Меню Рубрики

Определение качества воды методом химического анализа

Питьевая вода должна иметь нейтральную реакцию среды( рН около 7), мы оценивали значение рН среды двумя способами.

Первый способ: В пробирку наливали 5мл исследуемой воды и опускали в нее универсальный индикатор, окраска индикатора изменялась, сравнивая ее со шкалой мы получили следующие результаты:

Проба1- рН=8,5 (водопроводная)

Второй способ: более точный, по шкале Н.И. Алямовского

Прибор Алямовского имеет стандартную цветную шкалу, представленную пробирками с растворами. Техника сравнения растворов со шкалой такова: пробирку с испытуемым раствором мы ставили в левое гнездо компоратора, а в правое гнездо наливали 5мл дистиллированной воды. В пазы компоратора вставляли стандартную цветную шкалу и передвигали ее вверх и вниз, находя ту часть, которая по окраске совпадала с испытуемым раствором.

Вывод: Использование двух способов помогло нам установить более точно водородный показатель водопроводная вода (проба 1) и колодезная (проба 2).

Водородный показатель 6,5(проба 2) и 8,5(проба 1) свидетельствует о том, что наша питьевая вода имеет щелочной (водопроводная) и кислый (колодезная) характер среды.

Оба показателя имеют пограничное значение- это предел, за которым пить воду нельзя!

Жесткость воды:

Определение карбонатной жесткости воды:

Мы проверяли все пробы воды на общую, временную и постоянную жесткость. Временная жесткость или карбонатная устранима, так как обусловлена наличием гидрокарбонатов магния и кальция и легко устраняется кипячением. Кроме того мы рассчитали концентрации карбонат и гидрокарбонат ионов:

С= 3мл×300=9ммоль/экв.- жесткая

С= 5мл×300=15ммоль/экв.- очень жесткая

Определение аммиака и ионов аммония:

Предельно допустимая концентрация (ПДК) аммония определялось нами с помощью реактива Неслера и по таблице мы нашли ориентировочное содержание миллиграммов азота в 1л воды, оно составляет от 0,4 до 0,5мг.

Определение сульфатов:

В водах Западно-Сибирской низменности содержание сульфатов невелико. Качественное определение сульфатов мы вели так: в пробирку налили 10 мл воды, 0,5мл соляной кислоты и 2мл 5% раствора хлорида бария и перемешали.

Ориентировочное содержание сульфатов мы определяли по выпавшему осадку.

Результаты получились следующие:

1. Водопроводная вода – слабая муть

2. Колодезная вода – сильная, быстрооседающая муть

3. Снеговая вода – муть отсутствует

Следовательно, только снеговая вода не содержит сульфатов.

Водопроводная вода- концентрация сульфат-ионов 5-10мл на литр.

Колодезная вода- концентрация сульфат-ионов 10-100мл на литр.

Качественное обнаружение катионов тяжелых металлов:

В пробирку с пробами воды мы вносили по 1мл 50% раствора уксусной кислоты и перемешивали. Добавляли по 0,5мл 10%раствора дихромата калия K2Cr2O7.

Пробирки встряхивали и через 10мин. Приступали к определению.

Содержимое пробирки просмотрели сверху на черном фоне, верхнюю часть пробирки до уровня жидкости прикрывали со стороны света картоном.

Вывод: Водопроводная и колодезная вода свинца не содержат, а снеговая вода содержит свинец, так как выпал в данной пробирке желтый осадок хромата свинца.

Предельно допустимая концентрация железа в питьевой воде составляет 0,3мг на литр. Лимитирующий показатель вредности органолептический.

В три пробирки наливали по 10 мл водопроводной и колодезной и снеговой вод. Сюда же прибавляем сульфат железа (III) Fe2(SO4)3. Приливаем несколько капель раствора желтой кровяной соли K4[Fe(CN)6] и наблюдаем изменение окраски и выпадение осадка, который имеет название турнбулева синь, следовательно, только водопроводная вода содержит примеси железа.

Проба 1. ПДК меди в воде составляет 0,1 мг на литр.

Показатель вредности органолептический.

В фарфоровую чашку мы помещали по три мл исследуемой воды, осторожно выпаривали досуха, далее наносили на периферическую часть пятна каплю концентрированного раствора аммиака. Появление фиолетовой окраски свидетельствует о присутствии ионов меди Cu 2+ .

Вывод: водопроводная вода содержит ионы меди.

Проба 2. Отмечаем довольно высокое содержание меди в колодезной и снеговой воде.

Вода — важное условие жизни на нашей планете. Подсчитано, что содержание воды в тканях живых организмов примерно в шесть раз превышает содержание ее во всех реках земного шара. Вода – солнечной энергии на Земле, главнейший творец климата, аккумулятор тепла, гигантский двигатель, но вместе с тем, вода и необходимый компонент всех технологических процессов в промышленном и сельскохозяйственном производстве, надо ли объяснять, почему чистота источников, бережное отношение к воде является постоянной заботой человека.

Отец русской и советской геологии академик А.П. Карпинский говорил , что нет более драгоценного ископаемого, чем вода, без которой жить нельзя. В наш век пресная вода стала одним из дефицитных ископаемых богатств.

Самый крупный потребитель вод наших рек и водохранилищ — ирригация. На втором месте – промышленность и энергетика, на третьем — коммунальное хозяйство городов.

Особое место в использовании водных ресурсов занимает водопотребление для нужд населения, на хозяйственно – питьевые цели в России приходится около 10% общего водопотребления.

Обнаружение фенолов:

Фенол и его производные имеют в составе молекул – сильные ядра. Механизм отравления таков: блокируются сульфгидрильные группировки жизненно важных ферментов, а в итоге нарушаются окислительно –восстановительные реакции в клетках организма.

Проба 1. В водопроводной воде наличие фенолов незначительно, ощущается слабый аптечный запах, возможно, небольшое количество фенолов обнаружено из-за хлорки. В отличие от колодезной воды водопроводную воду хлорируют, при этом фенолы превращаются в пентахлорфенолы ( в 250раз более ядовиты, чем фенолы, а также являются канцерогенами), присутствующий фенол активно поглощает кислород, вода неприятна на вкус и вредна для организма.

Проба 2. Колодезная вода содержит фенол, ПДК фенолов варьирует от 0,1мг/л до 0,01мг/л. Фенол может образовываться и при гниении древесины.

Колодец старый и был выкопан более 50 лет назад, сруб колодца сделан из древесины, она со временем разложилась, образовался фенол.

Проба 3. Снеговая вода фенола не имеет.

Последнее изменение этой страницы: 2019-05-20; Нарушение авторского права страницы

источник

Определение качества воды методами химического анализа.

Опыт № 5 Водородный показатель (рН)

Питьевая вода должна иметь нейтральную реакцию (рН около 7). Значение рН воды водоемов хозяйственного, питьевого, культурно-бытового назначения регламентируется в пределах 6,5 — 8,5.

Оценивать значение рН можно разными способами.

1. Приближенное значение рН определяется следующим образом.

В пробирку наливают 5 мл исследуемой воды, 0,1мл универсального индикатора, перемешивают и по окраске раствора определяют рН:

· Розово – оранжевая – рН около 5

2. Можно определить рН с помощью универсальной индикаторной бумаги, сравнить её окраску со шкалой.

3.Наиболее точно значение рН можно определить на рН – метре или шкале набора Алямовского.

По результатам нашего исследования:

Октябрьский район – рН около 6 — кислая

Ульбинский район – рН около 5- кислая

ВЫВОД: Повышенная кислотность в воде Ульбинского, Октябрьского районов и КШТ свидетельствует о плохом качестве исследуемой воды. Такая вода отрицательно влияет на организм человека, и может вызвать заболевания желудочно-кишечного тракта.

Опыт № 6 Определение хлоридов и сульфатов

Концентрация хлоридов в водоемах – источниках водоснабжения допускается до 350 мг/л.

Много хлоридов попадает в водоемы со сбросами хозяйственно- бытовых и промышленных сточных вод. Этот показатель весьма важен при оценке санитарного состояния водоема. Таблица №4

Осадок или помутнение Концентрация хлоридов, мг/л
Опалесценция или слабая муть 1-10
Сильная муть 10-50
Образуются хлопья, но осаждаются не сразу 50-100
Белый объемистый осадок Более 100

Качественное определение хлоридов с приближенной количественной оценкой проводят следующим образом. В пробирку отбирают 5мл исследуемой воды и добавляют 3 капли 10 %-ного раствора нитрата серебра. Приблизительное содержание хлоридов определяют по осадку или помутнению (см таблицу).

Определение содержания хлоридов

Содержание хлоридов (х) в мг/л вычисляют по формуле

Где, 1,773 – масса хлорид ионов (мг), эквивалентная 1 мл точно 0,05 н. раствора нитрата серебра; V-объем раствора нитрата серебра, затраченного на титрование, мл.

Для расчета по опыту мы взяли 8мг/л (нитрат серебра)

Вывод: в воде КШТ –сильная муть, около 10-50 мг/л хлоридов; Ульбинский и Октябрьский районы – слабая муть, около 1-10мг/л;

Качественное определение сульфатов с приближенной количественной оценкой проводят так:

В пробирку вносят 10мл исследуемой воды, 0.5 мл соляной кислоты (1:5) и 2мл 5%-ного раствора хлорида бария, перемешивают. По характеру выпавшего осадка определяют ориентировочное содержание сульфатов: при отсутствии мути концентрация сульфат ионов менее 5мг/л; при слабой мути, появляющейся не сразу, а через несколько минут – 5-10мг/л; при слабой мути, появляющейся сразу, после добавления хлорида бария, -10-100мг/л; сильная, быстро оседающая муть свидетельствует о достаточно высоком содержании сульфат –ионов (более 100мг/л).

КШТ – ярко выраженная муть, 10-100мг/л; Ульбинский р-н – слабая муть, 5-10мг/л; Октябрьский район – слабая муть, образующаяся сразу после добавления хлорида бария,10-100мг/л;

ВЫВОД: Значительное превышение ПДК обнаружено в исследуемой воде Октябрьского района и КШТ, что может стать причиной некоторых сердечно-сосудистых заболеваний.

Опыт №7 Обнаружение фосфат — ионов.

Реагент: молибдат аммония (12,5г (NH4 )2 МоО4 растворить в дистиллированной Н2 О и профильтровать, объем довести дистиллированной водой до 1л); азотная кислота (1:2); хлорид олова.

К 5мл подкисленной пробы воды прибавляют 2,0мл молибдата аммония и по каплям(6капель) вводят раствор хлорида олова. Окраска раствора синяя при концентрации фосфат ионов более 10мг/л, голубая более 1мг/л, бледно-голубая -более 0,01мг/л.

ВЫВОД: В воде Ульбинского района и КШТ окраска раствора бледно-голубая, содержание фосфат- ионов – более 0,01мг/л, Октябрьский район окраска голубая- более 1 мг/л.

Опыт №8 Обнаружение нитрат – ионов.

Реагент: дифениламин (1г (С6 Н5 )2 NH растворить в 100мл H2 SO4 )

К 1мл пробы воды по каплям вводят реагент. Бледно- голубое окрашивание наблюдается при концентрации нитрат –ионов более 0,001мг/л, голубое –более 1мг/л, синее- более 100мг/л.

ВЫВОД: концентрация нитрат –ионов со всех трех водозаборов одинаковая, более 0,001мг/л

Качественное и количественное обнаружение катионов тяжелых металлов

Методы анализа: качественный анализ, включающий в себя дробный метод, разработанный Н.А Танаевым .Он открыл ряд новых, оригинальных реакций, позволяющих обнаруживать в растворе какой-либо определенный катион в присутствии большого числа других катионов, не прибегая к их предварительному осаждению. Количественный анализ, включающий атомно-эмиссионный метод, основанный на излучении атомных спектров вещества, возбуждаемых в горячих источниках света, а также сравнение и обобщение информации с литературными источниками.

Опыт №9 Обнаружение ионов свинца ( Pb 2+ )

Реагент: хромат калия (10г К2 СrO4 растворить в 90мл H2 O)

В пробирку помещают 5мл пробы воды, прибавляют 1мл раствора реагента. Если выпадает желтый осадок, содержание катионов свинца более 100мг/л; если наблюдается помутнение раствора, концентрация катионов свинца более 20 мл/л, а при опалесценции – 0,1 мг/л [6, c97-98]

ВЫВОД: Самое высокое содержание свинца в воде КШТ более 100мг/л осадок желтого цвета; октябрьский район-помутнение, более 20мг/л; Ульбинский район – опалесценция, 0,1мг/л.

Опыт №10 Обнаружение ионов кальция (Са 2+ )

Реагенты: оксалат аммония (17,5г (NH4 )2 С2 О4 растворить в воде и довести до 1л); уксусная кислота (120мл ледяной СН3 СООН довести дистиллированной водой до 1л).

В 5 мл пробы воды прибавляют 3мл уксусной кислоты, затем вводят 8мл реагента. Если выпадает белый осадок, то концентрация ионов кальция 100мг/л; если раствор мутный — концентрация ионов кальция более 1мг/л, при опалесценции – более0,01мг/л.[6, с128-129]

ВЫВОД: Самое высокое содержание ионов кальция в пробе с Октябрьского района 100мг/л, КШТ и Ульбинский район наблюдается помутнение раствора- концентрация ионов более 1мг/л

Опыт №11 Обнаружение ионов железа ( Fe 2+ )

В пробирку помещают 5мл исследуемой пробы воды, добавляют несколько капель K3 [Fe(CN)6 ] красная кровяная соль. Окраска раствора приобретает цвет под названием: турбулинская синь[6, c194-195]

ВЫВОД: Самое высокое содержание ионов железа 2 содержится в воде с КШТ, т.к по яркости окраски на первом месте- вода с КШТ, на втором – Ульбинский район, на третьем- Октябрьский район.

Опыт №12 Обнаружение ионов железа ( Fe 3+)

В пробирку помещаем 5мл пробы воды, добавляют несколько капель К4 [Fe(CN)6 ] желтая кровяная соль. Окраска раствора приобретает цвет под названием: берлинская лазурь.

ВЫВОД: Самое большое содержание ионов железа3 в воде с Октябрьского района -яркий, насыщенный цвет, в остальных двух пробах окрас менее насыщенный.

Получив результаты эксперимента, мы обратились к альтернативе, т.е возможности замены водопроводной воды талой.

Молекула воды имеет угловое строение;[1]входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине — ядро атома кислорода, межьядерные расстояния О—Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно 0,15 нм. Из восьми электронов, составляющих внешний электронный слой атома кислорода в молекуле воды две электронные пары образуют ковалентные связи О—Н, а остальные четыре электрона представляют собой две неподеленных электронных пары.

Атом кислорода в молекуле воды находится в состоянии sp2-гибридизации. Поэтому валентный угол НОН (104,3°) близок к тетраэдрическому (109,5°). Электроны, образующие связи О—Н, смещены к более электроотрицательному атому кислорода. В результате атомы водорода приобретают эффективные положительные заряды, поскольку на них создаются два положительных полюса. Центры отрицательных зарядов неподеленных электронных пар атома кислорода, находящиеся на гибридных — орбиталях, смещены относительно ядра атома и в свою очередь создают два отрицательных полюса.

Молекулярная масса парообразной воды равна 18 ед. Но молекулярная масса жидкой воды, определяемая путем изучения ее растворов в других растворителях, оказывается более, высокой. Это происходит из-за того, что в жидкой воде происходит ассоциация отдельных молекул воды в более сложные агрегаты (кластеры). Такой вывод подтверждается и аномально высокими значениями температур плавления и кипения воды. Ассоциация молекул воды вызвана образованием между ними водородных связей. По своей структуре вода представляет собой иерархию правильных объемных структур, в основе которых лежит кристаллоподобные образования, состоящие из 57 молекул и взаимодействующие друг с другом за счет свободных водородных связей. Это приводит к появлению структур второго порядка в виде шестигранников, состоящих из 912 молекул воды.

Свойства кластеров зависят от того, в каком соотношении выступают на поверхность кислород и водород. Конфигурация элементов воды реагирует на любое внешнее воздействие и примеси, что объясняет чрезвычайно лабильный характер их взаимодействия. В обычной воде совокупность отдельных молекул воды и случайных ассоциатов составляет 60% (деструктурированная вода), а 40% — это кластеры (структурированная вода).

источник

Исследование качества питьевой воды в п. Котлубань
творческая работа учащихся по химии (10 класс) на тему

Исследовательская работа по оценке экологического состояния п. Котлубань с проведением химического анализа питьевой воды.

Читайте также:  Сокращенный химический анализ подземных вод

МОУ « Котлубанская средняя общеобразовательная школа»

Городищенского района Волгоградской области

Исследование питьевой воды в п. Котлубань

Ученица 10 класса Гордеева Е.

Руководитель- учитель биологии и химии МОУ «Котлубанская СОШ» Турицына Е.Н.

2. Источники загрязнения Мирового океана. Способы очистки

3.1.1 Водородный показатель (рН)……………………………………7

3.1.2 Определение хлоридов и сульфатов……………………………7

3.1.4 Определение жёсткости воды…………………………………..9

3.1.7 Качественное обнаружение катионов тяжёлых металлов…….9

4. Результаты исследования качества питьевой воды в посёлке Котлубань……………………………………………………. ………………10 5.Заключение………………………………………………………………. 11

6. Рекомендуемая литература………………………………………………..13

Цель работы – изучить и составить характеристику питьевой воды п. Котлубань, привлечь внимание жителей и общественности к проблеме чистой воды, составить обзор состояния окружающей среды поселка

Для достижения этой цели были поставлены и выполнены следующие задачи:

  1. Изучение литературных источников о мировых экологических проблемах.
  2. Практическое ознакомление с методиками определения качества воды.
  3. Проведение анализа питьевой воды.
  4. Встреча с представителями администрации, ведущими специалистами посёлка для обсуждения вопроса об улучшении экологического поселения.

2. Источники загрязнения Мирового океана. Способы очистки сточных вод

На поверхности Мирового океана разлито примерно 6 млн. тонн нефти и нефтепродуктов, которые тонкой плёнкой покрывают поверхность воды. Это нарушают газовый и тепловой режим морей и океанов, что приводит к гибели планктона, рыб и птиц.

Химики предлагают оборудовать танкеры и корабли аварийной системой, содержащей полимерное вещество. В случае пробоины или угрозы потопления судна включение такой системы позволит создать оболочку из пенопласта, например полиуретана или другого полимера, скорость полимеризации которого весьма велика. Химия в состоянии ускорить процесс самоочищения воды. Добавление поверхностно-активных веществ (ПАВ) ускоряет коагуляцию и осаждение веществ, загрязняющих водоёмы. Можно использовать пероксид водорода или ферменты, которые работают как катализаторы, ускоряющие реакции самоочищения.

Все источники загрязнения можно разделить на несколько групп. Это неорганические вещества, содержащиеся в сточных водах сернокислотных, содовых, азотно-туковых заводов, металлургических предприятий, обогатительных фабрик. В отходах этих производств содержатся растворимые и взвешенные вещества: кислоты, щёлочи, соли тяжёлых металлов, руды, шлаки и др. большую опасность представляют вещества, используемые в сельском хозяйстве. Их неправильное применение и хранение приводят к тому, что они попадают в водоёмы.

Органические загрязнения подразделяют по происхождению на растительные, животные и синтетические. Растительные загрязнения – остатки растений. Примеси животного происхождения представляют собой физиологические выделения людей и животных, остатки тканей животных. Синтетические загрязнения – нефтепродукты, продукты органического синтеза, коксохимических производств, поверхностно-активные вещества, синтетические моющие средства (СМС) и др. Источники загрязнения водоёмов СМС и ПАВ – бытовые сточные воды, предприятия текстильной и кожевенной промышленности, горно-обогатительные фабрики, нефтеперерабатывающая промышленность.

Биологические загрязнения обнаруживаются в бытовых сточных водах пищевых предприятий, боен, кожевенных и меховых предприятий, предприятий микробиологической промышленности.

Учитывая разнообразие примесей в сточных водах, можно предположить, что очистка их только химическими методами будет недостаточной. Каков оптимальный путь возвращения воде прозрачности и чистоты?

Очистка сточных вод должна вестись комплексно, включая физические, физико-химические, биохимические и термические методы. Физические методы служат для удаления крупнодисперсных примесей отстаиванием и фильтрацией сточных вод. К физико-химическим способам очистки относят коагуляцию с использованием сульфатов алюминия или железа, флотацию мелкодисперсных примесей, адсорбцию растворенных загрязнителей активированным углём, шлаками и другими твёрдыми адсорбентами, экстракцию примесей растворителями, отгонку органических веществ с водяным паром, ионообмен для выделения металлов, дистилляцию.

Наиболее распространённый способ очистки сточных вод, содержащих органические загрязнения, — биохимическая очистка. Сущность её состоит в разрушении органических и некоторых неорганических веществ с помощью микроорганизмов, использующих их для своей жизнедеятельности. В результате органические соединения превращаются в воду и оксид углерода (IV), сульфиды – в сульфат-ионы. Биохимическую очистку сточных вод производят на полях фильтрации, в биологических прудах, которые устраиваются каскадами в 4-5 секций с переливом воды самотёком с верхнего к нижнему, в биофильтрах и аэротенках – железобетонных резервуарах с дырчатым дном для продувки воздуха.

Государственная санитарно-эпидемиологическая служба систематически контролирует качество воды во всей системе водоснабжения. Пробы берут в местах водозабора, перед поступлением воды в сеть, внутри распределительной сети и на выходе водного стока из района. Пункты отбора проб соединены надёжными линиями связи с центром регистрации данных. Это позволяет в любой момент предупредить аварийную ситуацию и влиять на работу очистных сооружений.

Необходимость воды для обеспечения жизнедеятельности человека обусловлена ролью, которую она играет в круговороте природы, а также в удовлетворении физиологических, гигиенических, рекреационных, эстетических и других потребностей человека. Решение проблемы удовлетворения потребностей человека в воде для различных целей тесно связано с обеспечением её необходимого качества.

По данным ВОЗ, около 80% всех инфекционных болезней в мире связано с неудовлетворительным качеством питьевой воды и нарушениями санитарно-гигиенических норм водоснабжения. В мире 2 млрд. человек имеют хронические заболевания в связи с использованием загрязнённой воды.

По оценке экспертов ООН, до 80% химических соединений, поступающих во внешнюю среду, рано или поздно попадают в водоисточники. Ежегодно в мире сбрасывается более 420 км 3 сточных вод, которые делают непригодными около 7 тыс. км 3 воды.

Основными направлениями решения экологических задач являются: внедрение безотходных и малоотходных технологий; развитие комбинированных производств, обеспечивающих полное использование природных ресурсов; расширение замкнутых оборотных и бессточных систем водоснабжения.

Помимо изучения литературных источников об экологическом состоянии воды, нас интересовали и практические исследования.

3.1.1 Водородный показатель (рН)

Питьевая вода должна иметь нейтральную реакцию (рН около 7). Значение рН воды водоемов хозяйственного, питьевого, куль турно-бытового назначения регламентирует ся в пределах 6,5-8,5.

Оценивать значение рН можно разными способами.

1. Приближенное значение рН определя ют следующим образом. В пробирку наливают 5 мл исследуемой воды, 0,1 мл универ сального индикатора, перемешивают и по окраске раствора определяют рН:

  1. розово-оранжевая — рН около 5;
  2. светло-желтая — 6;
  3. зеленовато-голубая — 8.
  1. Можно определить рН с помощью уни версальной индикаторной бумаги, сравнивая ее окраску со шкалой.
  2. Наиболее точно значение рН можно определить на рН-метре или по шкале набо ра Алямовского.

Концентрация хлоридов в водоемах — источниках водоснабжения допускается до 350 мг/л (приложение 1).

В водах рек северной части России хло ридов содержится обычно немного, не более 10 мг/л, в южных районах — до десятков и сотен мг/л. Много хлоридов попадает в во доемы со сбросами хозяйственно-бытовых и промышленных сточных вод. Этот показа тель весьма важен при оценке санитарного состояния водоема.

Качественное определение хлоридов с приближенной количественной оценкой проводят следующим образом. В пробирку отбирают 5 мл исследуемой воды и добавля ют 3 капли 10 %-ного раствора нитрата се ребра. Приблизительное содержание хлори дов определяют по осадку или помутнению ().

Качественное определение сульфатов с приближенной количественной оценкой проводят так. В пробирку вносят 10 мл иссле дуемой воды, 0,5 мл соляной кислоты (1:5) и 2 мл 5%-ного раствора хлорида бария, перемешивают. По характеру выпавшего осадка определяют ориентировочное содер жание сульфатов: при отсутствии мути кон центрация сульфат-ионов менее 5 мг/л; при слабой мути, проявляющейся не сразу, а через несколько минут, 5-10 мг/л; при слабой мути, проявляющейся не сразу после добавления хлорида бария, -10-100 мг/л; сильная, быстро оседающая муть свидетельствует о достаточно высоком содержании сульфат-ионов (более 100 мг/л).

Запах воды обусловлен наличием в ней пахнущих веществ, которые попадают в нее естественным путем и со сточными водами. Запах воды водоемов, обнаруживаемый не посредственно в воде или (водоемов хозяй ственно-питьевого назначения) после ее хлорирования, не должен превышать 2 бал лов. Определение основано на органолептическом исследовании характера и интенсив ности запахов воды при 20 и 60 °С. Харак тер и интенсивность запаха определяют по предлагаемой методике (приложение 1).

Запахи искусственного происхождения (от промышленных выбросов, для питьевой воды — от обработки воды реагентами на водопроводных сооружениях и т. п.) назы ваются по соответствующим веществам: хлорфенольный, камфорный, бензиновый, хлорный и т. п.

Интенсивность запаха также оценивает ся при 20 и 60°С по 5-балльной системе.

Запах воды следует определять в помеще нии, в котором воздух не имеет посторонне го запаха. Желательно, чтобы характер и интенсивность запаха отмечали несколько исследователей.

3.1.4 Определение жёсткости воды

1. Мерным цилиндром налить 10 мл исследуемой воды в коническую
колбу.

2. Наполнить бюретку мыльным раствором, добавить 1 мл
мыльного раствора в колбу. Если не образуется пена, добавить ещё
несколько мл раствора мыла. Продолжать добавлять мыльный раствор,
пока не образуется устойчивая пена (она должна держаться не менее
30 секунд).

  1. Записать объем мыльного раствора, необходимого для образования устойчивой пены с 10 мл исследуемой воды.
  2. Ополоснуть колбу, повторить действия 1-3.

Для определения цветности воды нужны стеклянный сосуд и лист белой бумаги. В сосуд набирают воду и на белом фоне бумаги определяют цвет воды (голубой, зелёный, серый, жёлтый, коричневый) – показатель определённого вида загрязнения.

Для определения прозрачности воды используют прозрачный мерный цилиндр с плоским дном, в который наливают воду, подкладывают под цилиндр на расстоянии 4 см от его дна шрифт, высота букв которого 2 мм, а толщина линий букв – 0,5 мм, и сливают воду до тех пор, пока сверху через слой воды не будет виден этот шрифт. Измеряют высоту столба оставшейся воды линейкой и выражают степень прозрачности в см.

3.1.7 Качественное обнаружение катионов тяжёлых металлов

В пробирку с пробой воды вносят по 1 мг 50 %-ного раствора уксусной кислоты и перемешивают. Добавляют по 0,5 мл 10 %-ного раствора дихромата калия, при наличии в исследуемой пробе ионов свин ца выпадает желтый осадок хромата свин ца. Пробирку встряхивают и через 10 мин приступают к определению. Содержимое пробирки рассматривают сверху на черном фоне, верхнюю часть пробирки до уровня жидкости прикрывают со стороны света картоном.

В фарфоровую чашку помещают 3-5 мл исследуемой воды, осто рожно выпаривают досуха и наносят на пе риферийную часть пятна каплю концентри рованного раствора аммиака. Появление интенсивно-синей или фиолетовой окраски свидетельствует о присутствии ионов Сu 2+ .

4. Результаты исследований и выводы.

Мы исследовали качества питьевой воды по следующим показателям:

  1. Прозрачность воды зависит от некоторых факторов: количества взвешенных частиц или ила, глины, песка, микроорганизмов, содержания химических соединений. При прозрачности воды менее 3 см водопотребление ограничивается.
  2. Запах обусловлен наличием в воде пахнущих веществ, которые попадают в неё естественным путём и со сточными водами.
  3. Водородный показатель (РН). Питьевая вода должна иметь нейтральную реакцию (РН около 7). Значение РН воды водоёмов хозяйственного, питьевого, культурно-бытового назначения регламентируется в пределах 6,5-8,5.
  4. Определение хлоридов и сульфатов. Концентрация хлоридов в водоёмах – источниках водоснабжения допускается до 350 мг/л. много хлоридов попадает в водоёмы со сбросами хозяйственно-бытовых и промышленных сточных вод. Этот показатель весьма важен при оценке санитарного состояния водоёма.
  5. Качественное обнаружение катионов тяжёлых металлов. Обнаружение свинца. Обнаружение меди.
  6. Жёсткость воды определяется объёмом мыльного раствора, требующегося для образования устойчивой пены (приложение 2, 4).

По результатам исследований мы видим, что в пос. Котлубань существует серьёзная проблема улучшения качества питьевой воды.

Несмотря на то, что вышеописанный эксперимент был проведен только на территории посёлка Котлубань, он дал ощутимые результаты. Обследовав территорию посёлка, мы определили что является основными источниками загрязнения его .

С полученными результатами мы посетили представителей организаций, расположенных на территории поселения.

Из беседы с главным врачом Котлубанской участковой больницы Кирилловой Т.А.: «В нашем посёлке круг проблем экологии необычайно расширился, что привело к росту таких заболеваний, как мочекаменные и желчекаменные (приложение 3).

Причиной увеличения с каждым годом этих заболеваний является состояние воды, оно неудовлетворительное.

В ней находится большое количество железа, минералов и вредных для человека микроорганизмов, которые придают воде неприятный запах. Контролирует качество питьевой воды ЭКОЛОГИЧЕСКИЙ ФОНД ГОРОДИЩЕНСКОГО РАЙОНА И МП КОТЛУБАНСК ое . Каждый год берутся образцы воды и отвозятся в лабораторию. Однако нашей больнице результатов не предоставляют. Состояние нашего посёлка ужасное, так как дороги не ремонтируются, мусор не убирается вовремя, отсутствуют мусорные баки и не озеленяется посёлок. Везде грязь, пыль, переполненные мусорные контейнеры, расположенные вблизи детского сада и жилых домов могут привести к кишечным инфекциям, различным отравлениям.

Этот вопрос можно решить, предъявив штрафные санкции МП «Котлубанское» и главе администрации посёлка.

Рекомендуем жителям использовать фильтры для очистки питьевой воды, так как кипячением нельзя добиться удаления ионов тяжелых металлов.

В ходе беседы с директором МП «Котлубанское» Калининым В.В. мы узнали, что вода в наши дома поступает из трёх артезианских скважин, системы очистки устарели, фильтры давно пора менять, но средств на это нет.

Цель, поставленная вначале нашего исследования, была достигнута: мы выделили основные источники загрязнения посёлка, привлекли внимание общественности и всех жителей к проблеме очистки питьевой воды, выпустили экологическую листовку (приложение 5, 6).

Конечно, по результатам нашей работы сложно судить о полном объёме загрязнений в посёлке Котлубань. Однако мы считаем, что начало положено и следующим шагом в решении этой проблемы будет не только просветительская работа среди населения, но и проведение конкретных мероприятий по улучшении экологии посёлка. Таких как озеленение парков, создание школьной бригады по благоустройству посёлка и самое главное – это воспитание чувства ответственности каждого гражданина за свой дом по имени Земля.

  1. Белова И. Охрана окружающей среды. Учебник для технических ВУЗов. – 1991.
  2. Газета «Помоги себе сам». – 1996-1997.
  3. Журнал «Химия в школе». № 3, 4. – 2004.
  4. Мансурова С.Е., Кокуева Г.Н. Школьный практикум «Следим за окружающей средой нашего города». – М.: Изд.-во Владос, 2001.
  5. Фадеева Г.А. Химия и экология. – Волгоград, 2003.
  6. Ширшина Н.В. Проектная деятельность учащихся. Химия. – Волгоград: Изд.-во Учитель, 2007.
  7. Яшин А.Л., Мелуа А.И. Уроки экологических расчётов. – М.: Изд.-во Мысль, 1991.

источник

Качество потребляемой человеком воды определяется с учетом ее свойств и состава. Данные показатели также определяют пригодность применения воды в тех или иных сферах жизнедеятельности. Нормативы (или стандарты) качества составляются с учетом требований заказчика и основных характеристик. Во многом содержание воды определяется с учетом источника ее происхождения (он может быть антропогенным либо естественным).

Чистая питьевая вода – залог здоровья человека и его отличного самочувствия. Чтобы понять, является она такой или нет, обращайтесь в специализированные инстанции, которые проводят анализ качества жидкости и ее соответствия нормативным стандартам, принятым на сегодняшний день. При выполнении анализа учитываются бактериологические, химические и физические показатели.

Читайте также:  Скважина анализ воды своими руками

Проводить химический анализ по закону обязаны различные организации и предприятия при выполнении определенных работ – например, возведении моста через реку. Обязаны соблюдать требования к химсоставу предприятия, которые осуществляют выпуск бутилированной воды. Частные лица заказывают проведение анализа для:

  • оценки качества питьевой воды из водопровода, скважин, родников;
  • подтверждения качества бутилированной воды;
  • подбора фильтра для воды, оценки его эффективности;
  • контроля качества воды в бассейнах;
  • оценки качества жидкости, используемой для полива растений;
  • контроля среды в аквариуме;
  • пр.
  • щелочность;
  • жесткость;
  • содержание ионов;
  • водородный фактор;
  • минерализация.

Бактериологические параметры жидкости:

  • степень загрязненности источника кишечной палочкой;
  • наличие радиоактивных, токсичных элементов;
  • бактериальная зараженность.

Рассмотрим данные характеристики подробнее.

Цветность – показатель, который всегда должен учитываться при анализе воды. Он обуславливает присутствие железа и включений других металлов в виде коррозионных продуктов. Цветность является косвенной характеристикой присутствия в жидкости растворенной органики, зависит от загрязненности источника стоками промышленной категории, определяется путем сравнения образцов с эталонными. Максимально допустимый показатель составляет 20°.

Мутность зависит от наличия мелкодисперсных взвесей нерастворенных частиц. Выражается она в:

  • наличии осадка;
  • взвешенных, грубодисперсных примесях, определяемых в ходе фильтрации;
  • степени прозрачности.

Можно определять мутность фотометрическим путем – то есть по качеству проходящего через толщу жидкости светового луча.

Запах зависит от присутствия в воде пахнущих веществ, которые попадают в нее из стоков. Практически все органические жидкие вещества передают воде специфический аромат растворенных в ней газов, органики, минеральных солей. Запахи делятся на природные (гнилостные, болотные, серные) и искусственные (фенольные, нефтяные, пр.).

Вкус воды может быть соленым, кислым, сладким или горьким, все остальные «нотки» относятся уже к привкусам – например, хлорные, аммиачные, металлические, сладковатые, пр. Оценка привкуса и запаха производится по пятибалльной шкале.

Химические показатели, степень загрязненности зависят от глубины забора водных масс, просачивания в стоки различных веществ (отбросы предприятий, свалки, выгребные ямы и т.д.). Анализ проводить нужно обязательно, поскольку загрязнению подвергаются даже артезианские скважины с низким давлением, а что уже говорить о колодцах.

Жесткость характеризуется наличием в жидкости элементов кальция и магния, которые со временем превращаются в нерастворимые соли. Итог – образование накипи, отложений на внутренних поверхностях емкостей, котлов, рабочих узлах бытовой техники.

Сухой осадок указывает на степень концентрации органических элементов, а также растворенных неорганических солей. Его высокое содержание приводит к нарушению солевого баланса организма человека.

Водородный фактор рН характеризуется щелочным и кислотным фоном жидкости. Изменение фактора указывает на нарушения в технологиях водоподготовки. Норма – 6-9 единиц.

Некоторые компоненты ухудшают пищевые качества воды, а также являются потенциально опасными для здоровья человека. Рассмотрим основные:

  1. Железо в составе сульфатов, гидрокарбонатов, органических соединений, хлоридов. Может оно присутствовать и в виде высокодисперсных взвесей, придающих жидкости коричневый с красным оттенком цвет, снижающий вкусовые качества. Из-за высокой концентрации железа в воде начинают развиваться железобактерии, образуются засоры труб. Максимально допустимая концентрация железа по нормам составляет 0,3 мг/л.
  2. Марганец – главная причина генетических мутаций. Элемент оказывает негативное влияние на вкусовые характеристики жидкости, после стирки на белье появляются характерные пятна и разводы, на сантехнике образуется осадок. Максимальная концентрация согласно нормативам – 0,1 мг/л.
  3. Катионы марганца и кальция повышают жесткость воды. Для измерения их содержания обычно используется такой показатель как мг-экв/л. Пороговые значения находятся на отметке 3-3.5 мг-экв/л, при более высоком содержании катионов накапливается осадок на сантехническом оборудовании, нагревательных элементах бытовых приборов. Для здоровья человека жесткая вода очень вредна.
  4. Перманганатная окисляемость указывает на количественное содержание кислорода к концентрации иона перманганата, который принимает участие в процессах окисления воды. Предельно допустимое значение составляет 5 мг О2/л. При высоких показателях перманганатной окисляемости страдают почки и печень, репродуктивная функция, иммунная, нервная системы человека. Не рекомендуют употреблять воду без обработки при значении перманганатной окисляемости выше 2 мг О2/л.
  5. Сульфиды – благодаря им жидкость приобретает посторонние неприятные ароматы, а трубы начинают ржаветь. Именно сульфиды являются токсичными компонентами, вызывающими кожные аллергические реакции.
  6. Фториды – их концентрация не должна составлять более 1,5 мг/л. Обратите внимание, что полностью лишенная фтора вода также не полезна.

Перечисленные компоненты к сильно токсичным не относятся и отравлений не вызывают, но их постоянное употребление в пищу (даже в малых дозах) наносит непоправимый вред здоровью и приводит к хронической интоксикации.

Определение токсичных соединений, содержащихся в сравнительно небольших количествах, становится с каждым годом все более сложным и затратным. Определенные вещества в воде присутствовать могут, но строго в установленных количествах. Важно контролировать как структурный состав жидкости, так и ее функциональные интегральные характеристики.

Метрологические приборы позволяют определять только основные химические показатели, для проверки бактериального состава образцы отправляются в лаборатории. В зависимости от глубины проверки данных, анализы делятся на полные химические, сокращенные, направленные на определение некоторых составляющих. В большинстве случаев сокращенного анализа достаточно, но в целях определения полного набора компонентов требуется выполнение более глубокой проверки.

При анализе результатов нужно учитывать все показатели и сравнивать данные анализа с полученными характеристиками. Для каждого элемента есть предельно допустимая концентрация – она не должна быть превышена.

Рассмотрим основные способы, используемые для проверки качества воды.

Метод позволяет оценивать те качества, которые доступные органам чувств. Органолептическое исследование предполагает оценку цветности, прозрачности, аромата и вкуса воды.

Анализ воды на физико-химические показатели учитывает:

  • жесткость;
  • минерализацию;
  • щелочность;
  • окисляемость.

Методика позволяет определять наличие в воде паразитов и бактерий, среди которых могут присутствовать болезнетворные микроорганизмы. Обычно подсчитывается количество организмов на 1 мл жидкости

При анализе химического состава определяется наличие и количество органических, неорганических включений – к ним относят сложные органические вещества, металлы, нефтепродукты, ПАВы и так далее. Под сложными органическими веществами подразумеваются акриламиды, стиролы, фенолы, винилхлориды, тетрахлорид углероды, диоксины.

Анализ на альфа- и бета-частицы, радий проводится в целях определения радиационной безопасности жидкости. Определение содержания радионуклидов – основа для снижения дозовых нагрузок на организм. Вместе с результатами по комплексному анализу заказчик обычно получает также рекомендации, которые помогут ему улучшить качество воды.

Экспресс-анализы используются в целях ускорения процедуры проверки и снижения ее стоимости. Они позволяют анализировать такие показатели как:

  • биохимическое потребление кислорода;
  • число адсорбируемых либо экстрагируемых галогенов органического происхождения;
  • кислотно-щелочной баланс;
  • органолептические свойства воды.

Экспресс-анализ позволяет сокращать потребность в сложном оборудовании и реактивам. Важно! Высокое качество исследования поверхностная проверка гарантировать не может.

Все чаще в последние годы для проверки состава воды используются сенсоры – чувствительные элементы, которые являются основой большинства многокомпонентных анализаторов и экспрессных тест-систем. Они эффективно определяют содержание ферментов антропогенного происхождения, а также патогенную микрофлору.

Биотестирование – передовая методика определения токсичности химического вещества на биоценоз или водные организмы. Оценочные критерии – выживаемость и активность микроорганизмов, скорость их размножения, пр. Для получения корректных результатов биотестирования нужны соответствующие показатели температуры, освещенности, состава, кислотности и так далее.

Существует множество других быстрых способов определения качества питьевой воды – например, на вкус или используя другие органы чувств. Но вы должны понимать, что подобная оценка является очень субъективной, поэтому ставку следует делать на лабораторные исследования.

источник

Вода требуется любому организму, но из источника жизни она способна превратиться в причину болезней и отравлений. Помимо полезных микроэлементов, в воде растворяются многие химические соединения и могут развиваться микробы.

В современных условиях нельзя быть уверенным даже в чистоте воды из родника. Прежде чем применять воду для хозяйственных нужд либо питья, следует убедиться в ее качестве и безопасности. Это позволяет сделать лабораторный анализ воды.

Перед применением воды на производстве либо для хознужд проводится предварительная водоподготовка, предполагающая удаление из состава жидкости вредных компонентов, снижение ее жесткости и очистку от тяжелых металлов. Для определения конкретных веществ, подлежащих удалению, существуют химические методы анализа качества воды. Полученные данные позволяют правильно выбрать и установить требуемые очистные установки.

Эффективность работы фильтров проверяется аналогичным способом: анализ проводится повторно, а полученные данные сравниваются с первоначальными результатами. Если показатели улучшились, значит, установленные фильтры выбраны верно.

Для проведения проверки разработаны специальные методы химического анализа воды, при этом каждый из них направлен на установление содержания в жидкости определенного вещества либо группы веществ:

  1. Фотометрия и люминесценция. В основе методики лежит эффект свечения. Тестируемая жидкость обрабатывается ультрафиолетом, в ответ на обработку разные вещества светятся по-разному. Зафиксировать реакцию позволяют специальные приборы. Подобная методика дает возможность установить присутствие в воде нитратов, растворенного сероводорода, отравляющих цианидов, анионных веществ и других компонентов.
  2. ИК-спектрометрия – используется для выявления присутствия жиров и нефтепродуктов. Через воду пропускается инфракрасное излучение, заставляющее молекулы неравномерно колебаться. Длина волн служит маркером для определения примеси конкретного вещества.
  3. Полярография – позволяет установить концентрацию в воде ионов свинца, цинка и органических веществ. Метод основан на движении ионов при проведении электролитической диссоциации.
  4. Масс-спектрометрия – анализирует структуру вещества с помощью данных о его массе и заряде ионов. Применяется для определения изотопного состава молекул.
  5. Потенциометрия – методика химического анализа воды, позволяющая установить наличие фторидов и водородный показатель (pH). В основе способа лежит измерение электродвижущих сил.
  6. Дозиметрия – устанавливает наличие в жидкости радиоактивных примесей.

Многообразие существующих методик позволяет провести общий и полный анализ. При общем качество жидкости проверяется по уровню главных показателей каждой группы. С его помощью делаются выводы о качественном составе воды, однако не определяется концентрация конкретных веществ. Для ее определения проводится полный анализ, предполагающий углубленное исследование исходных образцов.

С помощью общего анализа устанавливаются следующие характеристики:

  • Жесткость.
  • Органолептика.
  • Состав по основным хим. элементам.
  • Кислотность.

Полный анализ предполагает углубленные исследования показателей каждой группы, что позволяет определить точную концентрацию веществ в растворе. Данный метод химического анализа питьевой воды можно использовать для проверки жидкости на содержание патогенной микрофлоры, токсинов, химических компонентов.

Для получения достоверных данных анализ любого вида должен выполняться при строгом соблюдении условий, установленных нормативами. То же самое относится к методике отбора проб воды для химического анализа, их хранению и транспортировке.

Для проб воды применяется тара из стекла или пластика, а колпачки должны закрываться герметично. Хранение исходного материала для последующих анализов происходит при условии их консервации в специальном водном растворе. Максимальный срок хранения – две недели.

Оптимальный объем воды для проведения исследований составляет не менее 3,5 дм3. При взятии образцов составляется акт, в котором указываются причины анализа и его назначение, определяются показатели для проверки, отмечается место и время забора жидкости.

При появлении сомнений относительно качества водопроводной воды либо воды, поступающей в дом из колодца и скважины, лучше не рисковать собственным здоровьем, а обратиться в нашу компанию. По результатам выполненной проверки вы сможете понять, есть ли необходимость устанавливать системы очистки воды. Опытные специалисты подберут подходящие фильтры, а также выполнят их монтаж и последующее обслуживание на выгодных условиях.

источник

Вода – это источник жизни, но она может стать и причиной отравления или заболевания.

Кроме полезных минералов вода растворяет в себе вредные химические вещества, а также является благоприятной средой для обитания микроорганизмов.

Прежде, чем использовать воду в хозяйстве, нужно убедиться в ее безопасности.

Перед использованием воды в хозяйстве или на производстве необходимо произвести предварительную подготовку: из питьевой воды нужно удалить все вредные вещества и оставить питательные минералы, а для производства нужно понизить жесткость воды и содержание тяжелых металлов.

Чтобы узнать, какие именно вещества нужно удалить из воды производится химический и бактериологический анализ. На основании полученных результатов можно подобрать подходящее очистное оборудование.

Контроль эффективности работы фильтрации воды можно определить путем проведения повторного анализа. Сравнив результаты двух последних отборов проб можно судить о правильности выбора очистного оборудования.

Минерализация – это сумма всех растворенных веществ в воде. Этот параметр еще называют солесодержанием. Единицей измерения минерализации является миллиграмм на литр (мг/л.). Существуют нормы, определяющие пригодность воды для питья. Предельно-допустимый уровень минерализации для питьевой воды составляет 500 мг/л.

Для проведения анализа на уровень минерализации в воде необходимо произвести предварительную подготовку пробы. Она заключается в разложении органических веществ и выделения определяемых элементов, которые остаются в виде неорганических соединений. Выделяется два основных метода подготовки проб: сухой – нагревание в печи, мокрый – использование кислот-окислителей.

Одним из приборов для подготовки проб является СВЧ минерализатор. Его принцип действия: подготавливаемая проба и окислительные реагенты помещаются в стеклянный сосуд, плотно закрытый крышкой. Колба переносится в СВЧ минерализатор, и прибор включается в работу. При повышении температуры ускоряется процесс окисления, и все органические примеси разлагаются за короткий промежуток времени.

Проведение анализа воды осуществляется несколькими методами, каждый из которых предназначен для определения конкретного вещества или группы веществ.

Люминесценция и фотометрия – этот метод основан на явлении люминесценции, то есть свечении. Тестируемая вода подвергается действию ультрафиолета, и различные вещества проявляют свою реакцию: ответное свечение определенного цвета.

Для фиксации этой реакции применяются регистрирующие приборы. С помощью этого метода определяется содержание следующих примесей: нефтепродукты, нитриты, нитраты, фосфаты, анионные вещества, цианиды, формальдегидов и сероводород.

ИК-спектрометрия – это анализ воды для определения наличия нефтепродуктов и жиров. Принцип действия инфракрасного спектрометра – пропускание инфракрасного излучения через воду, что вызывает колебание молекул, распространяющееся неравномерно. По длинам волн определяется примесь того или иного вещества.

Полярография – это метод анализа воды для определения концентрации ионов кадмия, цинка, свинца, органических веществ. В его основе лежит движение ионов в результате электролитической диссоциации.

Масс-спектрометрия – это анализ структуры вещества на основании отношения массы вещества к заряду ионов. Этот метод позволяет определить изотопный состав молекул.

Потенциометрия – это метод анализа воды, позволяющий определить водородный показатель (рН) и наличие фторидов. Он основан на измерении электродвижущих сил.

Дозиметрия – это метод анализа воды, выявляющий радиоактивные примеси.

Читайте также:  Солженицын анализ отражение в воде

Электроосмос – это процесс движения жидкости через капилляры под воздействием электрического поля.

Цель физико-химического анализа воды – выявление состава растворенных веществ. Полученная информация дает возможность применить подходящее очистное сооружение, чтобы предотвратить отравление человека, загрязнение окружающей среды или нарушения технологического процесса.

Химический анализ воды применяется во многих сферах жизни: в быту – для получения чистой и полезной питьевой воды, в промышленности – для контроля очистных сооружений сточных вод, в промышленных технологических процессах – для получения конденсата с минимальным содержанием растворенных примесей.

Существует различное оборудование для проведения анализа воды: портативные приборы для бытового использования и высокоточное лабораторное оборудование, способное проводить анализы бытовой и промышленной воды.

Анализатор жидкости «ФЛЮОРАТ – 02 – 5М» выполняет функции флуориметра, фотометра, хемилюминоминометра. Этот прибор позволяет определять содержание в воде следующих веществ: алюминия, бериллия, бора, ванадия, марганца, меди, молибдена, взвешенных частиц, мышьяка, нефтепродуктов, никеля, нитрита, общего железа, общего хрома, олова, селена, фенолов, флуоресцеина, формальдегида, цианидов и цинка.

Технические характеристики аппарата:

  1. Время измерения – не более 16 с.
  2. Допустимая погрешность 0.02.
  3. Рабочий спектральный диапазон 200-900 мм.
  4. Температура окружающего воздуха 10-350С.
  5. Средний срок службы – не менее 5 лет.
  6. Габариты: 305х320х110 мм.
  7. Масса – 6,5 кг.
  8. Питание от электросети 220 В.
  9. Питание от батареи 12 В.
  10. Частота тока 50 Гц.

Цена прибора: 564 000 рублей.

Экотестер «СОЭКС» — это дозиметрический прибор для бытового пользования, позволяющий определить радиоактивные излучения гамма-частиц и бета-частиц. Этот прибор обладает второй функцией – определение содержания нитратов в воде и продуктах питания.

  • диапазон измерения радиоактивности 3-100000 мкР/ч;
  • диапазон измерения концентрации нитратов: 20-5000 мг./кг;
  • время измерения: 10 сек;
  • питание: 2 батареи аккумуляторы, заряжаемые от электросети 220 В. 10 часов непрерывной работы.

Спектрометр TRIDION™-9 GC-TMS способен производить анализ воды, воздуха и почвы. Это портативный анализатор, производящий качественный и количественный анализ воды (химический и биологический состав воды).

  • размеры 380*390*229 мм;
  • вес: 14,5 кг;
  • рабочая температура: 5-400С;
  • влажность: до 100%;
  • электропитание: от литиевой батареи;
  • ввод пробы: впрыск жидкости;
  • предел обнаружения: от РРВ до РРМ для большинства веществ;
  • запись данных: USB накопитель.

СВЧ-минерализатор «МИНОТАВР®-2» — прибор минерализации воды под воздействием микроволнового поля. Его назначение – разложение органических веществ в воде для проведения физико-химического анализа.

Цена прибора: 357 000 рублей.

Чтобы получить официальный документ о пригодности воды к использованию в хозяйстве или на производстве нужно обратиться в сертифицированную лабораторию.

Корректность анализов будет зависеть от соблюдения технологии отбора проб и возможностей оборудования. Гарантию на чистоту анализа можно получить только в лаборатории.

источник

Для контроля качества питьевой воды используют методы определения, указанные для:

  • микробиологических и паразитологических показателей в таблице 1;
  • обобщенных показателей в таблице 2;
  • некоторых неорганических веществ в таблице 3;
  • некоторых органических веществ в таблице 4;
  • некоторых вредных химических веществ, поступающих и образующихся в процессе обработки воды, в таблице 5;
  • органолептических свойств питьевой воды в таблице 6;
  • радиационной безопасности питьевой воды в таблице 7.

Таблица 1 — Методы определения микробиологических и паразитологических показателей

Наименование показателя

Метод определения, обозначение НД

Микробиологические и паразитологические показатели для централизованных систем питьевого водоснабжения

Микробиологические показатели для нецентрализованных систем питьевого водоснабжения

* Действует до утверждения соответствующего государственного стандарта.

Таблица 2 — Методы определения обобщенных показателей качества питьевой воды

Метод определения, обозначение НД

Измеряется рН-метром, погрешность не более 0,1 рН

Общая минерализация (сухой остаток)

Поверхностно-активные вещества (ПАВ) анионо-активные

Флуориметрия, спектрофотометрия (ГОСТ Р 51211)

* Действует до утверждения соответствующего государственного стандарта.

Таблица 3 — Методы определения содержания некоторых неорганических веществ в питьевой воде

Наименование показателя

Метод определения, обозначение НД

Атомно-абсорбционная спектрофотометрия |7]*

Атомно-эмиссионная спектрометрия [8]*

Атомно-эмиссионная спектрометрия [8]*

Атомно-абсорбционная спектрофотометрия [11]*

Атомно-эмиссионная спектрометрия [8]*

Флуориметрия (ГОСТ Р 51210)

Атомно-эмиссионная спектрометрия [8]*

Атомно-абсорбционная спектрофотометрия [11]*

Атомно-эмиссионная спектрометрия [8]*

Атомно-абсорбционная спектрофотометрия [15]*

Атомно-эмиссионная спектрометрия [8]*

Атомно-абсорбционная спектрофотометрия [11]*

Атомно-эмиссионная спектрометрия [8]*

Атомно-абсорбционная спектрофотометрия [16]*

Атомно-эмиссионная спектрометрия [8]*

Инверсионная вольтамперометрия [18]*

Атомно-абсорбционная спектрофотометрия [11]*

Атомно-эмиссионная спектрометрия [8]*

Инверсионная вольтамперометрия [19]*

Атомно-абсорбционная спектрофотометрия [21]*

Атомно-эмиссионная спектрометрия [8]*

Атомно-абсорбционная спектрофотометрия [16]*

Атомно-эмиссионная спектрометрия [8]*

Атомно-абсорбционная спектрометрия (ГОСТ Р 51212)

Атомно-абсорбционная спектрофотометрия [11]*

Атомно-эмиссионная спектрометрия [8]*

Инверсионная вольтамперометрия [18]*

Атомно-абсорбционная спектрофотометрия [21]*

Атомно-эмиссионная спектрометрия [8]*

Эмиссионная пламенная фотометрия (ГОСТ 23950)

Атомно-эмиссионная спектрометрия [8]*

Турбидиметрия, гравиметрия (ГОСТ 4389)

Фотометрия, потенциометрия с ионоселективным электродом (ГОСТ 4386)

Атомно-абсорбционная спектрофотометрия [30]*

Атомно-эмиссионная спектрометрия [8]*

Атомно-абсорбционная спектрофотометрия [11]*

Атомно-эмиссионная спектрометрия [8]*

Инверсионная вольтамперометрия [35]*

* Действует до утверждения соответствующего государственного стандарта.

Таблица 4 — Методы определения содержания некоторых органических веществ в питьевой воде

Наименование показателя

Метод определения, обозначение НД

Газожидкостная хроматография (ГОСТ Р 51209)

Газожидкостная хроматография (ГОСТ Р 51209)

2,4-Д (2,4-дихлорфеноксиуксусная кислота)

Газожидкостная хроматография [36]*

Газожидкостная хроматография [37]*

Газожидкостная хроматография [38]*

Таблица 5 — Методы определения вредных химических веществ, поступающих и образующихся в процессе обработки воды

Наименование показателя

Метод определения, обозначение НД

Хлор остаточный свободный

Хлор остаточный связанный

Хлороформ (при хлорировании воды)

Газожидкостная хроматография [40]*

Формальдегид (при озонировании воды)

Активированная кремнекислота (по Si)

* Действует до утверждения соответствующего государственного стандарта.

Таблица 6 — Методы определения органолептических свойств питьевой воды

Наименование показателя

Метод определения, обозначение НД

Измерение мутномером с погрешностью определения не более 10 %

* Действует до утверждения соответствующего государственного стандарта.

Таблица 7 — Методы определения радиационной безопасности питьевой воды

Наименование показателя

определения

При выборе аттестованных методик принимают во внимание следующее:

  • диапазоны измерений;
  • характеристики погрешности;
  • наличие средств измерений, вспомогательного оборудования, стандартных образцов, реактивов и материалов;
  • оценку влияющих факторов;
  • квалификацию персонала.

[1] МИ 2427-97 Рекомендация. ГСИ. Оценка состояния измерений в испытательных и измерительных лабораториях

[2] МУК 4.2.671-97 Методические указания. Методы контроля. Биологические и микробиологические факторы. Методы санитарно-микробиологического анализа питьевой воды. Утверждены Минздравом России. М., 1997

[3] МУК 4.2.668-97 Методические указания. Методы контроля. Биологические и микробиологические факторы. Санитарно-паразитологическое исследование. Утверждены Минздравом России. М., 1997

[4] ИСО 8467-93 Качество воды. Определение перманганатного индекса. Указания по внедрению нового ГОСТ 2761-84 «Источники централизованного хозяйственно-питьевого водоснабжения. Гигиенические, технические требования и правила выбора». Утверждены Минздравом СССР. М., 1986

[5] РД 52.24.476-95 Методические указания. ИК-фотометрическое определение нефтепродуктов в водах. Утверждены Росгидрометом

[6] РД 52.24.488-95 Методические указания. Фотометрическое определение суммарного содержания летучих фенолов в воде после отгонки с паром. Утверждены Росгидрометом. ИСО 6439-90 Качество воды. Определение фенольного индекса с 4-амино-антипирином. Спектрометрические методы после перегонки

[7] РД 52.24.377-95 Методические указания. Атомно-абсорбционное определение металлов (Al, Ag, Be, Cd, Со, Cr, Сu, Fe, Mn, Mo, Ni, Pb, V, Zn) в поверхностных водах суши с прямой электротермической атомизацией проб. Утверждены Росгидрометом

[8] ИСО 11885-96 Качество воды. Определение 33 элементов атомно-эмиссионной спектрометрией с индуктивносвязанной плазмой

[9] МУК 4.1.057-96 Сборник методических указаний МУК 4.1.057-96 — МУК 4.1.081-96. Методы контроля. Химические факторы. Измерение массовой концентрации веществ люминесцентными методами в объектах окружающей среды. Утвержден Минздравом России, М., 1996

[10] УМИ-87 Унифицированные методы исследования качества вод. Часть 1, кн. 2, 3. Методы химического анализа вод. СЭВ, М., 1987

[11] РД 52.24.377-95 Методические указания. Атомно-абсорбционное определение металлов (Al, Ag, Be, Cd, Со, Сr, Си, Fe, Mn, Mo, Ni, Pb, V, Zn) в поверхностных водах суши с прямой электротермической атомизацией проб. Утверждены Росгидрометом

[12] ИСО 9390-90 Качество воды. Определение бората. Спектрометрический метод с использованием азометина-Н

[13] МУК 4.1.057-96 Сборник методических указаний МУК 4.1.057-96 — МУК 4.1.081-96. Методы контроля. Химические факторы. Измерение массовой концентрации веществ люминесцентными методами в объектах окружающей среды. Утвержден Минздравом России, М., 1996

[14] РД 52.24.436-95 Методические указания. Фотометрическое определение в водах кадмия с кадионом. Утверждены Росгидрометом

[15] ИСО 5961-94 Качество воды. Определение кадмия атомно-абсорбционной спектрометрией. ИСО 8288-86 Качество воды. Определение содержания кобальта, никеля, меди, цинка, кадмия и свинца. Спектрометрический метод атомной абсорбции в пламени. РД 52.24.377-95 Методические указания. Атомно-абсорбционное определение металлов (Al, Ag, Be, Cd, Со, Сr, Си, Fe, Mn, Mo, Ni, Pb, V, Zn) в поверхностных водах суши с прямой электротермической атомизацией проб. Утверждены Росгидрометом

[16] РД 52.24.377-95 Методические указания. Атомно-абсорбционное определение металлов (Al, Ag, Be, Cd, Со, Сr, Си, Fe, Mn, Mo, Ni, Pb, V, Zn) в поверхностных водах суши с прямой электротермической атомизацией проб. Утверждены Росгидрометом. ИСО 8288-86 Качество воды. Определение содержания кобальта, никеля, меди, цинка, кадмия и свинца. Спектрометрический метод атомной абсорбции в пламени

[17] МУК 4.1.063-96 Сборник методических указаний МУК 4.1.057-96 — МУК 4.1.081-96. Методы контроля. Химические факторы. Измерение массовой концентрации веществ люминесцентными методами в объектах окружающей среды. Утвержден Минздравом России, М., 1996

[18] РД 52.24.371-95 Методические указания. Методика выполнения измерений массовой концентрации меди, свинца и кадмия в поверхностных водах суши инверсионным вольтамперометрическим методом. Утверждены Росгидрометом

[19] РД 52.24.378-95 Методические указания. Инверсионное вольтамперометрическое определение мышьяка в водах. Утверждены Росгидрометом

[20] РД 33-5.3.02-96 Качество вод. Количественный химический анализ вод. Методика выполнения измерений массовой концентрации мышьяка в природных и очищенных сточных водах титрометрическим методом с солью свинца в присутствии дитизона

[21] РД 20.1:2:3.19-95 Методики выполнения измерений бериллия, ванадия, висмута, кадмия, кобальта, меди, молибдена, мышьяка, никеля, олова, свинца, селена, серебра, сурьмы в питьевых природных и сточных водах

[22] РД 52.24.494-95 Методические указания. Фотометрическое определение никеля с диметилглиоксимом в поверхностных водах суши. Утверждены Росгидрометом

[23] РД 52.24.380-95 Методические указания. Фотометрическое определение в водах нитратов с реактивом Грисса после восстановления в кадмиевом редукторе. Утверждены Росгидрометом

[24] ИСО 7890-1-86 Качество воды. Определение содержания нитратов. Часть 1. Спектрометрический метод с применением 2,6-диметилфенола. ИСО 7890-2-86 Качество воды. Определение содержания нитратов. Часть 2. Спектрометрический метод с применением 4-фторфенола после перегонки. ИСО 7890-3-88 Качество воды. Определение содержания нитратов. Часть 3. Спектрометрический метод с применением сульфосалициловой кислоты

[25] ИСО 10304-1-92 Качество воды. Определение растворенных фторида, хлорида, нитрита, ортофосфата, бромида, нитрата и сульфата методом жидкостной ионной хроматографии. Часть 1. Метод для вод с малыми степенями загрязнения. ИСО 10304-2-95 Качество воды. Определение растворенных бромида, хлорида, нитрата, нитрита, ортофосфата и сульфата методом жидкостной ионной хроматографии. Часть 2. Метод для загрязненных вод

[26] ИСО 6777-84 Качество воды. Определение нитритов. Молекулярно-абсорбционный спектрометрический метод

[27] МУК 4.1.065-96 Сборник методических указаний МУК 4.1.057-96 — МУК 4.1.081-96. Методы контроля. Химические факторы. Измерение массовой концентрации веществ люминесцентными методами в объектах окружающей среды. Утвержден Минздравом России, М., 1996

[28] ПНД Ф 14.1:2:4.41-95 Методика выполнения измерений массовой концентрации свинца криолюминесцентным методом в пробах природной, питьевой и сточной воды на анализаторе жидкости «Флюорат-02». Утверждена Минприроды России

[29] МУК 4.1.067-96 Сборник методических указаний МУК 4.1.057-96 — МУК 4.1.081-96. Методы контроля. Химические факторы. Измерение массовой концентрации веществ люминесцентными методами в объектах окружающей среды. Утвержден Минздравом России, М., 1996

[30] РД 52.24.377-95 Методические указания. Атомно-абсорбционное определение металлов (Al, Ag, Be, Cd, Со, Сr, Си, Fe, Mn, Mo, Ni, Pb, V, Zn) в поверхностных водах суши с прямой электротермической атомизацией проб. Утверждены Росгидрометом. ИСО 9174-90 Качество воды. Определение содержания общего хрома. Спектрометрические методы атомной абсорбции

[31] РД 52.24.446-95 Методические указания. Фотометрическое определение в водах хрома (VI) с дифенилкарбазидом. Утверждены Росгидрометом

[32] МУК 4.1.062-96 Сборник методических указаний МУК 4.1.067-96 — МУК 4.1.081-96. Методы контроля. Химические факторы. Измерение массовой концентрации веществ люминесцентными методами в объектах окружающей среды. Утвержден Минздравом России, М., 1996

[33] ИСО 6703-1-84 Качество воды. Определение содержания цианидов. Часть 1. Определение общего содержания цианидов. ИСО 6703-2-84 Качество воды. Определение содержания цианидов. Часть 2. Определение содержания легко выделяемых цианидов. ИСО 6703-3-84 Качество воды. Определение содержания цианидов. Часть 3. Определение содержания хлористого циана

[34] МУК 4.1.058-96 Сборник методических указаний МУК 4.1.057-96 — МУК 4.1.081 -96. Методы контроля. Химические факторы. Измерение массовой концентрации веществ люминесцентными методами в объектах окружающей среды. Утвержден Минздравом России, М., 1996

[35] РД 52.24.373-95 Методические указания. Методика выполнения измерений массовой концентрации цинка в поверхностных водах суши инверсионным вольтамперометрическим методом. Утверждены Росгидрометом

[36] РД 52.24.438-95 Методические указания. Методика выполнения измерений массовой концентрации дикотекса и 2,4-Д в поверхностных водах суши газохроматографическим методом. Утверждены Росгидрометом

[37] МУК 4.1.646-96 Сборник методических указаний МУК 4.1.646-96 — МУК 4.1.660-96. Методы контроля. Химические факторы. Методические указания по определению концентраций химических веществ в воде централизованного хозяйственно-питьевого водоснабжения. Утверждены Минздравом России, М., 1996

[38] РД 52.24.473-95 Методические указания. Газохроматографическое определение летучих ароматических углеводородов в водах. Утверждены Росгидрометом. МУК 4.1.650-96 Сборник методических указаний МУК 4.1.646-96 — МУК 4.1.660-96. Методы контроля. Химические факторы. Методические указания по определению концентраций химических веществ в воде централизованного хозяйственно-питьевого водоснабжения. Утвержден Минздравом России, М., 1996

[39] РД 52.24.440-95 Методические указания. Определение суммарного содержания 4-7-ядерных полициклических ароматических углеводородов (ПАУ) в водах с использованием тонкослойной хроматографии в сочетании с люминесценцией. Утверждены Росгидрометом

[40] РД 52.24.482-95 Методические указания. Газохроматографическое определение летучих хлорзамещенных углеводородов в водах. Утверждены Росгидрометом

[41] РД 52.24.492-95 Методические указания. Фотометрическое определение в водах формальдегида с ацетилацетоном. Утверждены Росгидрометом

[42] ПНД Ф 14.1:2:4.120-96 Методика выполнения измерений массовой концентрации формальдегида флуориметрическим методом в пробах природной, питьевой и сточной воды на анализаторе жидкости «Флюорат-02». Утверждена Минприроды России

[43] РД 52.24.432-95 Методические указания. Фотометрическое определение кремния в виде синей (восстановленной) формы молибдокремневой кислоты в поверхностных водах суши. Утверждены Росгидрометом. РД 52.24.433-95 Методические указания. Фотометрическое определение кремния в виде желтой формы молибдокремневой кислоты в поверхностных водах суши. Утверждены Росгидрометом

[44] ИСО 7027-90 Качество воды. Определение мутности

[45] ИСО 9696-92 Качество воды. Измерение «большой альфа»-активности в неминерализованной воде. Метод с применением концентрированного источника

[46] ИСО 9697-92 Качество воды. Измерение «большой бета»-активности в неминерализованной воде

[47] МИ 2334-95 Рекомендация. ГСИ. Смеси аттестованные. Порядок разработки, аттестации и применения

[48] МИ 2335-95 Рекомендация. ГСИ. Внутренний контроль качества результатов количественного химического анализа

Оборудование для контроля качества питьевой воды можно посмотреть в Каталоге оборудования, в соответствующих разделах.

источник