Меню Рубрики

Приготовление реактивов для анализа воды

Растворы — однородные системы, образованные двумя или большим числом компонентов. Компонент, содержание которого в растворе преобладает, обычно называют растворителем; компонент с меньшим содержанием называют растворенным веществом.

Количественное содержание компонента раствора, отнесенное к определенной массе или к определенному объему раствора или растворителя, называется концентрацией этого компонента. При этом содержание растворенного вещества обычно выражают в единицах массы, в молях или в эквивалентах.

Процентная концентрация (по массе) — это число единиц массы растворенного вещества, содержащихся в 100 единицах массы раствора. (Ниже процентная концентрация обозначена С%.) Так, 20% водный раствор КОН содержит 20 единиц массы КОН и 80 единиц массы воды.

Молярная концентрация (молярность) выражается числом молей растворенного вещества в 1 л раствора и обозначается буквой М или См.

Моль — единица количества вещества. Моль — это количество вещества системы, содержащее столько молекул, атомов, ионов, электронов или других структурных единиц, сколько содержится атомов в 0,012 кг изотопа углерода 12С (6,022*10 в 23). Масса вещества, содержащаяся в 1 моле данного простого или сложного вещества, называется мольной массой. Мольная масса вещества, выраженная в граммах на моль, имеет то же численное значение, что и его относительная молекулярная масса.

Число молей простого или сложного вещества n находят из отношения массы m этого вещества в рассматриваемой системе к его мольной массе М:

Произведение объема раствора, выраженного в миллилитрах, на его молярность равно числу миллимолей растворенного вещества.

Эквивалентная концентрация (нормальность) выражается числом эквивалентов растворенного вещества в 1 л раствора и обозначается буквами N, н. или Сн.

Эквивалентом вещества называется такое его количество, которое в данной реакции равноценно (эквивалентно) 1 молю атомов водорода (1,0079 г). Масса 1 эквивалента называется эквивалентной массой.

Выражение концентрации растворов в единицах нормальности значительно упрощает вычисление объемов растворов количественно реагирующих друг с другом веществ. Эти объемы обратно пропорциональны их концентрациям, выраженным в единицах нормальности:

Произведение объема раствора, выраженного в миллилитрах, на его нормальность равно числу миллиэквивалентов растворенного вещества.

Концентрацию растворов выражают также через титр, т. е. массой (в г или мг) вещества, содержащегося в 1 мл раствора, и обозначают буквой Т. Найденную величину называют титром по растворенному (рабочему) веществу. В аналитической практике пользуются также титром по анализируемому веществу, т. е. массой (в г или мг) анализируемого вещества, эквивалентной тому количеству реагента, которое содержится в 1 мл раствора.

Например, титр 0,1 н H2SO4 (эквивалентная масса H2SO4 = 49,04 г/моль) равен:

При титровании этим раствором NaOH титр H2SO4, выраженный по анализируемому веществу NaOH (эквивалентная масса NaOH = 40,01 г/моль) равен:

Концентрацию растворов часто выражают в единицах моляльности — числом молей вещества, растворенного в 1 кг растворителя. Моляльность обозначают буквой m.

Примем следующие условные обозначения концентрации:

С% — процентная концентрация по массе;
А — число единиц массы растворенного вещества на 100 единиц массы растворителя;
Б — масса растворенного вещества в 1 л раствора;
Сн — число эквивалентов растворенного вещества в 1 л раствора (нормальность);
См — число молей растворенного вещества в 1 л раствора (молярность);
m — число молей растворенного вещества на 1000 г растворителя (моляльность);
Э — эквивалентная масса растворенного вещества, г/моль;
М — мольная масса растворенного вещества, г/моль;
d — относительная плотность.

Растворимость — величина, характеризующая способность вещества образовывать с данным растворителем однородную систему. Количественно растворимость газа, жидкости или твердого тела в жидком растворителе измеряется концентрацией насыщенного раствора при данной температуре.

Обычно растворимость твердых и жидких веществ выражают коэффициентом растворимости, т. е. массой вещества, растворяющегося при данных условиях в 100 единицах массы растворителя с образованием насыщенного раствора. (Насыщенным называется раствор, находящийся в равновесии с избытком растворяемого вещества.)

Каждой температуре соответствует определенная растворимость данного вещества в данном растворителе. Сведения о растворимости приводятся в справочниках.

Растворимость газов в жидкостях повышается с увеличением давления и, в большинстве случаев, с понижением температуры.

Растворимость жидких веществ в жидкостях может быть неограниченной, когда жидкие компоненты смешиваются друг с другом в любых отношениях (этиловый спирт — вода) и ограниченной в случае несмешивающихся жидкостей. В последнем случае расслаивание жидких компонентов системы зависит от температуры; обычно взаимная растворимость компонентов возрастает с температурой. Выше некоторой температурной точки, называемой критической точкой растворимости, взаимная растворимость компонентов системы становится неограниченной (расслаивания нет).

Растворимость твердых веществ в жидкостях может изменяться в широких пределах. Обычно она возрастает с повышением температуры. Однако некоторые вещества не подчиняются этому правилу: растворимость их или понижается с повышением температуры, или повышается только до некоторого предела, выше которого растворимость уменьшается.

По точности выражения концентрации растворы делят на приблизительные, точные и эмпирические.

Растворы кислот и оснований приблизительной концентрации служат в качестве вспомогательных реагентов при выполнении аналитических, препаративных и других работ. Концентрацию подобных растворов рассчитывают либо по степени разбавления исходных веществ (растворов), либо по массе вещества (взвешивается на технических весах), растворенного в известной массе растворителя. Часто приблизительную концентрацию растворов определяют по величине плотности.

Растворы с точной, заранее установленной концентрацией, называемые рабочими, стандартными или титрованными растворами, служат для определения точной концентрации других растворов.

Концентрации многих растворов вспомогательных веществ (индикаторы, специфические реактивы и др.) устанавливаются эмпирически и приводятся в соответствующих прописях.

Независимо от того, какие по точности концентрации приготовляют растворы, применять следует только чистые исходные вещества и воду высокой степени очистки, а в ряде случаев (для растворов NaOH, Na2S2O3) — очищенную от CO2.

Следует иметь в виду, что скорость растворения твердого вещества зависит от размера его частиц (тонкоизмельченное растворяется быстрее).

Некоторые вещества не смачиваются водой и плавают на ее поверхности, образуя тонкую пленку. Для приготовления водных растворов подобных веществ рекомендуют порошок вначале облить небольшим количеством этилового спирта (если он инертен по отношению к компонентам раствора), а уже затем приливать воду.

Сосуды для растворения и хранения растворов оснований должны быть снабжены хлоркальциевыми трубками, заполненными аскаритом или натронной известью, чтобы защитить раствор от СO2. В некоторых случаях растворы следует хранить в атмосфере инертного газа (N2, СO2). Растворы веществ, разлагающихся под действием света, например AgNO3, следует хранить в сосудах из коричневого стекла или покрытых черным лаком (в крайнем случае обернутых в черную бумагу).

Водные растворы кислот (H2SO4, HCl, HNO3) обычно приготовляют соответствующим разбавлением исходных химически чистых концентрированных кислот. Разбавление проводят из расчета на объем, так как жидкость всегда легче отмерить, чем взвесить. Чтобы получить разбавленную кислоту (например, 1:5), к 5 объемам воды прибавляют 1 объем кислоты.

Процентное содержание концентрированных кислот контролируют по плотности, определяемой большей частью ареометром. Значения концентрации кислот в зависимости от плотности см. в справочниках.

Обращаться с концентрированными кислотами следует осторожно, так как они сильно действуют на кожу, разрушают одежду и обувь, портят полы и столы. При работе с концентрированными кислотами необходимо пользоваться резиновыми перчатками и защитными очками.

При приготовлении разбавленных растворов кислот (в особенности H2SO4) следует приливать кислоту в воду тонкой струей при непрерывном перемешивании стеклянной палочкой. Если при этом смесь сильно разогрелась, то ее охлаждают, после чего приливают следующую порцию кислоты.

Кислоту, попавшую на обувь или одежду, необходимо незамедлительно смыть большим объемом воды, нейтрализовать аммиаком или NaHCO3 и снова обмыть водой. Кислоту, разлитую на столе или на полу, засыпают песком, нейтрализуют Na2CO3, СаО, Са(ОН)2, СаСО3 и лишь после этого производят уборку.

При приготовлении разбавленных растворов из более концентрированных или путем смешения растворов разных концентраций, для расчета соотношения объемов удобно пользоваться так называемым правилом креста или смешения. Это правило может быть иллюстрировано схемой получения 5% (по массе) раствора разбавлением 20% раствора:

Правило креста распространяется и на случай, когда концентрация смешиваемых водных растворов выражена через плотность. Пусть дан водный раствор плотностью 1,57 г/см3. Нужно из него приготовить раствор с плотностью 1,20 г/см3. По правилу креста составляем схему:

отсюда следует, что нужно смешать 20 см3 раствора с р = 1,57 г/см3 с 37 частями по массе воды.

Расчет концентрации по правилу креста не отличается точностью, и пользоваться этим методом можно лишь для приготовления растворов приблизительной концентрации.

Раствор хлорной кислоты в безводной уксусной кислоте широко применяют в качестве титранта для кислотно-основного титрования в неводной среде.

Промышленность выпускает хлорную кислоту различной концентрации (от 42 до 70%), чаще всего в виде 57% водного раствора с плотностью около 1,50.

Избыточную воду из хлорной кислоты удаляют уксусным ангидридом:

Предварительно определив содержание воды в хлорной кислоте, последнюю растворяют в ледяной уксусной кислоте и рассчитывают, какой объем V1 (в мл) уксусного ангидрида необходим для удаления из хлорной кислоты избыточной воды:

где 100 — А — содержание воды в исходном растворе НСlO4, %; V — объем НСlO4, взятый для приготовления раствора, мл; р — плотность применяемого раствора HClO4, г/см3; p1 — плотность уксусного ангидрида, г/см3; 102 — молекулярная масса уксусного ангидрида; 18 — молекулярная масса воды.

Определенный объем HClO4 V постепенно, при непрерывном перемешивании, вливают в 800 мл ледяной уксусной кислоты, прибавляют V1 мл уксусного ангидрида, тщательно перемешивают, доводят объем раствора ледяной уксусной кислотой до 1 л и снова перемешивают. Через сутки раствор готов.

При растворении NaOH или КОН необходимо пользоваться резиновыми перчатками и защитными очками. Щелочи вызывают химический ожог кожи, разрушают одежду и обувь. Брать твердую щелочь руками запрещается.

Водные растворы NaOH и КОН. При растворении твердых NaOH и КОН в воде происходит сильное разогревание; поэтому насыщенные растворы щелочей приготовляют в термостойкой стеклянной или, лучше, в фарфоровой посуде, постепенно добавляя твердую щелочь при перемешивании, чтобы избежать местного перегрева.

На воздухе NaOH и КОН поглощают воду и СO2. Образующиеся карбонаты мало растворимы в концентрированном растворе щелочей и постепенно выпадают в осадок.

Концентрированные растворы щелочей при хранении в стеклянной посуде разрушают стекло, выщелачивая из него кремневую кислоту. Поэтому лучше хранить их в сосудах из полиэтилена.

Из концентрированных растворов получают разбавленные растворы щелочей, концентрацию которых контролируют по плотности. Ориентировочное значение объемов разбавляемого раствора щелочи и воды можно рассчитать и по правилу креста.

Приготовление 50% раствора NaOH, не содержащего карбонатов (по ГОСТ 4517-75), производят следующим образом: в фарфоровом стакане растворяют при постепенном добавлении и перемешивании 250 г NaOH в 250 мл дистиллированной воды. После охлаждения раствор переливают в полиэтиленовый сосуд, закрывают пробкой и выдерживают 2-3 недели, до полного осаждения NaCO3. Затем прозрачный раствор сифонируют стеклянной трубкой и соответственно разбавляют водой, не содержащей СO2.

Спиртовый раствор КОН. Растворимость NaOH и КОН в метиловом спирте выше, чем в этиловом. Однако поскольку метиловый спирт очень токсичен и огнеопасен, обычно используют этанольные растворы NaOH и КОН. Растворимость NaOH в этиловом спирте при 28 °С составляет 14,7%, а КОН — 27,9%.

Для приготовления раствора КОН применяют этиловый ректификованный спирт, предварительно очищенный от альдегидов.

Наиболее эффективен следующий способ очистки: раствор из 2 г AgNO3 в 5 мл дистиллированной воды вливают в 1200 мл этилового спирта, находящегося в склянке с притертой пробкой, и тщательно перемешивают. Отдельно растворяют 5 г КОН в 25 мл горячего этилового спирта, раствор охлаждают и вливают в спиртовой раствор AgNO3. Выпадает осадок Ag2O, которому дают осесть, фильтруют и отгоняют спирт. Этиловый спирт, очищенный этим способом, остается бесцветным несколько лет.

Спиртовой раствор КОН при хранении часто приобретает слабо-желтую окраску, вызываемую осмолением примесей. Для приготовления растворов КОН, не окрашивающихся при длительном хранении, рекомендуют спирт предварительно обработать бутилатом алюминия (5 г на 1 л спирта). Смеси дают постоять 3-4 недели при комнатной температуре, после чего спирт декантируют и растворяют в нем КОН.

Поступающий в продажу водный раствор аммиака плотностью 0,901-0,907 г/см3 при 20 °С, содержит 25-27% NH3. Препарат и его разбавленные растворы вполне пригодны для выполнения большинства препаративных и вспомогательных лабораторных работ.

Для аналитических работ ГОСТ 4517-75 рекомендует приготовлять растворы из баллонного жидкого синтетического аммиака или из водного аммиака, поступающего в продажу.

Газообразный аммиак вызывает раздражение глаз и слизистой оболочки носа, тошноту и головные боли. Все работы с аммиаком должны проводиться в вытяжном шкафу.

Из баллонного аммиака. Собирают установку (рис. 63). Баллон с аммиаком 1 устанавливают и закрепляют на подставке 2. Баллон соединяют с пустой промежуточной склянкой 3, к которой присоединены две поглотительные склянки 4 с раствором NaOH для поглощения СO2. Аммиак, очищенный от СO2, поступает в приемник 5, где находится дважды перегнанная дистиллированная вода, не содержащая СO2. Насыщение аммиаком проводят до достижения плотности раствора в приемнике 0,907 г/см3, что соответствует 25% раствору аммиака.

Для получения более концентрированного раствора приемник охлаждают водой со льдом в бане 8.

Склянка 6 — брызгоуловитель; склянка 7, содержащая раствор NaOH, предохраняет от попадания СO2 из воздуха в приемник.

Из водного аммиака. 500 мл водного аммиака помещают в круглодонную колбу вместимостью 1 л и осторожно прибавляют свежеприготовленную кашицу из 10 г СаО и воды.

Колбу соединяют с вертикально поставленным обратным холодильником, верхний конец которого закрывают трубкой с натронной известью, и оставляют раствор в покое на 18-20 ч. Затем собирают установку (рис. 64). Колбу 2 с водным аммиаком ставят на водяную баню 1 так, чтобы холодильник был направлен вверх под углом 45°, и соединяют верхний его конец через промежуточную колбу 4 с приемником — колбой 5, содержащей 300-400 мл воды, и закрытой трубкой с натронной известью 6. При нагревании водного аммиака на водяной бане газообразный аммиак поступает в приемник и полностью поглощается водой. Насыщение аммиаком проводят до достижения плотности раствора в приемнике 0,907 г/см3, что соответствует 25% раствору аммиака.

Приготовление раствора из навески стандартного вещества. Взятую с точностью до 0,0002 г навеску высушенного стандартного вещества, которая приблизительно соответствует рассчитанной для получения определенного объема раствора заданной концентрации, аккуратно переносят в мерную колбу и растворяют в небольшом объеме дистиллированной воды, не содержащей СO2. Полученный раствор при периодическом взбалтывании разбавляют водой, доводя объем раствора в мерной колбе несколько ниже метки. Затем колбу с раствором выдерживают 15-20 мин при 20°С и осторожно добавляют воду до метки. Колбу закрывают пробкой и содержимое взбалтывают в течение 15-30 мин.

Зная массу исходного вещества и объем раствора, вычисляют его концентрацию.

Для упрощения последующих расчетов удобно пользоваться поправкой на нормальность (или коэффициентом нормальности) К. Эта поправка представляет собой отношение нормальности приготовленного раствора к заданной нормальности раствора, выраженной целыми, десятыми или сотыми долями нормальности. Например, нормальность приготовленного раствора оказалась равной 0,1036 н., а заданная 0,1 н. В этом случае

Читайте также:  Анализ воды на содержание золота

При умножении объема пошедшего на титрование раствора на эту поправку К получают эквивалентный объем заданной концентрации (в данном случае 0,1 н.).

В табл. 3 приведены некоторые твердые стандартные вещества, с помощью которых точно устанавливается концентрация наиболее часто применяемых рабочих растворов.

Приготовление растворов из фиксаналов. Фиксаналы, или стандарт-титры, представляют собой точно отвешенное количество реактива или его раствора, запаянного в стеклянную ампулу. Как правило, в каждой ампуле содержится 0,1 эквивалента вещества. При количественном перенесении содержимого подобной ампулы в мерную колбу на 1 л и доведении объема раствора водой до метки при 20 °С получаются точно 0,1 н. растворы.

Выпускаются фиксаналы HCl, H2SO4, NaOH, КОН, Na2CO3, NaCl, Na2C2O4, H2C2O4-2H2O, K2Cr2O7, K2C2O4, Na2S2O3-5H2O, KMnO4, AgNO3, NH4SCN, KSCN, NaSCN, BaCl2-2H2O, (NH4)2C2O4-H2O, Na2B4O7-10H2O, KCl, K2CO3, NH4Cl, I2 и др.

Фиксаналы рекомендуется применять во всех случаях, когда требуется быстро приготовить точный рабочий раствор, не прибегая к взвешиванию.

Вначале теплой водой смывают надпись на ампуле и хорошо обтирают ее чистым полотенцем. В мерную колбу вместимостью 1 л вставляют воронку с вложенным в нее стеклянным бойком (обычно прилагается к каждой коробке фиксанала), острый конец которого должен быть обращен вверх (рис. 65). Ампуле с фиксаналом дают свободно падать так, чтобы тонкое дно ампулы разбилось при ударе об острый конец бойка. После этого другим стеклянным бойком пробивают боковое углубление ампулы и дают содержимому вытечь. Не меняя положения ампулы, в образовавшееся верхнее отверстие вставляют оттянутый в капилляр и изогнутый вверх конец трубки промывалки и сильной струей промывают ампулу изнутри. Затем струей воды из промывалки хорошо промывают наружную поверхность ампулы и воронку с бойком. Удалив ампулу из воронки, доводят уровень жидкости в колбе до метки. Колбу плотно закрывают и тщательно перемешивают раствор.

При пользовании фиксаналом 0,1 н. йода перед вскрытием ампулы необходимо поместить в мерную колбу 30-40 г KI для полного растворения йода.

Ампулы с фиксаналами твердых веществ (H2C2O4-2H2O, NaCl, KMnO4 и др.) вскрывают так же, как описано выше, но воронка должна быть совершенно сухая. Когда ампула разбита, содержимое ее осторожным встряхиванием высыпают в колбу, ампулу и воронку тщательно промывают дистиллированной водой.

Фиксанал AgNO3 при обычных условиях хранения через 2-3 года темнеет. Фиксаналы большинства других твердых веществ и кислот могут храниться неопределенно долгое время.

Фиксаналы NaOH, КОН пригодны только в течение 6 месяцев со дня их выпуска. Помутнение щелочных растворов — признак их порчи.

Рабочие растворы с точной концентрацией должны быть по возможности свежеприготовленными. Исключение составляют растворы KMnO4, титр которых следует устанавливать не ранее чем через 3-4 дня после их приготовления.

При хранении рабочих растворов следует периодически проверять их концентрацию. Рабочие растворы щелочей и тиосульфата натрия следует защищать от действия СО2 (хлоркальциевые трубки с натронной известью или аскаритом).

Сосуды с рабочими растворами должны иметь четкие надписи с указанием вещества, нормальности, поправочного коэффициента, даты изготовления и даты проверки концентрации.

источник

Под окисляемостъю понимают способность органических веществ, нахо­дящихся в воде, окисляться атомарным кислородом. Величину окисляемости выражают количеством кислорода (мг), необходимого для окисления органи­ческих веществ, содержащихся в 1 л воды. Источником атомарного кислоро­да в этих реакциях служит перманганат калия или бихромат, а окисляемость соответственно называется перманганатной или бихроматной. Обычно окис­ляемость определяют в кислой воде, но при содержании в воде хлоридов более 300 мг/л и очень загрязненной исследование проводят в щелочной среде.

Перманганатный метод (по Кубелю). Основан на способности перман­ганата калия в кислой среде выделять кислород. По количеству затраченно­го кислорода судят об окисляемости воды.

Приборы и посуда: бюретки, пипетки на 5 мл, колбы на 250-300 мл, мерные цилиндры на 100 мл, пробирки, стеклянные бусы, воронки диаметром 5-7 см.

1)раствор перманганата калия (0,01 н) — для этого в 1 л дистиллиро­ванной воды растворяют 0,316 г препарата; 1 мл такого раствора соответствует 0,08 мг кислорода. Раствор хранят в темной склянке с притертой
крышкой и проверяют при каждой серии исследований;

2)раствор щавелевой кислоты (0,01 н) — для приготовления его отвешивают 0,63 г кислоты и растворяют в 1 л дистиллированной воды; 1 мл раствора требует для своего окисления 0,08 мг кислорода;

3)раствор серной кислоты (25%) плотностью 1,84 г/см кубический по
объему (1 : 3) в дистиллированной воде.

1) В коническую колбу емкостью 250 мл помещают несколько стеклян­ных шариков и наливают 100 мл воды, добавляют 5 мл серной кислоты (1 : 3) и 10 мл раствора перманганата калия (0,01 н). Смесь быстро нагрева­ют до кипения (за 5 мин) и выдерживают на слабом огне около 10 мин. После этого колбу снимают (раствор должен иметь розовый цвет) и к горяче­му раствору добавляют 10 мл раствора щавелевой кислоты (0,01 н). Обесцве­ченный горячий раствор (при температуре 80 0 С) титруют раствором перман­ганата калия (0,01 н) до устойчивого слабо-розового окрашивания. Если исследуемая жидкость во время кипячения обесцветится или станет светло-бурой, то дальнейшее исследование прекращают и раствор выливают. Берут новую порцию воды и предварительно ее разбавляют дистиллированной во­дой в 2 или 5 раз и повторяют анализы, как было указано выше.

2) Нормальность раствора перманганата калия (величина К) устанавли­вают следующим образом. В колбу емкостью 250 мл наливают 100 мл дис­тиллированной воды, добавляют 5 мл серной кислоты (25%) и 10 мл раство­ра перманганата калия (0,01 н). Жидкость нагревают и кипятят в течение 10 мин на малом огне. Затем в горячую жидкость добавляют 10 мл раствора щавелевой кислоты (0,01 н), в результате чего наступает обесцвечивание. После этого в горячем состоянии ее титруют раствором перманганата калия (0,01 н) до бледно-розового окрашивания.

Поправочный коэффициент (К) титра 0,01 н раствора перманганата ка­лия вычисляют по формуле:

где 10 — количество 0,01 н раствора щавелевой кислоты, мл; b — количе­ство 0,01 н раствора перманганата калия, прилитое до кипячения и затем пошедшее на титрование, мл.

3) Окисляемость воды вычисляется по формуле:

где X — окисляемость кислорода в мг на 1 л воды; а — количество КМпО4 в мл, прилитое до кипячения; b — количество КМпО4, израсходованное на титрование в мл; К — поправочный коэффициент к нормальности КМпО4; 10 — количество КМпО4, израсходованное на окисление щавелевой кислоты; 0,08 — количество кислорода, соответствующее 1 мл 0,01 н раствора КМпО4; 1000 — перевод на 1 л воды; С — объем воды, взятой для анализа, мл.

Примечание: если исследуемую пробу воды разводят дистиллирован­ной водой, то необходимо проверить ее на содержание органических веществ и при расчете окисляемости вычитать то количество КМпО4, которое пошло на окисление органических веществ в дистиллированной воде.

В связи с тем, что в воде могут окисляться и некоторые минеральные (закисные) соединения — железо, марганец, нитриты, сероводород, при зна­чительном их содержании необходимо учитывать влияние на величину окис­ляемости (опыт проводят без подогревания).

Определение окисляемости в щелочной среде (по Шульцу). Этот метод применим для определения окисляемости воды, загрязненной хлоридами и др.

1)раствор перманганата калия (0,01 н) — для этого в 1 л дистиллированной воды растворяют 0,316 г препарата;

2) 50%-й раствор едкого натра;

3)раствор щавелевой кислоты (0,01 н) — для приготовления его отвешивают 0,63 г кислоты и растворяют в 1 л дистиллированной воды;

4)20% -й раствор серной кислоты.

В коническую колбу наливают 100 мл воды, добавляют 0,5 мл 50%-го раствора едкого натра и 10 мл раствора перманганата калия (0,01 н). Жид­кость нагревают и кипятят 10 мин от начала появления первых пузырьков, охлаждают до 50-60°С, добавляют 5 мл серной кислоты, 10 мл 0,01 н ра­створа щавелевой кислоты (жидкость должна обесцвечиваться; если этого нет, то добавляют еще несколько мл щавелевой кислоты). Затем титруют 0,01 н раствором перманганата калия до появления слабо-розовой окраски, которая не исчезает в течение 3-5 мин. Расчет производят по той же форму­ле, что и по методике Кубеля, результат выражают в мг кислорода на литр.

Экспресс-метод определения окисляемости. В пробирку наливают 10 мл воды и добавляют 0,5 мл раствора серной кислоты в разведении 1 : 3 и 1 мл 0,01 н раствора перманганата калия. Смесь основательно перемешивают и оставляют в покое на 20 мин при температуре 20 0 С и на 40 мин при темпера­туре 10-20 0 С. После этого раствор рассматривают сбоку и сверху и по окрас­ке определяют окисляемость, которая зависит от цветности. Так, яркий медово-розовый цвет соответствует 1, лилово-розовый — 2, слабый лилово-розовый — 4, бледно-лилово-розовый — 6, бледно-розовый — 8, розово-жел­тый — 12, желтый — 16 мг О2/л и выше.

Азот аммиака и аммонийных солей. Количество азота аммиака и аммо­ния в воде определяют колориметрическим способом, сущность которого состоит в том, что при добавлении к исследуемой воде реактива Несслера образуется йодистый меркураммоний, окрашивающий воду в желтый цвет различной интенсивности в зависимости от содержания аммиака. Пробу воды после добавления реактива Несслера сравнивают со стандартным ра­створом хлористого аммония, содержащим заведомо известное количество азота аммония. Для колориметрирования пригодна вода с концентрацией аммиака в пределах 0,1-10 мг/л.

Приборы и посуда: фотоэлектроколориметр — ФЭК, пипетки на 1 и 5 мл, колбы на 100 мл, мерный цилиндр на 100 мл и пробирки.

2) стандартный раствор хлорида аммония, с содержанием азота 0,001 мг
в 1 мл;

3) 50%-й водный раствор сегнетовой соли;

4) щелочная смесь, состоящая из 50 г едкого натра и 100 г углекислого
натра, растворенная в 300 мл дистиллированной воды (приготовленный раствор кипятят 15 мин и фильтруют через асбестовую вату);

Подготовка воды к анализу: на точность определения содержания азота аммиака и аммонийных солей в воде оказывают влияние ее цветность и жесткость, содержащиеся железо, сульфиты и свободная углекислота. Для обесцвечивания 500 мл воды добавляют 0,5 г гидроокиси алюминия и отста­ивают осадок в течение 2 ч,

Сульфиды определяют так: в 10 мл воды вносят 1 мл реактива Несслера и затем 2 мл раствора серной кислоты (1 : 3). Если муть не исчезнет после подкисления воды, то в ней содержатся сульфиды, которые следует удалить, добавив на 100 мл воды 10 капель 30%-го раствора уксуснокислого цинка. После этого воду отстаивают 2 ч, сливают прозрачную часть и отбирают из нее пробы для исследований.

При жесткости воды более 3,5 мг/экв. л ее умягчают, для этого к 100 мл воды добавляют 2 мл едкого натра и отстаивают раствор 2 ч.

Методика исследования. В одну колбу наливают 100 мл стандарт­ного раствора хлорида аммония, а в другую — 100 мл испытуемой воды. Затем в обе колбы добавляют по 3 мл 50% -го раствора сегнетовой соли и по 2 мл реактива Несслера. Содержимое колб взбалтывают и оставляют в покое около 10 мин до появления окраски.

Колориметрию проводят на ФЭК при синем светофильтре (№ 4) в кюве­тах толщиной 1-5 см. На ФЭК определяют оптическую плотность стандарт­ного раствора исследуемой воды точно через 10 мин после добавления реак­тива Несслера (учитывают очередность внесения реактивов и их колоримет­рию). Расчет ведут по формуле:

где С2 — концентрация азота аммиака и аммония в исследуемой воде, мг/л; С1 — то же в стандартном растворе хлорида аммония, мг/л; А1 — оптичес­кая плотность стандартного раствора хлорида аммония (по красной шкале); А2 — оптическая плотность исследуемой воды (по красной шкале); 1000 — перевод на 1 л.

Определение аммиака приближенным методом. В пробирку наливают
10 мл исследуемой воды, добавляют 0,2-0,3 мл 50%-го раствора сегнетовой
соли, хорошо перемешивают и вносят реактив Несслера. Определение аммиака
ведут по таблице 38.

Азот нитритов. Принцип исследования состоит в том, что вода, содер­жащая нитриты, при добавлении реактива Грисса окрашивается в розовый цвет. Для выявления нитритов пользуются реактивом Грисса — раствор альфа-нафталамина и сульфаниловой кислоты в уксусной кислоте. При со­держании в воде нитритов больше, чем 0,3 мг/л вода окрашивается в жел­тый цвет. Предел чувствительности реактива — 0,01 мг/л нитритов.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Лабораторная установка для определения противонакипного эффекта коррекционной обработки воды

Лабораторная установка состоит из электрического нагревательного элемента‚ стеклянного термостойкого стакана вместимостью 1 дм 3 и блока питания. Нагревательный элемент представляет собой поверхность нагрева, при использовании которой имитируется процесс кипения воды при атмосферном давлении. Принципиальная схема установки с нагревательным элементом показана на рисунке 7.

Рисунок 7 Установка для определения противонакипного эффекта

1 – термостойкий стакан; 2 – крышка с нагревательным элементом; 3 — пробирка; 4 — воронка; 5 — кнопка; 6 — понижающий трансформатор; 7 – электроплитка (на рисунке не показана).

3.2.1 Аппаратура и реактивы для определения щелочности воды:

— бюретки для титрования вместимостью 25 см 2 ;

— колбы конические вместимостью 200-350 см 3 ;

— цилиндры измерительные вместимостью 10-100 см 3 ;

-кислота соляная или серная, растворы 0,1н и 0,01н концентраций;

— индикатор метиловый оранжевый, раствор 0,1% концентрации;

— индикатор фенолфталеин, спиртовой раствор 1% концентрации;

-смешанный индикатор, смесь (1:1) спиртовых растворов метиле-нового голубого 0,1% концентрации и метилового красного 0,2% концентрации.

3.2.2 Аппаратура и реактивы для определения жесткости воды:

— бюретки для титрования вместимостью 25 см 3 ;

— колбы конические вместимостью 200-350 см 3 ;

— цилиндры измерительные вместимостью 10-100 см 3 ;

— динатриевая соль этилендиаминотетрауксусной кислоты
(трилон Б), раствор 0,05 м и 0,005 м концентраций;

— аммиачная смесь (1:1:8) растворов аммиака 20% концентрации, хлористого аммония 20% концентрации и дистиллированной воды;

— натрий сернистый, раствор 2% концентрации;

— индикатор кислотный хром темно-синий, аммиачный раствор 0,5% концентрации.

3.2.3 Аппаратура и реактивы для определения кальциевой жесткости:

— бюретки для титрования вместимостью 25 см 3 ;

— колбы конические вместимостью 200-350 см 3 ;

— цилиндры измерительные вместимостью 10-100 см 3 ;

— динатриевая соль этилендиаминотетрауксусной кислоты (трилон Б), растворы 0,05 м и 0,005 м концентраций;

— едкий натр, раствор 2н концентрации;

-индикатор кислотный хром темно-синий, аммиачный раствор 0,5% концентраций;

3.2.4 Аппаратура и реактивы для определения магниевой жесткости:

— бюретки для титрования вместимостью 25 см 3 ;

— колбы конические вместимостью 200-350 см 3 ;

— цилиндры измерительные вместимостью 10-100 см 3 ;

— динатриевая соль этилендиаминотетрауксусной кислоты
(трилон Б), растворы 0,05 м и 0,005 м концентраций;

— едкий натр, раствор 2н концентрации;

— соляная кислота, раствор 2н концентрации;

— сернистый натрий, раствор 2% концентрации;

Читайте также:  Анализ воды на сульфат ион

-индикатор кислотный хром темно-синий, аммиачный раствор 0,5% концентрации.

3.2.5 Аппаратура и реактивы для определения кислотности:

— бюретки для титрования вместимостью 25 см 3 ;

— колбы конические вместимостью 200-350 см 3 ;

— цилиндры измерительные вместимостью 10-100 см 3 ;

— едкий натр, растворы 0,1н и 0,01н концентраций;

— индикатор метиловый оранжевый, раствор 0,1% концентрации;

— смешанный индикатор, смесь (1:1) спиртовых растворов метиленового голубого 0,1% концентрации и метилового красного
0,2% концентрации.

3.2.6 Аппаратура и реактивы для определения углекислоты:

— бюретки для титрования вместимостью 5, 10 см 3 ;

— пипетка вместимостью 10 см 3 ;

— колбы конические вместимостью 200-350 см 3 ;

— едкий натр, раствор 0,01н концентрации;

— индикатор фенолфталеин, спиртовой раствор 1% концентрации

3.2.7 Аппаратура и реактивы для определения рН:

— иономер ЭВ-74 с комплектом электродов и автоматическим термокомпенсатором ТКА-5;

— стаканчики стеклянные высокие вместимостью 100 см 3 ;

— калия тетраоксалат, раствор 0,05 н концентрации, соответству-ющей рН=1,68;

— натрий тетраборнокислый, раствор 0,01н концентрации, соот-ветствующей рН = 9,18;

— калий фталевокислый кислый, раствор 0,05н концентрации, соответствующей рН = 4,01;

— калий хлористый, насыщенный раствор.

3.2.8 Аппаратура, материалы и реактивы для определения солесодержания воды:

-термометр лабораторный типа ТЛ-2 ( 0-50);

-фильтр лабораторный катионитный, загруженный катионитом КУ-23 илиКУ-2-8;

-стаканы вместимостью 100 см 3 ;

-кислота соляная 5% раствор.

3.2.8 Аппаратура и реактивы для определения хлоридов:

— бюретки для титрования вместимостью 25 см 3 ;

— колбы конические вместимостью 200-350 см 3 ;

— цилиндры измерительные вместимостью 10-100 см 3 ;

— кислота азотная, раствор 0,1н концентрации;

-азотнокислая ртуть (II), раствор с заранее установленным титром;

-индикатор дифенилкарбазон, спиртовой раствор 1% концентрации с бромфеноловым синим 0,05% концентрации;

— индикатор дифенилкарбазид, аналогичной концентрации;

— натр едкий, раствор 0,1н концентрации.

3.2.9 Аппаратура и реактивы для определения сульфатов:

— бюретки для титрования вместимостью 25 см 3 ;

— пипетки мерные вместимостью 1-10 см 3 ;

— колбы конические вместимостью 100 см 3 ;

— барий хлористый, раствор 0,01н концентрации;

— кислота серная, раствор 0,01н концентрации;

— индикатор арсеназо III, раствор 0,002н концентрации;

— кислота соляная, раствор 5 % концентрации;

— индикатор метиловый оранжевый, раствор 0,01н концентрации;

— фильтр лабораторный катионитный (КУ-2-8);

3.2.10 Аппаратура и реактивы для определения натрия:

— иономер типа ЭВ-74, или аналогичный прибор;

— натрий-селективный электрод ЭС-10-07 с диапазоном изме-
рений от -0,5 до +7,5рNa;

— термометр лабораторный тип ТЛ-2 (0-50°С);

— аммиак «осч», водный 22% раствор;

— хлористый натрий, 0,1н раствор;

— хлористый калий, насыщенный раствор.

3.2.11 Аппаратура и реактивы для определения кремнесодержания:

-фотоколориметр КФК-2 с набором кювет толщиной колориметрируемого слоя 50 мм;

— бюретки вместимостью 25 см 3 ;

— пипетки измерительные градуированные;

— колбы мерные вместимостью 50 см 3 ;

— чашка или тигель платиновый вместимостью 50 см 3 ;

— раствор серной кислоты 10н (5м) концентрации;

— раствор серной кислоты 1н (0,5м) концентрации;

— раствор для восстановления;

— раствор щавелевой кислоты 5% концентрации;

— насыщенный раствор бикарбоната натрия;

— вода очищенная по ОСТ 34-70-9522-88;

3.2.12 Аппаратура и реактивы для определения фосфатов:

-фотоколориметр типа КФК-2 с набором кювет толщиной колориметрируемого слоя 20 мм;

— колбы мерные вместимостью 50 см 3 ;

— пипетки измерительные вместимостью 2, 5 и 10 см 3 ;

— бюретки вместимостью 25 и 50 см 3 ;

— глицериновый раствор хлористого олова;

— раствор молибденовокислого аммония;

3.2.13 Аппаратура и реактивы для определения железа:

-фотоколориметр типа КФК-2 с набором кювет толщиной колориметрируемого слоя 50 мм;

— колбы мерные вместимостью 50 см 3 ;

— пипетки измерительные вместимостью 2, 5 и 10 см 3 ;

— бюретки вместимостью 25 и 50 см 3 ;

— стаканы химические вместимостью 100 или 250 см 3 ;

— индикаторная бумага «конго»;

— кислота соляная концентрированаая;

— раствор сульфосалициловой кислоты 30% концентрации;

— растворы аммиака 10 и 25% концентрации;

— раствор гидраксиламина 10% концентрации;

— раствор ортофенантролина 0,1% концентрации.

4 Порядок выполнения работы

4.1Методика лабораторных опытов по определению противонакипного эффекта

Вкачестве исследуемых вод для лабораторной работы используются искусственно приготовленные водные растворы, имитирующие состав котловых вод.

Реагентами для обработки воды служат растворы фосфата натрия, трилона Б, ингибитора отложений минеральных солей (ИОМС) и другие.

Перед проведением лабораторных опытов химическую посуду (реакционный стакан и пробирку, надеваемую на стержень нагревательного элемента) необходимо промыть сначала подогретым раствором соляной кислоты, а затем дистиллированной водой.

Для каждого опыта используют по 1,0 дм 3 исследуемой воды. Сначала в реакционный стакан наливают 0,9 дм 3 воды, отмеривая ее с помощью цилиндра. Остальную воду доливают в стакан через воронку по мере ее испарения. На стержень нагревательного элемента надевают пробирку из термостойкого стекла. Эту операцию выполняют при нажатой кнопке 5, которая является приводом фиксатора пробирки. Фиксатор предотвращает смещение пробирки при проведении опыта и при извлечении нагревателя из стакана по окончанию испытания.

Нагревательный элемент помещают в стакан, который устанавливают на электроплитку. Подогревают воду до 30-40°С для предотвращения растрескивания пробирки (проверяют температуру лабораторным термометром) и включают блок питания установки. Когда вода закипит (будет наблюдаться кипение вокруг стержня нагревателя), отмечают время и кипятят ее еще 10 минут, поддерживая постоянный уровень жидкости (доливая при необходимости дистиллированную воду).

По истечении указанного времени блок питания выключают. Через 5-10 минут нагревательный элемент осторожно извлекают из стакана. Тигельными щипцами обхватывают горячую пробирку, нажатием на кнопку освобождают ее и снимают со стержня нагревательного элемента. Затем 2-3 раза погружают ее в стакан с предварительно подогретой до 60 — 70 о С дистиллированной водой для удаления частиц шлама.

Далее для определения противонакипного эффекта пробирку помещают в стеклянный стакан (колбу) вместимостью 100-250см 3 и осторожно из бюретки приливают 0‚1 н. раствор соляной кислоты таким образом, чтобы вся выделившаяся на поверхности нагревателя накипь была полностью растворена. Отмечают объем раствора кислоты‚ использованной для растворения накипи (ак). Затем содержимое стаканчика переносят в коническую колбу вместимостью 250 см 3 . Тщательно промывают пробирку и стакан дистиллированной водой‚ собирая промывочные воды в ту же колбу. Доливают в колбу дистиллированной воды до общего объема 100 см 3 . Добавляют в колбу с полученным содержимым 3-4 капли индикатора метилового оранжевого и титруют окрасившуюся в розовый или красный цвет жидкость 0,1 н. раствором едкого натра до появления оранжевой или желтой окраски. Отмечают объем затраченной на титрование щелочи (ащ). Затем по разности между общим расходом раствора соляной кислоты и расходом раствора едкого натра на её нейтрализацию определяют объем 0‚1 н. раствора соляной кислоты‚ затраченной непосредственно на растворение накипи (а = ак — ащ ).

Опыты проводят дважды — сначала с необработанной водой (устанавливая расход кислоты а1)‚ а затем в тех же условиях с обработанной водой (устанавливая расход кислоты а2). Сопоставимые результаты могут быть получены только в том случае‚ если все операции будут выполнены в одинаковых условиях (скорость подъёма температуры, продолжительность кипения).

При использовании метода стабилизации определяют шламовый эффект противонакипной обработки воды. Для этого образовавшийся шлам отфильтровывают через бумажный фильтр, а затем растворяют осадок на фильтре 0‚1 н. раствором соляной кислоты, отмечая ее расход (ак). Раствор собирают в колбу вместимостью 250см 3 ‚ при необходимости доливают до отметки 100 см 3 дистиллированной водой и избыток кислоты нейтрализуют 0‚1 н. раствором едкого натра в присутствии индикатора метилового оранжевого до перехода розовой окраски жидкости в оранжевую или желтую, отмечая расход щелочи (ащ). Аналогично определяют объем 0,1 н. раствора соляной кислоты, затраченной непосредственно на растворение шлама.

Противонакипной эффект обработки воды в процентах рассчитывают по формуле:

,

Шламовый эффект стабилизационной обработки воды в процентах определяют по формуле:

где а1 — расход кислоты‚ затраченной на растворение накипи (шлама), образовавшейся при нагревании необработанной воды, см 3 ; а2— расход кислоты, затраченной на растворение накипи (шлама), образовавшейся при нагревании воды обработанной методами кондиционирования.

4.2Порядок лабораторных опытов по работе «Анализ внутрикотловой схемы барабанного котла»

4.2.1 Объем химического контроля.

а) Пробы насыщенного пара анализируют по следующим показателям:

-содержание натрия, мкг/дм 3 или солесодержание, мг/дм 3 .

б) Пробы питательной воды анализируют в следующем объеме:

в) Пробы котловых вод анализируют по следующим показателям:

-кремнесодержание, мкг/дм 3 или мг/дм 3 ;

а) провести химический анализ проб воды и пара в заданном объеме;

б) определить значения оптимальной производительности ступеней испарения, кратности концентраций котловой воды, расход воды по линиям выравнивания концентраций и регулирования кратности, оценить значения коэффициентов и ;

в) выполнить расчеты предельных кремне- и солесодержаний питательной и котловых вод;

г) оценить соответствие качества питательной воды установленным нормам;

д) дать рекомендации по качеству питательной воды и выбору схемы приготовления добавочной воды для подпитки котла.

4.3Порядок лабораторных опытов по работе «Моделирование теплохимических испытаний»

а) Определение предельно допустимого кремне- или солесодержания котловой воды

Первый опыт проводится при максимальной паспортной нагрузке и минимальном уровне воды в барабане. Кремне- или солесодержание котловой воды увеличивается путем регулирования величины непрерывной продувки до ухудшения качества пара. В том случае, если котел работает в чисто конденсатном режиме или подпитка производится обессоленной водой, кремне- или солесодержание котловой воды повышают только до достижения предельной минимальной величины продувки – 0,3%. Следующий опыт проводят аналогично при среднем уровневоды в барабане. Третий опыт проводят при максимальном уровне воды в барабане, соблюдая те же условия.

Нормы качества котловой воды устанавливают с занижением на 20% относительно тех величин, при которых начинается ухудшение качества пара.

Опыты проводят при минимальном и среднем уровняхводы в барабане и предельно допустимом кремне- или солесодержании котловой воды (см. п.1.1).

б) Определение предельно допустимой и критической нагрузки котла.

Нагрузка повышается до ухудшения качества пара или достижения ее предельной величины по конструктивным особенностям котла.

Допустимой считается нагрузка котла на 20% ниже полученной величины критической нагрузки, при которой начинается ухудшение качества пара.

в) Проверка качества пара при неустойчивой нагрузке котла.

Опыт проводится при номинальных кремне- или солесодержании котловой воды и среднем уровне в барабане при росте нагрузки от минимальной до допустимой со скоростью 5-10 т/мин. Проводятся 2-3 подъема и сброса нагрузки.

г) Проверка качества пара при работе на максимальном уровне котловой воды.

Опыт проводится при допустимых нагрузке и кремне- или солесодержании котловой воды при максимальном уровневоды в барабане.

д) Проверка надежности работы пароперегревателя.

Надежность работы пароперегревателя определяется по балансу солей на входе и выходе из него. Для этого периодически отбирают пробы насыщенного и перегретого пара с целью определения их солесодержания или содержания натрия.

е) Полная проверка состояния водно-химического режима.

Завершающим этапом пуско-наладочных испытаний является комплексная проверка качества пара и водыпо всем нормируемым показателям при полной нагрузке и непрерывной работе котла в течение 72 часов.

4.3.2 Объем химического контроля.

а) Пробы насыщенного и перегретого пара анализируют по следующим показателям:

-содержание натрия, мкг/дм 3 или солесодержание, мг/дм 3 ;

— рН, ед. или содержание углекислоты, мг/дм 3 .

б) Пробы питательной воды анализируют в следующем объеме:

-содержание кислорода, мкг/дм 3 ;

-содержание свободной углекислоты, мг/дм 3 ;

-содержание железа, мкг/дм 3 ;

в) Химический анализ котловых вод выполняют по следующим показателям:

-кремнесодержание, мкг/дм 3 или мг/дм 3 ;

-содержание фосфатов, мг/дм 3 .

Солесодержание воды и пара определяют кондуктометрическим методом, при отсутствии солемеров и кондуктометров в исследуемых пробах определяют содержание натрия или хлоридов (с последующим пересчетом на NaCl).

Кроме основных проб важными вспомогательными пробами при проведении испытаний являются промывочная вода и конденсат впрыска. Их анализируют по тем же показателям, по которым контролируют насыщенный пар.

4.3.3 Обработка результатов испытаний.

а) По результатам каждого опытов стоят функциональные графики, по которым определяются допустимые нормы водно-химического режима котла.

б) Для определения величины непрерывной продувки в процентах от паропроизводительности используют формулу, выведенную из солевого баланса котла:

,

где — кремне- или солесодержание питательной воды, — кремне- или солесодержание насыщенного пара, кремне- или солесодержание продувочной воды. Для котлов низкого и среднего давления при расчете величины продувки кремне- или солесодержанием пара можно пренебречь. Тогда можно упростить выражение:

в) Кратность концентраций по кремниевой кислоте или солесодержанию между питательной и котловой водой и внутри котла между отсеками выражается следующими формулами:

; ; ,

где , — кремне- или солесодержание котловой воды Ι ступени испарения (чистого отсека) и ΙΙ ступени испарения (солевого отсека).

г) Величину относительной щелочности в процентах от солесодержания котловой воды определяют по формуле:

,

где , — щелочность котловой воды солевого отсека; — эквивалент едкого натра равный 40, — солесодержание продувочной воды.

д) Коэффициент уноса кремниевой кислоты или солей с паром определяют по формуле:

,

где — кремне- или солесодержание насыщенного пара чистого или солевого отсеков, — кремне- или солесодержание котловой воды соответствующих отсеков.

а) провести химический анализ проб воды и пара в заданном объеме;

б) выполнить расчеты показателей водного режима;

в) по результатам испытаний составить функциональные графики;

г) результаты представить в виде сводной таблицы теплохимических испытаний (таблицы 11) или карты водно-химического режима парового котла (таблица 12).

Дата № опыта Заданные параметры Регулируемые параметры Качество насыщенного пара Качество перегретого пара Качество питательной воды Качество котловой воды ч.о. Качество котловой воды с.о. Расчетные показатели ВХР
Наименование показателей Нормативные значения Фактические значения
1.Заданные параметры: 1.1 Паропроизводительность, т/ч; 1.2 Рабочее давление, МПа
2. Регулируемые параметры: 2.1 Нагрузка, т/ч; 2.2Уровни воды в барабане, мм. 2.3Непрерывная продувка, в %; 2.4 Периодическая продувка, (раз в сутки, секунд.)
3. Контролируемые параметры: 3.1Качество насыщенного и перегретого пара.
4. Условия работы котла: 4.1 Качество питательной воды; 4.2 Качество котловых вод; 4.3 Расчетные показатели ВХР.


4.4Порядок лабораторных опытов по работе «Оценка целесообразности применения БПУ в барабанных котлах высокого давления

4.4.1 Объем химического контроля.

В пробах насыщенного пара, питательной воды и котловых водопределяют кремнесодержание в микрограммах на 1дм 3 ;

а) провести химический анализ проб воды и пара в заданном объеме;

б) вычислить расчетное значение кремнесодержания насыщенного пара при работе без БПУ;

в) оценить соответствие качества насыщенного пара и питательной воды установленным нормам;

г) дать рекомендации по использованию барботажнопромывочных устройств.

4.5Порядок лабораторных опытов по работе «Оценка стабильности воды»

4.5.1 Объем химического контроля:

Пробы водопроводной и сетевой воды анализируют по следующим показателям:

— жесткость кальциевая, мг-экв/дм 3 ;

— содержание кальция, мг/дм 3 ;

— щелочность общая, мг-экв/дм 3 ;

а) провести химический анализ проб воды в заданном объеме;

Читайте также:  Анализ воды на соответствие санпин

б) с помощью номограммы определить величины , , , , зависящие соответственно от температуры воды, содержания в ней ионов кальция, щелочности и общего солесодержания;

в) найти значение водородного показателя равновесного насыщения воды карбонатом кальция при заданной температуре;

в) найти значение водородного показателя данной пробы воды с поправкой на температуру нагрева воды;

д) рассчитать индекс стабильности воды и дать заключение о возможности использования воды для подогрева в водо-водяных теплообменниках.

4.6Порядок лабораторных опытов по работе «Качественная оценка накипеобразующей способности воды»

4.6.1 Объем химического контроля:

Пробы водопроводной и сетевой воды анализируют по следующим показателям:

— жесткость общая, кальциевая и магниевая, мг-экв/дм 3 ;

— щелочность общая, мг-экв/дм 3 ;

— содержание хлоридов, мг/дм 3 ;

— содержание сульфатов, мг/дм 3 .

а) провести химический анализ проб воды в заданном объеме;

б) произвести пересчет эквивалентных концентраций в массовые для определения содержания кальция, магния и бикарбонатов;

в) учитывая процесс термического разложения бикарбонатов определить ионную силу раствора и коэффициенты активностей ионов кальция и карбонатных ионов;

г) рассчитать активности ионов кальция и карбонат-ионов, определить произведение их активностей и кристаллизационный напор;

д) оценить возможность образования карбонатной накипи.

4.7Порядоклабораторных опытов по работе «Количественная оценка интенсивности накипеобразования»

4.7.1 Объем химического контроля:

Пробы водопроводной и сетевой воды анализируют по следующим показателям:

— жесткость общая, кальциевая, мг-экв/дм 3 ;

— щелочность общая, мг-экв/дм 3 .

а) провести химический анализ проб воды в заданном объеме;

б) найти величину карбонатной щелочности воды;

в) определить интенсивность карбонатного накипеобразования для заданных условий;

г) используя значения фактической и предельно допустимой интенсивности карбонатных отложений, сделать вывод о соответствии качества воды для обеспечения оптимального водного режима;

д) определить расчетное значение загрязненности поверхностей нагрева и ориентировочную толщину отложений.

4.8Порядок лабораторных опытов по работе «Оценка коррозионной активности воды»

4.8.1 Объем химического контроля:

Пробы водопроводной и сетевой воды анализируют по следующим показателям:

— содержание хлоридов, мг/дм 3 ;

— содержание сульфатов, мг/дм 3 .

а) провести химический анализ проб воды в заданном объеме;

б) используя результаты анализа и заданные значения индекса равновесного насыщения воды карбонатом кальция и содержания кислорода, дать коррозионную характеристику воды;

в) найти величину глубинного показателя коррозии;

г) определить необходимость коррекционной обработки воды.

4.9Порядок лабораторных опытов по работе «Оценка качества воды по содержанию агрессивной углекислоты»

4.9.1 Объем химического контроля:

Пробы водопроводной и сетевой воды анализируют по следующим показателям:

— жесткость общая, кальциевая и магниевая, мг-экв/дм 3 ;

— щелочность общая, мг-экв/дм 3 ;

— содержание хлоридов, мг/дм 3 ;

— содержание сульфатов, мг/дм 3 ;

— содержание свободной углекислоты, мг/дм 3 .

а) провести химический анализ проб воды в заданном объеме;

б) произвести пересчет эквивалентных концентраций в массовые для определения содержания кальция, магния и бикарбонатов;

в) учитывая процесс термического разложения бикарбонатов определить ионную силу раствора и коэффициенты активностей ионов кальция и карбонатных ионов;

г) рассчитать активности бикарбонат-и карбонат-ионов, определить концентрацию равновесной углекислоты;

д) сопоставив концентрации равновесной и свободной углекислоты, установить наличие или отсутствие агрессивной ее формы.

5 Правила техники безопасности

Основой для безопасной работы в химической лаборатории может служить лишь сознательное соблюдение каждым студентом правил техники безопасности. При выполнении работы необходимо соблюдать общие требования безопасности, касающиеся проведения работ с растворами химических реактивов, нагреванием, электроприборами и стеклянной посудой.

На рабочем месте должны находиться только необходимые для выполнения конкретной работы реактивы, приборы и оборудование. Беспорядок на рабочем месте недопустим.

Запрещается проводить в лаборатории какие-либо работы, не связанные с выполнением задания, включать приборы и оборудование, не относящиеся к данной работе, оставлять без присмотра работающие установки, сливать в лабораторную раковину растворы кислот и щелочей, отходы, содержащие бумагу, стекло и др. примеси.

При работе с растворами реактивов следует отмеривать их с помощью мерных цилиндров или бюреток, в случае применения для этих целей пипеток, необходимо использовать резиновую грушу. Засасывание жидкостей в пипетки ртом запрещается.

При проливе растворов реактивов необходимо тщательно промыть места пролива. При попадании агрессивных жидкостей на кожу рук или одежду, их следует промыть проточной водой. В случае химических ожогов рекомендуется пораженный участок кожи обработать нейтрализующим раствором.

При использовании легковоспламеняющихся жидкостей (ЛВЖ) следует не допускать возможности их пролива и воспламенения. Запрещается выливать отходы ЛВЖ в канализацию.

При работе со стеклянной посудой следует избегать ее поломки и порезов рук, соблюдать осторожность при соединении стеклянных частей приборов с резиновыми шлангами, не оставлять посуду в беспорядке на рабочих столах. При мытье посуды необходимо соблюдать меры предосторожности при использовании агрессивных моющих сред, не следует складывать посуду в общую раковину, оставлять на ее краях. В лабораторную раковину не допускается сливать отходы, содержащие примеси, способствующие засорению отверстий дренажного устройства.

Для работ, связанных с нагреванием, допускается использовать только термостойкую посуду. При этом нельзя допускать резких перепадов температуры, что может вызвать растрескивание стекла.

При работе с электроприборами необходимо следить за их исправностью и наличием заземления. Не допускается использование электроприборов с поврежденными вилками, шнурами питания и другими дефектами. Основной мерой предотвращения электротравм в лаборатории является защита от прикосновения к находящимся под напряжением частям электрооборудования и применение заземления.

6 Общие правила к оформлению работы

Работа должна быть оформлена следующим образом:

— на первой странице указывают название, цель и объем работы, Ф.И.О. студентов, номер группы, дату выполнения;

— работу оформляют в последовательности, приведенной в методических указаниях;

— текст пишут аккуратно от руки пастой или чернилами (допускается принтерная распечатка) на сброшюрованных листах формата А-4 с соблюдением ГОСТ 2.105, ГОСТ 8.417 и ГОСТ 7.1.

При оформлении работы не допускается:

— сокращать наименование единиц физических величин, если они употребляются без цифр;

— применять сокращение слов, кроме сокращений, установленных правилами русской орфографии, а также ГОСТ 7.12;

— употреблять в тексте математические знаки без цифр.

Вопросы по теме «Водные режимы паровых котлов»

Вопросы по работе:«Определение противонакипного эффекта коррекционной обработки воды»

1. Назначение коррекционной обработки воды.

2. Виды противонакипной обработки воды.

3. Область применения фосфатирования.

4. Область применения трилонирования.

5. Сущность обработки воды органическими фосфанатами.

6. Механизм действия антинакипинов, комплексонов и стабилизаторов.

7. Способы определения противонакипного эффекта.

8. В чем сущность данного метода определения противонакипного эффекта?

9. В чем отличие показателей ПЭ и ШЭ?

10.Какие виды отложений возникают в паровых котлах?

11. Как можно определить интенсивность образования отложений?

12. Какие мероприятия проводятся для предотвращения образования отложений в паровых котлах?

Вопросы по работе «Анализ внутрикотловой схемы барабанного котла»

1.Назначение внутрикотловой схемы барабанного котла.

2.Какие элементы включает в себя внутрикотловая схема?

3.Что является исходными данными для анализа внутрикотловой схемы барабанного котла?

4.Как организуется ступенчатое испарение в барабанном котле?

5.Сколько ступеней испарения может включать в себя внутрикотловая схема?

6.От чего зависит выбор числа ступеней испарения?

7.Какая схема применяется для барабанных котлов всех типов в качестве основной?

8.Каковы рекомендации по производительности ступеней испарения?

9.На основании каких данных и с учетом выполнения каких условий определяется оптимальная производительность ступеней испарения?

10.Каким образом осуществляется оценка влияния значений производительности второй и третьей ступеней испарения на качество пара, вырабатываемого котлом?

11.Как выполняется проверка соответствия расчетной кратности концентраций рекомендуемой величине для выбранных значений производительности ступеней испарения?

12.С какой целью используются линии выравнивания концентраций и как они выполняются?

13.Назначение линии регулирования кратности концентраций, ее место в схеме котла.

11.Как определяется величина расхода воды по линии регулирования кратности концентраций?

12.Какое влияние наличие линии выравнивания концентраций оказывает на качество пара?

13.Какой показатель служит основным для характеристики качества насыщенного пара котлов с естественной циркуляцией и перегретого пара после устройств регулирования температуры?

14.Как принято оценивать совершенство внутрикотловой схемы и налаженность водного режима котлов высокого давления?

15.Почему кремнесодержание пара является важнейшим показателем для котлов давлением 9,8 МПа и выше?

16.Для каких целей применяется паропромывочное устройство, из каких частей оно состоит?

17.От каких факторов зависит эффективность барботажной промывки пара?

18.Как определяется предельное значение кремнесодержания питательной воды? Что главным образом влияет на его величину?

19.Как могут быть установлены предельные значения кремнесодержания котловой воды по ступеням испарения? Какие данные для этого необходимы?

20.Как изменятся требования к качеству питательной воды при использовании ее для впрыска при регулировании температуры перегрева пара?

Вопросы по работе «Моделирование теплохимических испытаний барабанных котлов»

1.С какой целью проводят теплохимические испытания котлов?

2.Основные задачи теплохимических испытаний.

3.Как классифицируют теплохимические испытания по объему и назначению?

4.В каких случаях проводят контрольные и расширенные теплохимические испытания?

5.Каким вопросам уделяют главное внимание при проведении пусконаладочных и режимных испытаниях?

6.В каком порядке проводят пусконаладочные и режимные теплохимические испытания?

7.Какие контролируемые потоки включает типовая схема точек отбора проб?

8.Назовите разновидности химического контроля теплохимических испытаний, предусмотренные типовой схемой пробоотборных точек.

9.Что представляют собой пробоотборные устройства?

10.Из каких основных элементов состоят водные щиты?

11.В чем заключается методика проведения теплохимических испытаний?

12.Какие режимные параметры входят в объем контроля при проведении теплохимических испытаний?

13.Какие технологические показатели рабочей среды составляют объем химического контроля при проведении теплохимических испытаний?

14.Как производится обработка опытных данных в процессе проведения теплохимических испытаний и по их окончанию?

15.Что представляют собой хронологические и функциональные графики, какова их роль?

16.По каким конкретным направлениям проводятся опыты?

17.Влияние каких параметров исследуется при проведении теплохимических испытаний?

18.Как определяется предельно допустимое кремне- и солесодержание котловой воды?

19.Как устанавливается критическая и предельно допустимая нагрузка котла?

20.Как оценивается надежность работы пароперегревателя?

Вопросы по работе «Оценка целесообразности применения БПУ в барабанных котлах высокого давления»

1.Назовите пути поступления примесей в насыщенный пар котла.

2.Что представляет собой избирательный унос примесей паром, чем он обусловлен?

3.Чем была вызвана необходимость применения барботажно-промывочных устройств на котлах высокого давления?

4.Почему в некоторых случаях появилась возможность отказаться от использования барботажно-промывочных устройств?

5.Какой показатель характеризует эффективность промывки пара в барботажно-промывочном устройстве?

6.Как коэффициент эффективности промывки пара зависит от кремнесодержания питательной воды? Почему при его снижении эффективность промывки пара падает?

7.Какие могут быть получены преимущества при отказе от применения барботажно-промывочных устройств?

8.Какие способы позволяют оценить целесообразность применения барботажно-промывочных устройств?

9.В чем заключается сущность расчетно-экспериментального способа оценки необходимости применения БПУ?

10.Какую информацию позволяет получить расчетный способ определения кремнесодержания пара? Как она может быть представлена?

Вопросы по теме «Водные режимы тепловых сетей»

Вопросы по работе «Оценка стабильности воды»

1. Какими способами можно количественно оценить накипные свойства воды?

2. Как производится качественная оценка стабильности воды?

3. Какой показатель используется для ориентировочной оценки накипеобразующих свойств воды?

4. Как определить индекс насыщения воды карбонатом кальция?

5. Физический смысл показателя рНs. Как он определяется?

6. Можно ли по индексу стабильности оценить интенсивность накипеобразования?

Вопросы по работе «Качественная оценка накипеобразующей способности воды»

1. К какому классу относятся отложения, преимущественно образующиеся в водогрейном оборудовании?

2. Назовите основной компонент низкотемпературных отложений.

3. Чем отличаются низкотемпературные и высокотемпературные отложения (по составу)?

4. Что является движущей силой низкотемпературного накипеобразования?

5. Как может быть установлено наличие пересыщения воды?

6. В чем отличие активной концентрации ионов от фактической?

7. Как определить активность ионов?

8. Коэффициент активности ионов: физический смысл, для чего используется, от чего зависит, как определяется?

9. Ионная сила водного раствора: от чего зависит, как количественно выражается?

10. Назовите условие теоретической невозможности возникновения карбонатной накипи.

11.Что представляет собой показатель, качественно характеризующий накипную способность воды?

Вопросы по работе «Количественная оценка интенсивности накипеобразования»

1. Как можно определить скорость роста слоя отложений в водогрейном оборудовании?

2. Как можно приблизительно оценить толщину слоя накипи, образующейся при нагревании воды?

3. Как определяют интенсивность накипеобразования в сетевых подогревателях?

4. Как определяют интенсивность накипеобразования в водогрейных котлах?

5. Как влияет присутствие соединений магния на интенсивность образования накипи при нагревании однофазной среды?

6. Как изменяется интенсивность накипеобразования и состав отложений при появлении так называемого явления «пристенного кипения» воды в водогрейных котлах?

7. В каких случаях при работе водогрейных котлов возникает поверхностное кипение воды? Где и как оно преимущественно проявляется?

8. Как влияет на интенсивность накипеобразование наличие в воде бикарбонат-ионов?

9. Как отражается на скорости роста отложений присутствие в воде некарбонатных соединений кальция?

10.Какими способами можно оценить качество водного режима?

11. Как на практике устанавливают предельно допустимое значение карбонатной жесткости нагреваемой воды?

12. Как оценить величину загрязненности поверхностей нагрева низкотемпературными отложениями?

Вопросы по работе «Оценка коррозионной активности воды»

1. Как производится оценка коррозионной активности воды?

2. Какими основными факторами характеризуется коррозионная активность воды?

3. Существует ли связь между индексом насыщения и показателем глубинной проницаемости воды? Поясните, как она проявляется?

4. Как на практике производится оценка коррозионного состояния систем горячего водоснабжения?

5. Какими показателями руководствуются при выборе коррекционной обработки воды?

Вопросы по работе «Оценка качества воды по содержанию агрессивной углекислоты»

1. Назовите формы существования углекислых соединений в природных водах.

2. Что представляет собой углекислотное равновесие? От чего оно зависит?

3. Как влияет величина рН на соотношение между различными формами углекислых соединений?

4. Дайте определение понятиям агрессивная углекислота и равновесная концентрация двуокиси углерода.

5. Как определить наличие в воде агрессивной двуокиси углерода?

1. Воронов В.Н., Петрова Т.И. Водно-химические режимы ТЭС и АЭС. Москва: Издательский дом МЭИ, 2009. – 210 с.

2. Маргулова Т.Х., Мартынова О.И.. Водные режимы тепловых и атомных электростанций. – М.: Энергоатомиздат, 1987.

3. Субботина Н.П. Водный режим и химический контроль на ТЭС. – М.: Энергоатомиздат, 1985.

4. Лапотышкина Н.П., Сазонов Р.П. Водоподготовка и водно-химический режим тепловых сетей. – М.: Энергоатомиздат, 1982.

5. Белоконова А.Ф. Водно-химический режим ТЭС. — М.: Энергоатомиздат, 1985.

6. Маргулова Т.Х Применение комплексонов в теплоэнергетике. – М.: Энергоатомиздат, 1986.

Нина Николаевна Абраменко

Методические указания к лабораторной работе № 3 по дисциплине “Внутри- и внешнекотловые процессы в паровых котлах” для студентов направления 141100 — “Энергетическое машиностроение”

Подписано в печать Формат 60х84 1/16

Издательство Алтайского государственного технического университета им. И.И.Ползунова, г.Барнаул, пр.Ленина, 46

Лицензия на издательскую деятельность ЛР № 020822
от 21.09.98г.

Отпечатано на ксероксе кафедры «Котло- и реакторостроение».

Дата добавления: 2015-07-02 ; Просмотров: 1100 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник