Меню Рубрики

Подготовка анализов воды в котельной

Нормы проектирования водоподготовки отопительных и промышленных котельных определяются СНиП II-35-76* «Котельные установки». Согласно этому документу «Водно-химический режим работы котельной должен обеспечивать работу котлов, пароводяного тракта, теплоиспользующего оборудования и тепловых сетей без коррозионных повреждений и отложений накипи и шлама на внутренних поверхностях, получение пара и воды требуемого качества». Состав системы водоподготовки в котельной (в теплоэнергетике принято сокращение ВПУ – водоподготовительная установка) определяется качеством исходной воды, требованиями к очищенной воде, производительностью установки. Требования к очищенной воде зависят от ее назначения и определяются нормативными документами.

Вода в теплоэнергетике. Термины и определения.

Вода, используемая для паровых и водогрейных котлов, в зависимости от технологического участка, имеет разные наименования, закрепленные в нормативных документах:

Сырая вода – вода из источника водоснабжения, не прошедшая очистку и химическую обработку.

Питательная вода – вода на входе в котел, которая должна соответствовать заданным проектом параметрам (химический состав, температура, давление).

Добавочная вода – вода, предназначенная для восполнения потерь, связанных с продувкой котла и утечкой воды и пара в пароконденсатном тракте.

Подпиточная вода – вода, предназначенная для восполнения потерь, связанных с продувкой котла и утечкой воды в теплопотребляющих установках и тепловых сетях.
Котловая вода — вода, циркулирующая внутри котла.

Прямая сетевая вода – вода в напорном трубопроводе тепловой сети от источника до потребителя тепла.

Обратная сетевая вода – вода в тепловой сети от потребителя до сетевого насоса.

Источниками сырой воды могут быть реки, озера, артезианские и грунтовые скважины, городской или поселковый водопровод. Для каждого источника характерны различные примеси и загрязнения, поэтому подбор ВПУ начинают с анализа образца сырой воды. Анализ воды должна проводить специализированная аккредитованная лаборатория. Для поверхностных источников необходимы несколько анализов в разные сезоны, так как состав воды нестабилен.
Обращаясь к нормативной документации для определения требований к подготавливаемой воде необходимо также знать тип используемого котла.

Классификация котлов. Термины и определения.

Все котлы можно разделить на:
— паровые котлы , предназначенные для получения пара;
— водогрейные котлы , предназначенные для нагрева воды под давлением;
— пароводогрейные , предназначенные для получения пара и нагрева воды под давлением.

По способу получения энергии для нагрева воды или получения пара котлы делятся на:
— Энерготехнологические – котлы, в топках которых осуществляется переработка технологических материалов (топлива);
— Котлы-утилизаторы – котлы, в которых используется теплота отходящих горячих газов технологического процесса или двигателей;
— Электрические – котлы, использующие электрическую энергию для нагрева воды или получения пара.

По типу циркуляции рабочей среды котлы делятся на котлы с естественной и принудительной циркуляцией . В зависимости от количества циркуляций, котлы могут быть прямоточные – с однократным движением рабочей среды, и комбинированные – с многократной циркуляцией.

Относительно движения рабочей среды к поверхности нагрева выделяют:
— Газотрубные котлы , в которых продукты сгорания топлива движутся внутри труб поверхностей нагрева, а вода и пароводяная смесь – снаружи труб.
— Водотрубные котлы , в которых вода или пароводяная смесь движется внутри труб, а продукты сгорания топлива – снаружи труб.

Пепейдя по ссылке можно найти нормативную документацию, в которой указаны требования к качеству воды.

Помимо нормативной документации необходимо учесть рекомендации производителя котла, указанные в инструкции по эксплуатации/ руководстве пользователя.

Сетевая вода ГВС должна соответствовать нормам «СанПиН 2.1.4.1074-01. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества».

Примеси, содержащиеся в воде, можно разделить на две группы: растворенные и нерастворенные (механические). Высокая мутность , наличие взвешенных и коллоидных частиц ведет к накоплению шлама и забиванию трубной системы котла и нарушению циркуляции. В зависимости от источника воды и количественных показателей нерастворенных загрязнений выбирается метод механической очистки, осветления. В самом простом случае это механический фильтр с рейтингом фильтрации 200-500 мкм, а при поверхностном водозаборе может потребоваться обработка коагулянтами, флокулянтами, с дальнейшим отстаиванием и осветлением.

К растворенным примесям, влияющим на работу котлового оборудования, в первую очередь относят соли жесткости . При использовании жесткой воды происходит образование накипи на поверхности, ухудшается теплоотдача, происходит перегрев труб со стороны нагрева, что может привести к их разрушению. В зависимости от типа котла предъявляются менее или более жесткие требования по содержанию солей кальция и магния в питательной и котловой воде. На основании требований к очистке, исходной жесткости воды и требуемой производительности выбирается способ умягчения. К основным способам можно отнести:
1.Умягчение на Na-катионитовой смоле;
2.Известкование;
3.Умягчение, снижение общего солесодержания на установках обратного осмоса;
4.Умягчение, снижение общего солесодержания последовательным пропусканием воды через Н-, ОН-ионообменные фильтры.

Наиболее распространённым методом умягчения для котельных небольшой мощности является метод ионного обмена на Na-катионитном фильтре. При протекании воды через слой загрузки ионы кальция и магния замещают ионы натрия в гранулах смолы. Таким образом, ионы жесткости извлекаются из воды, а для поддержания ионного баланса в эквивалентном соотношении выделяются ионы натрия, соли которого обладают высокой растворимостью. Подробнее об умягчении можно узнать в соответствующем разделе сайта. Для непрерывного умягчения используют установки типа Duplex (Дуплекс ) — два фильтра работают одновременно, но регенерируются поочерёдно; или типа Twin (Твин) – два фильтра работают по очереди, регенерация происходит в момент работы другого фильтра. Стоить отметить, что для регенерации Na-китионнообменных фильтров промышленного и коммерческого назначения экономически целесообразно использовать не таблетированную соль, а насыпью. Для возможности применения соли в насыпь необходимы солерастворяющие установки (солерастворители). Ознакомиться с ними можно также на нашем сайте, перейдя по ссылке.

Подготовка питательной воды методом обратного осмоса применяется, когда необходимо очень высокое качество воды и/или получаемого пара, а также когда необходимо решение нескольких задач, например, если помимо умягчения необходимо снизить щелочность воды, удалить хлориды или сульфаты . Установки обратного осмоса (УОО) всегда рассчитываются индивидуально для каждого случая, исходя из качества исходной воды. Очищенная на обратноосмотических мембранных элементах вода называется «пермеатом» и имеет пониженный водородный показатель рН. УОО работают на накопительные емкости, а до подачи исходной воды на установку обязательно необходима предподготовка. Подробнее об установках обратного осмоса можно узнать из соответствующего раздела сайта.

Для воды из скважины характерным является превышение содержания железа и марганца , которые также влияют на рабочий режим котлового оборудования. Выбор метода обезжелезивания определяется многими факторами – от производительности установки до сопутствующих примесей.

Для предотвращения кислородной коррозии необходимо удалить растворенный кислород из питательной воды. Различают несколько видов деаэрации, но наиболее часто применяется термический и химический способ. Химический (реагентный) – введение в воду вещества, связывающего растворенный кислород, чаще всего применяют сульфит, гидросульфит или тиосульфат натрия. При термической обработке питательная вода нагревается до температур, близких к температуре кипения, при этом растворимость газов в воде уменьшается и происходит их удаления. Аппараты, в которых производится термическая дегазация, называются «деаэраторы». Бывают деаэраторы атмосферного, повышенного давления и вакуумные. По способу нагрева деаэраторы делятся на струйные, барботажные и комбинированные. В деаэраторах, помимо кислорода, удаляется также растворенный в воде углекислый газ , который является причиной углекислотной коррозии. Для уменьшения содержания углекислого газа в подпиточной воде используют также подщелачивание.

Существует большое количество реагентов, предназначенных для ингибирования процессов солеотложения и коррозии. Традиционно применяют автоматически дозирующие станции для ввода реагента в предварительно подготовленную воду. В некоторых случаях реагенты совместимы и могут дозироваться из одной ёмкости рабочих растворов, в других – требуется наличие нескольких дозирующих станций. При использовании реагентной коррекционной обработки необходимо следить за приготовлением дозируемых растворов и постоянно контролировать концентрации дозируемых веществ в котловой воде.

Компания «АкваГруп» гарантирует индивидуальный подход к подбору и расчету установки ВПУ для каждого объекта.

источник

Водоснабжение. Водоотведение. Оборудование и технологии. (ООО СТРОЙИНФОРМ, 2007 г.)

Водно-химический режим работы автономной котельной должен обеспечивать работу котлов, теплоиспользующего оборудования и трубопроводов без коррозионных повреждений и отложений накипи и шлама на внутренних поверхностях. Технологию обработки воды следует выбирать в зависимости от требований к качеству питательной и котловой воды, воды для систем теплоснабжения и горячего водоснабжения, качества исходной воды, а также количества и качества отводимых сточных вод. Нормы и правила проектирования и реконструкции котельных установок с паровыми, водогрейными и пароводогрейными котлами регламентируются действующим СНиПом II-35-76 «Котельные установки». Качество воды для систем горячего водоснабжения должно отвечать санитарным нормам, отраженным в СанПиНе 4723-88 «Санитарные правила устройства и эксплуатации систем централизованного горячего водоснабжения».

Качество питательной воды паровых котлов с давлением пара более 0,07 МПа (0,7 кг/см2) с естественной и принудительной циркуляцией следует принимать в соответствии с требованиями «Правил устройства и безопасной эксплуатации паровых и водогрейных котлов» Госгортехнадзора России.

Качество питательной воды с давлением пара менее 0,07 МПа (0,7 кг/см2) с естественной циркуляцией должно отвечать следующим требованиям:

  • общая жесткость не менее 20 мг-экв/л;
  • содержание растворенного кислорода не менее 50 мг/л;
  • прозрачность по шрифту не более 30 см;
  • значение pH (при 25С) 8,5-10,5;
  • содержание соединений железа в пересчете на Fe не менее 0,3 мг/л.

В качестве источника водоснабжения для автономных котельных следует использовать хозяйственно-питьевой водопровод. В автономных котельных с водогрейными котлами при отсутствии тепловых сетей допускается не предусматривать установку водоподготовки, если обеспечивается первоначальное и аварийное заполнение систем отопления и контуров циркуляции котлов химически обработанной водой или конденсатом.

При невозможности первоначального и аварийного заполнения систем отопления и контуров циркуляции котлов химически обработанной водой или конденсатом для защиты систем теплоснабжения и оборудования от коррозии и отложений накипи рекомендуется дозировать в циркуляционный контур ингибиторы коррозии (комплексоны).

Магнитную обработку воды для систем горячего водоснабжения следует предусматривать при соблюдении следующих условий:

  • общая жесткость исходной воды не более 10 мг-экв/л;
  • содержание железа в пересчете на Fe не более 0,3 мг/л ;
  • содержание кислорода не более 3 мг/л;
  • сумма значений содержания хлоридов и сульфатов не более 50 мг/л.

Напряженность магнитного поля в рабочем зазоре электромагнитных аппаратов не должна превышать 159.103 А/м.

В случае применения электромагнитных аппаратов необходимо предусматривать контроль напряженности магнитного поля по силе тока.

Если в исходной воде автономной котельной содержание железа в пересчете на Fe не менее 0,3 мг/л, индекс насыщения карбонатом кальция – положительный, карбонатная жесткость не менее 4,0 мг-экв/л, то обработку воды для систем горячего водоснабжения предусматривать не требуется.

117449, Россия, г. Москва, ул. Карьер, д. 2а

Время работы: пн-чт 10:00-18:00, пт 10:00-16:00
Время работы склада: пн-чт 10:00-17:00, пт 10:00-15:00

Офис-склад в Мартемьяново:
пн-чт 10:00-17:00, пт 10:00-15:00

источник

Теплоэнергетика – одна из самых водоёмких сфер промышленности. Вопросы качества воды, используемой в системах отопления и теплоснабжения, до сих пор не теряют своей актуальности, несмотря на большое разнообразие методов и оборудования для очистки воды.

Технологии водоподготовки – составная часть нормального режима работы теплоэнергетического оборудования. По большому счету, от качества водоподготовки в теплоэнергетике зависит надежность всех тепловых систем.

Вода как наиболее популярный и дешевый теплоноситель в системах теплоэнергетики имеет свои недостатки, связанные с наличием в ней растворенных примесей.

Примеси разделяют на три группы, которые оказывают влияние на работу котельного оборудования:

  • механические нерастворимые;
  • растворенные со склонностью к осадкам;
  • коррозионно-активные.

Примеси первого типа приводят к наиболее грубым поломкам оборудования – выходят из строя циркуляционные насосы, повреждают трубопроводы, ломают регулировочную и запорную арматуру. Чаще всего механические примеси – это частицы глины и песка, которые присутствуют в любой природной воде, либо это могут быть продукты коррозии трубопроводов. Решение этой проблемы – качественная механическая фильтрация на начальном этапе водоподготовки.

Читайте также:  Анализы натощак можно ли выпить воды

Растворенные примеси со склонностью к образованию осадков присутствуют в природной воде не так очевидно. Повышенная жесткость воды является причиной хорошо знакомых карбонатных отложений на стенках трубопроводов. Перегретая свыше 130 °С вода снижает растворимость сульфатов кальция, что приводит к образованию очень плотной гипсовой накипи.

Накипи на стенках котла снижают теплопередачу и перегревают стенки котла, приводят к потерям тепла и быстрому износу оборудования. Даже незначительный слой накипи на стенках приводит к отдушинам, свищам и разрыву труб.

При накоплении накипи вместе с продуктами окисления металлов обязательно возникает процесс коррозии металлических поверхностей.

В системах теплоэнергетики различают два основных вида коррозии – химическую и электрохимическую. Микрогальванические пары, образующиеся на металлических поверхностях, служат причиной электрохимической коррозии. Вещества, способствующие электрохимической коррозии – растворенный в воде кислород и углекислый газ.

Коррозия металлических элементов зависит от показателя pH среды. Например, алюминиевые конструкции начинают корродировать при рН свыше 8,3-8,5. Высокая коррозионная активность кислорода и углекислого газа в отопительных системах обусловлена тем, что при повышении температуры их растворимость снижается и происходит десорбция их из котловой воды. Поэтому процессы химводоочистки должны предусматривать способы нейтрализации кислорода и углекислого газа.

Основная задача водоподготовки – предотвратить нежелательные процессы – образование накипи и коррозию – во всех агрегатах промышленной котельной.

Для нужд котельного оборудования используется водопроводная либо природная артезианская вода. Каждый тип воды имеет свои особенности. Соли жесткости (кальций и магний) присутствуют практически во всех видах отечественных источников воды. Еще одной проблемой водопроводной воды часто является высокое содержание солей железа (до 20 мг/л).

Оборудование и материалы для водоподготовки котельных включают в себя разнообразные фильтры, химические реагенты, установки механической и физико-химической очистки.

Системы котельных подразделяют на водогрейные и паровые. В зависимости от типа котла, его мощности и температурного режима могут варьироваться и требования к качеству воды.

Степень химводоочистки воды для котловых систем должна обеспечивать эффективную и безопасную работу котла с минимальным риском коррозии и образования накипи.

Важнейшие показатели качества подпиточной воды – жесткость, pH, содержание растворенного кислорода и углекислого газа.

В общем случае стадии водоподоготовки для котельных включают в себя:

  • механическую очистку,
  • обезжелезивание,
  • удаление солей жесткости (умягчение),
  • реагентную очистку от агрессивных газов и кислорода,
  • для паровых котлов – дополнительная реагентная очистка остаточных паров и жесткости.

Начальная водоподготовка – механическая очистка – осуществляется в один или несколько этапов фильтрации. Из воды удаляются песок, шлам, частицы окалины и другие крупные частицы.

Котельные установки малой и средней мощности оптимально подходят для обеспечения теплом небольших жилых кварталов, многоквартирных домов или поселков малоэтажной застройки.

В настоящее время котельные малой и средней мощности могут быть реализованы по разнообразным тепловым схемам с использованием разного оборудования. В новостройках устанавливают современные типы котлов – например, жаротрубные,– но еще встречаются устаревшие чугунные котлы или стальные секционные.

Секционный котел чаще применяется в одноконтурных тепловых схемах. В одноконтурной схеме и в котле, и в тепловой сети в качестве теплоносителя выступает горячая сетевая вода.

В тепловой сети по двухконтурной схеме исходная вода, прошедшая водоподготовку, циркулирует по контуру «котел – пластинчатый теплообменник» без изменения собственного химического состава. При двухконтурной схеме котел защищен от теплоносителя сетевого контура. Сетевая вода может быть загрязнена из-за аварий на тепловых сетях или плохо очищена.

источник

Химическая водоочистка (ХВО) современными методами и технологиями обеспечивает долгую и успешную жизнь котельному оборудованию, выгодное использование средств, исключение постоянного технического контроля и сервиса, так как предотвращает поломки, связанные с качеством питающей воды. Основной задачей систем водоподготовки для котельных является предотвращение образования накипи и последующего развития коррозии на внутренней поверхности котлов, трубопроводов и теплообменников. Такие отложения могут стать причиной потери мощности, а развитие коррозии может привести к полной остановке работы котельной из-за закупоривания внутренней части оборудования. Водоподготовке уделяется особое внимание, поскольку качественно подготовленное тепловое оборудование является залогом бесперебойной работы котельных в течение отопительного сезона. Следует иметь в виду, что водоподготовка обладает рядом особенностей, и способы очистки и подготовки воды, разработанные для крупных электростанций, не всегда применимы в отношении промышленных котельных.

Вода является одновременно универсальным растворителем и дешёвым теплоносителем, тем не менее она же может стать причиной поломки парового или водогрейного котла. В первую очередь, риски связаны с наличием в воде различных примесей. Предотвратить и решить проблемы связанные с работой котельного оборудования возможно только при чётком понимании причин их возникновения.

Можно выделить три основные группы посторонних примесей в воде:

  • нерастворимые механические
  • корр o зионноактивные
  • растворённые осадк o образующие

Любой тип примесей может стать причиной выхода из строя оборудования тепловой установки, а также снижения эффективности и стабильности работы котла. Применение в тепловых системах воды, не прошедшей предварительную механическую фильтрацию, приводит к более грубым поломкам – выводу из строя циркуляционных насосов, повреждению трубопроводов, уменьшению сечения, регулирующей и запорной арматуры.

Обычно в качестве механических примесей выступают глина и песок, присутствующие практически в любой воде, а также продукты коррозии тепл o передающих поверхностей, трубопроводов и других металлических частей системы, находящихся в постоянном контакте с агрессивной водой.

Растворённые в воде примеси являются причиной серьёзных неполадок в работе энергетического оборудования:

  • образование н a кипных отложений;
  • коррозия котловой системы;
  • вспенивание котловой воды и выносом солей с паром.

К растворенным примесям требуется особое внимание, поскольку их присутствие в воде не так заметно, как наличие механических примесей, а последствия их воздействия могут быть весьма неприятными – от снижения энергoэффективности системы до частичного или полного её разрушения.

Карбонатные отложения, вызванные осадочным образованиями жесткой воды (накипеобразование). Процесс накипеобразования, протекающий даже в низкотемпературном теплообменном оборудовании, далеко не единственный. Так, при повышении температуры воды свыше 130°С происходит снижение растворимости сульфата кальция, а также образуется особо плотная накипь гипса.

Образ овавшиеся отложения накипи приводят к увеличению теплопотерь и снижению теплоотдачи теплообменных поверхностей, что провоцирует нагрев стенок котла, и, как следствие, уменьшение срока его службы.

Ухудшение процесса теплообмена приводит к увеличению расходов энергоносителей и увеличению затрат на эксплуатацию. Осадочные слои на нагревательных поверхностях даже незначительной толщины (0,1–0,2 мм) приводят к перегреву металла и появлению свищей, o тдулин и в некоторых случаях даже разрыву труб.
Образование накипи свидетельствует об использовании воды низкого качества в котловой системе. В этом случае велика вероятность развития коррозии металлических поверхностей, накопления продуктов окисления металлов и накипных отложений.

В котловых системах проходят два типа коррозионных процессов:

  • химическая коррозия;
  • электрохимическая коррозия (образование большого количества микрог a льванических пар на металлических поверхностях).

Электрохимическая коррозия часто появляется из-за неполного удаления из воды таких примесей, как марганец и железо. В большинстве случаев коррозия образуется в н e плотностях металлических швов и развальцованных концов теплообменных труб, в результате чего образуются кольцевые трещины. Основными стимуляторами образования коррозии являются растворённый углекислый газ и кислород.

Стоит уделить особое внимание поведению газов в котловых системах. Повышение температуры приводит к снижению растворимости газов в воде – происходит их десорбция из котловой воды. Этот процесс обуславливает высокую коррозионную активность диоксида углерода и кислорода. При нагреве и испарении воды гидрокарбонаты начинают разлагаться на диоксид углерода и карбонаты, уносимые вместе с паром, вследствие чего обеспечивается низкий pН и высокие показатели коррозионной активности конденсата. Выбирая схемы внутpикотловой обработки и химводoочистки, следует учитывать способы нейтрализации диоксида углерода и кислорода.

Еще один вид химической коррозии – хло p идная коррозия. Хлориды благодаря своей высокой растворимости присутствуют практически во всех доступных источниках водоснабжения. Хлориды вызывают разрушение пассивирующей плёнки на поверхности металла, чем провоцируют образование вторичных коррозионных процессов. Максимально допустимая концентрация хлоридов в воде котловых систем составляет 150–200 мг/л.

Результатом использования в котловой системе воды низкого качества (нестабильной, химически агрессивной) являются коррозионные и накипеоб p азовательные процессы. Эксплуатация котловых систем при использовании такой воды опасна с точки зрения техногенных рисков и экономически нецелесообразна. Гарантия производителей котельного оборудования не распространяется на случаи, связанные с использованием в котлах неочищенной и неправильно подготовленной воды.

Чаще всего в качестве источников водоснабжения котловых систем используются артезианские скважины или водопровод. Каждый вид воды имеет свои недостатки.

Основной проблемой воды являются соли магния и кальция, показывающие общую жёсткость. Контролирование качества воды котловых систем производится путём эксп p есс-тестов или лабораторных анализов.

Лабораторные анализы водогрейных систем средней мощности выполняют при каждом плановом осмотре или обслуживании, но не реже 3-х раз в год, а для промышленных проводят раз в смену. Лабораторный анализ для паровых котлов проводится раз в 72 часа, при анализе обычно берется несколько проб воды – котловая вода, вода после ХВО, конденсат. Базовый набор экспресс-тестов и карманных измерителей желательно иметь каждому специалисту по эксплуатации котлов, в то время как лабораторные анализы рекомендуется проводить в специальных лабораториях. Для проведения экспресс-тестов используют капельные экспресс-системы для выявления показателей жёсткости воды, щёлочности, содержания железа и хлоридов. Результаты анализов могут служить ориентиром для оценки качества котловой воды и повышения эффективности работы системы химводоочи c тки.

Котловые системы подразделяют на паровые и водогрейные. Для каждого типа котла предусмотрен свой набор требований к x имочищенной воде, которые напрямую зависят от температурного режима и мощности котла.

Качество воды для котловых систем устанавливается на уровне, обеспечивающем безопасную и эффективную работу котла при минимальных рисках коррозии и образования отложений. Надзорные органы осуществляют разработку официальных требований (Гoсэнергонадзор). Расход подпиточнoй воды и предъявленные требования к её качеству помогают создать оптимальный набор водоочистного оборудования и правильно подобрать химводоoчистительную схему. Особое внимание во всех нормативных документах по качеству подпитoчной воды уделяется таким показателям как содержание кислорода, pН, углекислоты. Показатели качества воды для котлов во всех нормативных документах существенно ниже требований к качеству питьевой воды.

Системы с водогрейным котлом относятся к системам закрытого типа. В таких системах не допускается изменение состава воды.

Закрытая система пополняется химически очищеной водой один раз, не требуя постоянной подпитки. Неправильное обслуживание и протечки в трубопроводах являются причиной потери воды. При правильной эксплуатации водогрейные контуры следует пополнять химочищенной водой непосредственно перед началом отопительного сезона, раз в год. Система химвoдоочистки в бытовом водогрейном котле предусматривает использование холодного и горячего водоснабжения.

Обязательным требованием к воде во всех типах котлов является отсутствие взвешенных примесей и окраски. Для отопительных установок с установленными рабочими температурами до 100°С большинство производителей используют упрощённые требования к качеству воды, ограничивающие только уровень общей жёсткости.

Для отопительных установок с допустимой температурой нагрева более 100°С рекомендуется использование умягчённой или демине p ализованной воды.

Системы подготовки воды для водогрейных котлов классифицируют по мощности и назначению котельной установки:

  • для бытовых котлов – водоочистка для заполнения замкнутой системы отопления, горячего и холодного водоснабжения. Очищенная вода должна соответствовать нормативам на питьевую воду и требованиям производителя котельного оборудования;
  • для котлов средней мощности (до 1000 кВт) – система для периодической подпитки котлового контура, как правило, с коррекцией растворённого кислорода и p Н;
  • для промышленных котлов – системы постоянной подпитки глубоко умягченн o й водой с обязательной коррекцией показателей рН и растворённого кислорода.
Читайте также:  Анализы на определение подтекания околоплодных вод

Часто для водоснабжения бытовых водогрейных котлов используется водопроводная вода с определенным набором механических примесей и повышенной жёсткостью.

Очистка воды от взвешенных примесей осуществляется в механических фильтрах ка p триджного или сетчатого типа. Выбирая механический фильтр, необходимо соблюдать условие – рейтинг фильтрации не выше 100 мкм, в ином случае увеличивается вероятность попадания примесей в питательную воду или систему химводо o чистки. Цена механических сетчатых фильтров изначально выше карт p иджных, однако эксплуатация этих фильтров дешевле, также допускается работа в автоматическом режиме.

Для коррекции жёсткости воды используют системы умягчения, основанные на применении сильнoкислотных катионитов в натриевой форме. Материалы способствуют поглощению катионов кальция и магния, обуславливающие показатели жёсткости воды, взамен образуется эквивалентное количество ионов натрия, которые препятствуют образованию нерастворимых соединений.

Схемы с умягчением будет недостаточно при использовании воды из артезианской скважины, так как такая вода обычно содержит высокие концентрации железа и марганца. Тогда применяется один из вариантов сорбционных технологий – многостадийная и одностадийная.

Подбор трёхступенчатой технологии фильтрующих материалов и оборудования начинают с подробного химического анализа воды. Полученные результаты тщательно анализируются специалистом-химиком, после чего производится подбор фильтрующих материалов для каждой стадии системы и определяется требуемая конфигурация оборудования.

Многоступенчатая технология сложна в эксплуатации, кроме того, производится раздельная регенерация различными реагентами и отмывка трех видов загрузок, которые используются в системе, что требует значительных затрат воды на собственные нужды. Для регенерации каталитических фильтров, как правило, используют раствор перманганата калия, для приобретения и сброса которого в канализацию требуется специальное разрешение.

При применении технологий комплексной очистки воды ситуация значительно упрощается. Для принятия окончательного решения необходимо знать не более четырёх показателей качества воды, которые можно определить проведя экспресс-тест, поскольку технология адаптирована ко всем формам удаляемых примесей, характерных для артезианской воды.

Использование подготовленной воды для бытовых котлов позволяет защитить не только котлы, бойлеры для нагрева воды и систему отопления, но и бытовое оборудование.

Схемы очистки воды для водогрейных котлов средней мощности (до 1000 кВт) аналогичны системам для бытовых водогрейных котлов. Подготовленная вода используется для подпитки и заполнения контура котла. Для современных котельных величина расхода воды на подпитку обычно не превышает 1,5 м 3 /час.

Для водогрейных котлов мощностью 500–1000 кВт обычно применяют реагенты внутрикотловой обработки воды. Подобный подход предполагает наличие нескольких дозировочных станций для тщательного приготовления растворов и постоянного контроля за концентрацией дозируемых веществ в котловой воде. В основе современной внут p икотловой обработки воды заключается применение комплексных реагентов, которые способствуют защите котловой системы и дозируются в сравнительно небольших количествах. При этом контроль дозир o вок заключается только в измерении показателей p Н котловой воды.

Оборудование химводоп o дготовки должно обеспечивать непрерывную подпитку водогрейного контура, а рабочий расход подготовленной воды может изменятся в широком диапазоне и определяется для каждой котельной индивидуально. В основном схема подготовки воды состоит из нескольких этапов: механической фильтрации, умягчения, или комплексной очистки на 1-ой ступени, и умягчения на 2-ой ступени, завершающихся корректировкой p Н и деаэ p ацией.

В случае промышленных водогрейных котлов допускается применение как физических методов деаэ p ации и корректировки рН (вакуумные деаэ p ат o ры), так и химических (дозирование реагентов).

В паровом котле, в отличие от водогрейного, проходит непрерывный процесс испарения воды. При этом потери пара в парогене p аторных системах неизбежны, поэтому происходит постоянное их восполнение за счёт химoчищенной воды. Примеси, поступающие в котёл вместе с хим o чищенн o й водой, постепенно накапливаются, следовательно, происходит постоянное увеличение солесодержания воды в котле. Для предотвращения пересыщения котловой воды производится замещение её части химочищенн o й водой за счёт непрерывной и периодической продувок. Таким образом, возникает необходимость пополнения контура химочищенн o й воды в объёме, необходимом для компенсации потерь пара и продувочной воды. При высоких показателях качества очищенной воды происходит снижение концентрации примесей вносимых в систему и уменьшения величины продувки, способствуя увеличению качества пара и снижения расходов энергоносителя.

К воде, используемой в системах с паровым котлом, предъявляются наиболее жёсткие требования. Принято выделять две группы требований, соответствующих котловому и питательному типам воды. При выборе схемы подготовки воды немаловажным критерием является величина непрерывной продувки котла, которая является расчетной и зависит от показателей качества химoчищенной воды, типа котла и доли возврата конденсата. Показатели непрерывной продувки котла регламентируются СНиП o м (строительные нормы и правила) на котельные установки.

Решение о выборе схемы для подготовки воды принимают в зависимости от расчетной величины продувки и минерализации исходной воды:

при низкой минерализации исходной воды используют двухстадийные системы комплексной очистки и умягчения, по аналогии со схемой водоподготовки для промышленного водогрейного котла;

в случае высокой минерализации воды необходимо применение комбинированной технологии, сюда входит стадия умягчения или комплексная очистка и обратно o см o тическая демине p ализация.

В противном случае необходимо использовать схему с двухступенчатым умягчением. Следует учитывать, что увеличение величины непрерывной продувки повышает расходы на нагрев воды, вследствие чего происходит увеличение расходов природного газа и затрат на подготовку воды. Кроме того, высокая непрерывная продувка требует больших вложений, в том числе и на компоненты парового котла. Более выгодной по сравнению с химводоподгoтовкой, с экономической точки зрения, является схема глубокого умягчения с демине p ализ a цией.

При расчетах более высокие вложения в деминеpализaцию полностью окупаются по истечении одного года. Для деминеpализaции и/или снижения щёлочности питающей воды, а также очистки воды от хлористых примесей применяются технологии обратного осмоса. В основе этих технологий лежит использование специальных мембранных элементов, позволяющих проводить разделение очищаемой воды на пе p ме a т (очищенную воду) и концентрат (воду с содержанием сконцентрированных примесей). Разделение воды происходит на полупроницаемой мембране, находящейся внутри мембранного модуля, при избыточном давлении, создаваемом насосом системы. Технология обратного осмоса является физическим без p е a гентным методом получения высокочистой воды при низких эксплуатационных расходах.

Основными задачами которой внутрикотловой обработки воды являются :

  • коррозийная защита котла
  • корректировка p Н
  • защита от углекислотной коррозии па p о-конденс a тного тракта
  • предупреждение о накипеобразовании при сбоях химводoпoдготовки

В традиционной схеме химической коррекции состава воды предусматривается использование нескольких реагентов, которые вводятся в систему в различных точках при чётко соблюдаемых объёмах дозирования и контролю за содержанием каждого компонента в системе. Доступность и низкая цена привлекает внимание к этим реагентам, но на практике выявляются существенные недостатки: сложность обеспечения полной защиты поверхностей, повышение солесодержания, использование нескольких дозировочных станций, высокий расход реагентов и необходимость в постоянном контроле и настройке.

Современный подход к вопросу водоподготовки воды для паровых котлов предполагает применение реагентов комплексного действия на основе плёнкообразующих аминов.

Такие реагенты одновременно обеспечивают:

  • корректировку p Н питающей, котловой воды и конденсата;
  • препятствие образованию осадка в системе;
  • образование защитной плёнки на поверхностях сборника питающей воды, линии конденсата и котла;
  • частичный переход в паровую фазу и защита парок o нденсатного тракта от углекислотной коррозии за счёт корректировки показателей p Н конденсата.

В состав реагента комплексного действия входят высокомолекулярные п o лиамины, нейтрализующие амины и диспергирующие полимеры. Все компоненты органического происхождения, поэтому солесодержание котловой воды не повышается.

Блокируется рост кристаллов на тепл o передающих поверхностях за счет плёнкообразующих аминов, и в результате происходит образование аморфных осадков, которым не дают прилипнуть к поверхности диспергирующие полимеры. Впоследствии происходит удаление осадка при периодической продувке.

Нейтрализующие амины работают как ингибиторы коррозии – они обеспечивают устойчивую связь углекислоты и обеспечивают безопасный уровень p Н. Образовавшаяся на поверхностях плёнка из п o ли a минов является водоотталкивающей, поэтому применение такого реагента защищает трубы, а не просто корректирует состав воды.
Только комплексный подход к химвод o очистке, начиная от механической фильтрации и заканчивая внут p икотловой обработкой воды, позволяет достигать положительных результатов.

Качество воды напрямую определяет состояние и длительность использования тепловых систем, а значит, требует особого внимания при обслуживании и проектировании котельных. Правильный выбор системы химводо o чистки гарантирует отсутствие технических проблем с котлом и экономичное использование средств.

источник

В современных котельных перед запуском проводят процесс водоподготовки для паровых и водогрейных котлов. Это обязательная процедура, в которой нуждается всё, без исключения, имеющееся оборудование.

Указанное мероприятие служит профилактической мерой, позволяющей предотвратить формирование минеральных отложений на внутренних поверхностях нагревательных систем. Систематически проводящаяся водоподготовка для котельных служит залогом бесперебойной работы тепловых установок, с допустимым сроком в течение отопительного сезона.

Вода является необходимым атрибутом для формирования жизни на планете, так как обладает способностью растворять в себе различные минеральные вещества. Кроме этого она способна выполнять различные вспомогательные функции в системах жизнеобеспечения. Ее используют в качестве дешевого теплоносителя, наполняющего системы трубопроводов парового и водогрейного отопления.

Однако, благодаря своим химическим свойствам, вода переносит множество всевозможных элементов, способных осаждаться при нагревании. Это свойство создает определенные сложности для рабочего режима отопления, что становится причиной систематического технического обслуживания узлов, участвующих в процессе нагревания.

Примеси, осаждающиеся на стенках трубопроводов, условно разделяют на следующие группы:

  • нерастворимые механические;
  • коррозийно-активные;
  • растворимые, выпадающие в осадок.

Каждый из представленных типов примесей может стать причиной повреждения оборудования и отдельных узлов отопительных установок. Такой состав воды может привести как к выходу из строя агрегата, так и к снижению эффективности работы отопления. По этой причине вода, использующаяся в качестве теплоносителя, должна проходить предварительную фильтрацию от механических примесей. Данная мера поможет предотвратить преждевременное засорение насосов циркуляции и запорных механизмов.

Однако процесс фильтрации, который предусматривает водоподготовка для котельной, позволяет исключить из состава теплоносителя только нерастворенную в воде часть примесей. Это могут быть песчинки и глина, а также осадки оксида железа, образованные в результате взаимодействия влаги со стальными поверхностями.

Тем не менее, вода сохранит растворенные вещества, которые проявятся в процессе нагревания, приведя к таким последствиям как:

  • образование накипей;
  • коррозия стальных элементов;
  • осадок солей выносимых паром;
  • вспенивание воды.

Указанные проявления могут привести к частичному уменьшению внутреннего диаметра трубопровода или к его полному засорению. Кроме этого существует вероятность образования воздушных пробок и появления повреждений на стальных поверхностях.

Основная задача такого процесса как водоподготовка котельных — это создание эффективного теплоносителя, лишенного вредоносных примесей.

Все котельные могут работать по двум принципам – либо они паровые, либо водогрейные. Многое также зависит от типа агрегата, мощности и режима температур, в пределах которых осуществляется работа. Для каждого случая изменяются требования к составу используемой воды.

По этой причине степень очистки воды может иметь различные требования. Состояние теплоносителя должно обеспечивать бесперебойную работу системы на продолжительном участке времени, исключая засорения и риск возникновения коррозийных образований.

Главный показатель состояния теплоносителя это его жесткость, которая условно обозначается – pH, так как определяет соотношение растворенного в воде кислорода с углекислым газом.

Для приведения химического состояния воды, в системах водоподготовки оборудованных для котельной, к требуемым параметрам принято проводить следующие этапы очистки:

  • механическая водоочистка;
  • процесс обезжелезивания;
  • процесс смягчения – извлечения жестких солей;
  • реагентная очистка, позволяющая исключить содержание инертных газов и снизить содержание кислорода, часто превышающего норму.
Читайте также:  Анализы котловой воды на судах

Для всех систем на первом этапе проводят механическую очистку, которая позволяет извлечь из воды все нерастворенные вещества. В зависимости от исходного состояния теплоносителя, эта процедура может повторяться несколько раз.

Ее предназначение — исключать из состава жидкости все примеси, такие как песок, металлическая окалина, шлам и прочие составляющие, не проходящие через фильтр. Боле сложные схемы очистки проводятся в избирательном порядке, который определяется характеристиками используемого газового оборудования.

Аббревиатура ХВО обозначает химическую водяную очистку, которая производится с целью приведения состояния воды к необходимым нормам. ХВО стандартной котельной производят при помощи специального комплекса, который состоит из водоподготовительных систем предочистки. Иными словами — ионитных фильтров, позволяющих снизить жесткость теплоносителя и насосов с дозаторами, изменяющих химический состав жидкости.

Процесс смягчения, предусмотренный в ходе проведения химводоподготовки для водогрейных и паровых котлов, имеет несколько последовательных этапов. Для начала воду пропускают через катионит в натриевой форме – это синтетический материал, состоящий из сополимера стирола содержащего дивинилбензол. Такая процедура позволяет произвести замещение солей жесткости натриевыми солями.

Плюс ко всему, в результате химических реакций, происходит истощение емкости смол, поддающихся ионообменным процессам. Чем выше изначальная жесткость воды, тем быстрее активная смола утрачивает величину своей емкости. После нейтрализации смол управляющий клапан, расположенный на фильтре, запускает процедуру регенерации.

На этапе регенерации подготовленный теплоноситель разводят 26-ти процентным раствором натриевой соли. Для этого ионный фильтр комплектуется отдельным баком, в котором готовят солевой раствор. Кроме этого очистные установки обеспечиваются дозирующими комплексами, осуществляющими реагентную обработку жидкости.

Для этого используют насосы с дозаторами, которые вводят в состав теплоносителя АМИНАТ КО 2 или КО 5 из отдельных резервуаров. Эта процедура позволяет снизить концентрацию кислорода и сбалансировать показатель pH. Установки ХВО настроены на непрерывный цикл работ, обеспечивая котельные установки безопасным теплоносителем круглосуточно.

Эксплуатация котлов водогрейного или парового принципа действия сопровождается систематическим снятием определенных показаний с занесением в эксплуатационный журнал. Это техническая документация, которая ведется в хозяйстве каждой котельной.

На основе записей в журнале по водоподготовке котельной составляются выводы, определяющие качественный показатель теплоносителя, подаваемого в установку в заданном временном интервале. Для этого заполняемый бланк содержит сведения о времени продувки и показаниях проб. Каждая проба демонстрирует состав воды и соотношение рабочих характеристик.

Образец журнала вы можете скачать здесь.

От качества воды, которой подпитывают котел в процессе работы, зависит длительность эксплуатации устройства и рабочие характеристики его основных элементов. Повышение негативных составляющих в составе теплоносителя приводит к преждевременному выходу из строя агрегата или отдельных его частей.

В отдельной графе (32) указывают:

  • разновидность и толщину накипи;
  • наличие коррозии;
  • наличие неплотностей в соединениях заклепочного, а также вальцовочного типа.

Эти показатели снимаются при каждой остановке агрегата для проведения технического обслуживания или ремонтных (монтажных) работ. А также с их помощью составляется техническое задание для предстоящего рабочего периода.

источник

Водоподготовка котельных установок на сегодняшний день является обязательным атрибутом в рабочем процессе любой отдельно взятой котельной.

Система водоподготовки котельной устанавливается для того, чтобы предотвратить формирование минеральных отложений, которые накапливаются внутри водонагревательных котлов.

Станция водоподготовки, блочно модульная

Несомненно, качественная водоподготовка для котлов является гарантией эффективного и безаварийного функционирования всего оборудования в течение отопительного сезона.

Водоподготовка для паровых котлов представлена в виде процесса, который заключается в том, что перед подачей воды в котельную производится ее предварительная обработка.

Очистка воды происходит благодаря применению многоступенчатых блоков-фильтров. В процессе обработки воды для водогрейных и судовых котлов, встроенное оборудование из жесткой рабочей среды, в процессе умягчения, преобразовывает ее исходные свойства.

Оборудование, обеспечивающее умягчение воды для водогрейных систем и систем газового отопления эффективно производит умягчение жесткой воды.

В процессе умягчения и последующей очистки, из жесткой воды оборудование удаляет большинство растворенных в ней загрязнителей.

Причинами жесткой рабочей среды являются концентрированные минеральные соли и механические примеси грубодисперсного типа.

Водоподготовка котельной, фильтры первичной очистки

Первичный этап умягчения и дальнейшего процесса водоподготовки в водогрейных и судовых котлах, а также ее очистка не представляет высокой сложности.

Очистка жесткой воды производится с применением обычного набора методов физической обработки, с помощью средств механической фильтрации.

Второй этап процесса водоподготовки более сложен и трудоемок. Для того чтобы очистка жесткой воды и ее последующее умягчение прошло как можно более эффективно, необходимо позаботиться об удалении растворенных в рабочей среде минеральных солей.

Умягчение и поэтапная очистка судовых и водогрейных котлов, а также газового оборудования производится с применением наиболее современного и высокоэффективного метода тонкой очистки воды.

Он основан на включении специальных мембранных технологий, обеспечивающих умягчение и последующую очистку судовых и водогрейных котельных.

Смягчители здесь не употребляются ввиду применения методов обратного осмоса и ультрафильтрации.
к меню ↑

Водоподготовка, очистка и умягчение водогрейных систем производится после того, как будет проведен предварительный расчет.

Водоподготовка котла, установка удаления накипи из воды

Расчет включает в себя сбор и систематизацию данных о протяженности судовых водонагревательных систем, и степени их засоренности.

Водоподготовка котельных и последующая очистка системы транспортировки теплоносителя подразделяется на несколько основных этапов. Это:

  • Начальная очистка от взвесей, коллоидов и органики;
  • Процесс смягчения (деминерализации);
  • Аннигиляция агрессивных газов СО2 и О2;
  • Коррекционная постобработка и расчет следующей очистки.

Даже в тех системах теплоснабжения, где применяется современное оборудование и производится расчет всех параметров работы, происходит непланомерная утечка теплопередающего вещества.

В тех котельных, оборудование которых представлено в виде стальных и чугунных котлов утечка компенсируется так называемой подпилочной водой.

Эта вода проходит обязательный этап предварительной подготовки, в процессе которой применяются смягчители.

Смягчитель находится в установках, обеспечивающих химическую водоочистку. В них включены осветлительные и коагуляционные аппараты и многоступенчатые водоумягчительные фильтры.

Магнитный фильтр, удаляет накипь в воде

В большинстве случаев, котельные, которые обеспечивают отопление, снабжаются водой из водопровода, которую уже не нужно подвергать очищению.

Эта вода лишь подвергается смягчению и дегазации. Дело в том, что водопроводная вода наполнена высоким содержанием солей и газов.

В процессе ее постепенного нагревания соли трансформируются в осадочные отложения. Они выпадают в осадок и накапливаются на внутренней рабочей поверхности стенок котлов.

В процессе увеличения слоистых отложений накипи, существенно понижается коэффициент теплоотдачи.

Впоследствии это приводит к значительному перерасходу топлива. Кроме того, осадки в виде накипи, могут спровоцировать аварийную ситуацию, вызванную перегревом стенок котла.

Растворенные в виде газообразных примесей кислородные и углекислотные соединения провоцируют интенсивное развитие вредоносных коррозийных процессов.

Ввиду того, что котлы, выполненные с применением чугуна, практически не повержены возникновению коррозии кислород и углекислоты представляют опасность лишь для стальных агрегатов.

Система фильтрации, промышленная

Во избежание формирования накипи на котлах нужно применять воду, обладающую нужной степенью жесткости, или же подвергать ее смягчению и дальнейшей дегазации.

Дегазация производится посредством вакуумдеаэрации. Умягчитель воды для котлов имеет несколько разновидностей, каждая из которых обладает собственными особенностями и характеристиками.

Смягчитель может быть представлен в виде химического фильтра, содержащего полифосфатные соли.

Важно производить своевременную засыпку смягчающего вещества, при этом следует учитывать, что жидкость, которая будет образовываться на выходе, не пригодна для питья.

Ионообменные смягчители несколько дороже, но способны проработать продолжительное время на одной загруженной порции вещества.

Могут входить в состав оборудования, в котором все этапы промывки и регенерации подвержены полной автоматизации.

Магнитные смягчители для котлов представлены в виде универсальных систем и способны оказывать воздействие на воду на большом расстоянии.

Наибольшую эффективность демонстрируют установки, работающие с применением электромагнитного генератора.

Умягчитель воды для котла, со сменным фильтром

В настоящее время не существует жестко установленных норм, которые определяют качество питательной и подпиточной воды для котлов. Ранее установленная норма жесткости составляла 300 мкг-экв/л.

В настоящее время способов водоподготовки котельных существует немало. Каждый из них обладает собственными технологическими особенностями и тонкостями. Это:

  • Осаждение;
  • Химические способы (коагуляция, флокуляция, адсорбация);
  • Обратный осмос;
  • Ионный обмен;
  • Безреагентная водоподготовка.

При осаждении все твердые частицы, взвешенные в воде, оседают на фильтрующей поверхности устройства и внутри его.

Фильтр очистки, магнитный, съемный

Осаждение протекает благодаря включению в состав воды специальных реагентов. Данный способ отлично зарекомендовал себя при выведении каллоидных и взвешенных частиц.

Является наиболее быстрым, простым и эффективным методом смягчения и очистки. Обратный осмос протекает с помощью включения в систему очистки специальной мембраны.

Она способно производить эффективную фильтрацию практически всех находящихся воде примесей, имеющих органическое происхождение.

Эта же мембрана может неплохо отфильтровывать вирусы и бактерии. Обратный осмос слишком тщательно производит очистку воды, потому она обедняется.

Мембрана стоит недешево, и может с легкостью повредиться от большого количества загрязнения. Этот способ не обладает высокой скоростью очищения воды от вредоносных посторонних примесей.

Это обусловлено полупроницаемостью мембраны. При проведении водоподготовки посредством ионного обмена основным элементом будет служить специальная смола.

Ей заполняется картридж. В состав смолы входят ионы натрия, которые подготовлены к последующему обмену.

Фильтр умягчитель, для котельной, бытовой

Он осуществляется при наступлении контакта с водой, обладающей высокими показателями жесткости.

В процессе фильтрации соли замещаются натрием или вода приобретает мягкость. Недостаток данного метода заключается в постоянной необходимости замены картриджей.

Химические реагенты при проведении водоподготовки осуществляются с применением специальных окислителей.

В большинстве случаев они представлены в виде кислорода, озона, хлорамина, перекиси водорода или марганцовки.

Наиболее сильным дезинфектором считается хлор. Он проявляет высокую степень стойкости и активности даже после полного растворения.

Перманганат кальция применяется как восстановитель. Перекись водорода используется в малых дозировках ввиду высокой степени токсичности.

Озон общепризнанно считается наиболее сильным окислителем. Он отличается высокой степенью экологичности, однако его стоимость высока, по сравнению с другими реагентами.

Фильтр обратного осмоса, многоуровневый, для котельной,

Безреагентные методы смягчения жесткой воды производятся с помощью магнитных, ультразвуковых и электромагнитных установок.

Очистка основывается на интенсивном воздействии электромагнитных полей, волн или ультразвука.

В процессе этого, новые вещества не создаются ввиду того, что все процессы основываются на физической основе.

Безреагентные устройства получили широкое распространение в тепловых системах квартир и частных домов.
к меню ↑

В настоящее время оборудование, которое обеспечивает водоочистку и водоподготовку котельных представлено виде различных установок и фильтров.

Загрузочные баллонные фильтры применяются в котельных, установленных в частных домах. Работают они, основываясь на принципе механической фильтрации.

Фильтры для котельной, параллельно очищающие, синхронные

Некоторые из моделей могут выполнять функцию обезжелезивателя. Основное преимущество представленного оборудования – это сравнительно невысокая стоимость.

Устройства мембранной водоочистки (умягчители) отличаются диаметром и толщиной главного рабочего элемента – мембраны.

Ее размер варьируется в диапазоне от 2 до 100 мкм. Современные модели снабжены специальным блоком автоматики.

Это способствует максимальному уровню удобства при осуществлении управления над прибором. Данные установки способствуют эффективному предотвращению формирования накипи в трубопроводных отопительных системах и котлах.

Ультрафиолетовые обеззараживатели способны быстро очистить воду от различных разновидностей болезнетворных бактерий и солей тяжелых металлов.

Также могут применяться ртутные бактерицидные лампы. Они могут работать в условиях низкого давления. Отличаются высоким КПД и продолжительными эксплуатационными сроками.
к меню ↑

источник