Меню Рубрики

Муликовская резников методы анализа природных вод

Продавец Описание Состояние Фото Купить по цене
1 BS-ivanhoe
Воронежская обл., Семилуки.
Москва Госгеолтехиздат 1954г. 236с твердый переплет, увеличенный формат. Состояние: обложка хор, внутри оч-хор Купить за 190 руб.
2 BS-amigo
Саратов.
М. Гостехиздатгеол 1954г. 236c. Твердый переплет, Увеличенный формат. Состояние: хорошее Купить за 200 руб.
3 BS-Orion
Москва.
М. Госгеолтехиздат 1954г. 236 c. Твердый (картонный) сине-голубой с черным ледериновым корешком переплет, увеличенный формат. Состояние: очень хорошее. Мелкая затертая владельческая надпись на переднем форзаце. Микропотертости краев картонных крышек переплета. Легкое запыление задней белой крышки переплета. Нечитанная книга. Купить за 350 руб.
4 BS-Orion
Москва.
М. Госгеолтехиздат 1963г. 404 с., илл. Твердый издательский (картонный) сине-зеленый с посеребренным ледериновым корешком переплет, увеличенный формат. Состояние: очень хорошее. Небольшие потертости и примятости уголков картонных крышек переплета. Блок в отличном состоянии. Купить за 450 руб.
5 BS-ivanhoe
Воронежская обл., Семилуки.
Москва Недра. 1970г. 488с твердый переплет, увеличенный формат. Состояние: хор оч-хор, подпись владельца Купить за 480 руб.
Лучшие продавцы >>>

Copyright &#169 1999 — 2019, Ведущий и K&#176. Все права защищены.
Вопросы, предложения пишите в книгу

источник

—> Наука и образование » Фундаментальные дисциплины » Химия >> Скачать книгу
Название: Методы анализа природных вод
Автор: Резников А.А., Муликовская Е.П., Соколов И.Ю.
Издательство: Недра
Год издания: 1970
Страниц: 488
Язык: Русский
Формат: DjVu
Качество: хорошее
Размер: 5 Мб

В книге приведено описание современных методов анализа химического состава природных вод (весовые, объемные, колориметрические, турбидиметрические, пламенно-фотометрические, флуориметрические, амальгамнополярографические; методы определения рН и Eh). Значительное место отведено методам определения микроколичеств элементов: Al. , Be, B, Br, V, W, Ga, Ge, Au, In, Cd, Ca, K, Co, Li, Mg, Mn, Cu, Mo, As, Ni, Nb, Hg, Rb, Pb, Ce, Ag, Sr, Te, U, P, F, Cs, Zn, играющих большую роль в жизнедеятельности животных и растительных организмов, а также являющихся поисковым критерием месторождений полезных ископаемых.
Изложены методы определения органических веществ (нафтеновые кислоты, фенолы, общая окисляемость), растворенных газов (Co2, O2, H2S). Описываются приборы и аппаратура, полевые гидрохимические лаборатории. Приводятся сведения по отбору проб воды на анализ, документации анализа, контролю и обработке результатов, классификации природных вод и графических способов изображения анализов, расчеты форм состояния слабых кислот (CO2, H2S, H4SiO4, H3AsO3, H3AsO4), расчеты максимальных концентраций ионов, входящих в состав малорастворимых гидроокисей (Fe(OH)3; Fe(OH)2, Al(OH)3, HAlO2, Mg(OH)2), расчеты содержания в кислых водах с pH 4 Fe3+, FeOH2+, SO42-, HSO4-, H+.
Книга является практическим руководством по химическому анализу состава природных вод в основном применительно к задачам геологической службы. Кроме того, она может быть успешно использована для решения вопросов питьевого и технического водоснабжения, в сельском хозяйстве, курортологии, мелиорации.

Другие новости, похожие на книгу Резников А.А., Муликовская Е.П., Соколов И.Ю. — Методы анализа природных вод:

автор: energy555 Комментарии (0)

Вы можете разместить ссылку на книгу Резников А.А., Муликовская Е.П., Соколов И.Ю. — Методы анализа природных вод на своем сайте, блоге, любимом форуме или просто поделиться ей с друзьями:

HTML ссылка на книгу Резников А.А., Муликовская Е.П., Соколов И.Ю. — Методы анализа природных вод:

Ссылка для форума книга Резников А.А., Муликовская Е.П., Соколов И.Ю. — Методы анализа природных вод:

Ссылка на книгу Резников А.А., Муликовская Е.П., Соколов И.Ю. — Методы анализа природных вод:

Помощь по использованию электронной библиотеки книг:

Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

ДОКУМЕНТАЛЬНОЕ ВИДЕО
( BBC. Discovery
National Geographic
Познавательные телепередачи )

источник

ВЫБОР УСЛОВИЙ ПРОВЕДЕНИЯ АНАЛИЗА ПРИРОДНЫХ ВОД НА РЕНТГЕНОВСКОМ СПЕКТРОМЕТРЕ С ПОЛНЫМ ВНЕШНИМ ОТРАЖЕНИЕМ

Оценена возможность использования рентгенофлуоресцентного анализа с полным внешним отражением (РФА ПВО) для определения ряда элементов в природных водах разной степени минерализации. Изучено влияние различных факторов на результаты РФА ПВО: поверхностной плотности сухого остатка воды на подложке, степени разбавления проб бидистиллированной водой и раствором поверхностно-активного вещества Triton X-100, концентрации макроэлементов, концентрации внутреннего стандарта, многократного накапывания. Для ряда проб результаты РФА ПВО сопоставлены с результатами, полученными методами «мокрой» химии и ИСП-МС. Представлены результаты определения ряда элементов в водопроводной воде до и после фильтрования с использованием разных бытовых фильтров.

Ключевые слова: рентгенофлуоресцентный анализ с полным внешним отражением, РФА ПВО, TXRF, природные воды.

Резников А.А., Муликовская Е.П., Соколов И.Ю. Методы анализа природных вод. М.: «Недра», 1970. 488 с.

Зарубина Р.Ф., Копылова Ю.Г., Зарубин А.Г. Анализ и улучшение качества природных вод. Часть 2. Методы оценки качества природных вод: учебное пособие. Томск: Изд. Томского политехнического университета, 2011. 151 с.

Шуваева О.В. Современное состояние и проблемы элементного анализа вод различной природы: Аналитический обзор. Новосибирск: Изд. ГПНТБ СО РАН, серия «Экология», 1996. 48 с.

Зарубина Р.Ф., Копылова Ю.Г. Анализ и улучшение качества природных вод. Часть 1. Анализ и оценка качества природных вод: учебное пособие. Томск: Изд. Томского политехнического университета, 2007. 168 с.

Environmental matrix reference materials. [Электронный ресурс]: http://www.referanskimya.com/pdfs/lgc/01.Enviro_Waters.pdf (дата обращения 10.10.2012).

Кузьмин Н.М., Золотов Ю.А. Концентрирование следов элементов. М.: Наука, 1988. 268 с.

Экспериандова Л.П. Нетрадиционные приемы в анализе функциональных материалов и объектов окружающей среды. Харьков: «ИСМА», 2011. 252 с.

Определение микроэлементов в природных средах: Аналитические исследования и проблемы (на примере Байкальского региона): Аналит. обзор / А.И. Кузнецова и [др.]. Новосибирск: Изд. ГПНТБ СО РАН, серия «Экология», 1994. 84 с.

Klockenkämper R. Total-reflection X-ray fluorescence analysis. New York: Wiley Interscience, 1997. 245 p.

Ревенко А.Г. Особенности методик анализа геологических образцов с использованием рентгенофлуоресцентных спектрометров с полным внешним отражением (TXRF) // Аналитика и контроль. 2010. Т. 14, № 2. С. 42-64.

Алов Н.В. Рентгенофлуоресцентный анализ с полным внешним отражением: физические основы и аналитическое применение (Обзор) // Заводская лаборатория. Диагностика материалов. 2010. Т. 76, № 1. С. 4-14.

Wobrauschek P. Total-reflection X-ray fluorescence analysis – a review // X-Ray Spectrom. 2007. V. 36, № 5. P. 289-300.

Application of total reflection XRF to elemental studies of drinking water / M.A. Barreiros et [al.] // X-Ray Spectrom. 1997. V. 26, № 4. P. 165-168.

Ревенко А.Г., Гэрбиш Ш., Петрова Г.П. Рентгенофлуоресцентный многоэлементный анализ природных вод // Тез. докл. Всеукраинской конф. по анал. химии. Харьков: Изд-во Института монокристаллов НАН Украины, 2000. С. 95.

Kunimura S., Kawai J. Trace elemental analysis of commercial bottled drinking water by a portable total reflection X-ray fluorescence spectrometer // Anal. Sci. 2007. V. 23, № 10. P. 1185-1188.

Kump P., Necemer M., Veber M. Determination of trace elements in mineral water using total reflection X-Ray fluorescence spectrometry after preconcentration with ammonium pyrrolidinedithiocarbamate // X-Ray Spectrom. 1997. V. 26, № 4. P. 232-236.

Performance of total reflection and grazing emission X-ray fluorescence spectrometry for the determination of trace metals in drinking water in relation to other analytical techniques / B. Hołynska et [al.] // Fresenius J. Anal. Chem. 1998. V. 362, № 3. P. 294–298.

Analysis of mineral water from Brazil using total reflection X-ray fluorescence by synchrotron radiation / A.C.M. Costa et [al.] // Spectrochim. Acta B. 2003. V. 58, № 12. P. 2199-2204.

Lieser K.H., Flakowski M., Hoffmann P. Determination of trace elements in small water samples by total reflection X-ray fluorescence (TXRF) and by neutron activation analysis (NAA) // Fresenius J. Anal. Chem. 1994. V. 350. P. 135-138.

Stossel R.P., Prange A. Determination of trace elements in rainwater by total reflection X-ray fluorescence // Anal. Chem. 1985. V. 57, № 14. P. 2880-2885.

The use of a portable total reflection X-ray fluorescence spectrometer for field investigation / M. Mages et [al.] // Spectrochim. Acta. 2003. V. 58B, № 12. P. 2129-2138.

Evaluation of distribution and bioavailability of Cr, Mn, Fe, Cu, Zn and Pb in the waters of the upper course of the Lerma River / P. Avila-Perez et [al.] // X-Ray Spectrom. 2007. V. 36, № 5. P. 361-368.

Water quality assessment of Toledo River and determination of metal concentrations by using SR-TXRF technique / F.R. Espinoza-Quinones et [al.] // J. Radioanal. Nucl. Chem. 2010. V. 283, № 2. P. 465-470.

Freimann P., Schmidt D. Application of total reflection X-ray fluorescence analysis for the determination of trace metals in the North Sea // Spectrochim. Acta. 1989. V. 44B, № 5. P. 505-510.

Staniszewski B., Freimann P. A solid phase extraction procedure for the simultaneous determination of total inorganic arsenic and trace metals in seawater: Sample preparation for total-reflection X-ray fluorescence // Spectrochim. Acta. 2008. V. 63B, № 11. P. 1333-1337.

Multi-element analysis of sea water from Sepetiba Bay, Brazil, by TXRF using synchrotron radiation / A.C.M. Costa et [al.] // X-Ray Spectrom. 2005. V. 34, № 3. P. 183-188.

Analysis of inlet and outlet industrial wastewater effluents by means of benchtop total reflection X-ray fluorescence spectrometry / E. Margui et [al.] // Chemosphere. 2010. V. 80, № 3. P. 263-270.

Stosnach H. Trace element analysis using a benchtop TXRF spectrometer // ICDD. Advances in X-ray Analysis. 2005. V. 48. P. 236-245.

Рентгенофлуоресцентный элементный анализ подземных вод при помощи спектрометра на основе полного внешнего отражения / В.М. Разномазов и [др.] // Экология промышленного производства. 2009. № 4. С. 2-7.

Applicability of direct total reflection X-ray fluorescence analysis for selenium determination in solutions related to environmental and geochemical studies / Margui E. et [al.] // Spectrochim. Acta. 2010. V. 65B, № 12. P. 1002-1007.

Оценка возможности применения рентгеновского спектрометра с полным внешним отражением S2 PICOFOX для анализа горных пород / С.В. Пантеева и [др.] // Аналитика и контроль. 2011. Т. 15, № 3. С. 344-352.

Определение Rb, Sr, Cs, Ba, Pb в калиевых полевых шпатах из малых навесок методом рентгенофлуоресцентного анализа с полным внешним отражением // Т.Ю. Черкашина и [др.] // Аналитика и контроль. 2012. Т.16, № 3. С. 305-311.

Пашкова Г.В., Смагунова А.Н., Финкельштейн А.Л. Возможности рентгенофлуоресцентного анализа молочных продуктов с помощью спектрометра с полным внешним отражением // Химия в интересах устойчивого развития. 2011. № 3. С. 295-304.

TRFA-спектрометр для элементного анализа Руководство по эксплуатации PICOFOX. Bruker AXS Microanalysis GmbH, 2008. 121 с.

Савенко В.С. Биофильность химических элементов и её отражение в химии океана // Вест. МГУ, сер. 5, геогр. 1997. №1. С. 3-7.

Nelson D. Natural variations in the composition of groundwater. [Электронный ресурс]: http://public.health.oregon.gov/HealthyEnvironments/DrinkingWater/SourceWater/Documents/gw/chem.pdf (дата обращения 22.10.2012).

Лосев Н.Ф. Количественный рентгеноспектральный флуоресцентный метод анализа. М.: Наука, 1969. 336 с.

Klockenkämper R., von Bohlen A. Determination of critical thickness and the sensitivity for thin film analysis by total reflection X-ray fluorescence spectrometry // Spectrochim. Acta B. 1989. V. 44, № 5. P. 461-469.

Источники погрешностей при рентгенофлуоресцентном анализе на спектрометрах с полным внешним отражением и их учёт способом внутреннего стандарта / Г.В. Павлинский и [др.] // Ж. аналит. химии. 2002. Т. 57, № 3. С. 231-239.

Von Bohlen A. Total-reflection X-ray fluorescence and grazing incidence X-ray spectrometry – Tools for micro- and surface analysis. A review // Spectrochim. Acta. 2009. V. 64B, № 10. P. 821-832.

Saturation effects in TXRF on micro-droplet residue samples / D. Hellin et [al.] // J. Anal. At. Spectrom. 2004. V. 19, № 12. P. 1517-1523.

Optimizing total reflection X-ray fluorescence for direct trace element quantification in proteins I: Influence of sample homogeneity and reflector type / G. Wellenreuther et [al.] // Spectrochim. Acta. 2008. V. 63B, № 12. P. 1461-1468.

Considerations on the ideal sample shape for total reflection X-ray fluorescence analysis / C. Horntrich et [al.] // Spectrochim. Acta. 2011. V. 66B, № 11-12. P. 815-821.

Karjou J. Matrix effect on the detection limit and accuracy in total reflection X-ray fluorescence analysis of trace elements in environmental and biological samples // Spectrochim. Acta. 2007. V. 62B, № 2. P. 177-181.

Griesel S., Reus U., Prange A. Electro-deposition as a sample preparation technique for total-reflection X-ray fluorescence analysis // Spectrochim. Acta. 2001. V. 56B, № 11. P. 2107-2115.

источник

Данная статья является реферативным изложением основной работы. Полный текст научной работы, приложения, иллюстрации и иные дополнительные материалы доступны на сайте III Международного конкурса научно-исследовательских и творческих работ учащихся «Старт в науке» по ссылке: https://www.school-science.ru/0317/1/28656.

Вода – это вещество, которое подарило на земле жизнь. Без нее никогда не возникло бы растений, животных и, конечно же, человека в современном понимании этого слова. Мы все приходим в этот мир благодаря воде, поддерживаем свой организм в хорошем состоянии с ее помощью, просто живем…

Человеку нужна вода и прежде всего – чистая, недаром одна из главных экологических проблем человечества – качество питьевой воды, которая напрямую связана с состоянием здоровья населения.

А какая вода нужна другим живым организмам, живущим на планете Земля? Например, растениям. Чувствительны ли они к загрязненности воды или же к идеально очищенной. В настоящее время многие люди занимаются выращиванием рассады в домашних условиях. Они в большинстве случаев не задумываются о том, какой водой поливать свой «огород на подоконнике». Порой они теряются в догадках: от чего это их растения не дают всходов, или медленно растут… Наблюдая за данным процессом у себя дома, я предположила, что ответы на эти вопросы кроются в химическом составе воды, которую используют для полива. Исходя из этого, я выдвинула гипотезу: химический состав воды – один их главных факторов роста и развития живого организма.

Актуальность выбранной темы состоит, прежде всего, в том, что в последнее время активно возрождается интерес к очистке воды, к фильтрам для воды, очистным системам и подобному оборудованию. Порой некоторые садоводы используют для полива очищенную воду. А при выращивании рассады абсолютно не учитывают особенности водопроводной воды. Возможно, мои исследования помогут разбить «гордиев узел» – объяснить любителям «домашнего огорода» причины проблем выращивания ими рассады.

Цель моей работы: установить степень влияния воды из разных источников на рост и развитие растений, на примере зеленого гороха.

• изучить и проанализировать литературные источники о составе и свойствах различных видов воды;

• провести исследование проб воды, взятых из разных источников, используя методики химического и органолептического исследования;

• заложить опыты с использованием зеленого гороха и проб воды, взятых из разных источников;

• провести эксперимент, наглядно показывающий рост и развитие зеленого гороха при использовании воды из разных источников;

• составить рекомендации, проанализировав результаты исследования.

Объект исследования: вода из разных источников.

Предмет исследования: рост и развитие растения зеленый горох.

– анализ литературы по проблеме исследования;

– экспериментальный – исследование химического состава воды (органолептический (включение обонятельных рецепторов и анализатора по методике Муравьёва А.Г.) и колориметрический, визуально-колориметрический (включение зрительных рецепторов и анализатора по методике Муравьёва А.Г.);

– измерение (например, определение количественных значений органолептических, общих, индивидуальных показателей; составление схемы);

– постановка опытов и наблюдение за процессом роста и развития растений;

– сравнение (степени загрязнения проб воды, взятых из различных источников, интенсивности роста зеленого гороха, поливаемого разной водой);

– описание изменений, происходящих с предметом исследования.

Практическая значимость данной работы состоит в том, что так как в при анализе литературных источников я не обнаружила конкретной литературы по исследуемой проблематике, лишь несколько статей – советов, как поливать комнатные растения, поэтому я считаю, что моя работа, основанная на экспериментально проверенных в нескольких повторах опытах, может стать своеобразным путеводителем для создания рекомендаций по данной тематике, которые помогут лучшему содержанию комнатных растений, выращиванию рассады в условиях городских квартир и в перспективе получению хорошего урожая овощных культур.

Обзор литературы по проблеме исследования

Свойства воды, определяющие ее биологическое значение

«Вода – это универсальный растворитель. Если этой уникальной жидкости предоставить достаточно времени, она растворит любое твердое вещество. На это не способно ни одно вещество в природе. Именно из-за данного свойства химически чистая вода (не содержащая примесей в принципе) –лишь теория, пока не доступная практике.

Вода – участница химических реакций. Например, благодаря ней в организме животных расщепляются белки, углеводы, жиры, и выделяется энергия, которая дает нам всем возможность жить. При фотосинтезе благодаря активному участию воды выделяется кислород, который необходим всем существам на земле.

Вода – это терморегуляция. Как бы это ни было удивительно, именно вода отвечает за поддержание постоянной температуры тела. Благодаря ней тепло равномерно распределяется по организму, температура не изменяется постоянно в зависимости от условий окружающей среды.

Вода – это уникальный транспорт. Благодаря удивительной жидкости растения и животные могут успешно насыщаться питательными веществами. Вода является одним из основных компонентов лимфы и крови, играет невероятно важную роль в работе выделительной системы. С помощью этой безликой жидкости к верхушкам растений поступают минеральные соли.

Вода – это упругость клеток и организмов. Как всем известно, воду в жидком состоянии практически нельзя сжать. Благодаря этому она часто выступает скелетом клетки и, как следствие, поддерживает форму органов. Вот, к примеру, самый обычный лист вашего комнатного растения. Он поддерживает постоянную форму исключительно благодаря удивительным возможностям воды» [17].

Вода природная и обработанная

Формирование химического состава природных вод определяют в основном две группы факторов:

– прямые факторы, непосредственно воздействующие на воду (т. е. действие веществ, которые могут обогащать воду растворёнными соединениями или, наоборот, выделять их из воды); состав горных пород, живые организмы, хозяйственная деятельность человека;

– косвенные факторы, определяющие условия, в которых протекает взаимодействие веществ с водой: климат, рельеф, гидрологический режим, растительность, гидрогеологические и гидродинамические условия.

Самой чистой природной водой считают дождевую, снеговую воду; но и она, падая на поверхность земли, увлекает с собой взвешенные в воздухе минеральные, органические и организованные примеси (микроорганизмы). Проходя через слои земли, загрязнённые различными отбросами, вода получает продукты распада этих органических веществ [7].

Человек на свои нужны, использует больше всего пресную воду. Используемая в промышленности, сельском хозяйстве, быту вода поступает обратно в водоемы (реки) в плохо очищенных или вообще неочищенных стоков. Сброс с заводов все тоже приводит к загрязнению воды. Большая проблема в том что, в воду сбрасываются большое количество нефтепродуктов. В нашей области Роспотребнадзор следит за тем, чтобы не было незаконных выбросов.

Химический состав природных вод Ярославской области

Химический состав природных вод первоначально формируется из вод атмосферных осадков. Эти осадки – не дистиллированная вода. Влага, испаряясь с поверхности океана, захватывает соли, растворенные в нем, преимущественно хлориды и сульфаты. По дороге к нам водяные пары поглощают многие другие вещества, выброшенные в атмосферу заводами и фабриками, автомашинами и самолетами. По этой причине снег и дождь, выпадающие в Ярославской области, как и в других, содержат различные соли, кислоты и прочие вещества, далеко не безвредные для растений, животных и человека.

Фильтруясь в почвы и грунт, атмосферные воды вымывают из них соли, кислоты и органические вещества и через короткое время существенно меняют их качественный состав. Количество растворенных веществ и химический состав речных вод зависят от длительности контакта воды с почвогрунтами, их физического состояния, от сезона года.

Антропогенное изменение химического состава вод обусловлено сбросом в реки, озера, океан огромного количества сточных вод. Они уменьшают в водоемах количество растворенного кислорода, изменяют условия разложения органических веществ, увеличивают концентрации азота, фосфора, тяжелых металлов, соединений хлора, ядохимикатов. Качество воды оценивается по нескольким показателям. Основными показателями качества воды являются общее солесодержание, цветность, запах, жесткость, содержание железа, марганца и некоторых других веществ.

Химический состав воды в реке Волге представлен в приложении 1.

Качество воды Рыбинского водохранилища находится между V и VI классами, причем в последние два года устойчиво соответствует категории «очень грязная».

Для природного химического состава воды Рыбинского водохранилища характерно: малое содержание растворенных солей, среди которых преобладают HCO3?, низкие концентрации минеральных форм азота и фосфора; высокое содержание органического вещества гумусовой природы и, как следствие последнего, большая цветность воды. Содержание хлоридов достигает 178 мг/л, сульфатов – 202 мг/л. Содержание нитратов в воде характеризуется сезонностью и не превышает установленных норм. Показатель прозрачности изменяется от 0.1 до 0.9 м и значительное подкисление вод. Цветность воды в водохранилище от 40 до 120 град. Водородный показатель по водохранилищу в пределах от 7,5 до 8,5 рН, реакция среды слабощелочная. Содержание кислорода в период отбора от 5,50 до 8,60 мгО2/л. В летний период БПК5, показатель качества воды, характеризующий суммарное содержание в воде органических веществ, составлял в среднем по водохранилищу 1.28–3 мг О2/л. Исключение составляет створ у н.п. Торово в устье р. Суды, где БПК5 достигают значений 4 мг О2/л. В соответствии с требованиями к составу и свойствам воды в водоемах питьевого водопользования величина ХПК не должна превышать 15 мг О2/л, в зонах рекреации в водных объектах допускается величина до 30 мг О2/л. ХПК в Рыбинском водохранилище изменяется в пределах от 29 мгО2/л (Дарвинский заповедник) до 51 мгО2/л (н.п.Торово, устье р.Суды). Являясь интегральным (суммарным) показателем, ХПК в настоящее время считается одним из наиболее информативных показателей антропогенного загрязнения вод.

Водопроводная вода – питьевая

Вода – один из самых важных источников питания нашего организма должна иметь:

• Цветность до 20 град. Запахи и привкусы при 20°С.

• Хлориды до 350 мг/л. Сульфаты до 500мг/л. Остаточный алюминий до 0,5 мг/л.

• Водородный показатель 6,5–8,5. Общая жесткость до 7 мг-экв/л.

Фтор. При концентрации 2–8 мг/л возможно заболевание эндемическим флюрозом. При концентрации 1,4 – 1,6 мг/л у некоторых лиц на отдельных зубах отмечаются желто-коричневые пятнышки. При значениях значительно ниже оптимальных развивается кариес зубов.0,7–1,5 мг/л

Железо. Избыток придает воде неприятную красно-коричневую или черную окраску, ухудшает ее вкус, вызывает развитие железобактерий, отложение осадка в трубопроводах и их засорение. Избыток увеличивает риск инфарктов, длительное употребление вызывает заболевание печени, оказывает негативное влияние на репродуктивную функцию организма.до 0,3 мг/л.

Марганец. Марганецсодержащие воды отличаются вяжущим привкусом, окраской, оказывают элеобриотоксическое и гонадотоксическое воздействие на организм.до 0,1 мг/л. 12. Бериллийдо 0,0002 мг/л.

Молибден. При содержании свыше 0,25 мг/л вызывает подагру и молибденовую болезнь.до 0,05 мг/л.

Стронций. При концентрации свыше 7 мг/л вызывает уровскую болезнь, рахит, ломкость костей.до 2 мг/л.

Медь. При превышении вызывает заболевание печени, гепатит и анемию.до 1 мг/л.

Цинк. При превышении угнетает окислительные процессы в организме, вызывает анемию.до 5 мг/л.

Нитраты. При превышении в организме человека синтезируется нитрозамины, способствующие образованию злокачественных опухолей, перерастающих в рак желудка.

Более подробно параметры химического состава воды, и их влияние на свойства и качество воды рассмотрены в приложении 2.

Вода кипяченая и фильтрованная

Кипячение не уничтожает даже всех микробов, не говоря уже о тяжелых металлах, пестицидах, гербицидах, нитратах, феноле и нефтепродуктах. Поэтому для очищения воды кипячения ее, увы, недостаточно. Кроме того, на стенках чайника после кипячения оседают полезные соли кальция и магния. А вот кадмий, ртуть, пестициды и нитраты никуда не девают. Во время продолжительного кипячения происходит выпаривание воды и концентрация вредных веществ еще увеличивается.

Кипяченая вода никоим образом не уменьшает содержание в воде солей тяжелых металлов и органических загрязнителей. Превышающее допустимые нормы содержание в водопроводной воде тяжелых металлов, таких как свинец, ртуть, кадмий, цинк, никель, хром, вызывают атеросклероз, полиневрит, гипертонию, поражение костного мозга, потерю остроты зрения. Но самое опасное то, что при кипячении хлорированной водопроводной воды, хлор и его производные вступают во взаимодействие с неизвестным количеством органических веществ, образуя канцерогенные тригалометаны, которые в свою очередь являются одной из причин раковых заболеваний. Т.е. при кипячении, «обстановка» в водопроводной воде только усугубляется. Следует также помнить, что охлажденная кипяченая вода может повторно инфицироваться при хранении в не очень чистой посуде в открытом виде. Поэтому емкость для хранения кипяченой воды нужно тщательно промыть и продезинфицировать [17].

Фильтрованная вода проходит глубокую очистку от активного хлора, фенолов, хлорорганических соединений, нефтепродуктов, пестицидов, токсичных тяжёлых металлов (свинец, ртуть, кадмий и медь) за небольшое (около 30 секунд) время контакта очищаемой воды с сорбентом. Но порой фильтрованная вода теряет кальций и магний.

Выводы по главе: таким образом, анализ различных источников литературы показал, что в природная вода по химическому составу отличается от воды питьевой, также я установила, что в Рыбинске в разных точках забора вода может отличаться по своему химическому составу, что обусловлено антропогенными загрязнениями, и, наконец, кипячение воды не решает проблем очистки воды и даже может стать причиной возникновения тяжелых заболеваний.

Экспериментальную часть я разделила как бы на два направления:

– исследование проб воды, имеющей разные химические характеристики;

– постановка опытов с использованием этих проб воды для проращивания семян гороха зеленого, а затем его полива во время всего периода роста и развития.

Проведение эксперимента было повторено трижды (по два замера в разное время года): первый был проведен в конце августа 2014 года, второй – в середине октября 2014 года, затем в августе 2015 года, и октябре 2015 года, третий замер – август 2016 и октябрь 2016.

В данной работе представлены результаты среднего значения по всем проведенным замерам.

Методики исследования воды, использованные мною

Определение присутствия органических загрязнений в воде органолептическим методом (методика Муравьёва А.Г.)

Методика определения интенсивности запаха воды.

Не секрет, что у веществ может быть запах. Вода дистиллированная его не имеет, а вода из природных источников пахнет (иногда достаточно неприятно). Запах воды обусловлен наличием летучих пахнущих веществ, жидких органических соединений. Характер и интенсивность запаха представлены в таблице 1 приложения 3

Пахучие вещества в воду попадают двумя путями. Это:

– естественное происхождение (от живых или отмерших организмов, влияет характер почвы);

– искусственное происхождение (по вине человека – антропогенного фактора).

Как правило, запах определяют при комнатной (20°С) и повышенной (60°С) температуре. Для питьевой воды допускается запах не более 2 баллов.

1. Возьмите закрытую колбу с пробой воды (2/3 объёма колбы), сильно взболтайте её и, открыв пробку, определите запах.

Для усиления запаха 100 мл исследуемой воды налейте в колбу, накройте часовым стеклом, подогрейте до 50 – 60 С. Затем, сняв колбу с огня, взболтайте в ней воду, снимите часовое стекло и определите характер запаха.

2. Сравните ваши данные с данными таблицы «Определение интенсивности запаха воды» приложение 3 таблица 2.

Определение присутствия посторонних примесей (веществ, ионов) в воде визуально-колориметрическим методом (методика Муравьёва А.Г.)

В переводе с английского colour– цвет. Данный метод основан на сравнении качественного и количественного изменения потоков видимого света при их прохождении через исследуемый раствор и модельный раствор-эталон. В ходе протекания химической реакции компонент природной воды переводится в окрашенное соединение. Изменение окраски раствора фиксируется и сравнивается со шкалой-эталоном. Измерение интенсивности окрашивания визуальным путём в сравнении с модельным эталонным раствором (или нарисованной контрольной шкалой) лежит в основе визуально-колориметрического метода. Растворы-эталоны готовят заранее с помощью реактивов-стандартов с соблюдением заданных значений концентрации целевого компонента. За результат анализа при визуальномколориметрировании принимают то значение концентрации компонента, которое имеет ближайший по окраске образец контрольной шкалы либо модельного эталонного раствора.

источник

Читайте также:  Договора на химический анализ сточных вод