Меню Рубрики

Превышение спав в анализе сточных вод

Синтетические поверхностно-активные вещества (СПАВ), производимые на основе продуктов нефтеперерабатывающей промышленности, во многих отношениях превосходят мыла из жидких кислот и в настоящее время в ряде стран в значительной степени вытеснили последние. Эти вещества характеризуются лучшим сочетанием полезных свойств, чем твердые мыла из натуральных жиров и растительных масел, вследствие чего широко применяются в различных отраслях народного хозяйства и в быту.[ . ]

Синтетические поверхностно-активные вещества (СПАВ) — группа химических веществ, присутствие которых в синтетических веществах (СВ) наиболее опасно для водоемов и отрицательно сказывается на работе очистных сооружений.[ . ]

Синтетические поверхностно-активные вещества (СПАВ)-—группа химических соединений, присутствие которых в сточных водах особенно угрожает санитарному состоянию водоемов и резко отрицательно сказывается на работе очистных сооружений. Появляются СПАВ в сточных водах в результате широкого применения их в быту и промышленности в качестве моющих средств, а также смачивающих, эмульгирующих, выравнивающих, дезинфицирующих препаратов. Наибольшее применение СПАВ находят в нефтяной и текстильной промышленности. В бытовых моющих средствах содержание активного агента (СПАВ) достигает 20—30%.[ . ]

Синтетические поверхностно-активные вещества (СПАВ), как и нефтепродукты и нефть, являются наиболее распространенным и токсичным химическим загрязнителем водоемов при бурении скважин, сборе и транспортировке нефти. СПАВ образуют стойкие пены, резко снижают эффективность биохимических методов очистки сточных вод, прекращают (даже при незначительных концентрациях) рост водорослей. Значительное токсичное действие СПАВ проявляется при концентрациях в воде около 2 г/м3. СПАВ отрицательно воздействуют на качество воды, самоочищающую способность водоемов, организм человека, а также усиливают неблагоприятное действие других токсичных веществ на эти показатели.[ . ]

Синтетические поверхностно-активные вещества (СПАВ) . Поверхностно-активными веществами называются такие соединения, которые понижают межфазную поверхностную энергию. Эти вещества адсорбируются в поверхностном слое в большей концентрации, чем внутри жидкости. Из всех поверхностно-активных веществ особое, значение имеют те, которые способны образовывать мицел-лярные коллоиды (мицеллярные электролиты). К ним относятся органические соединения с открытой цепью, содержащие от 10 до 20 атомов углерода; в состав их молекул входят также гидрофобные радикалы и гидрофильные группы, для которых характерен оптимальный баланс гидрофильных и гидрофобных свойств.[ . ]

Синтетические поверхностно-активные вещества (СПАВ) находят широкое применение в технике и в быту. Как правило, молекула СПАВ построена таким образом, что к малополярной основе (алкил, алкиларил, полиэфир) присоединена группа с выраженной полярностью. По характеру полярной группы СПАВ делят на три типа: анионные, катионные и неионогенные [1]. Наиболее распространены в настоящее время анионные СПАВ. Поверхностную активность их определяет отрицательно заряженный органический ион, образующийся при ионизации веществ в растворе.[ . ]

ТЕНЗИДЫ (син. синтетические поверхностно-активные вещества — СПАВ, Т.) — химические соединения, концентрирующиеся на поверхности двух сред, например,воды и воздуха. Т. улучшают смачиваемость поверхностей и легко проникают между частицами грязи и материалами, на которых они находятся. Т. — важнейший ингредиент моющих (стиральные порошки и пасты) и чистящих средств. Наиболее известный Т. — мыло, которое используется человечеством на протяжении 5000 лет. Т. неблагоприятно влияют на кожу, растворяя жиры, медленно разрушаются в окружающей среде и токсичны для многих обитателей водных экосистем. В настоящее время разрабатываются Т., которые быстро разрушаются в воде и потому менее опасны для окружающей среды.[ . ]

Загрязняющие вещества. Наиболее распространенными веществами, загрязняющими природные воды, являются нефть и нефтепродукты, фенолы, синтетические поверхностно-активные вещества (СПАВ), пестициды, тяжелые металлы.[ . ]

Установлено, что более 400 видов веществ могут вызвать загрязнение вод. В случае превышения допустимой нормы хотя бы по одному из трех показателей вредности: санитар-но-токсикологическому, общесанитарному или органолептическому, вода считается загрязненной. Различают следующие главные загрязнители: химические (нефть и нефтепродукты, синтетические поверхностно-активные вещества (СПАВ), пестициды, минеральные удобрения, тяжелые металлы, диоксины и др.), бактериальные (вирусы и болезнетворные микроорганизмы) и физические (радиоактивные вещества, тепло и др.).[ . ]

Определение неионогенных синтетических поверхностно-активных веществ (СПАВ) в сточных водах методом ТСХ (315). Определение высококипящих побочных продуктов синтеза изопрена (из изобутилена и формальдегида) в сточных водах методом многократного хроматографирования в незакрепленных слоях окиси алюминия (316). Дифференцированное определение нелетучих фенолов в сточных водах методом ТСХ (318). Раздельное определение летучих фенолов в сточных водах методом ТСХ (320). Определение нефтепродуктов в сточных водах турбидихромато-графическим методом (323). Обнаружение и разделение фенолов, содержащихся в сточных водах, на стандартных пластинах для ТСХ (325). Разделение смеси углеводородов тетрафенового ряда, содержащихся в сточных водах, методом ТСХ (32о). Рпределение капролактама в сточной воде методом ТСХ (326). Определение углеводородов в сточной воде методом микрорадиаль-ной тонкослойной хроматографии (327). Определение неорганических и органических соединений ртути в пресной воде методом ТСХ (327). Определение кадмия в воде методом ТСХ (329). Определение никеля, кобальта и меди в воде методом бумажкой хроматографии (330).[ . ]

Большое применение на практике нашли синтетические поверхностно-активные вещества (СПАВ), которые используются в виде флотационных реагентов, стабилизаторов систем, моющих веществ и т. д.[ . ]

Большой интерес представляют углеродные сорбенты из активного ила, содержащего более 50 % углерода. В наиболее простом случае обезвоженный и подсушенный ил подкисляют, смешивают с формальдегидом и проводят термообработку. Полученный сорбент способен извлекать из воды синтетические поверхностно-активные вещества (СПАВ) красители, нефтепродукты. Однако такая технология требует дополнительного введения связующего агента и активатора, без которых сорбент обладает невысокой Сорбционной емкостью. Из активного ила можно получить активные угли и без введения реагентов.[ . ]

За рубежом вследствие высокой степени загрязнения сточных вод синтетическими поверхностно-активными веществами (СПАВ) отмечается определенный интерес к такому методу доочистки стоков, как флотация.[ . ]

Детергенты (от лат. — стираю) — химические соединения, понижающие поверхностное натяжение воды и используемые в качестве моющих средств и эмульгаторов. Особенно широкое распространение получили синтетические поверхностно-активные вещества (СПАВ), входящие в состав моющих и чистящих средств (за рубежом их называют тензидами). Разнообразное применение (для мытья тканей, посуды, автомобилей, для личной гигиены) привело ко все возрастающему их переходу в бытовые и производственные сточные воды. В сельском хозяйстве СПАВ используются для эмульгирования пестицидов, поэтому они попадают в почвы и подземные воды. Так, в Южной Африке 30—50% фосфатной нагрузки на очистные сооружения обусловлено детергентами. В ФРГ в 1975 г. был принят закон о моющих и чистящих средствах, так как целые горы из трудноразложимых тензидов покрыли поверхности многих водоемов. В 1988 г. было сделано дополнение к данному закону, в котором предписывалось учитывать критерии разлагаемости и дозировку поверхностно-активных веществ. Образующаяся пена в поверхностных водотоках препятствует обмену веществ в водной среде и уменьшает способность водоема к самоочищению.[ . ]

Появившиеся в последние годы в сточных водах некоторых производств синтетические поверхностно-активные вещества (СПАВ) резко ухудшают биохимическую очистительную способность воды. Поэтому даже при небольших концентрациях СПАВ в воде прекращается рост водной растительности, усиливаются привкусы и запахи, образуются стойкие скопления пены.[ . ]

В последние десятилетия отмечается сильное загрязнение многих водоемов синтетическими поверхностно-активными веществами (СПАВ). Содержание анионогеннных СПАВ, наиболее широко применяемых в быту и промышленности, составляет обычно 0,2—0,5 мг/л, но может быть и значительно выше. Присутствие СПАВ в воде приводит к образованию обильной и стойкой пены, ухудшающей аэрацию воды и нарушающей процесс ее самоочищения. В определенных концентрациях анионогенные СПАВ способны стимулировать размножение в воде сапрофитных бактерий, кишечной палочки и брюшного тифа. Накопление в воде продуктов распада СПАВ способствует развитию микрофлоры и ухудшает условия хлорирования воды в целях ее обеззараживания для водоснабжения.[ . ]

Для установления состава сточных вод определяются следующие показатели: взвешенные вещества (мг/л), в том числе зола (%), летучие вещества (мг/л), прозрачность (см), объем осадка (мг/л), ХПК, БПК5 и БПКполн, азот общий, азот аммонийный (мг/л), азот нитратных солей, азот нитритных солей (мг/л), активная реакция (pH), растворенный кислород, хлориды, активный хлор (мг/л), фосфаты, синтетические поверхностно-активные вещества (СПАВ), нефтепродукты, соли тяжелых металлов. Кроме того, определяют бактериологические показатели: общее число бактерий в 1 мл, колииндекс, число яиц гельминтов в исходной и очищенной сточной жидкости.[ . ]

С коммунальными и частично промышленными водами в водоемы поступают детергенты — моющие синтетические поверхностно-активные вещества (СПАВ). Это высокомолекулярные органические соединения, получаемые сульфированием различных масел, углеводородов, высокомолекулярных спиртов и других веществ нефтяного происхождения. В состав детергентов входит 20—40 % поверхностно-активных веществ и 60—80 % различных добавок.[ . ]

В море приносятся твердые, жидкие, в некоторых случаях газообразные загрязнители, в том числе синтетические поверхностно-активные вещества (СПАВ). Основные из них приведены в табл. 7.[ . ]

Органические загрязнения подразделяются по происхождению на растительные, животные, химические вещества. Растительные органические соединения представляют собой остатки растений, плодов, растительного масла и пр. Загрязнения животного происхождения — это физиологические выделения людей и животных, останки животных, клеевые вещества. Химические органические соединения — это нефть и ее производные, синтетические поверхностно-активные вещества (СПАВ), синтетические моющие средства (СМС), фенол, формальдегид, пестициды и пр.[ . ]

Из индивидуальных органических компонентов наиболее часто определяют в городских сточных водах нефтепродукты, синтетические поверхностно-активные вещества (СПАВ) и фенолы. Эти вещества попадают в значительных количествах в городские сточные воды вместе с промышленными (нефтепродукты, фенолы), а также с хозяйственно-бытовыми водами (СПАВ) и могут неблагоприятно влиять на работу городских очистных сооружений.[ . ]

Большей избирательностью обладают методы анализа, основанные на фотометрировании продуктов превращения определяемых веществ. Как правило, эти продукты поглощают свет в более длинноволновой области спектра, чем исходные органические соединения. К тому же сама реакция может протекать преимущественно с соединениями только одного класса. Эти методы позволяют определять не индивидуальные соединения, а сразу всю группу или значительную ее часть, т. е. являются методами группового анализа. Развитие их связано, во-первых, с детальным изучением механизмов аналитических реакций с целью повышения индивщдуальности последних, и, во-вторых, с использованием реакций редко применяемых пока типов. В частности, большего внимания заслуживают молекулярные комплексы с переносом заряда, обычно обладающие интенсивной окраской. Перспективны в органическом анализе реакции образования разнолигандных комплексов. Этот принцип реализован, например, в методе определения фторид-ионов по образованию комплекса ализарин-комплек-сон—лантан (церий) —фторид-ион. Отмечено влияние синтетических поверхностно-активных веществ (СПАВ) (катионных и и анионных) на фотометрические характеристики комплексов типа вольфрам—пирокатехиновый фиолетовый, что может быть ис пользовано для разработки методов определения СПАВ. Такого рода эффекты известны для многих классов органических соединений.[ . ]

Среди большого числа органических загрязнителей наибольшее (универсальное и глобальное) значение в настоящее время имеют нефть и нефтепродукты, фенолы и синтетические поверхностно активные вещества (СПАВ).[ . ]

Если говорить о химическом загрязнении, то прежде всего следует обратить внимание на различные органические соединения. В целом поступление аллохтонного органического вещества (около 1 Гт С/год, или менее 5 % первичной продукции биоты океанов) кажется незначительным в сравнении с общим количеством Сорг, вырабатываемым морскими экосистемами. Еще меньшую долю (0,01 Гт/год, или 0,05 % первичной продукции) составляет поток антропогенных загрязняющих компонентов, к числу которых в первую очередь относят нефтяные углеводороды (НУ), синтетические поверхностно-активные вещества (СПАВ), хлорорганические пестициды (ХОП), полихлорированные бифенилы (ПХБ) и фенолы.[ . ]

Исходя из характера поступающих в водоем производственных сточных вод нефтеперерабатывающего завода, можно сказать, что основными загрязнениями являются нефтепродукты, фенолы, сульфиды и синтетические поверхностно-активные вещества (СПАВ).[ . ]

Программа полного анализа сточных вод предусматривает также определение специфических ингредиентов, характеризующих присутствие промышленных сточных вод, — железа, меди, хрома, цинка, свинца, синтетических поверхностно-активных веществ (СПАВ) и др., микробного числа, содержания бактерий кишечной палочки. Производят радиологический, гельминтологический и гидробиологический анализы; по эпидемическим показаниям выясняют наличие патогенных микроорганизмов.[ . ]

Что касается соединений фосфора, то следует заметить, что в физиологических выделениях человека его достаточно много. В последние годы количество фосфатов в сточных водах резко возросло в связи с тем, что в составе многих синтетических поверхностно-активных веществ (СПАВ) до 4Й % их массы составляют полифосфаты.[ . ]

В каждом образце промышленной воды определяют еще компоненты, которыми загрязняется вода в процессе ее образования. Например, железо, медь, хром, кобальт, никель, цинк, кадмий, ртуть, сульфаты, сульфиты, цианиды, фенолы, формальдегид, синтетические поверхностно-активные вещества (СПАВ) и др.[ . ]

Общая масса загрязнителей гидросферы огромна — около 15 млрд т в год (табл. 6.5). К наиболее опасным загрязнителям относятся соли тяжелых металлов, фенолы, пестициды и другие органические яды, нефтепродукты, насыщенная бактериями биогенная органика, синтетические поверхностно-активные вещества (СПАВ) и минеральные удобрения.[ . ]

Не менее опасны многие сотни или тысячи органических ксенобиотиков, синтезированных или полученных из углеводородного сырья. Это прежде всего хлороорганические пестициды, содержащие диоксин дефолианты, полициклические ароматические углеводороды (ПАУ), нитрозосоединения, синтетические поверхностно-активные вещества (СПАВ) и др. Они обладают различной стойкостью, некоторые из них сравнительно легко инактивируются отдельными видами деструкторов, но до этого они успевают нанести вред своим носителям, вызывая у высших животных и человека нарушения иммунитета, возникновение злокачественных опухолей, уродства плода при беременности, генетические нарушения.[ . ]

источник

В воде источников водоснабжения обнаружено несколько тысяч органических веществ разных химических классов и групп. Органические соединения природного происхождения (гуминовые вещества, различные амины и другие) — способны изменять органолептические свойства воды, и по этой причине они должны быть удалены в процессе водоподготовки.

Читайте также:  Проба воды для химического анализа

Несомненно, что органические вещества техногенного происхождения при поступлении их с питьевой водой могут неблагоприятно действовать на организм. Аналитический контроль их содержания в питьевой воде затруднен не только ввиду громадного их числа, но и вследствие того, что многие из них весьма неустойчивы и в воде происходит их непрерывная трансформация. Поэтому при аналитическом контроле невозможно идентифицировать все органические соединения, присутствующие в питьевой воде.

Однако многие органические вещества обладают выраженными органолептическими свойствами (запахом, вкусом, цветом, способностью к пенообразованию), что позволяет их выявить и ограничить их содержание в питьевой воде. Примерами таких веществ являются: синтетические поверхностно-активные вещества (СПАВ), в незначительных (нетоксических) концентрациях образующие пену; фенолы, придающие воде специфический запах; многие фосфорорганические соединения.

В природной воде водоемов всегда присутствуют органические вещества. Их концентрации могут быть иногда очень малы (например, в родниковых и талых водах). Природными источниками органических веществ являются разрушающиеся останки организмов растительного и животного происхождения, как живших в воде, так и попавших в водоем с листвы, по воздуху, с берегов. Кроме природных, существуют также техногенные источники органических веществ: транспортные предприятия (нефтепродукты), целлюлозно-бумажные и лесоперерабатывающие комбинаты (лигнины), мясокомбинаты (белковые соединения), сельскохозяйственные и фекальные стоки и т.д. Органические загрязнения попадают в водоем разными путями, главным образом со сточными водами и дождевыми поверхностными смывами с почвы.

Интегральное содержание органических веществ оценивается по показателям БПК и ХПК.

Биохимическое и химическое потребление кислорода — БПК и ХПК , принятые в гигиене, гидрохимии и экологии, интегральные показатели, характеризующие содержание в воде нестабильных (неконсервативных) органических веществ, трансформирующихся в воде путем гидролиза, окисления и других процессов. Содержание таких веществ выражается через количество кислорода, необходимое для их окисления в резко кислой среде перманганатом (БПК) или бихроматом (ХПК). К таким веществам относят алифатические кислоты, некоторые эфиры, амины, спирты.

В естественных условиях находящиеся в воде органические вещества разрушаются бактериями, претерпевая аэробное биохимическое окисление с образованием CO2. При этом на окисление потребляется растворенный в воде кислород (РК). В водоемах с большим содержанием органических веществ большая часть кислорода потребляется на биохимическое окисление, лишая, таким образом, кислорода другие организмы. Поэтому увеличивается количество организмов, более устойчивых к низкому содержанию кислорода, исчезают кислородолюбивые виды. Таким образом, в процессе биохимического окисления органических веществ в воде происходит уменьшение концентрации кислорода, и эта убыль косвенно является мерой содержания в воде органических веществ. Соответствующий показатель качества воды, характеризующий суммарное содержание в воде органических веществ, называется биохимическим потреблением кислорода (БПК).

БПК — это количество кислорода в (мг), требуемое для окисления находящихся в 1 литре воды органических вещества в аэробных условиях, без доступа света, при 20 °С, за определённый период в результате протекающих в воде биохимических процессов.

Определение БПК основано на измерении концентрации РК в пробе воды непосредственно после отбора, а также после инкубации пробы. Инкубацию пробы проводят без доступа воздуха в кислородной склянке (то есть в той же посуде, где определяется значение РК) в течение времени, необходимого для протекания реакции биохимического окисления. Так как скорость биохимической реакции зависит от температуры, инкубацию проводят в режиме постоянной температуры (20±1) °С, причем от точности поддержания значения температуры зависит точность выполнения анализа на БПК. Обычно определяют БПК за 5 суток инкубации (БПК5). Может определяться также БПК10 за 10 суток и БПКполн. за 20 суток (при этом окисляется около 90 % и 99 % органических веществ соответственно). Ориентировочно принимают, что БПК5 составляет около 70 % БПКполн., но может составлять от 10 % до 90 % в зависимости от окисляющегося вещества. Погрешность в определении БПК может внести также освещение пробы, влияющее на жизнедеятельность микроорганизмов и способное в некоторых случаях вызывать фотохимическое окисление. Поэтому инкубацию пробы проводят без доступа света.

В поверхностных водах величина БПК5 колеблется в пределах от 0,5 до 5,0 мг/л; она подвержена сезонным и суточным изменениям, которые, в основном, зависят от изменения температуры и от физиологической и биохимической активности микроорганизмов. Весьма значительны изменения БПК5 природных водоемов при загрязнении сточными водами.

Таблица 1. Величины БПК5 в водоемах с различной степенью загрязненности

Степень загрязнения (классы водоемов) БПК5, мг O2/дм 3
Очень чистые 0,5–1,0
Чистые 1,1–1,9
Умеренно загрязненные 2,0–2,9
Загрязненные 3,0–3,9
Грязные 4,0–10,0
Очень грязные 10,0

Норматив на БПКполн. не должен превышать: для водоемов хозяйственно-питьевого водопользования — 3 мг/л для водоемов культурно-бытового водопользования — 6 мг/л. Соответственно можно оценить предельно-допустимые значения БПК5 для тех же водоемов, равные 2 мг/л и 4 мг/л.

Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях, называется окисляемостью или ХПК. Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая.

Являясь интегральным (суммарным) показате­лем, ХПК в настоящее время считается одним из наиболее инфор­мативных показателей антропогенного загрязнения вод. Этот по­казатель, в том или ином варианте, используется повсеместно при контроле качества природных вод, исследовании сточных вод и др. Результаты определения окисляемости выражаются в милли­граммах потребленного кислорода на 1 литр воды (мгО/л).

В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает как характеристика, отражающая режим поступления сточных вод. Для природных малозагрязненных вод рекомендовано определять перманганатную окисляемость; в более загрязненных водах определяют, как правило, бихроматную окисляемость (ХПК).

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования величина ХПК не должна превышать 15 мг О/дм 3 ; в зонах рекреации в водных объектах допускается величина ХПК до 30 мг О/дм 3 .

В программах мониторинга ХПК используется в качестве меры содержания органического вещества в пробе, которое подвержено окислению сильным химическим окислителем. ХПК применяют для характеристики состояния водотоков и водоемов, поступления бытовых и промышленных сточных вод (в том числе, и степени их очистки), а также поверхностного стока.

Таблица 2. Величины ХПК в водоемах с различной степенью загрязненности

Степень загрязнения (классы водоемов) ХПК, мг О/дм 3
Очень чистые 1
Чистые 2
Умеренно загрязненные 3
Загрязненные 4
Грязные 5–15
Очень грязные >15

Однако не все органические вещества в равной степени уча­ствуют в реакции химического окисления. Так же, как и при биохи­мическом окислении, при химическом окислении можно выделить группы легко, нормально и тяжело окисляющихся органических веществ. Поэтому всегда существует разница между теоретически возможным и практически достигаемым значениями ХПК. Мешают точному определению ХПК в первую очередь, хлорид-анионы, как правило, содержащиеся в природных и, особенно, в сточных водах. Определению также мешают нитриты, часто присутствующие в водах, прошедших биохимическую очистку.

Нормативы на ХПК в воде водоемов: для питьевой воды – 5,0 мгО/л (для перманганатной окисляемости), ХПК – 15 мгО/л.

источник

Природа обладает удивительной способностью справляться с небольшим количеством отходов и загрязнений.

Но она была бы перегружена, если бы мы не обрабатывали загрязненную ими воду, прежде чем выпустить обратно в окружающую среду.

Сточные воды — это отработанная использованная жидкость. Она включает в себя человеческие, пищевые отходы, масла, мыло, различные химические продукты и прочие вредные вещества.

В домах она — от раковин, ванн, туалетов, стиральных машин. Предприятия разных отраслей промышленности также вносят свою долю загрязнений, от которых необходимо избавляться.

Сюда же относят и ливневые стоки. Хотя некоторые люди предполагают, что дождь довольно чистый, это не так. Вредные продукты с дорог, парковок и крыш, смываясь с дождём, могут нанести вред рекам и озерам.

Это вопрос не только заботы об окружающей среде, но и о нашем здоровье.

Есть много веских причин, почему сохранение нашей воды в чистоте является приоритетным:

  • Рыболовство. Чистая вода имеет первостепенное значение для растений и животных, которые живут в ней. Это важно для рыболовной отрасли, любителей спортивной рыбалки и будущих поколений.
  • Сохранение мест обитания животных и птиц. Изобилие видов, их жизнедеятельность напрямую зависят от чистоты вокруг, т.к. водоёмы являются их непосредственной средой обитания. Перелетные водоплавающие птицы используют водные просторы и прилегающую к ним землю для отдыха и кормления.
  • Отдых и качество жизни. Многих людей привлекают водные развлечения, такие как плавание, рыбалка, катание на лодках и пикники. Живописность мест, пригодность их для отдыха тоже зависят от содержания в чистоте окружающей среды.

Благодаря специфической структуре молекул поверхностно-активных веществ они применяются в различных областях человеческой деятельности. В домашнем хозяйстве, или промышленных производствах различные соединения из группы ПАВов используются довольно активно. Это объясняется тем, что их присутствие ведет к повышению эффективности различных процессов. После использования и выгрузки с очистных сооружений, в качестве стоков поверхностно-активные вещества выбрасываются в различные элементы окружающей среды и циркулируют в ней. Могут в значительной степени способствовать нарушению водного цикла в различных экосистемах. Исследование экологической судьбы поверхностно-активных веществ может способствовать повышению уровня знаний о путях миграции загрязняющих веществ и лучшей защите живых организмов в различных экосистемах от них.

Поверхностно-активные вещества представляют собой группу соединений со специфическим химическим составом их молекул (одна часть растворима в полярной среде: гидрофильная и вторая в неполярной среде: гидрофобная).

Основная классификация ПАВ основана на делении по заряду гидрофильных частей их молекул: катионные, анионные и неионные соединения. Поверхностно-активные вещества характеризуются склонностью к поглощению на различных типах поверхностей. Еще одно свойство — это способность к объединению в растворе и образованию мицелл.

В процессе формирования мицелл поверхностно-активные вещества способны задерживаться на границе фаз для удаления гидрофобной части из H2O для улучшения ее качеств.

Загрязнения, в составе стоков предприятий попадают в озера, водохранилища, пруды.

Недостаточное разложение ПАВ негативно воздействует на природу и приводит к активному образованию ила.

Стоки, в которых есть продукты распада полифосфатных ПАВ, служат причиной чрезмерного пенообразования и бурного роста растений, это плохо сказывается на чистоте водоемов. После омертвения растений идет бурный процесс гниения, вода обедняется кислородом, ухудшается воздухообмен, что затрудняет естественное её очищение.

Соли фосфатных кислот в чистом виде плохо влияют на окружающую среду, а при поступлении с обработанной жидкостью в водоемы начинают действовать, как удобрение.

Водоросли в водоемах под влиянием ПАВов растут очень быстро. При распаде они начинают выделять много водородных соединений неметаллов, убивая все живое. Из-за того, что угроза для человека от солей фосфатных кислот высока, природоохранные организации установили жесткие требования по наличию фосфатов в сточной, питьевой воде и продуктах питания. В западных странах содержание фосфатов в стоках должно быть не более 1мг/литр.

Время биоразложения в отстойниках дает возможность узнать, просчитать, сколько ПАВов может попасть в окружающую среду. Существуют два параметра — скорость биоразложения, в ходе которого главную роль берут на себя бактерии. Молекула ПАВ превращается в углекислый газ и окиси других элементов. Если продукт не подвержен естественному биоразложению, он устойчив и накапливается в окружающей среде. Скорость биоразложения зависит от типа ПАВ и колеблется от 1-2 часов. Второй параметр — это степень токсичности в водной среде. Он определяет возможное влияние ПАВ на окружающую среду. Этот показатель измеряют экспериментально на рыбах, дафниях, водорослях. Значения неопасных ПАВ должны быть не выше 10 мг/ л.

СПАВы — это вещества, которые способны адсорбироваться на поверхности раздела фаз (вода-воздух) и понижать их поверхностную энергию.

Наиболее распространенными являются анионоактивные и неионогенные ПАВ. Производство анионактивных и неионогенных, а также моющих средств на их основе составляет 95-98% общего количества вырабатываемых промышленностью СПАВ.

Неиногенные опасны из-за гниения. Все СПАВ на очистных сооружениях и в природных средах плохо и медленно разрушаются. Совокупность окислительных процессов в живом организме протекает с обязательным участием кислорода, при температуре выше 10℃, pH-нейтральной и слабощелочной от 7,0 до 9,0.

При концентрации СПАВ в воде более 0,3-0,5 мг/дм3 образовывается много пены на поверхности водоемов, в следствие чего нарушается подача воздуха в аэротенки и происходит неблагоприятный рост микробной флоры, что требует биологической очистки.

На очистных сооружениях из-за присутствия СПАВ увеличивается вынос взвешенных веществ из вторичных отстойников, уменьшается нагрузка активности ила и постепенно падает качество очистки. В аэротенках пена может быть два и три метра. Перенесенная ветром, она является источником заболевания, характеризующегося появлением паразитов в организме человека, имеет общее название – гельминтоз. СПАВы в стоках понижают качество процесса первичного отстаивания и тормозят процессы переноса кислорода в клетки микроорганизмов активного ила.

По степени биохимического распада, подразделяются на:

  • биохимически легко окисляемые — «биологически мягкие», для которых биохимическое окисление в течение 6 ч составляет более 25% по показателю ХПК;
  • трудно биохимически окисляемые, 6 ч составляет 25% по показателю ХПК;
  • вещества промежуточной группы.
Читайте также:  При сдаче анализов можно пить воду

В ходе биологического очищения уходят до 80 % «биологически мягких». Потребление кислорода «биологически жесткими», составляет не более 10% ХПК, а в процессе очистки они и удаляются не более чем на 40%, главным образом, за счет сорбции активным илом и образования промежуточных продуктов распада. При этом присутствие в стоках «биологически жестких» веществ в концентрациях более 10 мг/дм3 ухудшает степень их очистки.

Содержание в неочищенных городских стоках колеблется от 5 до 40 мг/дм3.

Устранение СПАВов в аэротенках происходит несколькими путями: биохимическим распадом и сорбцией активным илом.

Биохимическая очистка может дать хороший результат в случае содержания в сточных водах «биологически мягких» СПАВов в количестве не более 20-30 мг/дм3.

Аэротенки эффективнее биофильтров по степени удаляемости СПАВ.

В аэротенках нужно поддерживать, по необходимости, высокую дозу активного ила (2-3 г/дм3), что будет улучшать процессы обмена бактериальных клеток через поры с окружающей средой. Одновременно, за счет повышения дозы активного ила, частично снижается пенообразование, что особенно важно при поступлении с водами не очень «мягких» СПАВ.

Присутствие в промышленных стоках ПАВов требует подбора наиболее приемлемых методов очистки. Наш опыт очистки сточных вод от ПАВ и органических загрязнений демонстрирует, что наиболее оптимальным для обеспечения глубокого очищения является чередование физико-химических методов и биологических.

Для извлечения малых концентраций из состава загрязненных жидкостей (не более 100÷200мг/л) необходимо применять адсорбционную очистку на активированных углях, или других сорбентах.

Возможность получить очищенную воду необходимого качества для последующего использования после извлечения из неё ПАВов, дает применение в составе очистных сооружений фильтров с ионообменными смолами.

Еще применяются способы очистки, основанные на адсорбционных технологиях и синтетических адсорбентах, которые получают путем синтеза. Например пенопласт, полипропилен, резиновая крошка и т. д., а также адсорбентов, полученных переработкой отходов различных отраслей промышленности.

Следующим, часто используемым способом удаления, является флотация.

Особенностями процесса флотации являются постоянство процесса очистки при значительных колебаниях концентрации продуктов загрязнения, достаточно большой спектр применения, простота аппаратурного исполнения, невысокие эксплуатационные затраты, селективность (избирательность) выведения загрязняющих веществ по-сравнению с фильтрованием, высокая степень очистки (95÷98), достаточно высокая скорость процесса, возможность повторного использования удаляемых веществ.

Флотация сопровождается насыщением кислородом сточных вод, понижением концентрации поверхностно активных веществ, взвешенных веществ. Это способствует успешной работе следующих стадий биологической очистки.

Используется и метод пенного сепарирования. Процесс основан на адсорбции ПАВ на разделе фаз: сточная — вода-воздух, при непрерывном снятии поверхностного слоя.

Для этого через обработанную воду пропускают воздух, что вызывает высокое пенообразование из пузырьков газа различного размера.

Процесс разрушения пенного слоя, состоящий из загрязнений, проходит медленно. Для ускорения разрушения пены используют различные химические пеногасители, в качестве которых применяют кремний, органические соединения. Но их использование приводит к вторичному загрязнению пеноконденсата. Поэтому чаще применяют механические способы гашения, посредством разрушения пены под воздействием струй.

источник

Начиная с 50-60-х годов прошлого века в технически развитых странах стали в массовом порядке производиться новые химические соединения — синтетические поверхностно-активные вещества (СПАВ). В настоящее время различные по составу они широко применяются в быту и промышленном производстве.

Под этот термин попадают различные по структуре и классам вещества, общее свойство которых — способность адсорбироваться на поверхности разделов фаз и уменьшать поверхностное натяжение.

Области промышленного использования — приготовление смазочных жидкостей, антикоррозийных составов, нанесение электролитических покрытий, в качестве компонентов лакокрасочных составов, в нефтедобыче, в горнорудной флотации, для получения противопожарной пены, для крашения и замасливания текстильных волокон и др. Наиболее широкая и экологически значимая область использования СПАВ — приготовление синтетических моющих и чистящих веществ (детергентов) для использования в быту.

Детергентом считается такое вещество, один конец которого растворим в воде, а другой — в углеводородах или жирах. Детергенты усиливают моющее действие воды. В отличие от природных детергентов (мыла), синтетические детергенты способны проявлять моющие свойства даже в жесткой воде.

Таким образом, СПАВ поступают в природные водоемы:

  • с хозяйственно-бытовыми стоками;
  • с промышленными стоками текстильной, нефтяной, химической промышленности;
  • со сточными водами прачечных хозяйств и автомоек;
  • со смывами от сельхозугодий, обработанных химическими реагентами с эмульгаторами (гербициды, инсектициды, фунгициды).

Специфические физико-химические свойства поверхностно-активных веществ сильно затрудняют известные методы химической и биологической очистки стоков.

В сточных водах ПАВ находятся в виде растворимых соединений или сорбатов. Часть детергентов распределяется по поверхности водной пленки. Если сорбированные СПАВ оседают и накапливаются в донных отложениях, то в анаэробных условиях они могут становиться источником вторичного загрязнения водоемов.

Наиболее высокие концентрации синтетических поверхностно-активных веществ наблюдаются в сточных водах от процессов стирки и мойки различных изделий, прачечных, красильно-отделочных производств, автомоек. Причем в состав этих сточных вод входят анионоактивные и неионогенные поверхностно-активные вещества, наиболее трудно поддающиеся естественному биохимическому разложению [4].

В зависимости от свойств синтетического поверхностно-активного вещества при растворении в воде и его характеристик, различают следующие виды СПАВ [3]:

  • анионоактивные;
  • катионоактивные;
  • амфолитные;
  • неионогенные.

Анионоактивные — в воде образуют отрицательно заряженные ионы. К ним относятся соли сернокислых эфиров и соли сульфокислот (сульфонаты). Радикал может быть алкильным, алкилакрильным, алкилнафтильным. В соединениях могут быть двойные связи и функциональные группы.

Катионоактивные — в водном растворе ионизируются с образованием положительных органических ионов. Это четвертичные аммониевые соли, обычно состоящие из углеводородного радикала с прямой цепью (количество атомов углерода — от 12 до 18); метил- , этил- , или бензильного радикала; атома брома, хлора, йода или остатка этил- или метилсульфита.

Амфолитные — проявляют разные свойства в зависимости от pH среды. В кислом растворе они проявляют катионоактивные свойства, в щелочном — анионоактивные.

Неионогенные — в водном растворе не диссоциируют на ионы.

По степени биохимической устойчивости и структуре молекул синтетические поверхностно-активные вещества подразделяют на мягкие, промежуточные и жесткие. Легче всего окисляются первичные и вторичные алкилсульфаты нормального строения. В соединениях с более разветвленной цепью скорость окисления снижается. К числу трудноразрушаемых СПАВ относят алкилбензолсульфонаты на основе тетрамеров пропилена.

C понижением температуры снижается и скорость окисления полимеров СПАВ. При температуре окружающей среды 0-5 °С окисление в природных водах происходит очень медленно. Для процессов окислительного самоочищения наиболее благоприятна нейтральная или слабощелочная среда природной воды — pH 7-9.

В природных водоемах СПАВ ухудшают кислородный режим и органолептические свойства воды, а из-за медленных процессов окисления они могут долгое время негативно влиять на экосистему. Высокое пенообразование — еще один отрицательный фактор воздействия. По данным [1] уже при повышенных концентрациях СПАВ (5-15 мг/дм³) у рыб разрушается слизистый покров, а при более высоких концентрациях наблюдается кровотечение жабр. Опытные данные показывают, что загрязнение природных водоемов синтетическими ПАВ ведет к снижению численности моллюсков за счет гибели их эмбрионов [3].

Показатель БПК для различных СПАВ находится в диапазоне от 0 до 1,6 мг/дм³. В процессе биохимического окисления эти вещества распадаются с образованием вторичных продуктов загрязнения — спиртов, альдегидов, органических кислот, а при распаде СПАВ с бензольным кольцом в структуре молекулы — фенолов.

Таким образом, синтетические поверхностно-активные вещества являются значимыми загрязнителями водных сред и оказывают негативное воздействие на организмы-гидробионты [3].

Имеются данные о негативном влиянии таких веществ на неорганическую среду: эрозию почв, коррозию металлов, ускорение процессов старения железобетонных сооружений [4].

В ходе работы прачечного хозяйства образуется большое количество сточных вод. Основные объемы стоков дает сам процесс стирки. Незначительное количество солесодержащих промывных вод получается в процессе умягчения воды.

Процесс стирки включает семь или восемь операций:

  • предварительное прополаскивание водой, содержащей умягчающие реагенты (сода и смачивающие вещества);
  • стирка горячей водой с кипячением в присутствии соды, мыла и синтетических моющих средств;
  • многократное прополаскивание горячей или холодной водой.

Длительность процесса стирки — около 1 часа. В соответствии с удельными нормативами принимается, что на каждые 100 кг белья образуется 3,75 м³ сточных вод [6].

Примерный состав загрязнителей сточных вод прачечных:

  • Анионные и неионогенные СПАВ (моющие средства, детергенты, отбеливатели).
  • Соли жесткости.
  • Взвешенные вещества (эмульгированная грязь).
  • Механические частицы, волокна ткани.
  • Красители и нефтепродукты.

По сравнению со средним составом городских канализационных сточных вод, концентрации специфических загрязнений в сточных водах прачечных выше в 2-3 раза. Сточные воды прачечной от стирки 100 кг белья эквивалентны суммарным канализационным стокам населенного пункта с 35 жителями [6].

При смешении с городскими канализационными стоками сточные воды от прачечных дают стойкое пенообразование.

СПАВ, попадающие на городские очистные сооружения, затрудняют работу отстойников, повышают нагрузку на очистные сооружения и снижают общую эффективность очистки хозяйственно-бытовых стоков.

Выпуск сточных вод от прачечных в городскую канализационную сеть, с учетом специфики из загрязнений, возможен при соблюдении температурных условий и усреднения состава, но нежелателен. В настоящее время существуют методы предварительной обработки сточных вод, а также технологические схемы оборотного водоснабжения прачечных предприятий для повторного использования части воды.

Схема очистки сточных вод и оборотного водоснабжения прачечных с применением методов флотации и нанофильтрации функционирует следующим образом (по данным [7]).

Применяемый метод очистки является многоступенчатым. На первом этапе из сточной воды удаляются взвеси и нефтепродукты методом флотации; второй этап (фильтрация) убирает из воды остаточные нерастворимые взвешенные вещества; третий этап (мембранная нанофильтрация) удаляет из воды растворимую органику.

Стоки от прачечной поступают в усреднительный резервуар. Туда же заливают вторичные оборотные воды — фильтрат из установки обезвоживания, концентрат из узла мембранной фильтрации и промывные воды фильтра.

Усредненные стоки поступают в многоступенчатый реактор коагуляции. В реактор подаются реагенты из реагентного хозяйства — флокулянты и коагулянты. Под действием реагентов в реакторе идет процесс хлопьеобразования.

Затем сточные воды вместе со взвешенными хлопьями поступают на установку флотации. Во флотаторе поддерживается постоянная аэрация смеси сточных вод и происходит удаление взвешенных хлопьев, которые отделяются от воды и подаются на установку обезвоживания осадка. Здесь хлопья обезвоживаются и направляются на дальнейшую утилизацию.

Осветленная после флотации сточная вода проходит сначала стадию грубой фильтрации, а затем поступает на узел мембранной нанофильтрации. Это основная стадия очистки, на которой происходит мембранное фильтрование и очищение воды.

Вода после стадии тонкой фильтрации (пермеат) является чистой водой высокого качества и возвращается в оборотное водоснабжение прачечного хозяйства.

Система очистки стоков и оборотного водоснабжения прачечной регулируется в автоматическом режиме и управляется с диспетчерского пульта.

Функциональные узлы и оборудование описанной схемы:

Эффективность подобного комплекса очистных сооружений по СПАВ составляет: 98% — для неионогенных, 16% — для анионных. Эффективность очистки по БПК — 99%.

Другая схема очистки сточных вод прачечной предложена на основе опытно-лабораторных разработок методов очистки воды от СПАВ [4]. Технологическая схема предусматривает очистку сточных вод крупной механизированной прачечной производительностью 4140 кг белья в сутки. Очистка сточных вод реализована по одноступенчатой схеме с применением метода электрофлотокоагуляции. Очищенные до нормативных показателей стоки сбрасываются в городскую канализационную сеть.

Сточные воды прачечной из усреднителя подаются насосами в электрофлотокоагулятор (ЭФК). Сточная вода протекает между электродами и взаимодействует с гидроксидом железа, который выделяется в камеру с анода под действием электрического тока. Дисперсные частицы укрупняются. Вода со взвешенными частицами отводится в отстойник, где хлопья с адсорбированными загрязнениями выпадают в осадок.

Одновременно в камере ЭФК происходит гидролиз воды и выделение газообразных кислорода и водорода, активирующих процесс флотации. Результатом флотации является пена, которая собирается в лоток и отводится на мешалку. Там к ней подмешивается глиняная суспензия, а образовавшийся ил поступает в иловый колодец. Суспензия ила подвергается обезвоживанию, полученный шлам отправляют на утилизацию. Фильтрат после обезвоживания возвращают в усреднитель и подмешивают к новым порциям очищаемой сточной воды.

При оптимальном режиме работы расчетная эффективность очистной установки составляет 95% по СПАВ и 72% по взвешенным веществам.

Законодательство устанавливает, что стоки, образовавшиеся на автомойке, запрещается сбрасывать без очистки в окружающую среду (в том числе на грунт), а система водоснабжения автомойки должна включать очистку и систему рециркуляции сточных вод.

Методы очистки и конкретные технологии для стоков автомоек подбираются с учетом специфики загрязняющих веществ.

Примерное содержание основных загрязняющих веществ в сточных водах автомоек от разных категорий транспорта (по данным [7]):

  • взвешенные вещества: 400-4000 мг/л;
  • нефтепродукты: 20-150 мг/л;
  • тетраэтилсвинец: 0,01-0,1 мг/л;
  • СПАВ: 100 мг/л.

Основные загрязнители в стоках автомоек — смывы с корпусов автомобилей, содержащие большое количество взвешенных веществ, нефтепродуктов и токсичных соединений свинца. СПАВ в стоках автомоек появляются в том случае, если в процессе мойки применяются специальные моющие составы.

Готовая схема водоочистки автомойки [8] включает в себя несколько этапов:

  • грубая механическая очистка;
  • гравитационное осаждение;
  • реагентная обработка;
  • напорная флотация;
  • фильтрация.

На предварительном этапе стоки очищаются от грубых механических примесей и взвешенных веществ в пескоуловителях и нефтеловушках. Дальнейшая очистка стоков происходит в гравитационных отстойниках. В описанной схеме очистки используются тонкослойные отстойники, в которых осаждение взвешенных примесей происходит более эффективно.

Читайте также:  При сдаче анализов натощак пить воду

Основные методы очистки сточных вод автомоек— реагентный и метод напорной флотации.

Эти методы позволяют очистить сточные воды до показателей, допускающих их повторное использование в оборотной системе водоснабжения. Недостатки реагентных и флотационнных методов — высокие затраты на расходные материалы и реагенты.

На практике высокие рекомендации получил комплексный метод очистки стоков автомоек с использованием водооборотной системы «Скат» [8]. Установка состоит из трех блоков:

  1. Блок БПО — для удаления грубых примесей.
  2. Блок ОТБ — флотационная очистка от мелкодисперсных взвесей.
  3. Блок ДСБ— доочистка воды на угольном фильтре.

Подбор оборудования для очистной системы ведется в зависимости от объемов воды, циркулирующей в системе оборотного водоснабжения, и подпитки свежей водой (15% от объема оборотной).

Подобные системы очистки и оборотного водоснабжения автомоек не только эффективны в плане улавливания выбросов, но и выгодны, поскольку значительно сокращают водопотребление. Очищенная вода повторно используются в процессе мойки машин, а свежая вода применяется лишь для конечного ополаскивания.

Методы очистки сточных вод от СПАВ условно можно разделить на методы, подходящие для очистки сточных вод с невысоким содержанием веществ (10-100 мг/л) и на методы, подходящие для очистки стоков с высокими концентрациями поверхностных активных веществ (100-1000 мг/л).

  1. Для очистки стоков с невысоким содержанием можно применять методы адсорбции на углях; сорбционные методы с использованием ионообменных смол и полимерных адсорбентов; методы обратного осмоса; биохимические методы очистки (биоокисление и биосорбция); флокуляцию; методы электрокоагуляции; метод озонирования.
  2. Для очистки сточных вод с высоким содержанием больше подходят методы коагуляции; флокуляции; экстракции; ионного обмена; а также электрические и комбинированные методы — электрофлотация, электрокоагуляция, гальванокоагуляция, электрофлотокоагуляция.

Каждый из перечисленных методов имеет свои недостатки и ограничения по использованию. Сочетание нескольких технических приемов при очистке сточных вод позволяет получить наиболее высокую степень извлечения СПАВ [4].

  1. Адсорбция
    В установках очистки стоков от СПАВ может быть использован гранулированный активированный уголь. В отличие от порошкообразного угля, у гранулированного угля меньше потери при регенерации, а стоимость регенерации гранулированного угля ниже, чем порошкообразного. Адсорбцию углем целесообразно использовать на стадиях доочистки стоков с содержанием СПАВ не более 100-200 мг/л. При этом достигается высокая степень очистки, до 95%.
  2. Ионный обмен
    Сорбция ионитами наиболее эффективна для сточных вод с содержанием поверхностно-активных веществ не более 100 мг/л. Для удаления анионоактивных СПАВ используют среднеосновные и сильноосновные иониты. Регенерируют иониты водно-органическими растворами солей. Недостаток метода ионного обмена — необходимость установки большого количества ионитовых фильтров с коротким рабочим циклом, и их частая регенерация. Очистка воды от СПАВ методами ионного обмена может быть целесообразна лишь в случаях, когда к очищенной воде предъявляются высокие требования. Степень очистки методом ионного обмена порядка 80-90%.
  3. Коагуляция
    В качестве коагулянтов применяют сернокислый алюминий или сернокислое железо. Этот метод подходит для очистки слабоконцентрированных растворов анионных СПАВ (1-20 мг/л), и является достаточно затратным из-за высоких капитальных расходов, необходимости использования больших доз коагулянтов, переработки большого объема выпадающего осадка. Степень очистки составляет порядка 90%.
  4. Пенная флотация
    Методы пенной флотации эффективны для слабоконцентрированных растворов СПАВ, потому что при росте концентрации происходит резкое увеличение объема пены [1]. Эффективность метода очистки пенообразованием зависит от многих факторов: pH среды, размеров пузырьков газа, высоты слоя раствора, температуры, присутствия в растворе других ионов. Создание оптимальных условий для протекания процесса пенообразования — достаточно сложная задача. Зачастую метод пенной очистки требует предварительной обработки сточных вод.
  5. Электрохимические методы
    Электрохимические методы имеют много преимуществ перед классическими методами очистки сточных вод от СПАВ и имеют хорошие перспективы к практическому использованию. Методы с использованием электричества позволяют отказаться от проектирования и содержания реагентного хозяйства, так как не предусматривают использования химических реагентов. При условии, что стоимость электроэнергии не будет возрастать, можно прогнозировать широкое распространение электрохимических методов очистки.
    Метод электрокоагуляции эффективен для очистки сточных вод от алкилсульфонатов высокой концентрации при pH сточных вод 11-11,5 (по данным [1]). Для подщелачивания сточных вод применяется оксид кальция. В методе используются алюминиевый анод и медный катод, плотность тока составляет 3 А/дм², длительность обработки —20-30 минут. По данным [9] эффективность очистки от алкилсульфонатов составляет свыше 98%.
    Если концентрации СПАВ в растворе невысоки (до 100 мг/л) используют прямую электрокоагуляцию без добавления нейтрализующих агентов.
    По данным [4] наиболее эффективны для очистки сточных вод от СПАВ комбинированные методы, сочетающие в себе несколько процессов: электролиз, коагуляцию, сорбцию и флотацию. Вода подается в реакционную камеру с электродами. На поверхности электродов генерируются ионы металлов и образуются гидроксиды. Одновременно идет процесс гидролиза воды с выделением газообразных водорода (на катоде) и кислорода (на аноде). Хлопья коагулянта и пузырьки газа в стесненных условиях интенсивно подвергаются коагуляции загрязнений, что повышает эффективность флотации. Образующийся пенный продукт отводится в карман сбора пены, а очищенная вода отводится на отстаивание. Оптимальное время обработки — 20 минут, плотность тока 85 А/м².
  6. Физические методы
    Это методы очистки воды, основанные на воздействии ультразвука, электростатического, радиационного и магнитного поля. По данным [1], физические методы могут дополнять основные методы очистки воды от синтетических поверхностно-активных веществ высоких концентраций, повышая их общую эффективность.
    При воздействии на сточную воду магнитного поля ускоряется процесс флотации, осаждения и агрегации взвешенных веществ, изменяется структура осадка. Методы электромагнитной обработки стоков перспективны из-за невысокой стоимости оборудования и малой энергоемкости.
  7. Биохимические методы
    Поверхностно активные вещества (ПАВ) являются органическими веществами, способными подвергаться биохимическому окислению. В процессе очистки ПАВ частично сорбируются активным илом или удаляются из воды вместе с осаждением взвешенных веществ. При значительных концентрациях поверхностно-активных веществ в аэротенках наблюдается активное пенообразование. Также пена присутствует в очищенных стоках, выпускаемых в водоем.
    При первоначальном поступлении стоков, содержащих ПАВ, в аэротенки или биофильтры, сразу происходит интенсивная адсорбция этих веществ. Количество ПАВ, удаляемых адсорбцией, зависит от химического строения этих веществ. Если их биохимическое окисление идет недостаточно активно, они накапливаются в активном иле, что может привести к его деградации.
    Самым негативным воздействием обладают «жесткие» СПАВ, которые уже в концентрациях порядка 15 мг/л ухудшают течение биохимических процессов. При концентрации 10 мг/л наблюдается интенсивное пенообразование очищаемой воды. Активный ил начинает деградировать, микроорганизмы измельчаются. При концентрациях 20 мг/л жизнедеятельность микроорганизмов подавляется, наблюдается отмирание коловраток и свободно плавающих инфузорий [1].
    Удаление ПАВ на биофильтрах менее эффективно, чем в аэротенках. Вероятно, это связано с процессами аэрации и выноса части ПАВ в виде пены.
    Неионогенные (так называемые «мягкие» СПАВ), также оказывают отрицательное влияние на процессы биохимической очистки, но это проявляется при более высоком их содержании. При их концентрации в стоках свыше 50 мг/л они вызывают незначительное повышение БПК очищенных стоков. Если в сточных водах присутствуют СПАВ, относимые к промежуточной группе, наблюдаются процессы пенообразования в аэротенках и ухудшение эффективности очистки при концентрации этих веществ свыше 20 мг/л.
    Как видно, степень влияния ПАВ на процессы биохимического окисления сильно зависит от особенностей их строения и способности молекул к адсорбции и биохимическому распаду. Поэтому существуют рекомендуемые нормативы предельного содержания ПАВ в сточных водах, поступающих на сооружения биологической очистки. Сточные воды с высоким содержанием поверхностно-активных веществ необходимо подвергать разбавлению, либо предварительной очистке.
  8. Озонирование
    Озон — сильнейший природный окислитель, вступающий в реакцию со многими органическими и неорганическими соединениями и имеющий высокую растворимость в воде. На его свойствах основана группа окислительных методов очистки сточных вод.
    По данным [1] озонирование является перспективным методом для очистки сточных вод от СПАВ в невысоких концентрациях. В результате воздействия озона образуются нетоксичные продукты, не оказывающие негативного влияния на экосистемы. Есть предположения, что озонирование можно применять и для очистки более высоконцентрированных стоков (до 200 мг/л).
    При озонировании стоков с содержанием СПАВ 26 мг/л при щелочной реакции среды (pH=9-10), полное их разложение происходило в течение 3-5 минут. При слабокислой среде реакция идет в 5-6 раз медленнее. Степень очистки составляет порядка 90% [9].
    Кроме непосредственного озонирования, для очистки стоков перспективно использовать редокс-системы, в которых озон сочетается с другими окислителями. Это дает повышение эффективности очистки и снижение расхода реагентов. Один из перспективных методов — деструкция СПАВ совместным воздействием озона и пероксида водорода.

Повсеместная распространенность синтетических поверхностно-активных веществ остро ставит вопрос нахождения наиболее приемлемых и экономически выгодных методов очистки сточных вод от них. Физико-химические особенности СПАВ и разделение этих веществ на группы по способности к биохимическому разложению существенно затрудняют подбор наиболее оптимального метода очистки.

Выбор актуального способа очистки сточных вод должен вестись в зависимости от концентрации поверхностно-активных веществ в воде, его способности к разложению («жесткое» или «мягкое» СПАВ), наличия в сточной воде других загрязняющих примесей (нефтепродуктов, взвесей), а также требуемого качества воды на выходе.

При однородном составе сточных вод и невысоких концентрациях ПАВ возможно реализовать схему одноступенчатой очистки с использованием методов сорбции, флотации, коагуляции, биологического окисления или мембранного фильтрования.

Для многокомпонентных сточных вод, вод с высоким содержанием ПАВ или при наличии трудноразрушаемых соединений СПАВ, рекомендуется использовать многоступенчатые технологии с последовательной очисткой стоков несколькими методами или комбинированные методы очистки (электрофлотация, электрофлотокоагуляция и др.).

источник

Жизнедеятельность человека крайне негативно сказывается на состоянии окружающей среды, и это уже давно не секрет. В первую очередь, можно отметить то, что вода, которую мы используем для приготовления продуктов и обслуживания ряда других бытовых нужд, загрязняется вследствие этой жизнедеятельности настолько, что ее просто невозможно пускать в водоемы и почву без предварительной мощной очистки.

В канализационной водной массе содержится огромное количество всевозможных загрязнений, среди которых ― цинк, железо, азот, а также нефтепродукты, СПАВ. Особое внимание стоит уделить СПАВ ― синтетическим поверхностно-активным веществам, которые представляют собой эдакую крупную и обширную группу соединений, отличающихся между собой структурой и другими данными.

СПАВ в сточных водах ― это тревожный признак, и ответственное лицо должно приложить все усилия, чтобы обеспечить эффективное очищение стоков от этих соединений.

Синтетические поверхностно-активные вещества адсорбируются на поверхности раздела фаз, снижая тем самым поверхностное натяжение. Учитывая те свойства, которые проявляются СПАВ при их растворении во влаге, вещества делят на три группы:

• Анионактивные
• Катионоактивные
• Амфопитные
• Неионогенные

Очистка сточных вод от СПАВ ― актуальный вопрос, и современные очистные системы проектировались в свое время для того, чтобы эффективно устранять из канализационной влаги все нежелательные загрязнения, включая и синтетические поверхностно-активные вещества.

Немногие знают, как этот тип загрязнений попадает в стоки, однако наличие загрязнений в водах объяснить очень просто, ведь это результат массового применения современных моющих средств для посуды, широкого спроса на автоматические стиральные машины, которые работают с применением специальных стиральных порошков, а также использования многих других химических препаратов и продуктов.

Однако потребление опасных продуктов продолжается, и ситуацию на более или менее нормальном уровне помогает поддерживать лишь качественное очищение жидкостей из стоков.

Как ни странно, синтетические поверхностно-активные вещества отрицательно действуют не только на водоемы и почву, но и негативно сказываются на работе очистного оборудования.

Итак, предельно допустимая концентрация этих веществ не должна превышать 20 миллиграмм в расчете на литр жидкости. Жесткие синтетические ПАВ и вовсе должны быть полностью удалены из стоков с применением химического и физико-химического методов.

Если ознакомиться с нюансами работы современных очистных сооружений, то очень просто узнать, как повысить эффективность очистки сточных вод. Формула нейтрализации СПАВ заключается в обращении к самым современных методам обработки сточной влаги, а также применения эффективного оборудования, разработанного в последние 20-30 лет.

Пожалуй, наилучшим средством борьбы с синтетическими ПАВ является флотация, а также ее различные разновидности ― электрофлотация сточных вод, напорная флотация сточных вод и т.д. Флотация, если говорить в целом, является универсальным методом переработки канализационных жидкостей, при котором из влаги удаляются все нерастворимые загрязнения, а также принимается концентрация растворенных высокомолекулярных соединений.

В числе последних находятся и СПАВ ― синтетические поверхностно-активные вещества.

Стоит заметить, что не каждый существующий способ флотационной обработки водных масс может быть применен для нейтрализации синтетических ПАВ. При обработке стоков необходимо проводить расчет и обоснование объема сброса сточных вод, не забывать про расчет биофильтра для очистки сточных вод.

В интернете вполне реально найти пример расчета объемов сточных вод, которым можно воспользоваться для практического применения на собственном участке. Методика флотации в обработке стоков находит в последние годы все большее применение.

источник