для мусора должны располагаться на бетонированных площадках с удобными подъездными путями. Вывоз мусора следует осуществлять ежедневно.

Вблизи зоны рекреации должно быть предусмотрено устройство открытых автостоянок личного и общественного транспорта. Площадь автостоянок должна соответствовать требованиям СНиП 11-71-79 и выделяться дополнительно к площади земельного участка зоны рекреации.

В соответствии с СанПиН 42-128-4690-88 содержание территории пляжа должно быть:

  • технический персонал пляжа после его закрытия должен производить основную уборку берега, раздевалок, туалетов, зелёной зоны, мойку тары и дезинфекцию туалетов.
  • днем следует производить патрульную уборку. Вывозить собранные отходы разрешается до 8 часов утра.
  • урны необходимо располагать на расстоянии 3-5 м от полосы зеленых насаждений и не менее 10 м от уреза воды. Урны должны быть расставлены из расчета не менее одной урны на 1600 м 2 территории пляжа. Расстояние между установленными урнами не должно превышать 40 м. Контейнеры емкостью 0,75 м3 следует устанавливать из расчета один контейнер на 3500-4000 м2 площади пляжа.
  • На территории пляжей необходимо устраивать общественные туалеты из расчета одно место на 75 посетителей. Расстояние от общественных туалетов до места купания должно быть не менее 50 м и не более 200 м.

На территории пляжа должны быть установлены фонтанчики с подводом питьевой воды, соответствующей требованиям СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения». Расстояние между фонтанчиками не должно превышать 200 м.

Ежегодно на пляж необходимо подсыпать чистый песок или гальку. При наличии специальных механизмов на песчаных пляжах не реже одного раза в неделю следует производить механизированное рыхление поверхностного слоя песка с удалением собранных отходов. После рыхления песок необходимо выравнивать.

В местах, предназначенных для купания, категорически запрещается стирать белье и купать животных.

Все эти требования, предъявляемые к организованным пляжам, позволяют снизить вероятность заболевания людей и обеспечить комфортный отдых населения. На организованных пляжах регулярно проводятся проверки санитарно-гигиенического состояния и качества питьевой воды в фонтанчиках и душевых, и качества воды водоемов. В местах неорганизованного купания людей не проводятся проверки качества воды водоемов, не говоря о том, что эти места никак не оборудованы.

С наступлением летнего сезона, когда начинается активное использование водоемов населением, следует помнить об опасности возникновения инфекционных заболеваний, которые передаются водным путем. В первую очередь надо считаться с опасностью передачи возбудителей кишечных инфекций: брюшного тифа, паратифов и дизентерии. При всем разнообразии сведений о сроках выживаемости патогенных бактерий в воде не вызывает сомнений то, что опасность заражения через воду совершенно реальна.

Как правило, как показывает анализ результатов лабораторных исследований воды за последние несколько лет, через 3 – 4 недели от начала купального сезона вода водоемов уже не отвечает санитарным требованиям по содержанию бактерий.

Поэтому следует обращать внимание на знаки по ограничению купания, устанавливаемые в местах отдыха населения при получении неудовлетворительных анализов воды водоемов в местах купания.

Цель работы: оценка качества воды водоемов и мест массового отдыха людей у воды по санитарно – гигиеническим, микробиологическим, санитарно — паразитологическим показателям.

Материалы исследования: акты (протоколы) санитарно-эпидемиологического обследования, протоколы лабораторных испытаний.

Объектом исследования являлось место массового отдыха людей (пляж) в Орджоникидзевском районе, г.Перми– р. Кама в районе станции КамГЭС.

На территории пляжа выделена зона купания, отдыха, спортивная и детская площадки, пешеходные дорожки. Для безопасности отдыхающих границы зоны купания обозначены опознавательными знаками, организованы ежедневные дежурства спасателей, имеются условия для оказания первой медицинской помощи. Территория прибрежной зоны подвергается регулярной очистке, снабжена биотуалетами, контейнерами для сбора ТБО, урнами. Особое внимание уделяется санитарному состоянию пляжа, особенно качеству почвы и воды в зоне купания людей.

Лабораторный контроль качества воды по санитарно-химическим, микробиологическим и паразитологическим показателям осуществлялся специалистами ФБУЗ «Центр гигиены и эпидемиологии в Пермском крае». Анализ проб воды проводился по следующим санитарно-химическим показателям: прозрачность, окраска, запахи, водородный показатель, биохимическое потребление кислорода, нефтепродукты. Микробиологические исследования на наличие патогенной микрофлоры, общих колиформных бактерий, колифагов. Паразитологические исследования на жизнеспособные яйца гельминтов, цисты патогенных кишечных простейших.

Результаты исследования.

Результаты исследований проб воды пляжа в районе станции КамГЭС за период с 2014 по 2016годы (июнь) вниз по течению.

источник

Набор «Река, пруд, аквариум» предназначен для оценки безопасности открытых водоёмов, которые используются для пляжного отдыха и купания.
Кроме прудов и других природных водоёмов такой анализ будет полезен для владельцев домашних бассейнов, воду в которых не обеззараживают путём хлорирования или озонирования.

Исследование поможет Вам убедиться в том, что вода в Вашем водоёме не наносит вреда организму, а в случае тревожных результатов взяться за решение выявленных проблем.

1,5 л (пластик) + 0,2 л (стекло)

  • подходит для оценки безопасности и полезных свойств природной воды;
  • учитывает специфику природной воды в целом и поверхностных водоёмов в частности;
  • включает определение содержания наиболее опасных тяжёлых металлов и органических загрязнителей, таких как ртуть, свинец, кадмий и фенол;
  • включает определение показателей БПК и ХПК, которые необходимы для оценки состояния водной экосистемы и качества, растворенного в воде органического вещества;
  • обладает высокой точностью, подтверждённой Межлабораторными Сличительными Испытаниями и поверками.
  • может потребовать дополнительного времени для проведения испытаний – до 5 рабочих дней;
  • может потребоваться дополнительная тара для отбора воды для определения рядя показателей: нефтепродукты, фенол, ХПК и БПК.
Определяемый показатель Нормативный документ на методику
Обобщённые показатели
Биохимическое потребление кислорода (за 5 дней инкубации) / БПК₅ ПНД Ф 14.1:2:3:4.123-97 (издание 2004 г.) пп. 8, 9, 10.1 (йодометрический метод)
Водородный показатель (pH) / pH РД 52.24.495-2017
Химическое потребление кислорода / ХПК ГОСТ 31859-2012
Нефтепродукты Методика определения выбирается лабораторией
Неорганические соединения
Ионы аммония / Аммиак и ионы аммония ПНД Ф 14.1:2:4.276-2013 (издание 2013 г.)
Нитрат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Нитрит-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фосфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фторид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Хлорид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Элементы
Кадмий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Марганец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Медь ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Мышьяк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Никель ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Свинец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Цинк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Железо Методика определения выбирается лабораторией
Ртуть Методика определения выбирается лабораторией
Органические соединения
АПАВ ПНД Ф 14.1:2:4.158-2000 (издание 2014 г.)
Фенолы и фенолпроизводные
Фенол Методика определения выбирается лабораторией

Не нашли нужные показатели?

Анализ проводится с использованием передовых методик и техник анализа, в том числе фотометрии, ионной хроматографии, атомной абсорбции и потенциометрии, масс-спектрометрии, жидкостной хроматографии, что обеспечивает высокую точность и низкие уровни риска получения недостоверных результатов.

источник

Зачем нужен анализ воды пруда? С какой целью проводится анализ донных отложений и воды? Разновидности анализов воды в водоёме. Тесты для самостоятельного анализа, как пользоваться, как оценивать результаты. Что делать, чтобы улучшить ситуацию. Анализ донных отложений. Если вы решили заселить водоём рыбой, то прежде нужно сделать анализ воды пруда. При этом вам понадобится провести анализ донных отложений и воды.

При заселении водоёма или использовании воды из него для хозяйственных или бытовых целей вам обязательно нужно провести анализ воды пруда.

При этом частота проверок зависит от сроков существования водного объекта. Так, если ваш пруд только начал заселяться рыбой, то проверку нужно проводить 2-3 раза в неделю. Это нужно делать так часто по той причине, что по мере заселения пруда рыбами его биологическая система будет только формироваться и развиваться, а показатели воды будут постоянно меняться в ту или иную сторону. При наличии анализов вы сможете своевременно отслеживать неблагоприятные изменения водной среды и корректировать ситуацию.

Когда водоём будет заселен и его экосистема сформируется анализ воды можно проводить один раз в две недели. При этом нет нужды делать полный комплекс анализов, достаточно контролировать базовые показатели (кислотность, наличие нитратов и нитритов). Так вы сможете делать выводы о чистоте воды, здоровье и благополучии его обитателей.

Обычно на начальном этапе контроль осуществляется по семи показателям, условно разделённым на две группы:

  • Биологическая группа показателей
  • Химическая группа показателей

В данной группе показателей оцениваются вещества, образующиеся в ходе жизнедеятельности обитателей водоёма, а именно нитраты, нитриты и аммиак. Данные вещества перерабатываются и нейтрализуются бактериями. К ним относятся:

  1. Токсичный аммиак – продукт жизнедеятельности рыб. Он не имеет цвета и быстро растворяется в воде. Вещество попадает в воду через жабры рыб. Аммиак способен отравлять обитателей пруда, поэтому важно его полностью удалять.
  2. В ходе переработка бактериями аммиака образуются нитриты. Их токсичность также высока. Процесс расщепления нитритов более длительный из-за повышенной стойкости вещества. От этого компонента также лучше избавляться. Но в новом водоёме процесс практически неконтролируемый, поскольку переизбыток нитритов может приводить к гибели бактерий, их перерабатывающих.
  3. Ещё одна группа азотистых компонентов воды – нитраты. Они не такие токсичные, как первые два вещества. Нитраты могут собираться в воде и употребляться водной флорой либо нейтрализоваться заменой воды. Не желательно, чтобы концентрация этого вещества превышала 50 промилле.

В химической группе показателей пруда определяются кислотность, жёсткость воды и степень озонирования.

  1. Кислотно-щелочной баланс водоёма (его кислотность) должен быть в пределах 7-8,5 рН. Хорошо, если он не будет меняться на протяжении существования водоёма. Если ваш пруд заселен рыбами, то невысокая щелочная среда будет благоприятной для них.
  2. Также при анализе определяется общая жёсткость воды в водоёме. Жёсткость зависит от присутствия ионов кальция и магния. Обычно в естественных водоёмах жёсткость воды находится в пределах от 6 до 25. Показатель карбонатной жёсткости воды напрямую связан с общей жёсткостью. Старайтесь, чтобы этот показатель был средним или высоким, это даст стабильную жёсткость водоёма.
  3. Концентрация кислорода в пруду должна быть минимальной. Иногда по утрам в летнюю пору она может снижаться до критического значения из-за дыхания представителей водной флоры. Этот показатель должен быть выше 6 мг/л.

Мутная вода в водоёме может быть по причине того, что пруд заселён обилием водорослей или бактерий. Для очистки водоёма можно использовать специальную растительность.

Конечно, наиболее точный и развёрнутый анализ вы можете провести только в лаборатории, но некоторые анализы можно выполнить самостоятельно, используя:

  • Портативные электронные тесты. Это специальные откалиброванные приборы для оценки разных показателей воды.
  • Колориметрические тесты. Бывают тест-полоски, капли и таблетки. Обычно оценка результатов происходит по полученному цвету жидкости, полоски или количеству капель.

При превышении показателей по содержанию аммиака или нитритов необходимо перестать кормить рыбу, прекратить заселение водоёма и выполнить замену воды. Кормёжку рыбы можно начинать после отрицательных результатов этих анализов. Если предпринятые меры не помогли снизить уровень содержания токсичных веществ, то процедуры придётся повторить.

Для получения полной картины о состоянии пруда недостаточно выполнить проверку воды, также может потребоваться анализ донных отложений. Данная проверка может выполняться двумя методами:

Механический метод проверки ещё называется гранулометрическим. Он позволяет подсчитать концентрацию тех или иных частиц в отложениях и на основании это сделать выводы о состоянии пруда.

Вторая методика позволяет выявить химический состав донных отложений. Элементный анализ поможет подсчитать концентрацию железа, калия, натрия, алюминия, кальция, магния, серы, магния и других элементов в отложениях. А анализ водной вытяжки даст полную картину о присутствии в отложениях карбонатов, сульфатов, хлоридов. Также по результатам можно судить о водопоглощении почвы и концентрации питательных веществ (азота, фтора, калия).

Если вам необходим анализ воды из пруда или оценка его донных отложений, можете смело обращаться в нашу лабораторию, где за приемлемую цену проведут полную проверку. Чтобы заказать анализ, можете позвонить по указанным телефонам.

источник

Исследование качества воды прудов деревни Большие Бикшихи

Левый Игорь, Нестерова Дарья

Члены экоотряда «Зеленые росточки» МОУ «Большебикшихская

Тимофеева Рэмма Васильевна

1.1.2.Понятие жесткости воды

1.1.3.Способы устранения жесткости воды

2.1.Материалы и методы исследования ………………………………8-13

2.2.Результаты собственных исследований ………………………………. 14

Пруды – одно из самых больших богатств нашей деревни. Неоценимо велико их значение в народном хозяйстве, в жизни селян. Жизнь каждого жителя деревни связана с водоемами. Пруды источники водоснабжения различных отраслей сельского хозяйства; они питают живительной влагой поля и сады, обеспечивают высокие урожаи сельскохозяйственных культур. Велика роль прудов и в рыбном хозяйстве. Они стали основным местом отдыха селян. Все свое лето мы, деревенские дети, ходим на рыбалку, купаемся в прохладной воде прудов, изучаем земноводных и насекомых, населяющих эти пруды.

На западе д.Большие Бикшихи, в 2 км от г. Канаш, находится один из прудов деревни. На восточной стороне деревни, в яблоневом саду СХПК «Мотор», расположен еще один пруд. Третий пруд находится в центре деревни рядом с животноводческой фермой.

С давних времен и по сей день люди использовали воду из рек и прудов для своих нужд и … сбрасывали отходы в воду. Особенно в последние годы на водоемы обрушилось огромное количество чужеродных веществ, от которых они не знают защиты. Пестициды и ядохимикаты, применяемые в сельском хозяйстве, отходы животноводческих ферм, бытовые отходы, выбрасываемые в овраги, металлы и химикалии из промышленных сточных вод сумели проникнуть в пищевую цепь водной среды. В результате вода, без которой невозможна жизнь, стала загрязненной.

Наша гипотеза: Загрязнены ли пруды нашей деревни?

Цель исследования: Измерить параметры воды из прудов деревни Большие

Провести анализ вод в лабораторных условиях.

Определить органолептические свойства воды (прозрачность, запах, цвет);

б) Определить жесткость воды;

в) Изучить наличие твердых веществ содержащихся в водах разных источников; определить наличие сульфатов.

г) Определить кислотность воды;

Мы решили выяснить, в каком состоянии вода в наших прудах. Для этого нам необходимо сделать анализ воды из прудов нашей деревни по следующим параметрам: кислотность, цвет, запах, прозрачность, жесткость, наличие твердых частиц, сульфатов.

Вода (оксид водорода) – простейшее химическое соединение водорода с кислородом. Вода по массе состоит из 11,2% водорода и 88,8% кислорода. При образовании ее из элементов с одним объемом кислорода соединяются два объема водорода. Бесцветная жидкость; при нормальном атмосферном давлении имеет температуру плавления 0 0 С и температуру кипения 100 0 С.

Содержание в природной воде солей двухвалентных металлов часто оценивают, говоря о той или иной ее «жесткости» воды. При этом различают жесткость карбонатную («временную») и некарбонатную («постоянную»). Первая обусловлена присутствием в воде бикарбонатов. Временной она названа потому, что может быть устранена простым кипячением воды; бикарбонаты при этом разрушаются и нерастворимые продукты их распада (карбонаты) оседают на стенках сосуда в виде накипи.

Постоянная жесткость воды обусловлена присутствием в ней солей кальция и магния, не дающих осадка при кипячении. Эти соли уменьшают эффект действия мыла; поэтому в жесткой воде труднее стирать белье, мыть посуду и мыться, овощи плохо развариваются, а при использовании такой воды в паровых котлах образуется накипь. Накипь плохо проводит теплоту, поэтому возможен перегрев моторов, паровых котлов и все это может привести к взрыву. Кроме того, ускоряется их изнашивание.

Способы устранения жесткости воды

Карбонатная, или временная, жесткость обусловлена присутствием гидрокарбонатов кальция и магния. Ее можно устранить следующими способами:

действием известкового молока или соды

Некарбонатная и постоянная, жесткость обусловлена присутствием сульфатов и хлоридов кальция и магния.

От некарбонатной жесткости чаще всего освобождаются добавлением к воде соды, которая вызывает образование осадка по реакции:

Воде дают затем отстояться и лишь после этого пользуются ею для питания котлов или на производстве. Для умягчения небольших количеств жесткой воды (в прачечных) обычно добавляют к ней немного соды и дают отстояться. При этом двухвалентные металлы полностью осаждаются в виде карбонатов, а остающиеся в растворе соли натрия употреблению мыла не мешают.

Из изложенного следует, что содой можно пользоваться для устранения и временной и постоянной жесткости, а гидроксидом кальция – только для устранения временной жесткости. Тем не менее, в технике стараются применять именно Ca ( OH ) 2, что обусловлено гораздо большей дешевизной этого продукта сравнительно с содой.

Водородный показатель (pH) представляет собой отрицательный логарифм концентрации водородных ионов в растворе: рН = –lg[Н + ].

Для всего живого в воде (за исключением некоторых кислотоустойчивых бактерий) минимально возможная величина pH = 5; дождь, имеющий рН

В питьевой воде допускается pH 6,0–9,0; в воде водоемов хозяйственно-питьевого и культурно-бытового водопользования – 6,5–8,5. Величина pH природной воды определяется, как правило, соотношением концентраций гидрокарбонат-анионов и свободного СО 2 . Пониженное значение рН характерно для болотных вод за счет повышенного содержания гуминовых и других природных кислот.

Измерение рН при контроле качества природной и питьевой воды проводится практически повсеместно.

Для определения pH используют рН-метрию и визуальную колориметрию. pH-метрия предполагает измерение водородного показателя с помощью стационарных (лабораторных) приборов – рН-метров, в то время как визуально-колориметрическое определение проводят с использованием портативных тест-комплектов, основанных на реакции универсального или комбинированного индикатора с водородными ионами, сопровождающейся изменением окраски раствора. Точность измерения водородного показателя с помощью pH-метра может быть высока (до 0,1 единиц рН и менее), с помощью визуально-колориметрических тест-комплектов – около 0,5 единиц pH.

В некоторых случаях – для быстрого (сигнального) анализа неизвестных растворов – используется рН-индикаторная бумага, имеющая точность определения рН не более ±1, что недостаточно для выполнения анализа природной и питьевой воды.

Мы решили сделать анализ воды из прудов нашей деревни по следующим параметрам: кислотность, цвет, запах, прозрачность, жесткость, наличие твердых частиц. Воду взяли по 200 мл (на каждое исследование):

из пруда которая находится в саду СХПК «Мотор» д. Большие Бикшихи.

из пруда рядом с животноводческой фермой д. Большие Бикшихи.

из пруда которая находится в 2 км от г. Канаш на окраине деревни.

Оборудование: рабочая тетрадь, ручка, бутылки для отбора проб воды – 3 шт., пробирки 8-10 шт., плоскодонный цилиндр Д =20-25 мм и с высотой 30-35 см, школьная электроплитка, Электронные весы, фарфоровая чашка, индикаторная бумага, метилоранж. Реактивы: соляная кислота, 10% раствор хлорида бария.

Методика проведения анализа жесткости воды.

Оборудование: стакан для отбора проб воды, цилиндр измерительный, колба емкостью 50 мл, палочка измерительная, пипетка измерительная, резиновая груша, раствор метилоранжа, 0,365% -я соляная кислота.

Анализ проводился в ноябре 2010 года. При проведении анализа использовалась книга Львовой И.М. «Химия в школе», Бухваловой В,А,, Богданова Л.В., Купер Л.З. «Методы экологических исследований», Плечовой З.Н., Репиной Р.К. «Экологический практикум». Эндюскиной А.Н. «Исследование качества воды малых рек и других водоемов».

Исследование жесткости воды основано на использовании метода наблюдения и эксперимента. В данной работе определяется карбонатная жесткость воды, обусловленная присутствием в воде ионов Mg 2+ и Ca 2+ в виде гидрокарбонатов Mg ( HCO 3 ) 2 и Ca ( HCO 3 ) 2 . Метод основан на реакции между содержащимися в воде гидрокарбонатами кальция, магния и соляной кислотой: Ca ( HCO 3 ) 2 +2 HCl → CaCl 2 +2 CO 2 ↑+2 H 2 O

По уравнению реакции видно, что с 1 моль гидрокарбоната кальция реагирует 2 моль хлороводорода. Зная, сколько моль ушло на реакцию, можно сказать, что в воде содержалось в два раза меньше ионов кальция (магния).

Порядок выполнения работы:

1. Отбираем пробы воды из разных источников в химический стакан (примерно 200 мл).

2. Отмерим в измерительном цилиндре 100 мл пробы воды и перельем в колбу на 250 мл.

3. Добавим 6-7 капель индикатора – метилоранжа. Проведем титрование.

Читайте также:  Взвешенные частицы в воде анализ

4. Отбираем в пипетку точно 10 мл 0,365%- соляной кислоты.

5. Добавляем из пипетки соляную кислоту в колбу с водой, при постоянном перемешивании палочкой до изменения окраски индикатора с желтой на оранжево-красную. Изменение окраски показывает то, что новые порции кислоты уже избыточны.

6. Считаем по пипетке объем израсходованного раствора HCl .

7. Рассчитаем жесткость воды (Ж) в ммоль/л (миллимоль на литр) по формуле: Ж=( V ( HCl )*100)/( V ( H 2 O )*2)

где: V ( HCl ) – объем израсходованного раствора HCl (мл),

V ( H 2 O ) – объем пробы воды (100 мл).

Оформим карту результатов, рассчитаем жесткость воды.

Определяем тип воды по таблице:

Жесткость воды можно определять более легким способом в домашних условиях. К 10 мл пробной воды в коническую колбочку добавить 1 каплю мыльного раствора, закрыть колбу и энергично взболтать его содержимое. Повторять эту операцию тех пор, пока мыльная пена сохраняется (не менее 3 минут). Записать число капель израсходованного мыльного раствора. Чем больше капель израсходуется, тем жестче вода.

Результаты определения жесткости воды

Пруд рядом с фермой д. Б.Бикшихи

Пруд в 2 км от г. Канаш на окраине деревни

По нашим исследования вода с пруда с колхозного сада жесткая – 2,60 ммоль/л, вода из двух других прудов среднежесткая.

Методика определения запаха воды.

Оборудование: Термостойкие колбы емкостью 250 мл, часовое стекло, электроплитка.

Характер и интенсивность запаха можно определить при отборе по ощущениям воспринимаемого запаха (землистый, бензиновый, гнилостный и т.д.). Для определения запаха воды нальем в коническую колбу 100-150 мл исследуемой воды, покроем часовым стеклом и подогреем до 60 0 С. Сдвинем стекло, быстро определим запах по таблице. В определении запаха участвовали 5 человек. Мнение большинства мы считали экспертной оценкой. Силу запаха воды, определяли по пятибалльной шкале.

Результаты исследования запаха воды

Пруд рядом с фермой д. Б.Бикшихи

Запах обращает на себя внимание и заставляет воздерживаться от питья.

Пруд в 2 км от г. Канаш на окраине деревни

Запах настолько сильный, что делает воду непригодной для питья.

Вода из пруда в колхозном саду при нагревании имеет очень слабый рыбный запах с примесью запаха герани. Без нагревания запах не ощущается. Мы думаем, что эти запахи могут быть связаны с жизнедеятельностью водных организмов или появляться при их отмирании.

Вода из пруда в 2 км от г. Канаша имеет ароматический запах с примесью бензина. Мы думаем, что запах связан с выбросом отходов заводов УПП и Техоснастки г. Канаш т.к . (заводы находятся на окраине города в 2 км от пруда) в этот пруд стекает маленькая речка со стороны г.Канаш. В последние годы водители моют свои автомашины на берегу пруда. Вся грязь стекает в пруды.

Вода из пруда рядом с животноводческой фермой д. Б.Бикшихи имеет затхлый, гнилостный запах. Мы думаем, что это связано содержанием в воде органических примесей, поступивших с фермы. Мы решили проверить есть ли в данной воде органические примеси. Взяли пробирку налили воду с пруда 1/4 емкости прибора и добавили несколько капель марганцовки (до розового цвета), нагрели содержимое до кипячения. В пробирке появились темно-коричневые хлопья оксида марганца. Значит, в воде есть органические примеси (по исследованиям Эндюскиной А.Н., Исследование качества воды малых рек и других водоемов, стр. 37). Цвет воды с розового поменялся на желтовато-коричневый

Методика определения прозрачности воды.

Оборудование: Прозрачный плоскодонный стеклянный цилиндр диаметром 20-25 мм с высотой 30-35 см, лист бумаги с четко напечатанными буквами и цифрами, миллиметровая бумага.

Существуют несколько методов определения прозрачности воды i . Прозрачность воды мы измеряли по шрифту. Для опыта мы взяли прозрачный плоскодонный стеклянный цилиндр диаметром 2 – 2,5 см, высотой 30 – 35 см. Для начала провели опыт с дистиллированной водой, а затем с водой из прудов и сравнили результаты. Установили цилиндр на печатный текст и вливали исследуемые воды, следя за тем, чтобы можно было прочитать через воду напечатанный текст. Высота столба воды, налитой в цилиндр, выраженная в сантиметрах, явилось показателем прозрачности.

Результаты определения прозрачности воды

Пруд рядом с фермой д. Б.Бикшихи

Пруд в 2 км от г. Канаш на окраине деревни

Результаты воды из пруда с колхозного сада незначительно отличались от контрольных, с дистиллированной водой. Проделав опыт, мы установили, что видимость шрифта изменилась в воде на высоте 30 см. Можно сделать вывод, что вода в этом пруду прозрачная (норма 20-40 см). Сад находится на холме, со всех сторон окружен деревьями. Территория вокруг сада засеяна многолетними травами. В принципе вода здесь должна быть чистой.

В исследуемых водах с двух других пудов видимость шрифта изменилась на высоте 18 и 16 см. Значит, в прудовой воде находятся взвешенные вещества, которые уменьшают ее прозрачность.

Методика определения кислотности воды ( pH )

В исследуемые воды отпускали универсальную лакмусовую бумажку по 3 раза и быстро по эталонной шкале определяли pH .

Контрольная шкала образцов окраски растворов для определения pH

↑ _____________ кисл_________________ ↑ нейтр. ↑__ шелочная__↑

Результаты определения кислотности (рН)

Пруд рядом с фермой д. Б.Бикшихи

Пруд в 2 км от г. Канаш на окраине деревни

pH является мерой кислотности или щелочности раствора. По результатам нашего исследования характерный интервал значений pH исследуемых вод 6,0-7,5. Это наиболее характерный интервал значений pH для природных вод 6,0-8,0. (по исследованиям Эндюскиной А.Н., Исследование качества воды малых рек и других водоемов, стр. 8).

Методика определения цветности воды

Оборудование: Стеклянный цилиндр, белая бумага.

Качественную оценку цветности производили, сравнивая образец с дистиллированной водой. Для этого в стаканы из бесцветного стекла налили исследуемые воды и дистиллированную воду до отметки 10 см. На фоне белого листа при дневном освещении рассматривали исследуемые воды сверху и сбоку, оценивали цветность как наблюдаемый цвет, при отсутствии окраски воду считали бесцветной. Цвет воды в градусах определяли используя таблицу «Приближенное определение цвета воды»

По нашим исследованиям проба воды из пруда в 2 км от г. Канаш на окраине деревни и из пруда д. Б.Бикшихи имеет слабое окрашивание с желтоватым оттенком. Цвет воды в градусах 20. Прудовая вода с колхозного сада не имеют цвета.

Методика определения наличия сульфатов

Оборудование: Стеклянная колба, соляная кислота, 10% раствор хлорида бария.

К 10 мл пробы вод из прудов д. Б. Бикшихи добавляем 2-3 капли HCl , затем 0,5 мл 10% раствора BaCl 2. Осадка ни в одной пробе воды не было. Значит, сульфатов в воде меньше 5 мг/л.

Методика определения твердых частиц, содержащихся в водах разных источников

Оборудование: стеклянная посуда для проб воды (150-200 мл), электронные весы, газовая горелка, фарфоровая чашка.

Отбираем пробы воды в тщательно вымытую и высушенную посуду из различных источников и номеруем.

Нальем по 100 мл каждой пробы в чистые фарфоровые чашки (предварительно взвешенные) и ставим на выпаривание.

После охлаждения взвешиваем фарфоровые чашки с образовавшимся осадком и определим его содержание в образце (в мг/л).

Также определяем количество растворенных в воде веществ по формуле: С= m / Y , где С-количество; m — масса осадка; Y – объем воды.

Сравним полученные результаты и сделаем выводы о степени загрязненности воды из различных источников и возможных причин. Заполним таблицу.

В прудовой воде рядом с животноводческой фермой количество твердых частиц больше всего (5000 мг/л ) . Вода из пруда рядом 2 км от г. Канаш на окраине деревни тоже содержит много твердых частиц (4200 мг/л). Мы думаем, что пруды здесь загрязнена в результате поступления отходов бытового мусора, сельскохозяйственного производства, , отходов заводов УПП и Техоснастки города Канаш.

Результаты измерений количества растворенных веществ в воде

источник

  1. Область применения
  2. Санитарно-микробиологические исследования
    1. Отбор, хранение и транспортирование проб
    2. Аппаратура, расходные материалы, реактивы, питательные среды
    3. Подготовка посуды и материалов
    4. Приготовление питательных сред и реактивов
    5. Подготовка к анализу
    6. Методика работы при использовании мембранных фильтров
    7. Определение общих и термотолерантных колиформных бактерий методом мембранной фильтрации
    8. Определение общих и термотолерантных колиформных бактерий титрационным методом
    9. Определение колифагов прямым методом
    10. Определение патогенных бактерий семейства Enterobacteriaceae рода Salmonella
    11. Определение кишечных вирусов
  3. Санитарно-паразитологические исследования
    1. Отбор, хранение и транспортирование проб
    2. Методики санитарно-паразитологического исследования воды поверхностных водоемов
    3. Флотационный метод исследования воды
    4. Метод санитарно-паразитологического исследования воды с применением прозрачных аналитических трековых мембран
    5. Методика санитарно-паразитологического исследования воды на наличие ооцист криптоспоридий
    6. Идентификация выявленных возбудителей кишечных паразитарных болезней
    7. Визуальная оценка вероятной жизнеспособности цист патогенных простейших кишечника и яиц гельминтов
  4. Библиографические данные
  5. Приложения для микробиологических исследований
  6. Приложение 1 (обязательное) Определение общего числа микроорганизмов, образующих колонии на питательном агаре
  7. Приложение 2 (обязательное) Определение спор сульфитредуцирующих клостридий
  8. Приложение 3 (обязательное) Определение Esherichia coli методом мембранной фильтрации
  9. Приложение 4 (обязательное) Определение Escherichia coli титрационным методом
  10. Приложение 5 (обязательное) Определение энтерококков методом мембранной фильтрации
  11. Приложение 6 (обязательное) Определение энтерококков титрационным методом
  12. Приложение 7 (обязательное) Метод определения числа стафилококков
  13. Приложение 8 (обязательное) Таблицы расчета наиболее вероятного числа микроорганизмов
  14. Приложение 9 (справочное) Схема посева воды из различных объектов при работе методом мембранных фильтров
  15. Приложение 10 (справочное) Схема посева воды из различных объектов при работе титрационным методом
  16. Приложение 11 Цисты патогенные кишечных простейших и яйца гельминтов, определяемые методикой санитарно-паразитологического исследования воды
  17. Приложение 12 Яйца гельминтов, определяемые методикой санитарно-паразитологического исследования воды
  18. Приложение 13 Схема выполнения методики использования прозрачных аналитических трековых мембран

1.1. Настоящие методические указания по методам контроля (далее — МУК) устанавливают методы санитарно-микробиологического и санитарно-паразитологического контроля качества воды поверхностных водных объектов в пунктах питьевого, хозяйственно-бытового и рекреационного водопользования, а также у населенных мест в соответствии с СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод», СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества».

1.2. Методические указания предназначены для органов и учреждений государственной санитарно-эпидемиологической службы, обеспечивающих государственный санитарно-эпидемиологический надзор и контроль за качеством воды поверхностных водоемов, используемых или намечаемых к использованию в качестве источников централизованного водоснабжения, зон рекреации, а также могут быть использованы лабораториями организаций, осуществляющих производственный контроль.

1.3. Санитарно-микробиологический анализ воды подземных источников проводят в соответствии с МУК 4.2.1018-01 «Санитарно-микробиологический анализ питьевой воды».

1.4. Санитарно-микробиологический анализ воды действующих источников в черте населенных мест, зонах рекреации осуществляют по показателям СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод»: общие и термотолерантные колиформные бактерии, колифаги, возбудители кишечных инфекций (сальмонеллы, энтеровирусы).

1.5. При выборе нового поверхностного источника централизованного питьевого водоснабжения, а также при решении вопроса о необходимости проведения оздоровительных мероприятий или закрытия зоны рекреации, анализ качества воды проводят по более широкому набору микробиологических показателей в соответствии с действующими документами. Методы определения дополнительных показателей приведены в прилож. 1- 10.

Отбор проб осуществляют в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб» и ГОСТ Р 51593-2000 «Вода питьевая. Отбор проб».

Пробы для санитарно-микробиологического анализа отбирают в стерильные емкости.

Для отбора проб воды используют специально предназначенную для этих целей одноразовую посуду или емкости многократного применения, изготовленные из материалов, не влияющих на жизнедеятельность микроорганизмов.

Емкости должны быть оснащены плотно закрывающимися пробками (силиконовыми, резиновыми или из других материалов) и защитным колпачком (из алюминиевой фольги, плотной бумаги) или завинчивающимися крышками. Многоразовая посуда, в т.ч. пробки, должна выдерживать стерилизацию сухим жаром или автоклавированием.

Стерильные емкости открывают непосредственно перед отбором, удаляя пробку вместе со стерильным колпачком. Во время отбора пробка и края емкости не должны чего-либо касаться. Ополаскивать посуду не следует.

После наполнения емкость закрывают стерильной пробкой, обеспечивающей герметичность и не намокающей при транспортировании (ватные пробки не применять), и стерильным колпачком.

При заполнении емкостей должно оставаться пространство между пробкой и поверхностью воды, чтобы пробка не смачивалась при транспортировании.

Поверхностные пробы отбирают с глубины 10-15 см от поверхности воды или от нижней кромки льда. Придонные пробы отбирают в 30-50 см от дна. Отбор проб следует производить с использованием различных плавсредств, с мостов, помостов и т.п. в местах, где глубина водоемов не менее 0,5 м. Недопустимо производить отбор проб с берега.

Поверхностные пробы отбирают батометром с устройством для закрепления стерильных емкостей. Глубинные пробы отбирают специальным батометром, предназначенным для этих целей. Допускается использовать другие приспособления, установленные в приложении к ГОСТ Р 51592-00.

При отборе одним батометром нескольких проб, его каждый раз стерилизуют фламбированием. Из одной точки в первую очередь отбирают пробы для микробиологических исследований, а затем для других целей. Проруби делают, избегая внесения загрязнения со льда и инструментов. Руки перед отбором проб должны быть обеззаражены.

Для воды, содержащей токсичные металлы (бериллий, ртуть, кадмий, таллий) массовой концентрацией более 0,01 мг/л, в емкости до их стерилизации добавляют 0,3 мл 15%-ного раствора нитрилотриуксусной кислоты на 500 мл пробы.

Отбор проб производит специалист после прохождения инструктажа по технике выполнения отбора проб для микробиологического анализа.

Отобранную пробу маркируют и сопровождают документом отбора проб воды с указанием места, даты, времени забора, фамилии специалиста, отбиравшего пробу, и другой информации (температуры воды, погодных условий).

Объем пробы зависит от того, какие микроорганизмы должны быть определены, например, при анализе воды:

— на индикаторные микроорганизмы — не менее 500 мл;

— на индикаторные и патогенные бактерии (сальмонеллы) — 1,5 л.

Доставку проб воды осуществляют в контейнерах-холодильниках при температуре (4-10) °С. В холодный период года контейнеры снабжают термоизолирующими прокладками, обеспечивающими предохранение проб от промерзания. В лаборатории, если анализ по каким-либо причинам откладывают, пробы следует поместить в холодильник.

При соблюдении указанной температуры транспортирования и хранения срок начала исследований от момента отбора проб не должен превышать 6 ч. Если пробы нельзя охладить, их анализ проводят в течение 2 ч после забора.

Если не может быть соблюдено время доставки пробы и температура хранения, анализ пробы по бактериологическим показателям не проводят.

Метод отбора и концентрирования кишечных вирусов из воды поверхностных водоемов представлен в п. 2.11.

2.2.1. Аппаратура

Термостаты для температурного режима (37±1) °С

Термостат и водяная баня с автоматическим регулированием температуры (44 ± 0,5) °С

Водяная баня для температурного режима (75 ± 5) °С

Водяная баня или термостат для температурного режима 45-49 °С (для питательных сред)

Прибор для мембранной фильтрации под вакуумом с диаметром фильтрующей поверхности 35 или 47 мм и устройство для создания разрежения 0,5-1,0 атм.

Весы лабораторные общего назначения 4 класса точности, с пределом взвешивания до 1000 г, допустимая погрешность не более 0,1 г

Весы лабораторные общего назначения 4 класса точности, с пределом взвешивания до 200 г, допустимая погрешность не более 0,02 г

Весы торсионные с диапазоном измерений от 0 до 500 мг

Термометр ртутный с диапазоном измерения от 0 до 50 °С с ценой деления шкалы 0,5 °С

Термометр ртутный с диапазоном измерения от 0 до 200 °С с ценой деления шкалы 1 °С

Термометр спиртовой с диапазоном измерения от -50 до +50 °С с ценой деления шкалы 1°С

РН-метр, обеспечивающий измерение с погрешностью до 0,01

Дистиллятор, обеспечивающий качество дистиллированной воды не ниже

Стерилизатор суховоздушный для температурного режима (180 ± 5) °С

Стерилизатор паровой, режим работы от 0 до 2,5 кгс/см 3

Холодильники бытовые электрические с температурой в камере 4-6 °С

Холодильник глубокого замораживания (-20 °С) *

Вытяжной шкаф для работы с хлороформом при исследованиях на колифаги *

Нагревательный прибор для варки питательных сред, либо магнитные мешалки с подогревом до 300 °С

Прибор для счета колоний бактерий

Лупа с двукратным увеличением

Дозаторы для разлива жидких питательных сред и растворов

Оптический стандарт мутности на 10 ед.

Микроскоп стереоскопический, обеспечивающий увеличение от 3,5х до 119х, с полем зрения 39-1,9 мм

Инвертированный микроскоп для просмотра флаконов с культурами клеток при анализе на энтеровирусы *

Микроскоп биологический, обеспечивающий увеличение от 84х до 1350х

Батометр с устройством для закрепления стерильных емкостей

Батометр специальный для отбора проб с разных глубин

Часы сигнальные или песочные

Центрифуга лабораторная рефрижераторная ЦЛР-1МР *

Ламинарный шкаф для культуры клеток (класс не ниже 2) *

Микродозаторы переменного объема: на 0,5-10 мкл; 40-200 мкл; 200-1000 мкл

Штатив для микродозаторов 5-поз.

Наконечники на 200, 1000 мкл

1) * Аппаратура, используемая для вирусологического анализа.

2) Для экспресс анализа индикаторных и патогенных микроорганизмов в воде может использоваться микробиологический анализатор «БакТрак 4000» в соответствии с МУК 4.2.1111-02.

2.2.2. Посуда лабораторная стеклянная

Пробирки (многоразового или одноразового использования)

Цилиндры, вместимостью 100, 250, 500 мл или мензурки, вместимостью 250, 500, 1000 мл

Чашки бактериологические (Петри)

Пипетки, вместимостью 1, 2, 5, 10 мл с ценой деления 0,1 мл (многоразового или одноразового использования)

Стеклянные бюретки, диаметром 12-13 мм и высотой 35-40 см

Флаконы стеклянные или пластиковые (одноразовые) для культивирования культур тканей емкостью: 5, 100, 200, 500 и 1000 мл

2.2.3. Расходные материалы

Мембранные фильтры для микробиологических целей с диаметром пор не более 0,45 мкм и размером диска 35 или 47 мм или другие фильтрующие мембраны с аналогичной способностью фильтрации, имеющие сертификат качества

Индикаторы бумажные для определения рН в диапазоне 6-8 с интервалом определения 0,2

Фольга алюминиевая, колпачки металлические

Горелки газовые или спиртовки

Пинцеты для работы с мембранными фильтрами

Пробки различных размеров: силиконовые, резиновые и другие, выдерживающие стерилизацию сухим жаром или автоклавированием

Вата хлопковая медицинская гигроскопическая

Бумага плотная для упаковки посуды

Штативы комбинированные для пробирок 0,6 и 1,5 мл

Штативы для культивирования клеток культур ткани в пробирках в статическом состоянии

Планшеты пластиковые для культивирования культур тканей

2.2.4. Химические реактивы

Железо серно-кислое закисное 7-водное

Натрий серноватисто-кислый (тиосульфат натрия) 5-водный

Спирт этиловый технический

Натрий сернисто-кислый (сульфит натрия)

N,N,N’,N’,-тетраметил-п-фенилендиамин гидрохлорид или N,N-диметил-п-фенилендиамин соляно-кислый

Калий фосфорно-кислый однозамещенный

Калий фосфорно-кислый двузамещенный

Натрий фосфорно-кислый двузамещенный безводный

Натрий фосфорно-кислый однозамещенный

Кристаллический фиолетовый водорастворимый

Трис (Tris (hydroxymethyl) aminomethone) M. в 121, Sigma T 1378*

Бифэкстракт (сухой) Sigma B-4888*

Макропористое стекло — МПС 1000 ВГХ

Все химические реактивы должны соответствовать квалификации не ниже ЧДА.

* Вещества, используемые для вирусологического анализа.

** Вещества обладают канцерогенным и мутагенным действием, работа с ними требует соблюдения мер предосторожности.

*** Вещества, используемые для исследований на колифаги и энтеровирусы.

2.2.5. Питательные среды

Питательная среда для выделения энтеробактерий, сухая (типа Эндо)

Сухой препарат с индикатором ВР и лактозой или среда Гисса с лактозой

Сухой препарат с индикатором ВР и глюкозой или среда Гисса с глюкозой

Пептон сухой ферментативный для бактериологических целей

Системы индикаторные бумажные (СИБ)

Питательная среда для накопления сальмонелл, сухая (селенитовый бульон)

Питательная среда для выделения энтерококков, сухая

Питательная среда для выделения стафилококков, сухая

Агар с эозин-метиленовым синим, сухой (среда Левина)

Питательная среда для первичной идентификации энтеробактерий (агар Клиглера)

Сыворотки агглютинирующие адсорбированные сальмонеллезные О и Н (сухие)

Сыворотки агглютинирующие адсорбированные поливалентные к сальмонеллам

Антибиотики: бензилпенициллин натриевая соль, сульфат стрептомицина*

Раствор Эрла 10-кратный 5860-68*

Среда Игла-МЭМ с двойным набором аминокислот*

Перевиваемые линии клеток RD, BGM, Нер-2*

Набор диагностических сывороток для типирования вирусов*

* Реактивы и питательные среды для вирусологического анализа.

Допускаются к использованию оборудование, расходные материалы, реактивы, питательные среды, диагностические препараты и системы идентификации с аналогичными характеристиками, разрешенные к применению для этих целей в установленном порядке.

Питательные среды и биологические препараты зарубежного производства должны иметь международный сертификат качества ISO 9000 или EN 29000.

При использовании следует руководствоваться рекомендациями фирмы-производителя.

Все обезвоженные питательные среды должны иметь сертификат соответствия.

2.2.6. Тест-культуры микроорганизмов

Контрольный колифаг MS-2 штамм ВКПМ РН 1505, штамм ВКПМ-3254 Е. coli К12 F + Str-r, штамм Escherichia coli 675, Staphylococcus aureus 906 и один из штаммов: Pseudomonas aeruginosa 10145 АТСС или Pseudomonas fluorescens 948 АТСС.

Штаммы получают во Всероссийской Коллекции Промышленных Микроорганизмов (Государственном НИИ генетики) и (или) в Национальном органе контроля (Государственном НИИ стандартизации и контроля медицинских и биологических препаратов им. Л.А. Тарасевича).

Примечание. В производственных лабораториях, расположенных на территории водопроводных станций, следует использовать штамм Pseudomonas fluorescens (температура инкубации культуры 25-28°С).

2.2.7. Внутренний контроль качества микробиологических исследований

Комплекс выполняемых лабораторией мероприятий и процедур, направленных на обеспечение и контроль стабильности требуемых условий роста микроорганизмов, ведения эталонных бактериальных культур, а также предупреждения неблагоприятного воздействия факторов, возникающих в процессе выполнения анализа и оценки его результатов, изложены в МУ 2.1.4.1057-01 «Организация внутреннего контроля качества санитарно-микробиологического исследования воды».

Вся посуда, применяемая для микробиологического анализа, должна быть стерильной.

Правила подготовки посуды и материалов — в соответствии с МУК 4.2.1018-01 «Санитарно-микробиологический анализ питьевой воды».

Срок хранения стерильной посуды не более 30 дней.

Лабораторная посуда для вирусологических исследований должна быть химически чистой, а именно, хорошо обезжирена, тщательно вымыта до полного удаления моющих средств и других посторонних примесей, высушена и простерилизована.

Новая стеклянная посуда должна выдерживаться в течение 2 ч в 15-20 %-ном растворе серной кислоты (применяется только химически чистая серная кислота) или в течение 10-12 ч в 4 %-ном растворе соляной кислоты. Работу необходимо проводить с соблюдением правил техники безопасности — в защитных очках, резиновом фартуке и резиновых перчатках. После обработки кислотой посуду тщательно промывают струей горячей воды (не менее 10 раз) и троекратно — дистиллированной водой, высушивают, монтируют в металлические контейнеры или в бумагу.

Посуду для микробиологического анализа стерилизуют в сухожаровом шкафу в течение 2 ч при 180 °С.

Контроль стерильности посуды проводят в соответствии с МУ 2.1.4.1057-01 «Организация внутреннего контроля качества санитарно-микробиологических исследований воды».

2.4.1. Общие требования

При выполнении микробиологического анализа следует отдавать предпочтение стандартизованным сухим питательным средам промышленного производства. При использовании промышленных сухих питательных сред их приготавливают в соответствии с указаниями изготовителя на этикетке. В этом случае следует соблюдать способ применения и срок хранения питательных сред, указанных на упаковках.

Общие требования к питательным средам даны в ГОСТ Р 51456-00.

Вновь приобретенная партия питательных сред должна пройти внутренний контроль качества в соответствии с МУ 2.1.4.1057-01 «Организация внутреннего контроля качества санитарно-микробиологических исследований воды».

По этому же документу выполняют контроль питательных сред на этапе приготовления, контроль условий и сроков хранения готовых питательных сред, контроль их биологических свойств, характеристик роста бактерий и т.п.

Питательные среды, разлитые в чашки и хранящиеся в холодильнике, перед посевом должны быть прогреты до комнатной температуры.

При наличии следов влаги на поверхности агаризованных сред проводят подсушивание в термостате, приоткрывая крышку, до исчезновения конденсата.

2.4.2. Растворы для разбавлений

2.4.2.1. Солевой (физиологический) раствор

В 1 л дистиллированной воды растворяют 8,5 г хлорида натрия, устанавливают рН с расчетом, чтобы после стерилизации рН = 7,0 ± 0,1. Разливают во флаконы, стерилизуют при температуре (120 ± 2) °С 20 мин. Разливают мерно непосредственно перед посевом.

Срок хранения — до 1 месяца при комнатной температуре.

В 1 л дистиллированной воды растворяют при кипячении 1 г пептона. Устанавливают рН с расчетом, чтобы после стерилизации рН = 7,0 ± 0,1. Разливают во флаконы. Стерилизуют при температуре (120 ± 2) °С 20 мин. Разливают мерно непосредственно перед посевом.

Срок хранения — до 1 месяца при комнатной температуре.

2.4.2.3. Пептонный солевой раствор

В 1 л дистиллированной воды растворяют при кипячении 8,5 г хлорида натрия и 1 г пептона. Устанавливают рН с расчетом, чтобы после стерилизации рН = 7,0 ± 0,1. Стерилизуют при температуре (120 ± 2) °С 20 мин. Разливают мерно непосредственно перед посевом.

Срок хранения — до 1 месяца при комнатной температуре.

2.4.3. Питательный бульон

Готовят из сухого препарата промышленного производства по способу, указанному на этикетке.

Питательный бульон (десятикратный) для колифагов готовят путем увеличения в 10 раз навески сухого препарата, указанной на этикетке.

2.4.4. Питательный агар

Готовят из сухого препарата промышленного производства по способу, указанному на этикетке.

Питательный агар не допускается выдерживать в расплавленном состоянии более 8 ч. Оставшийся неиспользованным агар повторному расплавлению не подлежит.

Питательный агар для определения колифагов прямым методом при посеве 20 мл пробы на чашку Петри готовят, увеличивая навеску сухого препарата в 2 раза от прописи. Разливают в емкости, автоклавируют при температуре (120 ± 2) °С 20 мин.

Полужидкий питательный агар готовят с использованием одной трети навески сухого препарата, указанной на этикетке. Разливают в пробирки и автоклавируют при температуре (120 ± 2) °С 20 мин.

Питательный агар со стрептомицином готовят из расчета содержания 100 мкг стрептомицина на 1 мл питательного агара, приготовленного по стандартной прописи. Стерильно на стерильной дистиллированной воде готовят раствор стрептомицина в концентрации 10 мг на 1 мл. В готовый питательный агар, отмеренный по объему и остуженный до температуры 45-49 °С, вносят приготовленный стерильный раствор стрептомицина из расчета 0,1 мл на 10 мл питательного агара. Разливают в пробирки для приготовления скошенного агара. Срок хранения питательного агара со стрептомицином не более 2 недель. Повторное расплавление питательной среды со стрептомицином запрещается.

2.4.5. Фуксин-сульфитная среда Эндо

Готовят из сухого препарата по способу, указанному на этикетке.

Готовую среду охлаждают до 60-70 °С и разливают в чашки Петри.

Если после застывания на поверхности среды заметны следы влаги, чашки перед посевом необходимо подсушить. Срок хранения чашек со средой не более 3-5 суток в темноте, если производителем не оговорены другие сроки.

Примечание. В соответствии со стандартом ИСО 9308-1-00 для определения колиформных бактерий методом мембранной фильтрации может использоваться лактозный ТТХ-тергитол-агар.

2.4.6. Лактозопептонная среда

Растворяют при нагревании в 1 л дистиллированной воды 10 г пептона, 5 г натрия хлористого, 5 г лактозы. После растворения ингредиентов добавляют индикатор (2 мл 1,6 %-ного спиртового раствора бромтимолового синего), устанавливают рН (7,4-7,6), разливают по 10 мл в пробирки. Для приготовления концентрированной лактозопептонной среды все ингредиенты, кроме воды, увеличивают в 10 раз, разливают по 1 мл в пробирки и по 10 мл во флаконы.

Готовую среду стерилизуют при (112 ± 2) °С 12 мин.

2.4.7. Питательные среды для подтверждения способности ферментировать лактозу до кислоты и газа

2.4.7.1. Полужидкая среда с лактозой из сухого препарата

Готовят по способу, указанному на этикетке.

Срок хранения не более 2 недель при комнатной температуре. В холодильнике не хранить.

Посев производят уколом до дна пробирки. При образовании кислоты цвет питательной среды изменяется в соответствии с использованным индикатором. При газообразовании газ скапливается или по уколу, или на поверхности, или в толще среды появляются разрывы. При инкубации посевов более 5 ч газ может улетучиться. В таких случаях на присутствие газа указывают оставшиеся в толще среды «карманы» — потемнения среды на месте бывшего пузырька газа.

2.4.7.2. Жидкая лактозопептонная среда

Готовят в соответствии с п. 2.4.6 с добавлением 1 мл 1,6 %-ного спиртового раствора бромтимолового синего на 1 л среды, разливают по 3-5 мл в пробирки с поплавком или комочком ваты.

Готовят по прописи завода-изготовителя.

Примечание. При выборе среды для подтверждения ферментации углеводов целесообразно использовать полужидкие среды, которые позволяют улавливать небольшое количество газа и на ранних стадиях ферментации, что повышает чувствительность метода и скорость получения ответа через 4-6 ч.

2.4.8. Приготовление лактозного бульона с борной кислотой

Растворяют в 1 л дистиллированной воды 10 г пептона, 12,2 г калия фосфорно-кислого двузамещенного (безводного), 4,1 калия фосфорно-кислого однозамещенного (безводного), 3,2 г борной кислоты, 5 г лактозы, разливают по 5 мл в пробирки с поплавками или комочками ваты, стерилизуют при (112 ± 2) °С 12 мин. Срок хранения не более 2 недель.

Примечание. Каждую новую партию борной кислоты следует испытывать: при выращивании Е. coli при температуре 44°С среда дает положительную реакцию — помутнение и газ.

2.4.9. Реактивы для оксидазного теста

Раствор 1%-ный водный тетраметил-п-фенилендиамина гидрохлорида. Готовят перед употреблением.

Реактив N 1. Раствор 1 %-ный спиртовой α-нафтола.

Реактив N 2. Раствор 1 %-ный водный диметил-п-фенилендиамина дигидрохлорида.

Растворы сохраняют в темных флаконах с притертыми пробками: 1-й — до одного месяца, 2-й — до одной недели. Перед употреблением к трем частям первого раствора добавляют семь частей второго раствора.

Могут быть использованы коммерческие тест-системы для постановки оксидазного теста (СИБ-оксидаза или аналоги). Каждую новую партию и периодически раз в месяц реактивы или тест-системы на оксидазу следует испытывать с тест-культурами микроорганизмов, дающих положительную (Ps. aeruginosa, Ps. fluorescens) и отрицательную (Е. coli) оксидазную реакцию.

2.4.10. Железосульфитный агар

В 1000 мл стерильного расплавленного питательного агара (по п. 2.4.4) добавляют 10 г глюкозы, нагревают до растворения, разливают мерно во флаконы, автоклавируют при (112 ± 2) °С 12 мин (основная среда).

Непосредственно перед употреблением готовят 20 %-ный раствор сульфита натрия (Na2SO3) и 8%-ный раствор железа серно-кислого закисного (FeSO4) или железа хлористого (FeCl2) в стерильной посуде на стерильной дистиллированной воде. Раствор сульфита натрия нагревают до полного растворения. Перед выполнением анализа в 100 мл расплавленной основной среды вносят 5 мл 20 %-ного раствора сульфита натрия, перемешивают, затем вносят 1 мл 8 %-ного раствора серно-кислого железа, перемешивают и стерильно разливают во флаконы.

2.4.11. Щелочно-полимиксиновая среда (ЩЕС)

Растворы 1, 2 и 3 стерилизуют раздельно при 112 °С 12 мин. После стерилизации растворы смешивают, проверяют рН (10,0-10,2), прибавляют 20000 единиц полимиксина М, 0,5 мл 1,6 %-ного спиртового раствора бромтимолового синего, разливают в пробирки по 5 мл. В среду удвоенной концентрации добавляют 40000 единиц полимиксина М и 1 мл бромтимолового синего. Разливают в колбы или флаконы по 10, 50 и 100 мл соответственно количеству исследуемой воды.

2.4.12. Приготовление молочно-ингибиторной среды

Хорошо смешивают и разливают в чашки Петри 85 мл готового питательного агара, 15 мл стерильного обезжиренного (0,5 % жирности) молока, 1,25 мл 0,01 %-ного водного раствора кристаллического фиолетового, 1 мл 2 %-ного водного раствора теллурита калия.

2.4.13. Приготовление дрожжевого экстракта

Распределяют равномерно 1000 г прессованных (пекарских) дрожжей в 2000 мл дистиллированной воды, прогревают в автоклаве при 100 °С 30 мин, отстаивают в холодильнике 4-5 суток. Надосадочную жидкость разливают во флаконы по 50-100 мл, прибавляют на каждые 100 мл экстракта 1,25 мл 0,01 %-ного водного раствора кристаллического фиолетового, вновь прогревают при 100 °С 30 мин. Хранят экстракт в холодильнике. Экстракт можно готовить по этой же методике из 1000 г сухих дрожжей на 6000 мл дистиллированной воды. Можно применять сухой дрожжевой экстракт промышленного производства, уменьшив концентрацию в 10 раз от указанного в прописи п. 2.4.11.

2.4.14. Азидная среда Сланеца-Бертли

Сухой питательный агар промышленного производства по указанию на этикетке, 4 г калия фосфорно-кислого однозамещенного расплавляют при нагревании в 1000 мл дистиллированной воды, устанавливают рН 7,0, разливают мерно в емкости, стерилизуют при (120 ± 2) °С 20 мин.

Перед употреблением в расплавленный и слегка остуженный агар добавляют из расчета на 100 мл среды: дрожжевого экстракта — 2,0 мл, глюкозы — 1,0 г, азида натрия — 0,04 г, 1 %-ного водного раствора 2,-3,-5-трифенилтетразолий хлорида (ТТХ) — 1 мл. Тщательно смешивают, разливают в чашки по 20-25 мл. Хранят в холодильнике не более 2 недель. Среду можно готовить перед употреблением без стерилизации в автоклаве.

Допускается использовать сухой препарат промышленного производства — энтерококкагар.

2.4.15. Солевой агар с ТТХ

Сухой питательный агар по прописи на этикетке, хлорид натрия 65 г расплавляют при нагревании в 1000 мл дистиллированной воды. Осадок отфильтровывают, разливают мерно во флаконы, стерилизуют при (120 ± 2) °С 20 мин. Перед употреблением в расплавленную основу из расчета на 100 мл добавляют: 1 г глюкозы, 2 мл дрожжевого экстракта или другого дрожжевого препарата, 1 мл водного 1%-ного раствора ТТХ. Тщательно смешивают, разливают в чашки.

2.4.16. Желточно-солевой агар (ЖСА)

Сухой питательный агар по указанию на этикетке и 65 г хлорида натрия растворяют при нагревании в 1000 мл дистиллированной воды, разливают мерно в емкости, стерилизуют при (120 ± 2) °С 20 мин. Перед употреблением в расплавленный и остуженный до 50-55 °С солевой агар прибавляют один стерильно приготовленный яичный желток, тщательно смешанный с 50 мл физиологического раствора с помощью стеклянных бус, перемешивают и разливают в чашки Петри тонким слоем по 12 — 15 мл.

Допускается использовать сухой препарат промышленного производства (стафилококкагар).

2.4.17. Среда Мюллера-Кауфмана

В 500 мл исследуемой воды вносят 25 мл 10 %-ного пептона, 0,5 г желчных солей, 5 г кальция углекислого, 15 г натрия тиосульфата, 0,5 мл 0,1 %-ного водного раствора бриллиантового зеленого, 10 мл раствора Люголя. Для приготовления раствора Люголя в 10 мл воды вносят 3 г йода кристаллического и 2,5 г калия йодистого.

2.4.18. Приготовление желчной соли по Олькеницкому

К 1000 мл желчи крупного рогатого скота прибавляют 40 г натрия гидрата окиси, гидролизуют в автоклаве при 120 °С 3 ч или 2 раза по 2 ч в посуде, исключая алюминиевую. После охлаждения в гидролизат прибавляют 100 мл 20 %-ного водного раствора бария хлористого и прогревают в автоклаве при 100 °С 1 ч. Через 18-24 ч отстаивания сливают жидкость с осадка и фильтруют. К профильтрованному гидролизату прибавляют при постоянном помешивании 20 %-ный раствор соляной кислоты до кислой реакции (рН 6,4-6,6) и оставляют на 18-24 ч. Надосадочную жидкость сливают, осадок промывают водой, прибавляют при нагревании 40 %-ный раствор натрия гидрата окиси до слабо щелочной реакции (рН 7,2-7,4) и выливают на противень для подсушивания в сушильном шкафу при 115 °С до порошкообразного состояния. Из 1 000 мл желчи можно получить 36 г смеси желчных солей. Следует остерегаться перещелачивания при последней операции. Хранят соли в темной банке с притертой пробкой.

2.4.19. Селенитовая среда Лейфсона

Готовят из сухого препарата промышленного производства по указанию на этикетке.

Для приготовления селенитового бульона двойной концентрации увеличивают навеску сухого препарата в два раза на тот же объем дистиллированной воды.

2.4.20. Магниевая среда

Приготовление 100 мл среды обычной и двойной концентрации.

Готовят раздельно растворы А, Б, В по нижеследующей прописи:

Калий фосфорно-кислый однозамещенный

Магний хлористый кристаллический

Бриллиантовый зеленый 0,1 %-ный водный раствор

Ингредиенты растворяют, кипятят в течение 10 мин, затем растворы А, Б и В сливают в одну колбу.

Для посева больших объемов воды можно предварительно готовить навески и растворы ингредиентов среды в расфасованном виде, которые затем вносят в исследуемую воду в соответствии с нижеследующей прописью:

Магний хлористый кристаллический

Калий фосфорно-кислый однозамещенный безводный

Бриллиантовый зеленый 0,1 %-ный водный раствор

Все навески можно соединить в одной емкости в виде жидкой кашицы. Уже через 24 ч хранения при комнатной температуре происходит стерилизация концентрата. Дополнительная стерилизация не требуется.

2.4.21. Тетратианатная среда накопления по Preuss

К 1000 мл мясопептонного бульона добавляют 5 мл 0,1 %-ного водного раствора кристаллического фиолетового, стерилизуют при (112 ± 2) °С 12 мин. После охлаждения добавляют 20 г тетратианата калия, устанавливают рН 6,5. Среду разливают в стерильные емкости, необходимого для последующего посева размера. Срок хранения — до одной недели при температуре 4 °С.

2.4.22. Висмут-сульфит агар

Готовят из сухого препарата промышленного производства по указанию на этикетке.

2.4.23. Приготовление SS-агара

Готовят из сухого препарата промышленного производства по указанию на этикетке.

2.4.24. Приготовление индикаторных бумажек для определения продукции индола

Растворяют 4 г пара-диметиламинобензальдегида в 50 мл этилового спирта 96°, добавляют 10 мл орто-фосфорной кислоты (очищенной, концентрированной). Реактивом смачивают полоски из фильтровальной бумаги на 1/3 их длины. Смоченный конец — лимонно-желтый. Высушенные индикаторные бумажки можно сохранять в темноте длительное время. Чувствительность бумажек возрастает при замене этилового спирта на амиловый или изоамиловый.

2.4.25. Среда с триптофаном

Растворяют 10 г ферментативного пептона, 5 г натрия хлористого, 1 г триптофана в 1000 мл дистиллированной воды, устанавливают рН 7,2, разливают в стерильные пробирки по 5-6 мл и автоклавируют при (120 ± 2) °С 20 мин.

2.4.26. Реактив Ковача

Растворяют 5 г пара-диметиламинобензальдегида в 75 мл амилового спирта на водяной бане при 60 °С. Затем медленно добавляют 25 мл концентрированной соляной кислоты. Приблизительно через 6 ч, после изменения цвета, реактив готов для употребления. Цвет готового реактива должен быть от светло-желтого до светло-коричневого. При использовании некачественного амилового спирта реактив может приобрести темный цвет. Реактив следует хранить при температуре 4 °С в темном месте во флаконе из коричневого стекла. Срок хранения — две недели.

2.5.1. Подготовка проб воды

Перед посевом пробу тщательно перемешивают и фламбируют горящим тампоном край емкости. Используемые пробирки и чашки маркируют.

Перед каждым отбором новой порции воды для анализа пробу перемешивают продуванием воздуха стерильной пипеткой.

2.5.2. Приготовление разбавлений

Для посева объемов воды, меньших, чем 1 мл, используют разбавления анализируемой воды. Перед посевом растворы для разбавления ( п. 2.4.2) разливают по 9 мл в пробирки с соблюдением правил стерильности. Затем в первую пробирку с 9 мл раствора вносят 1 мл анализируемой воды. При этом пипетка не должна быть опущена ниже поверхности воды, чтобы избежать смывания бактерий с наружной стороны. Другой стерильной пипеткой продуванием воздуха тщательно перемешивают содержимое пробирки, отбирают из нее 1 мл и переносят в чашку Петри, что будет соответствовать посеву 0,1 мл анализируемой воды. При необходимости посева меньших объемов, этой же пипеткой переносят 1 мл содержимого первой пробирки в следующую пробирку с 9 мл раствора для разбавления. Другой стерильной пипеткой делают посев 1 мл из второй пробирки, что будет соответствовать посеву 0,01 мл анализируемой воды. В случаях высокого уровня загрязнения воды разбавление продолжают аналогично, каждый раз меняя пипетку.

Читайте также:  Взяли анализ воды из крана

Время от момента приготовления разбавлений и заливки питательным агаром не должно превышать 30 мин.

Подготовка мембранных фильтров, фильтровального аппарата, выполнение фильтрования воды — в соответствии с МУК 4.2.1018-01 «Санитарно-микробиологический анализ питьевой воды».

2.7.1. Определение понятия показателей

Общие колиформные бактерии (ОКБ) — грамотрицательные, оксидазоотрицательные, не образующие спор палочки, способные расти на дифференциальных лактозных средах, ферментирующие лактозу до кислоты и газа при температуре (37 ± 1) °С в течение 24-48 ч.

Термотолерантные колиформные бактерии (ТКБ) входят в число общих колиформных бактерий, обладают всеми их признаками и, кроме того, способны ферментировать лактозу до кислоты и газа при температуре (44 ± 0,5) °С в течение 24 ч.

2.7.2. Значение показателей и область применения

ОКБ — основной нормируемый показатель при оценке качества воды водоемов в местах водозаборов для централизованного водоснабжения, рекреации, в черте населенных пунктов. ОКБ — интегральный показатель степени фекального загрязнения, который включает ТКБ, Е. coli, и поэтому обладает индикаторной надежностью в отношении возбудителей бактериальных кишечных инфекций. ОКБ — наиболее чувствительный показатель при выявлении источников фекального загрязнения, в т. ч. небольших.

ТКБ рекомендуется определять одновременно в одном и том же посеве с ОКБ для подтверждения фекального происхождения загрязнения. Уровни ОКБ и ТКБ в воде водоемов, загрязняемых сточными водами, близки, различия находятся в пределах ошибки метода. По мере удаления от источника загрязнения и воздействия факторов самоочищения различия в численности этих групп индикаторов возрастают.

При высоком антропогенном, в частности, химическом загрязнении водоемов, сбросах недостаточно обеззараженных сточных вод, нарушении естественного статуса водоема (зарегулированные водоемы, каналы и т.п.) возможно снижение индикаторного значения лактозоположительных ОКБ и ТКБ в результате их более интенсивного отмирания, чем патогенных (сальмонеллы) и условно-патогенных бактерий семейства Enterobacteriaceae. Если при этом центром Госсанэпиднадзора установлено несоответствие данных анализа по ОКБ и ТКБ (менее 1000 и 100 КОЕ соответственно) и неблагоприятной санитарно-гигиенической обстановки (нарушение режима в зонах санитарной охраны водопроводов, сброс сточных вод, урбанизации территорий водосбросов и т.п.), следует обратить внимание на рост лактозоотрицательных колоний, определить их принадлежность к бактериям семейства Enterobacteriaceae (по отрицательному оксидазному тесту и ферментации глюкозы до кислоты и газа) и включить их в число ОКБ при выдаче результата.

2.7.3. Выполнение анализа

2.7.3.1. Определение общих колиформных бактерий

Объем воды для посева выбирают в зависимости от степени ее предполагаемого загрязнения с таким расчетом, чтобы не менее чем на 2 фильтрах выросли изолированные колонии. При этом можно ориентироваться на результаты предыдущих исследований и на рекомендации прилож. 9.

При исследовании воды неизвестной степени бактериального загрязнения следует засевать не менее 4 десятикратных ее объемов.

Отмеренный объем воды фильтруют через мембранные фильтры с соблюдением требований, изложенных в п. 2.6.

Фильтр переносят не переворачивая на среду Эндо, приготовленную по п. 2.4.5, и добиваются полного прилегания его к среде без пузырьков воздуха. Чашки с посевами помещают в термостат дном вверх и инкубируют при температуре (37 ± 1)°С в течение 18-24 ч.

Для учета выбирают фильтры, на которых выросли изолированные типичные для лактозоположительных бактерий колонии: темно-красные, красные, с металлическим блеском и без него, слизистые с темно-малиновым центром с отпечатком на обратной стороне фильтра. Для повышения точности анализа учет ведут не менее чем на двух фильтрах с числом типичных для колиформных бактерий колоний не менее 10 и не более 30 для фильтров с диаметром диска 35 мм и не менее 15 и не более 50 для фильтров с диаметром диска 47 мм. Допустимо вести учет по 1 фильтру или на фильтрах с более густым ростом, но с обязательной оговоркой в приложении к протоколу анализа.

Выполняют оксидазный тест одним из методов.

1. Мембранный фильтр с выросшими на нем колониями переносят на кружок фильтровальной бумаги несколько большего диаметра, чем фильтр, обильно смоченный реактивом для определения оксидазной активности ( п. 2.4.9, вар. 1 или 2) или на диск СИБ-оксидаза, смоченный дистиллированной водой. При появлении первых признаков положительной реакции, но не более чем через 5 мин, мембранный фильтр переносят обратно на среду Эндо. После четкого проявления реакции определяют результат. При появлении фиолетово-коричневого или синего окрашивания колоний (в зависимости от примененного реактива) оксидазный тест считают положительным.

2. Полоску фильтровальной бумаги помещают в чистую чашку Петри и смачивают 2-3 каплями реактива для оксидазного теста. Бумажные системы промышленного производства смачивают дистиллированной водой. Подсчитывают типичные колонии каждого типа и по 3-4 — изолированные колонии, из них платиновой петлей или стеклянной палочкой (металлическая петля из нихрома дает ложноположительную реакцию при работе с реактивом — тетраметил-п-фенилендиамином) наносят штрихом на подготовленную фильтровальную бумагу. Реакция считается положительной, если в течение 1 мин появляется сине-фиолетовое окрашивание штриха. При отрицательной реакции цвет в месте нанесения культуры не меняется.

Методом 2 следует проводить определение оксидазной активности при росте на фильтрах изолированных колоний или при получении чистых культур после рассева на среде Эндо, поскольку при наложении или соприкосновении колоний колиформных бактерий с оксидазоположительными колониями посторонних бактерий можно получить ложноположительную реакцию и неоправданно отбросить из учета колонии бактерий, являющихся индикаторами фекального загрязнения.

Метод 2 дает ошибку определения при нерепрезентативной выборке колоний для исследования, в отличие от метода 1, с помощью которого выявляется оксидазная активность одновременно всех выросших колоний.

Все оксидазоположительные колонии из учета исключают. Среди колоний, не изменивших первоначального цвета (оксидазоотрицательных), подсчитывают число типичных лактозоположительных колоний (с отпечатками на обратной стороне фильтра до выполнения оксидазного теста).

При лабораторно-производственном контроле за эксплуатируемыми объектами анализ может быть завершен подсчетом таких колоний, которые отнесены к ОКБ по двум признакам: отрицательному оксидазному тесту и ферментации лактозы на лактозной среде Эндо до кислоты.

Дальнейшее подтверждение ОКБ по способности образовывать газ на лактозных средах проводят в следующих случаях:

— при отсутствии достаточно четкой дифференциации лактозоположительных колоний;

— при росте мелкоточечных или мелких плоских колоний, не характерных для колиформных бактерий;

— при небольшом опыте работы выполняющего анализ.

В этих случаях по 2-3 колонии каждого подсчитанного типа оксидазоотрицательных колоний сразу же после постановки оксидазного теста пересевают в одну из подтверждающих сред с лактозой ( п. 2.4.7).

Посевы инкубируют при температуре (37 ± 1) °С в течение 48 ч. Первичный учет на подтверждающих полужидких средах и СИБ возможен через 4-6 ч. При обнаружении кислоты и газа дают положительный ответ. При отсутствии кислоты и газа или при наличии только кислоты пробирки с посевами оставляют для следующего просмотра через 24 ч, а при отрицательном результате для окончательного учета через 48 ч.

2.7.3.2. Определение термотолерантных колиформных бактерий

После постановки оксидазного теста с тех же фильтров с изолированными колониями, которые были выбраны для учета ОКБ, выполняют посев типичных оксидазоотрицательных колоний на одну из подтверждающих сред с лактозой ( п. 2.4.7). При числе колоний менее 15 они исследуются все, а более 15 — подсчитывают колонии разных типов и исследуют по 4-5 колоний каждого из них. Среда перед посевом должна быть прогрета до температуры 44 °С. Посевы сразу же переносят в термостат и инкубируют при температуре (44 ± 0,5) °С в течение (24 ± 1) ч. При использовании полужидких сред и СИБ первичный учет можно проводить через 4-6 ч. При обнаружении кислоты и газа дают положительный ответ. При иных реакциях посевы оставляют в термостате для окончательного учета через 24 ч.

2.7.4. Учет результатов

Типичные колонии учитывают как ОКБ при отрицательном оксидазном тесте и образовании кислоты на лактозной среде Эндо. Среди этих колоний учитывают как ТКБ при подтверждении ферментации лактозы с образованием кислоты и газа при температуре 44 °С.

Если при выборочной проверке колоний одного типа получены неодинаковые результаты, то вычисляют числа ОКБ, ТКБ среди этого типа по формуле:

, где

X — число подтвержденных бактерий одного типа;

а — общее число колоний этого типа;

b — число проверенных из них;

с — число колоний с положительным результатом.

Подсчитывают число подтвержденных колоний ОКБ, ТКБ каждой группы отдельно. Подсчет ведут только на тех фильтрах, где количество изолированных колоний колиформных бактерий не более 30-50. Результат подсчета на каждом фильтре суммируют и по формуле определяют число КОЕ в 100 мл.

, где

X — число КОЕ ОКБ или ТКБ в 100 мл;

а — число подтвержденных колоний в сумме;

V — объем воды, профильтрованный через фильтры, на которых велся учет.

Окончательный результат в протоколе анализа выдают: число КОЕ ОКБ в 100 мл, из них число КОЕ ТКБ в 100 мл.

В случаях сплошного роста на всех фильтрах и невозможности учета результатов анализа в протоколе отмечают «зарост фильтров» и анализ повторяют.

При отсутствии на фильтрах колоний колиформных бактерий число КОЕ будет меньше той величины, которая была бы определена в случае обнаружения в анализируемом объеме одной клетки ОКБ, ТКБ. При повторном анализе объем исследуемой воды увеличивают. В чистых водоемах фильтруют 100 мл.

2.8.1. Определение понятия показателя и его значение по п.п. 2.7.1 и 2.7.2

2.8.2. Область применения

Титрационный метод может быть использован:

— при отсутствии материалов и оборудования, необходимых для выполнения анализа методом мембранной фильтрации;

— при анализе воды с большим содержанием взвешенных веществ;

— в случае преобладания в воде посторонней микрофлоры, препятствующей получению на фильтрах изолированных колоний общих колиформных бактерий.

2.8.3. Выполнение анализа

Объем воды для посева выбирают с таким расчетом, чтобы в минимальных объемах или в наибольшем разбавлении получить один или несколько отрицательных результатов. При этом следует ориентироваться на результаты предыдущих исследований воды в этом же месте водоема и на рекомендации прилож. 10, а также таблиц расчета НВЧ ( прилож. 8).

Выбирают схему посева в 2 или 3 параллельных рядах, учитывая при этом, что чем больше повторностей, тем выше точность получаемых результатов.

Каждый объем воды или ее разбавления засевают в лактозопептонную среду, приготовленную в соответствии с п. 2.4.6. Посев 10 мл анализируемой воды вносят в пробирки с 1 мл концентрированной лактозопептонной среды, 1 мл пробы воды и 1 мл из разбавлений вносят в пробирки с 10 мл среды нормальной концентрации.

Посевы инкубируют при температуре (37 ± 1) °С в течение 24 ч.

Полное отсутствие изменения среды позволяет дать отрицательный ответ.

Из посевов в среду накопления, где отмечено помутнение, образование кислоты и газа или только помутнение, производят высев петлей на сектора среды Эндо с таким расчетом, чтобы получить изолированные колонии. Посевы на среде Эндо инкубируют при температуре (37 ± 1) °С в течение 16-18 ч.

2.8.3.1. Определение общих колиформных бактерий

При наличии в среде накопления помутнения и газообразования, а при высеве на подтверждающую среду типичных для лактозоположительных колоний (темно-красных с металлическим блеском или без него), выполняют оксидазный тест в соответствии с п. 2.7.3.1 методом 2 или путем нанесения капель реактива на часть сектора. При обнаружении оксидазоотрицательных колоний дают положительный ответ на наличие ОКБ в данном объеме пробы.

Наличие ОКБ требуется подтвердить:

— если в среде накопления имеет место сомнительная реакция (небольшое газообразование или только помутнение);

— если на среде Эндо выросли колонии с недостаточно четкими дифференциальными признаками лактозоположительных колиформных бактерий.

— проверяют наличие отпечатка на среде Эндо после снятия петлей подозрительных колоний;

— подтверждают способность к газообразованию при посеве изолированных 1-2 колоний каждого типа с каждого сектора на среду с лактозой в соответствии с п. 2.4.7 с последующей инкубацией посевов при температуре (37 ± 1) °С в течение 24 ч.

При отсутствии изолированных колоний проводят рассев на среду Эндо общепринятыми бактериологическими методами. Отрицательный ответ дают, если:

— в среде накопления нет признаков роста;

— на секторах среды Эндо нет роста;

— на секторах среды Эндо выросли не характерные для колиформных бактерий колонии (прозрачные, с неровными краями, расплывчатые, а также розовые без отпечатков на среде и т. п.);

— все колонии оказались оксидазоположительные;

— если в подтверждающем тесте на среде с углеводом не отмечено газообразования.

2.8.3.2. Определение термотолерантных колиформных бактерий

Для определения ТКБ работают с секторами среды Эндо, где выросли типичные лактозоположительные колонии, а в среде накопления обнаружено газообразование. Делают посев 2-3 изолированных колоний каждого типа с каждого сектора в пробирки с любой из лактозных сред, приготовленных в соответствии с п. 2.4.7.

Среду перед посевом нагревают на водяной бане или в термостате до 44 °С. Немедленно после посева пробирки помещают в термостат и инкубируют при температуре (44 ± 0,5) °С в течение 24 ч. Допускается просмотр посевов через 4-6 ч.

При образовании газа в среде накопления, росте на среде Эндо лактозоположительных бактерий и выявлении способности этих бактерий ферментировать лактозу до кислоты и газа в течение 24 ч при температуре 44 °С, дают положительный ответ на наличие в этом объеме пробы воды ТКБ. Во всех остальных случаях дают отрицательный ответ.

Для ускорения выдачи ответа на присутствие ТКБ производят высев 1 мл из объемов среды накопления, где отмечено помутнение и газообразование, в пробирки с лактозо-пептонной средой и поплавком или ваткой по п. 2.4.7.2 и прогретой предварительно до температуры 44 °С. Посевы выдерживают в термостате при температуре (44 ± 0,5) °С в течение 24 ч. При обнаружении кислоты и газа дают положительный ответ.

2.8.4. Учет результатов

После определения положительных и отрицательных результатов на наличие ОКБ, ТКБ в объемах воды, засеянной в среду накопления, вычисляют наиболее вероятное число (НВЧ) КОЕ в 100 мл по одной из таблиц прилож. 8, соответствующих схеме посева и полученным результатам.

Для расчета выбирают 3 таких последовательных десятикратных разбавления или объема воды, засеянной в среду накопления, в которых получены как положительные, так и отрицательные результаты. Если имеют место сочетания положительных и отрицательных результатов, отсутствующие в таблицах, то при повторении таких сочетаний более чем в 1% случаев следует искать причины в неправильной технике выполнения анализа.

В протоколе анализа указывают: НВЧ КОЕ ОКБ в 100 мл, НВЧ КОЕ ТКБ в 100 мл. Доверительный интервал не указывают.

2.9.1. Определение понятия показателя

Колифаги — бактериальные вирусы, способные лизировать кишечную палочку и формировать зоны лизиса (бляшки) через (18 ± 2) ч при температуре (37 ± 1) °С на ее газоне на питательном агаре.

2.9.2. Значение показателя и область применения

Колифаги являются нормируемым показателем и предназначены для проведения текущего контроля качества воды поверхностных водоемов, служащих источником для питьевого и хозяйственно-бытового водоснабжения, водоснабжения пищевых предприятий, для рекреационного водопользования, а также в черте населенных мест в отношении возможного вирусного загрязнения.

2.9.3. Подготовка тест-культуры Е. coli K12F + Str-r

На всех этапах исследования используют бактериальную взвесь, приготовленную следующим образом: культуру Е. coli K12F + Str-r ( п. 2.2.6) засевают в пробирку со скошенным питательным агаром со стрептомицином ( п. 2.4.4). Через (18 ± 2) ч инкубации при температуре (37 ± 1) °С производят смыв бактерий с косяка 5 мл стерильного солевого раствора ( п. 2.4.2.1) и по стандарту мутности готовят взвесь Е. coli в концентрации 10 9 бактериальных клеток в 1 мл.

Допускается в день анализа внести культуру Е. coli K12F + Str-r в питательный бульон, при 37 °С инкубировать в течение 4 ч и использовать при внесении в питательный агар, расплавленный и остуженный до (44 ± 1) °С.

2.9.4. Выполнение анализа

Объем воды для посева выбирают в зависимости от степени ее загрязнения с таким расчетом, чтобы на чашках выросло до 300 БОЕ, без образования сливных зон. При посеве на чашку Петри 1 мл или соответствующих десятикратных разбавлений используют питательный агар в обычной прописи ( п. 2.4.4), при посеве 100 мл исследуемой воды — питательный агар двойной концентрации ( п. 2.4.4). В зависимости от плотности используемого агара проводят посевы воды по 10 мл на 10 чашек или по 20 мл на 5 чашек. Для освобождения исследуемой воды от сопутствующей бактериальной флоры, ее обрабатывают хлороформом из расчета 1 мл хлороформа на 10 мл воды. Пробу тщательно встряхивают и отстаивают в течение 15 мин при комнатной температуре для осаждения хлороформа. На исследование берут воду над хлороформом. В питательный агар ( п. 2.4.4), расплавленный и остуженный до (44 ± 1) °С, добавить смыв Е. coli K12F + Str-r (п. 2.9.3) из расчета 1,0 мл смыва на каждые 100 мл агара, перемешать. Для контроля культуры Е. coli на возможную контаминацию ее посторонними колифагами в одну чашку Петри вносят 10 мл стерильной водопроводной воды, прогретой до 20-25 °С, заливают 25 мл приготовленного агара с Е. coli K12F + Str-r и осторожно перемешивают.

Исследуемые объемы воды вносят в стерильные чашки Петри и заливают, слегка приоткрывая крышки, 25 мл смеси агара с кишечной палочкой. При посеве 100 мл воды температуру пробы предварительно доводят до 20-25 °С.

Содержимое чашек осторожно перемешивают и оставляют при комнатной температуре до застывания. Чашки с застывшим агаром помещают дном вверх в термостат и инкубируют при температуре (37 ± 1) °С в течение (18 ± 2) ч.

2.9.5. Учет результатов

Просмотр посевов осуществляется в проходящем свете.

При исследовании 100 мл воды (5 чашек по 20 мл) подсчитывают и суммируют все бляшки, выросшие на чашках Петри.

Если посевная доза была меньше 100 мл, то число колифагов вычисляют по формуле:

, где

а — сумма бляшек на чашках;

V — объем исследуемой воды.

При исследовании децинормальных разведений, число колифагов в 100 мл воды вычисляют по формуле:

, где

Результаты выражают в бляшкообразующих единицах (БОЕ) на 100 мл пробы воды. В контрольной чашке бляшки должны отсутствовать.

Предварительный учет результатов можно проводить через 5-6 ч инкубации. На этом этапе при наличии четких зон лизиса может быть выдан предварительный ответ о присутствии колифагов в воде.

Окончательный количественный учет прямого посева проводится через (18 ± 2) ч. Результаты выражают количеством бляшкообразующих единиц (БОЕ) на 100 мл пробы воды.

Если отмечен сливной рост бляшек и счет затруднителен, то по данным прямого посева может быть выдан качественный результат: «обнаружено в 100 мл воды».

При наличии зон лизиса в контрольной чашке результат исследования считается недействительным.

2.9.6. Постановка контролей

«Отрицательный контроль» — подтверждает отсутствие контаминации фагом питательных сред, лабораторной посуды, оборудования на этапах подготовки и проведения анализа, а также позволяет оценить способность тест-культуры Е. coli давать равномерный газон.

«Отрицательным контролем» служит исследование стерильной водопроводной воды, проводимое аналогично анализируемой пробе воды. С этой целью, в зависимости от посевной дозы исследуемой воды, в стерильную чашку Петри вносят от 1 до 20 мл стерильной водопроводной воды, заливают смесью мясопептонного агара с Е. coli и инкубируют (18 ± 2) ч при 37 °С.

В случае обнаружения бляшек колифагов в чашках с «отрицательным» контролем результаты исследования всей серии проб воды недействительны.

Следует проверить стерильность лабораторного оборудования, посуды, питательных сред, а также повторить контрольный посев на лизогенность тест-штамма Е. coli K12 F + Str-r.

Для проверки культуры на лизогенность необходимо использовать новую пробирку с культурой, хранящейся на полужидком агаре ( п. 2.4.7.1). В стерильную чашку Петри помещают 1 мл бактериальной взвеси и заливают расплавленным и остуженным до 45-49 °С питательным агаром, инкубируют при температуре 37 °С в течение (18 ± 2) ч.

Просмотр посевов осуществляют в проходящем свете. Наличие зон лизиса в контрольном посеве свидетельствует о спонтанно проявившемся свойстве культуры продуцировать фаги или контаминации ее колифагом в процессе работы.

Использование в работе лизогенной культуры запрещается. Необходимо получить новую лиофилизированную культуру ( п. 2.2.6).

2.9.7. Методика подтверждения фаговой природы лизиса

В сомнительных случаях необходимо провести контрольный посев на подтверждение фаговой природы лизиса.

С этой целью бактериологической петлей извлекают участок агара с бляшкой колифага, вызывающей сомнение, помещают его в 5 мл питательного бульона, куда добавляют каплю тест-культуры Е. coli K12F + Str-r и инкубируют при 37 °С в течение (18 ± 2) ч. Полученную культуру обрабатывают хлороформом или фильтруют через мембранный фильтр и исследуют на наличие фага. Высев осуществляют петлей или пипеткой на поверхность питательного агара, содержащего взвесь Е. coli, чашки инкубируют в термостате при 37 °С в течение (18 ± 2) ч. Наличие зон лизиса на поверхности агара расценивается как подтверждение наличия фага.

2.10.1. Область применения показателя

В соответствии с требованиями СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод» об отсутствии патогенных микроорганизмов в местах водопользования, контроль воды поверхностных водоемов осуществляют по определению бактерий рода Salmonella семейства Enterobacteriaceae и учитывают их отсутствие в 1000 мл воды как наиболее устойчивых из патогенных представителей этого семейства. Анализ на выделение других возбудителей инфекционных заболеваний с водным путем передачи выполняют только по эпидпоказаниям.

Бактерии рода Salmonella определяют: при выборе новых источников водоснабжения и зон рекреации; при установлении влияния выбросов сточных вод на водоем; при превышении нормативов по ОКБ и ТКБ и в повторно отобранных пробах; при ухудшении санитарно-гигиенической обстановки (появление новых источников загрязнения, при метереологических условиях, приводящих к смыву загрязнений с прилегающих территорий, экстремальных ситуациях и т.п.), а также при неблагоприятной санитарно-гигиенической и эпидемической ситуации. Частоту контроля определяют в каждом конкретном случае в соответствии с программой центров госсанэпиднадзора.

В водоемах, где уровни индикаторных микроорганизмов в местах водозаборов соответствуют требованиям СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод», периодический контроль на обнаружение сальмонелл необходимо предусмотреть: при несоблюдении режимов в зонах санитарной охраны водозаборов, особенно при сбросах недостаточно обеззараженных сточных вод; при химическом загрязнении; в водоемах с нарушенным естественным статусом (водохранилищах, каналах, нижних бьефах ГЭС и др.). При этом необходимо иметь в виду более длительные сроки выживаемости сальмонелл по сравнению с колиформами и, следовательно, снижение их индикаторного значения.

При обнаружении сальмонелл в местах рекреации необходимо рассмотреть вопрос о закрытии пляжа.

При обнаружении сальмонелл в местах водозаборов централизованного питьевого водоснабжения следует принять меры по усилению режимов очистки и обеззараживания, а при контроле их эффективности иметь в виду большую устойчивость сальмонелл в процессах обеззараживания по сравнению с ОКБ и ТКБ.

2.10.2. Выполнение анализа

Для определения сальмонелл исследуют 1000 мл воды водоемов, засевая по 500 мл в две из следующих сред накопления: селенитовый бульон по п. 2.4.19, магниевая среда по п. 2.4.20, среда Мюллера-Кауфмана по п. 2.4.17, тетратионатная среда по Preuss по п. 2.4.21 и другие апробированные для этих целей среды накопления.

2.10.2.1. Посев воды в среду Мюллера-Кауфмана для определения сальмонелл

К 500 мл исследуемой воды добавляют ингредиенты по прописи 2.4.17.

2.10.2.2. Посев воды в селенитовый бульон для определения

К 500 мл воды добавляют 500 мл селенитового бульона двойной концентрации по п. 2.4.19.

2.10.2.3. Посев воды в магниевую среду

К 500 мл исследуемой воды прибавляют навески и растворы ингредиентов по прописи п. 2.4.20.

2.10.2.4. Посев воды в тетратионатную среду

К 500 мл исследуемой воды добавляют 10 мл тетратианатной среды по п. 2.4.21.

2.10.2.5. Посев воды в магниевую среду для определения сальмонелл количественным методом

В случае необходимости количественного определения сальмонелл можно установить их концентрацию посевом в магниевую среду с титрованием в двух или трех параллельных рядах десятикратных разбавлений от 100 до 1 мл, прибавляя навески и растворы по прописи 2.4.20. Индекс сальмонелл определяют по таблицам прилож. 8.

2.10.2.6. Посев воды для определения сальмонелл методом мембранной фильтрации

Для посева 2 объемов по 500 мл отбирают 1000 мл воды. Каждый объем профильтровывают через один или несколько мембранных фильтров. Полученные фильтры из каждого объема помещают в 50-100 мл в любые две из перечисленных сред накопления. При затрудненной фильтрации большого объема пробы следует на фильтр с диаметром пор 0,45 мкм наложить фильтр с большим диаметром пор для задержания взвешенных частиц с последующим помещением на питательную среду обоих фильтров.

2.10.3. Ход анализа

Посевы воды в среды накопления инкубируют при температуре 37 °С в течение 18-20 ч. При обнаружении роста (помутнения) производят высев бактериологической петлей на две чашки с висмут-сульфитным агаром ( п. 2.4.22). Рассев производят одним из методов получения изолированных колоний. Чашки с посевами инкубируют при температуре 37 °С в течение 18-20 ч.

На висмут-сульфитном агаре колонии сальмонелл круглые, черные, с металлическим блеском, с сероватым металлическим ободком вокруг колоний, так называемое «зеркало», зеленые с темным центром и без него, вызывающие потемнение среды под колонией.

При дальнейшей работе с культурами сальмонелл возможно использование SS агара ( п. 2.4.23). На SS-arape колонии сальмонелл вырастают бесцветными. Колонии нежные, гладкие, круглые, слегка выпуклые с ровными краями, блестящие, полупрозрачные, диаметром 1,0-2,0 мм.

В отличие от патогенных бактерий, Е. coli образуют круглые, выпуклые, гладкие, малинового цвета колонии.

При обнаружении колоний, подозрительных на сальмонеллы, по 4-5 изолированных колоний с каждой чашки снимают для посева в пробирки с комбинированными средами для определения биохимических свойств, подтверждающих принадлежность к родам Salmonella (типа Клиглера, Олькеницкого и др.).

Окончательное определение биохимических и серологических свойств сероваров проводят по действующим инструкциям.

При санитарно-вирусологическом контроле воды поверхностных водоемов проводят концентрирование, детекцию и идентификацию вирусов.

2.11.1. Определение понятия показателя

Кишечные вирусы — вирусы, обитающие или транзиторно проходящие через желудочно-кишечный тракт, патогенные для человека, вызывающие заболевания с различной клинической картиной и степенью тяжести. В настоящее время из группы кишечных вирусов приведенным ниже методом определяются: энтеровирусы (вирусы полиомиелита 1, 2, 3 типа, вирусы группы ECHO, Коксаки В и некоторые серотипы Коксаки А); ротавирусы, антигены гепатита А и Е; аденовирусы.

2.11.2. Область применения

Кишечные вирусы в воде поверхностных водоемов рекомендуется определять:

— при превышении нормативного уровня колифагов;

— в случаях несоответствия качества воды по основным индикаторным микробиологическим показателям, а также при эпидемической ситуации в отношении кишечных вирусных инфекций в населенном пункте.

Информация о наличии или отсутствии энтеровирусов позволит судить:

— о степени риска для здоровья населения при использовании загрязненной вирусами воды;

— о возможности использования воды поверхностного водоема на данном участке в качестве источника хозяйственно-питьевого водоснабжения и в рекреационных целях;

— при проведении эпидемиологических исследований;

— эффективности работы очистных сооружений в отношении вирусного загрязнения.

2.11.3. Принцип метода

Метод основан на принципе сорбции вирусных частиц высокоэффективным сорбентом класса кремнеземов — макропористым стеклом марки МПС 1000 ВГХ и последующей десорбцией их небольшим объемом элюэнтов. Технологическая особенность метода заключается в том, что сорбент помещен в водопроницаемый флизелиновый пакет, который опускают в водный поток, что позволяет:

— исследовать большие объемы воды, и тем самым увеличить вероятность сорбции вирусных частиц;

— избежать механического загрязнения сорбента.

Достоинством использования флизелинового пакета с сорбентом является:

— высокая сорбционная емкость стекла;

— небольшой объем используемых элюирующих растворов, что обеспечивает дополнительное концентрирование вирусных частиц.

2.11.4. Подготовка и проведение исследования

2.11.4.1. Приготовление растворов

Десятикратные концентраты элюирующих растворов готовят на стерильной дистиллированной воде.

1) Растворяют 30,3 г триса (Tris [hydroxymethyl] aminomethane) в 300-400 мл воды, доводят значение рН до 9,1 концентрированной НС l и оставляют на 1 сутки при комнатной температуре. Затем проверяют (и при необходимости доводят еще раз) значение рН до 9,1. Конечный объем раствора (500,0 мл) получают добавлением дистиллированной воды.

2) 30,3 г триса + 145 г NaCl на 500,0 мл раствора, рН 9,1.

3) 150,0 г мясного экстракта (Beef Extract Powder) + 350 мл трис-буфера рН 9,1.

Растворы автоклавируют 15 мин при 1 атмосфере (121 °С).

Рабочие разведения элюэнтов получают добавлением 9 частей стерильной дистиллированной воды к 1 части концентрированного раствора.

2.11.4.2. Подготовка макропористого стекла

Для повышения сорбционных свойств макропористое стекло, представляющее собой белый порошок, обрабатывают следующим образом:

1) один объем стекла заливают в колбе одним объемом смеси (1:1) 3 %-ным раствором Н2О2 и 6 М НC l и кипятят в вытяжном шкафу в течение 1 ч (без пробки), соблюдая меры предосторожности. Полученное МПС отмывают большим количеством дистиллированной воды до нейтрального значения рН и высушивают при 100 °С;

2) в пакет из флизелина размером 5×7 см помещают 1 г подготовленного сорбента.

2.11.4.3. Подготовка хроматографической колонки

Колонки обрабатывают силиконовой жидкостью (Serva) для предотвращения адсорбции вирусов. Для этого внутреннюю поверхность колонки смачивают данной силиконовой жидкостью, после чего колонку выдерживают 1 ч при t = 100 °С. Силиконовую жидкость можно использовать многократно.

2.11.4.4. Отбор проб и обработка проб

Пакет с сорбентом закрепляют с помощью лески так, чтобы он оказался в потоке воды. После экспозиции в течение 3-7 суток пакет вынимают, помещают в новый полиэтиленовый мешочек и стерильный флакон и транспортируют в лабораторию в сумке-холодильнике. Каждую пробу маркируют с указанием населенного пункта, точки отбора, даты установки и времени экспозиции пакета. Материал доставляют в лабораторию в максимально короткий срок (не более 6 ч). Доставленные в лабораторию пробы регистрируют в рабочем журнале.

До проведения элюции вирусов пакеты в полиэтиленовом мешке или стерильном флаконе можно хранить в холодильнике при 4 °С не более 1 суток.

В лаборатории пакет с сорбентом извлекают из транспортировочной емкости и помещают в стерильную чашку Петри. Обрезают край пакета, вымывают стекло стерильной дистиллированной водой (

5 мл) с помощью пипетки в эту же чашку Петри и переносят пипеткой или через воронку в колонку объемом 5-10 мл. Вирусы элюируют последовательно 3 рабочими растворами элюэнтов по 3,0 мл каждый (рабочие разведения элюэнтов п. 2.11.4.1), собирая их в отдельные пенициллиновые флаконы.

В тех случаях, когда дальнейшие вирусологические исследования проводят на культуре клеток, полученные элюаты обрабатывают хлороформом и антибиотиками для удаления бактериальной флоры. Для этого к 1 объему элюата добавляют 1 объем хлороформа, интенсивно встряхивают 5-10 мин и центрифугируют 10 мин при 2000 об./мин для разделения фракций. Водную фракцию (верхнюю) аккуратно отбирают пипеткой в стерильный флакон и добавляют 1000 ЕД пенициллина (бензилпенициллина натриевую соль) и 10,0 мг сульфата стрептомицина. Обработанные элюаты до заражения культур ткани можно хранить при 4 °С в течение 3 суток. При температуре –20 °С элюаты можно хранить в течение 1 года. В случае необходимости многократного исследования элюаты делят на несколько порций, чтобы избежать повторного замораживания.

Исследования полученных элюатов на наличие энтеровирусов на культуре ткани рекомендуется проводить в соответствии с «Руководством по вирусологическим исследованиям на полиомиелит» (ВОЗ, 1998).

Отбор проб из поверхностных источников питьевого водоснабжения по количеству и кратности проводят в соответствии с СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод».

Отбор проб воды производят в чистые емкости. Сосуды больших объемов — молочные фляги, металлические и пластмассовые ведра и т.п., которые тщательно промывают кипяченой водой и ополаскивают отбираемой для анализа водой.

Пробы воды необходимо брать в створах, расположенных выше и ниже сброса стоков, у причалов, мест стоянок пассажирских и грузовых судов, выше и ниже населенных мест, в зонах рекреации, оздоровительных детских, спортивных и военных лагерей, по берегам и в середине водоема. Пробы отбирают с поверхности водоема, а также с различных глубин, начиная с 10-15 см от поверхности воды или от нижней кромки льда. Глубинные пробы можно отбирать с помощью пробоотборника гидробиологического типа «Пробоконг», снабженного погружным насосом, в соответствии с инструкцией по применению или другого с аналогичными характеристиками, разрешенного к применению в установленном порядке.

Пробы воды с поверхности водоема следует отбирать емкостями 1,5-2,0 л с интервалами 3-5 мин. Это позволяет в течение 40-60 мин взять усредненную пробу объемом 25 л.

Пробы воды могут доставляться в лабораторию без обработки или, в целях облегчения их транспортирования, после предварительной обработки (концентрирования материала путем фильтрования на месте отбора проб, в лаборатории водопроводной станции и др., с использованием типа ПВФ-142 полевая модификация).

С этой же целью может быть использована методика первичной концентрации паразитарных патогенов с помощью таких коагулянтов, как сульфат аммония, сульфат железа, сульфат меди в дозе 0,1-0,3 г/л.

В пробу воды на месте отбора добавляют коагулянт, затем тщательно перемешивают и отстаивают 1-2 ч. После этого надосадочную жидкость удаляют, а осадок переносят в сосуд объемом 1 л и доставляют в лабораторию. Содержимое этого сосуда вновь отстаивают 1-2 ч, а осадок после удаления надосадочной жидкости переносят в центрифужные пробирки 10-50 мл (в зависимости от объема осадка) и центрифугируют в течение 5 мин при 1500 об./мин. Надосадочную жидкость сливают, а к осадку добавляют 3 мл 1 %-ного раствора хлористоводородной кислоты для растворения хлопьев коагулянта, перемешивают и центрифугируют в таком же режиме. Надосадочную жидкость удаляют, а осадок обрабатывают по нижеописанной методике.

Пробы, не прошедшие предварительную обработку, хранят при температуре 15-20 °С не более двух суток.

В случае если первичная обработка пробы воды (фильтрование) проводилась вне лаборатории, использованные фильтры помещают в широкогорлый флакон или стеклянную банку, добавляют 30-50 мл исходной воды; закрывают флакон или банку завинчивающейся или притертой крышкой, маркируют, указывают дату, место отбора, количество профильтрованной воды и транспортируют в лабораторию для дальнейшего исследования. При невозможности исследования в день отбора материал хранят при 4 °С не более суток; при отсутствии необходимости определения жизнеспособности цист кишечных простейших и яиц гельминтов материал хранят при 4 °С не более 3-4 суток после добавления в него формальдегида с таким расчетом, чтобы концентрация его в суспензии составила 2 %.

Методики предназначены для обнаружения в воде цист патогенных простейших кишечника (лямблий, криптоспоридий, амебы дизентерийной, балантидия) и яиц гельминтов, представляющих непосредственную угрозу для здоровья человека при их заглатывании, при осуществлении контроля качества воды по паразитологическим показателям в источниках хозяйственно-питьевого водоснабжения и в водоемах рекреационного назначения.

3.2.1. Принцип методик с использованием флотантов

Цисты патогенных простейших кишечника и яйца гельминтов обнаруживаются при микроскопическом исследовании осадка, получаемого после центрифугирования не менее 4-кратно разведенного раствора флотанта с плотностью 1,26, в который искомые паразитарные агенты попадают из осадка, смываемого с мембранных фильтров поcле фильтрации через них исследуемой воды. Осаждение цист простейших и яиц гельминтов происходит за счет резкого снижения плотности флотанта, которая после разведения достигает 1,03 и менее, что ниже плотности паразитарных агентов.

— прибор для фильтрования типа ПВФ-142, ПМФ-70, УППВ;

— мембранные фильтры типа МФАС-СПА с размерами пор 1,5-3,0 мкм, МФАС-СПА-4 с размерами пор 2,4-4,5 мкм, прозрачные ATM с размерами пор 1,0-3,05. префильтры — капроновая сетка с ячейками 60-70 мкм;

— лотки, эмалированные кастрюли или ведра, акварельные кисточки, пинцеты.

Примечание. Допускается к использованию оборудование с аналогичными характеристиками, разрешенное к применению для этих целей в установленном порядке

— 33 %-ный водный раствор семиводного сульфата цинка (ZnSO4×7Н2О) — 331 г ZnSO4×7Н2О растворить в 1 л кипящей дистиллированной воды. После охлаждения до комнатной температуры измерить удельную плотность ареометром, которая должна быть не менее 1,25-1,26;

или 30 %-ный водный раствор сахарозы — 300 г сахарозы растворяют в 1 л горячей дистиллированной воды;

Пробу воды фильтруют через мебранные фильтры типа МФАС-СПА или прозрачные аналитические трековые мембраны (ATM) в соответствии с инструкцией.

Весь полученный смыв с мембранных фильтров или после концентрации химреактивами центрифугируют в пробирках емкостью 10 мл и более в течение 5 мин при 1500 об./мин.

Надосадочную жидкость осторожно сливают.

Добавляют 6-8 мл 2 %-ного водного раствора формалина (или дистиллированной воды) и размешивают.

Суспензию вновь центрифугируют в течение 5 мин при 1500 об./мин.

Надосадочную жидкость осторожно сливают или отсасывают пипеткой.

К осадку добавляют 3 мл одного из флотантов с удельным весом не менее 1,26 (33 %-ный водный раствор семиводного сульфата цинка или 30 %-ный водный раствор сахарозы и т. п.) и тщательно перемешивают стеклянной палочкой.

Центрифугируют в течение 5 мин при 2000 об./мин или 10 мин при 1500 об./мин.

Надосадочную жидкость осторожно сливают или отсасывают пипеткой и переносят в центрифужную пробирку, разбавляя в 4 раза дистиллированной водой, и центрифугируют в течение 5 мин при 1500 об./мин.

Надосадочную жидкость осторожно сливают. Из осадка готовят препараты на предметных стеклах и микроскопируют под покровным стеклом при увеличении: объектив 10х-40х, окуляр 10х. Для исследования на цисты лямблий микропрепараты окрашивают раствором Люголя.

При микроскопии и идентификации паразитарные патогены в пробах воды необходимо дифференцировать от фитопланктона и гидробионтов.

3.4. Метод санитарно-паразитологического исследования воды с применением прозрачных аналитических трековых мембран

3.4.1. Характеристика аналитических трековых мембран

Аналитическая трековая мембрана (далее — трековая мембрана) из тонкой прозрачной полиэтилентерефталатной пленки со сквозными порами диаметром от 0,1 до 5,0 мкм.

Выпускаются диски мембран диаметром (25; 37; 47; 70; 142 мм), в соответствии с используемыми в лаборатории фильтровальными приборами.

При первичном использовании трековых мембран их микроскопируют до фильтрации, чтобы ознакомиться с формой и расположением пор.

Для фиксации диска трековой мембраны (или его фрагмента) на поверхность предметного стекла наносят 1-2 капли 50 %-ного раствора глицерина. Затем сверху накладывают трековую мембрану или ее фрагмент в виде полоски (размером с предметное стекло) и накрывают покровным стеклом. Микроскопируют при увеличениях: окуляр 7х, 10х; объектив 10х, 40х.

Читайте также:  Взятие на анализ околоплодных вод

На трековой мембране будут хорошо видны сквозные поры в виде круглых образований с ровными краями без содержимого (напоминают пузырьки).

Дифференцировка пор трековой мембраны с паразитологическими объектами не представляет затруднений, т. к. размеры яиц гельминтов в 10-20 раз, а цист лямблий в 2-4 раза превышают размеры пор. Поры трековых мембран имеют четкие контуры, не имеют внутреннего содержимого и при микроскопии занимают все поля зрения.

3.4.2. Подготовка трековых мембран к фильтрации

Трековую мембрану (которая находится между бумажными прокладочными дисками, изготовленными из силиконизированной бумаги) извлекают пинцетом из заводской упаковки и помещают на фритту фильтродержателя прибора для фильтрования (диаметр диска трековой мембраны подбирают в зависимости от имеющейся в лаборатории фильтровальной установки), закрепляют крышкой или в корпусе и проводят фильтрование пробы воды в соответствии с инструкцией к прибору.

При фильтрации мутной, с видимыми загрязнениями, воды необходимо использовать предфильтры (прилагаемые к прибору для фильтрования или к набору аналитических трековых мембран).

3.4.3. Подготовка и микроскопия аналитических трековых мембран

После фильтрования пробы воды, трековую мембрану извлекают пинцетом, помещают в чашку Петри или эмалированный лоток поверхностью, которая прилегала к фритте.

Затем, придерживая трековую мембрану за края пинцетом, не задевая поверхности фильтрации во избежание нарушения целостности препарата и потери искомых патогенов, разрезают ее на отдельные полоски, размер которых соответствует размеру предметного стекла. Диски трековых мембран диаметром 25; 37; 47 мм можно микроскопировать на больших предметных стеклах не разрезая их на части.

Полоску трековой мембраны, поверхностью, которая прилегала к фритте помещают на предметное стекло, предварительно обработав его 50 %-ным раствором глицерина (для этого на поверхность предметного стекла наносят 1-2 капли 50 %-ного раствора глицерина и стеклянной палочкой распределяют по всей поверхности). Всю поверхность полоски трековой мембраны накрывают сверху покровными стеклами (24×24 мм). Микроскопируют при увеличениях: окуляр 7х или 10х; объектив 10х; 40х.

При исследовании на цисты лямблии, на полоску трековой мембраны, которая уже помещена на предметное стекло с глицерином, наносят сверху каплю 1 %-ного раствора Люголя (пропись см. в прилож. 13) и накрывают покровными стеклами (24×24 мм) всю поверхность полоски. Микроскопируют при увеличениях: окуляр 7х или 10х; объектив 40х.

Использование прозрачных аналитических трековых мембран облегчает санитарно-паразитологический анализ воды и значительно сокращает время его проведения. Их использование может проходить по двум вариантам:

первый — трековые мембраны применяют при пробоподготовке воды и выполнении вышеописанной стандартной методики в соответствии с МУК 4.2.964-00 «Санитарно-паразитологические исследования воды хозяйственного и питьевого использования»;

второй — отфильтрованный с помощью трековой мембраны осадок непосредственно микроскопируют на ней в соответствии с методическими рекомендациями Минздрава России N 22 ФЦ/3314 от 26.03.03 «Использование прозрачных аналитических трековых мембран для санитарно-паразитологических исследований воды» (п. 2.1.2).

При использовании трековых мембран на приборах вакуумного фильтрования (ПВФ-142 и др.) необходимо учитывать, что толщина диска трековой мембраны меньше стандартных мембранных фильтров МФАС-СПА, что может послужить причиной отсутствия вакуума

Для избежания погрешности, перед укладкой диска трековой мембраны на фритту, по краю фильтродержателя укладывают (в соответствии с инструкцией) уплотнительные кольца, которые прилагаются к каждой стандартной заводской упаковке трековых мембран.

Методика предназначена для обнаружения в воде ооцист криптоспоридий, а также может использоваться для определения цист лямблий и яиц гельминтов.

3.5.1. Исследование воды методом последовательной фильтрации через систему аналитических трековых мембранных фильтров (АТМ)

Оборудование и инструментарий:

— прозрачные аналитические трековые мембраны (ATM) с диаметром пор 5,0 и 2,5 мкм и капроновая сетка (префильтр) с диаметром пор 25,0;

— префильтр (капроновая сетка) с диаметром пор 67-70 мкм;

— прибор для фильтрования типа ПВФ-142; ПВФ-35; ПНФ-70;

— пинцеты, кисточки акварельные (широкие, мягкие или полужесткие), пластмассовые пластины, лотки, эмалированные кастрюли или ведра.

— краска по Циль-Нильсену — фуксин основной 2 г растворить в 12 мл спирта 96 %; фенола 5 г растворить в 50 мл дистиллированной воды; слить вместе растворы фуксина и фенола, долить дистиллированной воды до 100 мл и тщательно перемешать;

3.5.2. Ход исследования на цисты лямблий, яйца и личинки гельминтов

Предварительно на заборное устройство прибора для фильтрования ПВФ-142 крепится префильтр в виде капроновой сетки с размерами ячейки 67-70 мкм (поставляется в комплекте с ATM).

Аналитическую трековую мембрану (ATM) с диаметром пор 5,0 мкм помещают на фритту* фильтродержателя прибора для фильтрования и сверху укладывают фильтр с размером пор 25,0 мкм, уплотняют кольцом из эластичной резины. Далее закрепляют крышкой и проводят фильтрацию в соответствии с инструкцией к прибору. Необходимо профильтровывать пробу воды в отдельную емкость, т. к. она будет подвергаться повторной фильтрации.

После фильтрации обе мембраны последовательно по одной осторожно снимают пинцетом с фритты на заранее подготовленные тонкие пластмассовые квадратные пластинки размером 150×150 мм 2 (поставляются в комплекте с ATM) и переносят в лоток.

Профильтрованную в отдельную емкость пробу воды повторно фильтруют с использованием ATM с диаметром пор 2,5 мкм, которую укладывают на фритту* фильтродержателя между двумя уплотнительными кольцами из полиэтилена или обрезиненного лавсана (поставляются в комплекте с ATM).

После фильтрации ATM осторожно снимают пинцетом с фритты на заранее подготовленные тонкие пластмассовые квадратные пластинки размером 150×150 мм 2 (поставляются в комплекте с ATM) и переносят в лоток.

Со всех трех фильтров аккуратно и тщательно, придерживая диск с мембраной пинцетом за край, производят смыв осадка с обеих поверхностей мембран и с пластиковых дисков, на которых эти фильтры лежали. Смыв проводят плоской, средней жесткости кисточкой (поставляемой в комплекте с ATM) в лоток с дистиллированной водой. При этом периодически споласкивают мембраны и диски дистиллированной водой из химического стакана. Общий объем дистиллированной воды при смыве осадка со всех 3 фильтров не должен превышать 300-500 мл.

Концентрированный смыв сливают из лотка в воронки прибора для фильтрации типа ПВФ-35 или ПВФ-47 и фильтруют через ATM с диаметром пор 2,5 мкм. В зависимости от первоначальной загрязненности воды используют 1-2 или 3 воронки. Если прибор с одной воронкой, то фильтруют последовательно, меняя мембраны.

После фильтрации ATM осторожно снимают пинцетом и переносят на предметное стекло, предварительно обработав его 50%-ным раствором глицерина (для этого на поверхность предметного стекла наносят 1-2 капли 50 %-ного раствора глицерина и стеклянной палочкой распределяют по всей поверхности), затем сверху мембраны наносят каплю 1 %-ного раствора Люголя и накрывают покровным стеклом (24×24 мм) всю поверхность мембраны.

Микроскопируют при увеличениях: окуляр 7х или 10х; объектив 10х; для идентификации яиц гельминтов и исследования на цисты лямблий — объектив 40х.

* Для плотного (без складок) прилегания ATM к фритте рекомендуется:

а) ATM вместе с калькой уложить мембраной на фритту и провести ладонью несколько раз по кальке. За счет появления электростатики мембрана прилипнет к фритте, а калька легко отделится от мембраны;

б) смочить фритту и мембрану дистиллированной водой и плотно уложить ATM на фритту без кальки.

3.5.3. Ход исследования на ооцисты криптоспоридий

После проведения фильтрации через ATM с диаметром пор 2,5 мкм на приборе типа ПВФ-35 или ПВФ-47, полученного концентрированного смыва, мембрану(ы) тщательно высушивают в лотке на воздухе.

Затем окрашивают ATM в кювете (лотке, чашке Петри) карболовым фуксином (краска по Циль-Нильсену) в течение 20 мин.

После окраски фильтры промывают под проточной водой, предварительно закрепив ATM за край химического стакана, с таким расчетом, чтобы струя воды не попадала на поверхность мембраны, а закрепленный фильтр свободно плавал в воде. Фильтр считается промытым, когда из стакана польется прозрачная вода.

Затем обесцвечивают (дифференцируют) 5-10 %-ной серной кислотой, в течение 10-20 с и снова промывают под проточной водой, предварительно закрепив ATM за край химического стакана, с таким расчетом, чтобы струя воды не попадала на поверхность мембраны, а закрепленный фильтр свободно плавал в воде. Фильтр считается промытым, когда из стакана польется прозрачная вода.

Затем дополнительно окрашивают 0,2 %-ным водным раствором метиленового синего или 5 %-ной малахитовой зелени в 10 %-ном этиловом спирте в течение 3-5 мин (при отсутствии этих ингредиентов данный этап можно исключить). Промывают под струей проточной воды, предварительно закрепив ATM за край химического стакана, с таким расчетом, чтобы струя воды не попадала на поверхность мембраны, а закрепленный фильтр свободно плавал в воде. Фильтр считается промытым, когда из стакана польется прозрачная вода.

Пинцетом фильтр из воды переносят в кювет (лоток, чашку Петри) и тщательно высушивают на воздухе.

Окрашенный фильтр (ATM) помещают на предметное стекло, предварительно смазанное иммерсионным маслом (для лучшей адгезии), накрывают покровным стеклом и микроскопируют под иммерсией при увеличении микроскопа: окуляр 10х, объектив 90х или 100х.

Ооцисты криптоспоридий окрашиваются в разные оттенки ярко красного (малинового, вишневого) цвета и имеют вид округлых образований диаметром 5-6 микрон с отчетливо видимой оболочкой и структурированным содержанием (можно наблюдать наличие 4 веретенообразных темно-окрашенных спорозоитов) на синем или зеленом основном фоне.

Примечание. Для определения в воде цист лямблий и ооцист криптоспоридий при наличии в лабораториях специального оборудования, иммунореагентов, химреактивов может быть использован метод иммуномагнитной сепарации с флуорохромами.

При микроскопировании подсчитывают число паразитарных патогенов во всем объеме осадка, что соответствует их числу во всей исследованной пробе. Одновременно определяют систематическую принадлежность обнаруживаемых паразитических организмов; идентификация их проводится по следующим признакам.

Цисты лямблий — овальная форма, размеры 10-14 мк в длину и 6-10 мк в ширину; незрелые цисты содержат 2 ядра, зрелые — 4; ядра находятся у переднего полюса цисты. Оболочка цисты отчетливо выражена и большей частью отстает от протоплазмы, что является одним из характерных отличий цист лямблий от цист других простейших. Внутри цисты вдоль по средней линии проходят две опорные нити — аксостили; в косом или поперечном направлении лежат характерные парабазальные тела (2 — в незрелых и 4 — в зрелых цистах), нередко заметен сложно свернутый жгутиковый аппарат. Плотность — 1,06-1,09.

Цисты амебы дизентерийной — округлая, редко овальная форма, размеры от 10 до 16 мк; молодые цисты содержат 1-2 ядра с центрально расположенной звездчатой кариосомой, зрелые цисты содержат 4 ядра, в зрелых четырехъядерных и незрелых двухъядерных цистах ядра расположены в различных плоскостях; оболочка цист двухконтурная в виде светлого прозрачного ободка. Одноядерные цисты почти всегда содержат в большом количестве гликоген, который в виде крупной вакуоли с нерезкими очертаниями занимает обычно больше половины цисты и раствором Люголя окрашивается в темно-коричневый цвет. Плотность — 1,08-1,1.

Следует иметь в виду, что в природной воде могут встречаться цисты Entamoeba dispar, идентичные цистам дизентерийной амебы, но не обладающие патогенными свойствами для человека. В этом случае следует в протоколе исследования отмечать находки без указания видовой принадлежности таких цист. Для идентификации их необходимы дополнительные специальные исследования. Однако и в данной ситуации должна быть настороженность в отношении эпидемического неблагополучия.

Цисты Балантидия кишечного — правильная круглая форма, плотная двухконтурная оболочка, средний размер около 50 мк. Внутри цист имеется крупное бобовидное ядро. Протоплазма однородна, гликоген в ней распылен равномерно. Под оболочкой в некоторых цистах заметно углубление, представляющее собой редуцированный цитостом — органеллу, соответствующую началу пищеварительной трубки многоклеточных. Ресничный покров отсутствует. Плотность — 1,1.

Яйца аскариды человеческой (свиной) — оплодотворенные яйца овальной или шаровидной формы. Наружная оболочка крупнобугристая, толстая, коричневого цвета (иногда встречаются яйца без наружной бугристой оболочки). Размеры яиц 50-70×40-50 мк. Яйцеклетка мелкозернистая и шаровидная, расположена в центре яйца. Плотность — 1,10-1,14.

Зрелое яйцо (способное заразить при заглатывании) содержит внутри подвижную личинку, свернувшуюся кольцевидно или перекрестно.

Яйца токсокары (аскариды собачьей) — почти круглые, 65-75 мк в диаметре, с нежноячеистой наружной толстой оболочкой темно-коричневого цвета, внутри яйца видна округлая зародышевая клетка. Зрелые инвазионные яйца содержат внутри подвижную свернувшуюся кольцом или перекрестно личинку. Плотность — 1,22.

Яйца власоглава — симметричные, имеют лимонообразную или бочонковидную форму. Оболочка темно-коричневая, толстая. На обоих полюсах имеются светлоокрашенные пробковидные образования. Размеры яиц 50-54×23-26 мк. В зрелых инвазионных яйцах видна подвижная личинка. Плотность — 1,16-1,22.

Яйца острицы — асимметричные. Одна сторона заметно уплощена, другая выпукла. Размеры яиц 50-60×30-32 мк. Оболочка тонкая, гладкая и бесцветная. Яйца могут быть на различных стадиях созревания, до головастикоподобной личинки включительно. Плотность — 1,14.

Яйца цепня карликового — оболочка яйца бесцветная, тонкая, гладкая. Форма овальная. Размер яиц 40×50 мк, эмбриофора (зародыш) почти шаровидная (29×30 мк), с длинными нитевидными придатками на полюсах. Плотность — 1,12.

Онкосферы тениид (цепня свиного и эхинококков) — овальная форма, размеры 31-40×20-30 мк; имеют тонкую наружную оболочку и толстую радиально-исчерченную внутреннюю оболочку темно-коричневого цвета. Внутри онкосферы находится зародыш-эмбриофора с шестью зародышевыми крючьями. Плотность — 1,24.

Отрицательный результат анализа не гарантирует отсутствия паразитарных патогенов в пробе, поэтому результат исследования должен представляться в протоколе термином «не обнаружены». Обнаружение даже одного экземпляра паразитарных патогенов в 1 пробе питьевой воды указывает на эпидемическое неблагополучие в системе питьевого водоснабжения.

3.7. Визуальная оценка вероятной жизнеспособности цист патогенных простейших кишечника и яиц гельминтов

Оценка вероятной жизнеспособности цист патогенных простейших и яиц гельминтов визуально проводится по следующим критериям, подтверждающим жизнеспособность:

— целость наружной оболочки (отсутствие ее разрывов, вдавлений, выбухания, сморщивания);

— четкая внутренняя структура цисты или яйца — у цист четко видны ядра, отсутствует зернистость. У цист лямблий, кроме того, видны аксостили, жгутиковый аппарат, медиальное тело. Для яиц гельминтов (аскарид, токсокар, власоглавов, остриц) характерно наличие дробящейся зародышевой клетки или подвижной личинки. У живых онкосфер тениид и карликового цепня зародышевые крючья расположены попарно, а у мертвых — беспорядочно;

— при окраске препарата 1 %-ным водным раствором эозина жизнеспособные цисты лямблий не воспринимают окраску в течение первых 5 мин, мертвые окрашиваются сразу же в розовый цвет. Поэтому указанную окраску следует использовать до микроскопии только в том случае, когда на изучение препарата потребуется не более 5 мин. Часто просмотр мазка длится 15-30 мин, тогда 1 %-ный водный эозин можно вводить аккуратно, не сдвигая препарат под покровное стекло пипеткой в точке, где при предварительном просмотре уже обнаружены цисты лямблий;

— жизнеспособность онкосфер тениид и яиц аскарид, содержащих личинку, определяют путем окрашивания препарата смесью, содержащей метиленовый синий. Живые онкосферы тениид, а также личинки, находящиеся внутри яиц аскарид, не окрашиваются в течение первых 15 мин. Мертвые окрашиваются сразу в синий цвет;

— жизнеспособность онкосфер тениид можно также определить по движению зародышей при воздействии на них пищеварительными ферментами. Для этого исследуемый осадок, содержащий онкосферы, помещают на часовое стекло в искусственный дуоденальный сок. Стекло ставят в термостат при 36-38 °С на 4 ч. Живые зародыши освобождаются от оболочек, а мертвые — нет;

— оболочки жизнеспособных онкосфер растворяются также в подкисленном пепсине (рН 5-6) и в щелочном растворе трипсина (рН 8-8,5) через 6-8 ч при температуре 38 °С.

Схема выполнения методики санитарно-паразитологического исследования воды и изображения определяемых с ее помощью цист кишечных простейших и яиц гельминтов представлены в прилож. 11, 12, 13.

1. Федеральный закон от 30 марта 1999 г. N 52-ФЗ «О санитарно-эпидемиологическом благополучии населения».

2. Постановление Правительства Российской Федерации от 24 июля 2000 г. N 554 «Об утверждении Положения о государственной санитарно-эпидемиологической службе Российской Федерации и Положения о государственном санитарно-эпидемиологическом нормировании».

3. Водный Кодекс Российской Федерации от 16 ноября 1995 г.

4. СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод».

5. СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества».

6. СП 1.2.731-99 «Безопасность работы с микроорганизмами III-IV групп патогенности и гельминтами».

7. МУ 2.1.4.1057-01 «Организация внутреннего контроля качества санитарно-микробиологических исследований воды».

8. МУК 4.2.1018-01 «Санитарно-микробиологический анализ питьевой воды».

9. ГОСТ Р 51592-00 «Вода. Общие требования к отбору проб».

10. ГОСТ Р 51593-00 «Вода питьевая. Отбор проб».

11. ГОСТ 2761-84 «Источники централизованного хозяйственно-питьевого водоснабжения. Гигиенические, технические требования и правила выбора».

12. ГОСТ 17.1.5.02-80 «Охрана природы. Гидросфера. Гигиенические требования к зонам рекреации водных объектов».

13. Методические рекомендации по санитарно-вирусологическому контролю объектов окружающей среды. М., 1982.

14. Руководство по контролю качества питьевой воды / ВОЗ. Женева, 1994. Т. 1

15. Руководство по вирусологическим исследованиям полиомиелита / ВОЗ. Женева, 1998.

В приложениях даны методы определения санитарно-микробиологических показателей для комплексной оценки качества воды при выборе новых источников водоснабжения и решении вопроса во время проведения оздоровительных мероприятий или закрытия пляжа в зонах рекреации в соответствии с требованиями ГОСТ 2761-84 «Источники централизованного хозяйственно-питьевого водоснабжения» и ГОСТ 17.1.5.02-80 «Охрана природы. Гидросфера. Гигиенические требования к зонам рекреации водных объектов».

Показатели определяют дополнительно к основным, приведенным в п.п. 2.7 — 2.11.

1.1. Определение понятия показателя

К общему числу микроорганизмов (ОМЧ) относят мезофильные аэробы и факультативные анаэробы (МАФАМ), способные образовывать на питательном агаре колонии, видимые при увеличении в 2 раза при температуре 37 °С в течение 24 ч (ОМЧ 37 °С) и при температуре 22 °С в течение 72 ч (ОМЧ 22 °С).

1.2. Значение показателя и область применения

Общее число микроорганизмов не нормируется в воде водоемов в местах действующих водозаборов централизованного питьевого водоснабжения, черте населенных мест, зонах рекреации, поскольку уровень этой группы микроорганизмов в большей мере зависит от природных особенностей каждого объекта, времени года и т.п.

Однако при выборе нового источника водоснабжения или места рекреации в воде водоемов дополнительно следует определять число колоний, вырастающих:

— при температуре 37 °С в течение 24 ч;

— при температуре 22 °С в течение 72 ч.

ОМЧ при температуре инкубации 37 °С — индикаторная группа микроорганизмов, в числе которых определяют в большей мере аллохтонную микрофлору, внесенную в водоем в результате антропогенного загрязнения, в т. ч. фекального.

ОМЧ при температуре инкубации 20-22 °С — индикаторная группа микроорганизмов, в числе которых, помимо аллохтонной, определяют водную микрофлору данного водоема (автохтонную).

При температуре 22 °С, как правило, вырастает больше сапрофитных микроорганизмов, чем при температуре 37 °С. Соотношение численности этих групп микроорганизмов позволяет судить об интенсивности процесса самоочищения, активными участниками которого они являются. Эта разница более выражена при завершении процесса самоочищения (коэффициент соотношения ОМЧ 22 °С : ОМЧ 37 °С равен четырем и выше). В местах загрязнения хозяйственно-бытовыми сточными водами численные значения обеих групп близки.

Показатель позволяет получать дополнительную информацию о санитарном состоянии водоемов, источниках загрязнения, процессах самоочищения.

При производственном контроле исходной воды, поступающей на сооружения водопроводных станций, определяют ОМЧ 37 °С с целью установления эффективности очистки и обеззараживания.

1.3. Выполнение анализа при определении ОМЧ 37 °С

Из каждой пробы делают посев 1 мл и по 1 мл из одного или двух разбавлений, выбирая объем воды для посева из расчета, чтобы не менее чем на 2-х чашках выросло от 20 до 300 колоний. Выбранный объем засевают в 2-х повторностях.

При исследовании заведомо чистых вод с содержанием сапрофитов до 300 КОЕ в 1 мл делают посевы пробы воды без разбавления по 1 мл в 2 повторностях. При исследовании воды неизвестной степени микробного загрязнения производят посев 3-4 десятикратных объемов, начиная с 1 мл.

После тщательного перемешивания пробы готовят разбавления ( п. 2.5) и немедленно вносят по 1 мл воды из пробы или из соответствующего разбавления в стерильные чашки Петри, слегка приоткрывая крышки, заранее промаркированные. Сразу же после внесения воды в каждую чашку вливают 8-10 мл (на чашку диаметром 95 мл) расплавленного и остуженного до 45-46 °С питательного агара после фламбирования края посуды, в которой он содержался. Затем быстро смешивают содержимое чашек, равномерно распределяя по всему дну, избегая образования пузырьков воздуха, попадания агара на края и крышку чашки. Эту процедуру производят на горизонтальной поверхности, где чашки оставляют до застывания агара. Целесообразно сохранять расплавленный агар во время посевов в водяной бане, автоматически поддерживающей температуру 45-49 °С, или в термостате.

Тонкий слой агара увеличивает эффективность учета сапрофитной микрофлоры водоемов за счет лучших условий для роста аэробных и факультативно анаэробных бактерий, преобладающих в водоемах. Колонии вырастают более крупные, легко подсчитываемые на фоне прозрачного тонкого слоя агара. Ограничен рост расплывчатых колоний.

Две чашки Петри с посевами одной повторности помещают в термостат и инкубируют при температуре (37 ± 1) °С в течение (24 ± 2) ч.

Две другие чашки Петри с посевами инкубируют при температуре 20-22 °С в течение (72 ± 2) ч.

1.4. Учет результатов

После инкубации подсчитывают все выросшие на чашке колонии, видимые при увеличении в 2 раза. Подсчет следует производить только на тех чашках, на которых выросли изолированные колонии в количестве от 20 до 300. При посеве 1 мл неразбавленной воды ведут подсчет на чашках с любым количеством колоний, меньшим 300, и не менее чем на двух чашках.

Подсчитанное число колоний на каждой чашке суммируют и делят на объем воды в мл, засеянной на те чашки, на которых производился подсчет. Результат выражают в числе колониеобразующих единиц (КОЕ) в 1 мл исследуемой воды, округляя до 2-3 значимых чисел.

В протокол анализа заносят результат «число КОЕ ОМЧ 37 °С в 1 мл» или «число КОЕ ОМЧ 22 °С в 1 мл».

Результат можно представить на основании подсчета колоний на одной чашке (с отметкой в протоколе анализа), если на других чашках:

а) рост расплывчатых колоний распространился на всю поверхность чашки;

б) число колоний превышает 300-500;

в) при посеве из разбавлений выросло менее 20 колоний.

Если на всех чашках имеет место рост расплывчатых колоний, не распространившийся на всю поверхность, или выросло более 300 колоний и анализ нельзя повторить, подсчитывают колонии на секторе чашки с последующим пересчетом на всю поверхность. В этих случаях в протоколе отмечают «число КОЕ ОМЧ в 1 мл ориентировочно».

Если рост расплывчатых колоний распространился на всю поверхность чашки, и подсчет невозможен, то в протоколе анализа отмечают «ползучий рост». Если подсчет невозможен из-за слишком многочисленного роста, то в протоколе записывают «сплошной рост».

В примечании отмечают особые обстоятельства, которые могут повлиять на результат (превышение срока хранения пробы, изменение температуры и времени инкубации посевов, отклонения от правил при учете результатов и т. д.).

Воспроизводимость результатов метода может быть достигнута при строгом соблюдении деталей техники анализа, а также при использовании питательного агара одинакового состава. Каждую новую партию агара проверяют при посеве воды водоемов (по сравнению с предыдущей партией) в соответствии с МУ 2.1.4.1057-01 «Организация внутреннего контроля качества санитарно-микробиологических исследований воды», отмечая кроме числа колоний их размер и скорость образования видимого роста.

2.1. Определение понятия показателя

Сульфитредуцирующие клостридии — спорообразующие анаэробные палочковидные микроорганизмы, редуцирующие сульфит натрия до сульфидов на железосульфитном агаре при температуре 44 °С в течение 16-18 ч.

2.2. Значение показателя

В воде источников централизованного питьевого водоснабжения клостридии определяют в связи с использованием этого показателя для оценки эффективности обработки питьевой воды на этапах технологических процессов, поскольку споры сульфитредуцирующих клостридий являются более устойчивыми, чем вегетативные клетки бактерий к воздействию обеззараживающих агентов, а также неблагоприятных факторов, действующих на микроорганизмы в воде водоемов.

Общепринятым является представление о том, что клостридии указывают на давнее фекальное загрязнение. Однако длительность выживаемости этих споровых микроорганизмов в воде водоемов превышает таковую сальмонелл, что свидетельствует о наличии у этого показателя одного из наиболее важных свойств индикаторного микроорганизма.

2.3. Выполнение анализа

Споры сульфитредуцирующих клостридий определяют методом прямого посева.

Пробу воды 20-100 мл перед посевом прогревают на водяной бане при температуре (75 ± 5) °С в течение 15 мин для исключения вегетативных форм (время отсчитывают после достижения указанной температуры).

Железосульфитный агар готовят во флаконах в соответствии с п. 2.4.10 небольшими порциями непосредственно перед посевом (повторному расплавлению агар не подлежит). В течение посева поддерживают среду нагретой до 70-80 °С в водяной бане.

Для посева выбирают 2-3 объема воды с таким расчетом, чтобы выросли изолированные колонии, ориентируясь на результаты, полученные ранее при анализе воды в этой же точке. Посевы вносят в стерильные пробирки и заливают горячим железо-сульфитным агаром высоким столбиком. Агар наливают по стенке пробирки во избежание попадания воздуха. Немедленно после заливки пробирки опускают в емкости с холодной водой для создания анаэробных условий в толще агара. После застывания посевы инкубируют при температуре 44 °С в течение 18-24 ч.

Учет результатов в соответствии с МУК 4.2.1.1018-00 «Санитарно-микробиологический анализ питьевой воды».

3.1. Определение понятия показателя

Esherichia coli (преимущественно Е. coli) — индикаторная группа бактерий, включает такие термотолерантные колиформы, которые помимо ферментации лактозы при температуре 44 °С образуют индол из триптофана.

3.2. Значение показателя и область применения

Е. coli определяют дополнительно при выборе источника водоснабжения для оценки качества воды поверхностных водоемов с целью расшифровки характера и происхождения микробного загрязнения, превышающего норматив. При оценке полученных данных имеет значение число Е. coli в воде и их соотношение с числом ОКБ.

Наличие в воде Е. coli свыше 100 КОЕ в 100 мл свидетельствует о недавнем поступлении фекального загрязнения, о незавершенных процессах самоочищения, о несоблюдении требований к очистке сточных вод и т. п. В этих случаях соотношение числа колиформных бактерий и Е. coli, как правило, менее 10 и водопользование из такого водоема представляет потенциальную эпидемическую опасность.

3.3. Выполнение анализа

Для определения числа Е. coli используют посевы, которые сделаны на мембранных фильтрах для проведения анализа на ОКБ.

На фильтрах, где выросли изолированные колонии, подсчитывают темно-красные колонии с металлическим блеском. Каждую колонию при росте до 10-15 КОЕ или по 3-4 колонии каждого подсчитанного типа подтверждают на принадлежность к Е. coli. Одновременно с пересевом в среду с лактозой в соответствии с п. 2.4.7 для подтверждения термотолерантных свойств эту же колонию пересевают в пробирку со средой, содержащей триптофан ( п. 2.4.25), для определения образования индола. Обе среды перед посевом должны быть прогреты до температуры (44-45) °С и немедленно перенесены в термостат для инкубации при температуре (44 ± 0,5) °С в течение 24 ч. Образование кислоты и газа в среде с лактозой подтверждает наличие ТКБ.

Продукцию индола определяют одним из общепринятых методов — с помощью индикаторных бумажек ( п. 2.4.24) или с реактивами Эрлиха, Ковача ( п. 2.4.26) и др. Положительный ответ на наличие Е. coli дают при ферментации лактозы до кислоты и газа при температуре 44 °С и при образовании индола.

Для упрощения анализа тест на образование индола можно заменить посевом в лактозный бульон с борной кислотой ( п. 2.4.8), прогретый до температуры 44-45 °С с последующей инкубацией при температуре (44 ± 0,5) °С в течение 24 ч. Положительный ответ на Е. coli дают при помутнении и газообразовании.

Типичные оксидазоотрицательные колонии учитывают как Е. coli при ферментации лактозы до кислоты и газа при температуре 44 °С и образовании индола из триптофана или при ферментации лактозы в среде с борной кислотой до образования газа при температуре 44 °С.

Если в посевах в среду накопления обнаружен газ, а при высеве на среду Эндо выросли темно-красные колонии с металлическим блеском, то одновременно подтверждают наличие ТКБ и Е. coli, для чего по 2-3 типичные колонии с каждого сектора засевают параллельно в две пробирки: с лактозной средой по п. 2.4.7 и со средой, содержащей триптофан ( п. 2.4.25) для установления способности ферментировать лактозу до кислоты и газа при температуре 44 °С и продуцировать индол.

Посев производят в среды, прогретые до температуры 44-45 °С, немедленно переносят в термостат и инкубируют при температуре(44 ± 0,5) °С в течение 24 ч.

Продукцию индола определяют одним из общепринятых методов — с помощью индикаторных бумажек ( п. 2.4.24) или с реактивом Ковача ( п. 2.4.26). Положительный ответ дают при наличии кислоты и газа в лактозной среде и при образовании индола.

Вместо среды, содержащей триптофан, можно сделать посев в лактозный бульон с борной кислотой ( п. 2.4.8), соблюдая описанные выше условия посева и инкубации. Положительный ответ на наличие в среде накопления Е. coli дают при помутнении и образовании газа. При использовании этой среды индол не определяют.

5.1. Определение понятия показателя

Энтерококки — грамположительные, каталазоотрицательные, полиморфные, круглые, чаще слегка вытянутые с заостренными концами кокки, располагающиеся попарно или в коротких цепочках, способные расти на питательных средах с 0,04 % азида натрия, а также устойчивые при развитии к тестам Шермана (повышенной температуре 45 °С, щелочности рН 9,6, содержанию 40 % желчи и 6,5 % натрия хлористого). К группе энтерококков относят Enterococcus faecalis, который имеет основное индикаторное значение, Enterococcus faecium и Enterococcus durans.

5.2. Значение показателя и область применения

Энтерококки определяют в качестве дополнительного показателя при выборе нового источника централизованного водоснабжения. В воде действующих источников водоснабжения и в местах рекреации этот показатель используют для подтверждения фекального характера загрязнения. Энтерококки рекомендуется определять при превышающем нормативы уровне общих колиформных бактерий и при низком числе Е. coli (менее 50-100 в 100 мл воды), а также в случаях несоответствия оценки качества воды по основным показателям и санитарной ситуации на водных объектах.

При числе энтерококков свыше 50 в 100 мл предполагается поступление свежего фекального загрязнения и потенциальная эпидемическая опасность.

5.3. Выполнение анализа

Объем испытуемой воды для посева выбирают с таким расчетом, чтобы не менее чем на двух фильтрах выросли изолированные колонии в количестве от 5 до 50 при диаметре фильтра 35 мм и от 10 до 100 при диаметре фильтра 47 мм.

При этом можно ориентироваться на результаты предыдущих исследований воды в этом же месте водоема и на рекомендации таблицы прилож. 9.

При исследовании воды неизвестного качества количество засеваемых десятикратных объемов увеличивают до 3-4.

Отмеренный объем воды фильтруют через мембранные фильтры, как это описано в п. 2.6.

Фильтры с посевами помещают на азидную среду ( п. 2.4.14) и инкубируют при температуре (37 ± 1) °С в течение 48 ч.

Для учета выбирают фильтры, на которых выросло число колоний, указанное выше.

Подсчитывают колонии, характерные для энтерококков: выпуклые, с ровными краями, темно-малиновые, розовые, светло-розовые, равномерно окрашенные или с темно-красным не четко оформленным центром.

Очень мелкие (на пределе видимости невооруженным глазом), плоские разных оттенков, ярко-малиновые с четко выраженным центром и бесцветным ободком колонии не учитывают. Дифференциацию энтерококков от посторонней микрофлоры можно проводить по морфологии колоний под бинокулярной лупой.

При необходимости подтвердить наличие энтерококков по 2-3 колонии каждого типа:

— микроскопируют после окраски по Граму ( МУК 4.2.1018-01) и при обнаружении в мазках грамположительных, как правило, слегка вытянутых с заостренными концами диплококков, дают положительный ответ;

— пересевают секторами на солевой агар с ТТХ ( п. 2.4.15) и после 24-48 ч инкубации посевов при температуре 37 °С энтерококки на среде дают равномерный нежный рост на протяжении всего штриха. Иные бактерии на этой подтверждающей среде не растут;

— выполняют каталазный тест, нанося петлей культуру на предметное стекло. После подсушивания на воздухе добавляют каплю свежеприготовленной 3 %-ной перекиси водорода, прикрывают покровным стеклом. При отсутствии пузырьков газа — каталазоотрицательный тест. Контрольная каталазоположительная культура — любой вид стафилококков.

5.4. Учет результатов

Подсчитывают число колоний энтерококков на фильтрах, где выросло менее 50-70 колоний, суммируют и определяют по формуле

, где

X — число КОЕ энтерококков в 100 мл исследуемой воды;

а — число подсчитанных энтерококков в сумме;

V — объем воды, профильтрованной через фильтры, на которых велся учет.

В протоколе исследования выдают «число КОЕ энтерококков в 100 мл».

6.1. Выполнение анализа

Объем воды выбирают с таким расчетом, чтобы в минимальных объемах или разбавлениях получить один или несколько отрицательных результатов. При этом следует ориентироваться на результаты предыдущих анализов воды в этом же месте водоема и на рекомендации таблицы прилож. 10.

Каждый объем воды или ее разбавление засевают параллельно в 2 или 3 порции щелочно-полимиксиновой среды (ЩЭС) в соответствии с п. 2.4.11. Объемы 100, 50 и 10 мл засевают в равные объемы среды двойной концентрации; 1 мл исследуемой воды или ее разбавления засевают в 5 мл среды нормальной концентрации. Посевы инкубируют при температуре (37 ± 1) °С.

Через 24 ч производят предварительный учет. Из посевов, где отмечены признаки роста (помутнение или помутнение и изменение цвета среды), высевают на 4-6 секторов одной из плотных питательных сред — молочно-ингибиторной ( п. 2.4.12), энтерококкагар или азидной ( п. 2.4.14). Порции среды, в которых признаки роста отсутствуют, оставляют при температуре 37°С еще на 24 ч, после чего из сосудов, в которых дополнительно появилось помутнение и изменение цвета среды, делают высев на сектора одной из перечисленных выше плотных питательных сред.

Через 24-48 ч инкубации посевов на молочно-ингибиторной среде при температуре (37 ± 1) °С в качестве положительных результатов отмечают наличие аспидно-черных, выпуклых с металлическим блеском (Enterococcus faecalis), а также сероватых мелких колоний (Enterococcus faecium, Enterococcus durans).

При высеве на сектора азидной среды учет энтерококков после инкубации посевов проводят в соответствии с п. 5.3.

В сомнительных случаях убедиться в наличии на секторах энтерококков можно путем посева на солевой агар с ТТХ в соответствии с п. 2.4.15, микроскопии после окраски мазков по Граму.

6.2. Учет результатов

После определения положительных и отрицательных результатов в объемах посеянной в среду накопления воды определяют наиболее вероятное число (НВЧ) энтерококков в 100 мл воды по одной из таблиц прилож. 8, соответствующей схеме посева и полученным результатам.

В протоколе анализа выдают — НВЧ КОЕ энтерококков в 100 мл.

6.3. Упрощенный метод определения энтерококков

Допускается использовать лактозо-пептонную среду не только для накопления колиформных бактерий при работе титрационным методом, но и для накопления энтерококков. Упрощенный метод может быть применен при исследовании воды водоемов, где уровень загрязнения по ОКБ не превышает 10 3 /100 мл. Метод непригоден при исследовании сточных вод и воды водоемов в местах их выпуска, так как дает заниженный результат.

После высева на сектора среды Эндо для определения колиформных бактерий посевы в лактозо-пептонную среду продолжают инкубировать до 48 ч при температуре (37 ± 1) °С. Из посевов, где имеет место помутнение, независимо от наличия или отсутствия газа, делают высев на сектора азидной среды. При высеве из среды накопления необходимо часть среды сверху осторожно, не взбалтывая, удалить пипеткой, оставшуюся часть размешать и троекратно нанести материал бактериологической петлей диаметром 2-3 мм на поверхность плотной азидной среды п. 2.4.14. Посев производят штрихом, к концу которого должны быть получены изолированные колонии. Молочно-ингибиторную среду и энтерококкагар при выполнении этого метода не применять.

При необходимости подтвердить наличие энетерококков на секторах делают микроскопию окрашенных по Граму мазков, пересевают на подтверждающую среду и определяют каталазную активность в соответствии с п. 5.3. Определяют НВЧ энтерококков в 100 мл по соответствующим полученным результатам таблиц прилож. 8.

Стафилококки определяют в воде водоемов, используемых для купания, как показатель загрязнения воды микрофлорой верхних дыхательных путей и кожных покровов человека.

При оценке качества воды индикаторами считают стафилококки, обладающие лецитовителлазной активностью, в основном Staphylococcus aureus. Сигнальное значение для регламентации нагрузки на зону купания имеет обнаружение свыше 10 стафилококков в 100 мл воды.

7.1. Метод мембранных фильтров

Пробу в объеме 50 мл фильтруют через 2-3 фильтра с таким расчетом, чтрбы получить изолированные колонии.

Фильтры помещают на желточно-солевой агар ( п. 2.4.16) и инкубируют при температуре 37 °С в течение 24 ч.

Подсчитывают блестящие выпуклые колонии белого, палевого, золотистого цвета, окруженные радужной с перламутровым блеском зоной; 96-98 % таких колоний образованы Staphylococcus aureus.

При необходимости подтвердить принадлежность таких бактерий к Staphylococcus aureus подозрительные колонии пересевают на желточно-солевой агар бляшками, микроскопируют, определяют плазмокоагулазную активность. При наличии мелких грамположительных кокков, располагающихся в виде гроздей, и коагулировании плазмы дают положительный ответ.

Число колоний стафилококков делят на объем воды, профильтрованной через фильтры, на которых велся учет, и умножают на 100.

7.2. Титрационный метод

Делают посевы 10, 1 и 0,1 мл исследуемой воды в 2-3 повторностях в стерильную пептонную воду с хлоридом натрия; 1 и 0,1 мл вносят в среду накопления, содержащую 10% хлорида натрия и 1% пептона.

Для посева 10 мл заготавливают впрок сухие навески хлорида натрия по 1 г, стерилизуя их сухим жаром, и 25%-ный стерильный раствор пептона.

К 10 мл исследуемой воды прибавляют соответственно 1 г хлорида натрия и 1 мл 25 %-ного раствора пептона.

Посевы инкубируют при температуре 37 °С в течение 48 ч. Высев из посевов производят на желточно-солевой агар.

Вычисление числа стафилококков в 100 мл воды производят по соответствующим таблицам прилож. 8.

Расчет наиболее вероятного числа бактерий в 100 мл воды поверхностных водоемов, обеззараженных сточных вод

источник