Меню Рубрики

Микробиологические среды для анализа воды

Любые источники воды, используемой в пищу и в бытовых условиях, обязательно нужно проверять на наличие патогенных микроорганизмов. Для этого воду из колодцев, неглубоких скважин, открытых водоемов отправляют в лабораторию на микробиологический анализ. Он позволяет выявить вирусы и бактерии, которые способны привести к отравлению либо заражению человека или животного.

  • Контроль качества питьевой воды централизованного водоснабжения с забором воды из открытых водоёмов (реки, водохранилища) или из подземных источников (артезианские скважины).
  • Контроль эффективности обеззараживания питьевой воды централизованного водоснабжения.
  • Определение состояния и степени пригодности воды источников индивидуального водопользования (скважины, колодцы, родники и т.д.).
  • Наблюдение за санитарно-эпидемиологическим состоянием воды открытых водоёмов.
  • Контроль эффективности обеззараживания воды плавательных бассейнов от бактерий.
  • Проверка качества и степени очистки сточных вод (хозяйственно-фекальных, промышленных, талых и ливневых)
  • Расследование водных вспышек инфекционных болезней.

Вода может загрязняться из-за некачественных труб, их неправильной сварки, разгерметизации стыковочных соединений. При попадании в скважину патогенных микроорганизмов даже самые дорогостоящие и качественные фильтры могут не устранить их полностью. Микробиологический анализ воды позволяет не только выявить патогенную микрофлору, но и оценить потенциальную опасность воды для употребления ее человеком. Благодаря лабораторным исследованиям делается вывод о качестве воды, ее составных компонентах и ее соответствии санитарным требованиям. Перечень показателей, которые определяются в результате анализа воды, зависит от того, какие цели и задачи стоят перед заказчиком. Специалисты испытательного центра «НОРТЕСТ» грамотно проведут необходимые исследования воды. Мы гарантируем точность и объективность полученных результатов. Для проб воды в лаборатории необходимо подготовить чистую емкость и саму жидкость для исследования.

Воду на микробиологический анализ берут из:

  • Колодцев и скважин – индивидуальные источники водоснабжения обязательно подвергаются проверке на биологические загрязнители, а кроме такого контроля важно очищать и дезинфицировать воду в них;
  • Централизованного водопровода – если появилась информация или невооруженным глазом видно, что вода плохая, анализ нужно провести в обязательном порядке;
  • Бутилированных источников – далеко не вся вода, продающаяся расфасованной, соответствует санитарным требованиям, и если возникли сомнения, нужно отдать такую воду на анализ;
  • Сточных вод – когда важно оценить степень влияния человеческой деятельности на окружающую среду или оценить степень функционирования очистных сооружений, тоже следует проанализировать состояние источника воды.

После анализа на выявление патогенной микрофлоры получают результаты, которые дают возможность вовремя предпринять меры по очистке и обеззараживанию питьевой воды, а также не позволяют допустить негативных последствий для человеческого здоровья и даже жизни. Пробы воды позволяют узнать пригодна ли скважина для питья.

Проверять воду на патогенную микрофлору специалисты советуют раз в год. Делать это нужно после паводка весной или после техногенных и природных катастроф, которые способны вызвать сильное загрязнение воды.

Если источник забора воды обустраиваются впервые, то воду на анализ следует отправлять дважды. Первый раз после бурения скважины или рытья колодца, до того как устанавливается система фильтрации. Анализ требуется для того, чтобы правильно подобрать фильтры. Второй раз следует отправить пробу в лабораторию после того, как была настроена система водоснабжения. Он позволит оценить эффективность работы фильтрующей системы. Затем желательно проводить проверку воды на выявление загрязнителей раз в квартал на протяжении года. И только потом можно забирать воду и отправлять ее на анализ раз в год.

Но при информации, что поблизости в грунт попали загрязнители с предприятия или фермы, лучше проверить качество воды вновь, чтобы обезопасить себя от рисков заболеть или отравиться некачественной водой.

Патогенные микроорганизмы в различных объектах окружающей среды при несоблюдении необходимых санитарно-гигиенических мероприятий могут приводить к заражению людей возбудителями инфекционных заболеваний (брюшной тиф, дизентерия, холера, пищевые отравления и др.). Поэтому так важно осуществлять бактериологический и гельминтологический контроль качества питьевой воды, воды открытых водоемов, скважин, колодцев, бассейнов, пищевых продуктов, санитарного состояния воздуха, почвы населенных мест, сельхозугодий, полей орошения и т. д.

Санитарно-микробиологическое исследование в зависимости от целей исследования предполагает краткий и полный анализ. Перечень определяемых показателей зависит от целей и задач, стоящих перед заказчиком. Мы всегда готовы порекомендовать нашим заказчикам оптимальный комплекс необходимых исследований.

Рекомендуем обратить внимание:

источник

Микроорганизмы – мельчайшие, главным образом одноклеточные существа, широко распространенные в природе. Они обнаруживаются во всех средах (воздухе, почве, воде), в организме человека и животных, в растениях.

Качественное разнообразие и количество микроорганизмов зависят в первую очередь от питательных соединений. Однако немаловажное значение имеют также влажность, температурный режим, аэрация, действие солнечных лучей и прочие факторы.

Методы санитарно-микробиологического исследования природных сред позволяют выявить наличие патогенных микроорганизмов, определить их количество и, в соответствии с полученными результатами, выработать меры по устранению или предупреждению инфекционных заболеваний. Кроме того, количественный учет необходим для моделирования экосистем и разработке принципов управления естественными процессами. Рассмотрим далее, какими бывают методы микробиологического исследования .

Она рассматривается учеными как один из возможных путей передачи инфекционных патологий. С выделениями больных людей или животных в почву проникают патогенные микроорганизмы. Некоторые из них, в частности, споровые, способны сохраняться в грунте продолжительное время (иногда несколько десятков лет). В почву попадают возбудители таких опасных инфекций, как столбняк, сибирская язва, ботулизм и пр. Методы санитарно-микробиологического исследования почвы позволяют определить «микробное число» (кол-во микроорганизмов в грамме грунта), а также коли-индекс (количество кишечных палочек).

К методам микробиологического исследования почвы следует в первую очередь отнести прямое микроскопирование и посев на плотную питательную среду. Популяции микроорганизмов и их группы, населяющие грунт, различаются по таксономическому положению и экологическим функциям. В науке они объединены под общим термином «почвенная биота». Грунт – среда обитания огромного числа микроорганизмов. В грамме почвы присутствует от 1 до 10 млрд их клеток. В этой среде активно протекает разложение органических веществ при участии разнообразных сапрофитных микроорганизмов.

Анализ среды начинается с отбора образцов. Для этого используют предварительно очищенный и протертый спиртом нож (можно использовать лопату). После этого осуществляется подготовка образца. Следующий этап – подсчет клеток на окрашенных мазках. Рассмотрим каждую стадию в отдельности.

При анализе пахотной почвы, как правило, пробы берут с глубины всего слоя. Сначала удаляется 2-3 см сверху грунта, так как в нем может присутствовать посторонняя микрофлора. После этого с изучаемого участка грунта берут монолиты. Длина каждого из них должна соответствовать толщине слоя, из которого нужно взять образец.

На участке в 100-200 кв. м отбирается 7-10 проб. Вес каждой – порядка 0.5 кг. Пробы необходимо тщательно перемешать в мешке. После этого берут средний образец, весом приблизительно 1 кг. Его следует поместить в пергаментный (стерильный) пакет, вложенный в тканевый мешок. До непосредственного анализа образец хранится в холодильнике.

Перемешанная почва высыпается на сухое стекло. Предварительно его необходимо протереть спиртом и обжечь над горелкой. При помощи шпателя почва тщательно перемешивается и раскладывается ровным слоем. В обязательном порядке необходимо удалить корешки, прочие посторонние элементы. Для этого используется пинцет. Перед работой пинцет и шпатель прокаливают над горелкой и остужают.

Из различных участков почвы, распределенной по стеклу, отбираются небольшие порции. Их взвешивают в фарфоровой чашке на технических весах. Обязательным этапом микроскопического метода микробиологического исследования является специальная обработка образца. Заранее необходимо подготовить 2 стерильные колбы. Их емкость не должна превышать 250 мл. В одну из колб наливают 100 мл водопроводной воды. Из нее берут 0.4-0.8 мл жидкости и увлажняют навеску почвы до пастообразного состояния. Смесь необходимо растереть пальцем или резиновым пестиком в течение 5 мин.

Водой из первой колбы почвенную массу переносят в пустую колбу. Далее ее снова растирают. После этого масса переносится в колбу возле пламени горелки. Емкость с почвенной суспензией встряхивают на качалке на протяжении 5 мин. После этого ее оставляют отстаиваться около 30 с. Это необходимо для того, чтобы крупные частицы осели. Через полминуты массу используют для приготовления препарата.

Прямое микроскопическое изучение грунта осуществляется по методу микробиологического исследования , разработанному Виноградским. В определенном объеме приготовленной суспензии подсчитывается число клеток микроорганизмов. Изучение фиксированных мазков позволяет сохранять препараты в течение длительного срока и выполнять подсчеты в любое удобное время.

Приготовление препарата осуществляется следующим образом. Определенный объем суспензии (как правило, 0.02-0.05 мл) наносится с помощью микропипетки на предметное стекло. К нему добавляют каплю раствора агар-агара (смеси полисахаридов агаропектина и агарозы, извлеченных из бурых и красных водорослей Черного моря), быстро перемешивают и распределяют на площади 4-6 кв. см. Мазок высушивается на воздухе и фиксируется 20-30 мин. спиртом (96 %). Далее препарат увлажняют дистиллированной водой, помещают в р-р карболового эритрозина на 20-30 мин.

После окрашивания его промывают и высушивают на воздухе. Подсчет клеток осуществляется с иммерсионным объективом.

Микроскопические методы микробиологического исследования позволяют выявить большое количество микроорганизмов. Но, несмотря на это, метод посева считается наиболее распространенным в практике. Суть его состоит в высеве объема препарата (почвенной суспензии) в чашке Петри на плотную среду.

Этот метод микробиологического исследования позволяет учитывать не только количество, но и групповой, а в ряде случаев и видовой состав микроскопической флоры. Подсчет числа колоний производится, как правило, со дна чашки Петри в проходящем свете. На подсчитанном участке ставится точка маркером либо чернилами.

Микрофлора водного объекта, как правило, отражает микробный состав почвы около него. В этой связи методы санитарно-микробиологического исследования воды и почвы имеют особое практическое значение при изучении состояния конкретной экосистемы. В пресных водоемах содержатся, как правило, кокки, палочковидные бактерии.

Анаэробы в воде обнаруживаются в малом количестве. Как правило, они размножаются на дне водоемов, в иле, принимая участие в процессах очищения. Микрофлора океанов и морей представлена преимущественно солелюбивыми (галофильными) бактериями.

В воде артезианских скважин микроорганизмов практически нет. Это обуславливается фильтрующей способностью почвенного слоя.

Общепринятыми методами микробиологического исследования воды считаются определение микробного числа и коли-титра либо коли-индекса. Первый показатель характеризует количество бактерий в 1 мл жидкости. Коли-индекс представляет собой количество кишечных палочек, присутствующих в литре воды, а коли-титр – минимальное количество или максимальное разведение жидкости, в котором их еще можно обнаружить.

Этот метод санитарно микробиологического исследования воды состоит в следующем. В 1 мл воды определяют количество факультативных анаэробов и мезофильных (промежуточных) аэробов, способных на мясопептонном агаре (основной питательной среде) при 37 град. на протяжении суток формировать колонии, видимые при увеличении в 2-5 р. или невооруженным глазом.

Ключевой стадией рассматриваемого метода микробиологического исследования воды является посев. Из каждой пробы делается посев не менее 2-х разных объемов. При анализе водопроводной воды в каждую чашку вносят по 1-0.1 мл чистой жидкости и по 0.01-0.001 мл загрязненной. Для посева 0.1 мл или меньшего объема жидкость разводится дистиллированной (стерильной) водой. Последовательно готовят десятикратные разведения. По 1 мл от каждого из них вносят в две чашки Петри.

Разведения заливаются питательным агаром. Его необходимо предварительно растопить и остудить до 45 град. После активного перемешивания среду оставляют на горизонтальной поверхности для застывания. При 37 град. посевы выращивают на протяжении суток. Рассматриваемый метод микробиологического исследования воды позволяет учитывать результаты на тех чашках, где количество колоний находится в пределах от 30 до 300.

Он считается транзитной средой для микроорганизмов. Основными методами микробиологического исследования воздуха являются седиментация (оседание) и аспирация.

Микрофлора воздушной среды условно разделяется на переменную и постоянную. К первой относятся дрожжи, пигментообразующие кокки, спороносные бациллы, палочки и прочие микроорганизмы, устойчивые к высыханию, воздействию света. Представители переменной микрофлоры, проникая в воздух из привычной для них среды обитания, недолго сохраняют свою жизнеспособность.

В воздухе крупных мегаполисов микроорганизмов намного больше, чем в воздушной среде сельской местности. Над морями, лесами бактерий очень мало. Очищению воздуха способствуют осадки: снег и дождь. В закрытых помещениях микробов намного больше, чем на открытых пространствах. Их количество повышается в зимний период при отсутствии регулярного проветривания.

Этот метод микробиологического исследования в микробиологии считается простейшим. Он основывается на оседании капель и частиц на поверхности агара в открытой чашке Петри под действием силы тяжести. Метод седиментации не позволяет точно определить число бактерий в воздухе. Дело в том, что на открытой чашке уловить мелкие фракции пылевых частиц и бактериальных капель довольно сложно. На поверхности задерживаются преимущественно крупные частицы.

Этот метод не используется при анализе атмосферного воздуха. Этой среде свойственны большие колебания скорости движения воздушных потоков. Седиментация, однако, может использоваться при отсутствии более совершенных приборов или источника электроэнергии.

Определение микробного числа осуществляется по методу Омелянского. В соответствии с ним, за 5 минут на поверхности агара площадью 100 кв. см оседает такое число бактерий, которое присутствует в 10 л воздуха.

Бактериологический анализ занимает важнейшее место в комплексе клинико-лабораторных мероприятий, направленных на диагностику, профилактику и лечение разнообразных инфекционных заболеваний. Однако исследованием окружающей среды они не ограничиваются.

Особое значение имеет бактериологический анализ биологического материала в лечебных учреждениях. К исследованиям, проводимым в медучреждениях, предъявляются повышенные требования. Целью Приказа «Об унификации микробиологических методов исследования» является совершенствование бактериологического анализа, повышение качества и эффективности микробиологической диагностики.

Оно является ключевым методом анализа при диагностике инфекций, передающихся половым путем, и оппортунистических заболеваний (вызываемых условно-патогенными бактериями).

Микроскопический анализ позволяет оценить качественный и количественный состав микрофлоры, проверить правильность взятия пробы. К примеру, наличие вагинального эпителия в мазке, взятом из цервикального канала, указывает на нарушение правил отбора биологической пробы.

Стоит сказать, что микробиологическое обследование в данном случае вообще сопровождается определенными проблемами. Они связаны с тем, что в нижних отделах полового тракта в норме присутствует разнообразная микрофлора, изменяющаяся в различные возрастные периоды. Для повышения эффективности исследования и были разработаны унифицированные правила.

Она осуществляется методами выявления РНК и ДНК-возбудителей. Они базируются преимущественно на определении нуклеотидных последовательностей в патологическом материале. Для этого используются молекулярные зонды. Они представляют собой искусственно полученные нуклеиновые кислоты, комплементарные (дополняющие) вирусным кислотам, меченные радиоактивной меткой или биотином.

Особенность метода состоит в многократном копировании конкретного фрагмента ДНК, включающего в себя несколько сотен (или десятков) нуклеотидных пар. Механизм репликации (копирования) заключается в том, что достраивание может начаться исключительно в определенных блоках. Для их создания используются праймеры (затравки). Они представляют собой синтезированные олигонуклеотиды.

ПЦР-диагностика (полимеразная цепная реакция) проста в исполнении. Этот метод позволяет быстро получить результат при использовании небольшого объема патологического материала. С помощью ПЦР-диагностики выявляются острые, хронические и латентные (скрытые) инфекции.

При чувствительности этот метод считается более предпочтительным. Однако в настоящее время тест-системы недостаточно надежны, поэтому ПЦР-диагностика не может полностью заменить традиционные методики.

источник

Цель работы: изучение методов оценки санитарнобактериологического состояния питьевой воды и воды из естественных водоемов.

Вода, используемая на предприятиях пищевой промышленности, должна отвечать требованиям, предъявляемым к питьевой воде действующими нормативными документами. Безопасность воды в эпидемиологическом отношении определяют по общему числу микроорганизмов и количеству бактерий группы кишечных палочек в ее определенном объеме.

Качество воды централизованных систем питьевого водоснабжения определяют в соответствии с санитарными правилами и нормами. Питьевая вода должна быть безопасна в эпидемиологическом и радиационном отношениях, безопасна по химическому составу и иметь благоприятные органолептические свойства (табл. 12.1).

Читайте также:  Анализ из околоплодны вод плода

Таблица 12.1. Безопасность питьевой воды в эпидемиологическом отношении (по микробиологическим и паразитологическим показателям) СанПиН 2.1.4.1074-01

Общее микробное число (ОМЧ)

Термотолерантные колиформные бактерии

Число бактерий в 100 см 3

Общие колиформные бактерии

Споры сульфитредуцирующих бактерий

* БОЕ — бляшкообразующие единицы.

12.1. Отбор проб и подготовка их к анализу

Воду для санитарно-бактериологического контроля отбирают в количестве 500 см 3 в бутылки, предварительно простерилизованные в бумажных пакетах, с ватно-марлевой пробкой, покрытой сверху бумажным колпачком.

Перед отбором пробы кран или край трубы обжигают зажженным ватным тампоном, пропитанным спиртом. Открывают кран и в течение 10-15 мин воду спускают, затем производят отбор пробы. Вода подлежит анализу не позже чем через 2 ч после отбора.

Пробы воды из открытых водоемов — колодцев, бассейнов, рек, озер — отбирают с помощью батометров, представляющих собой металлический каркас с массивным свинцовым дном — грузилом. В металлический каркас вставлена бутылка. Батометр погружают на заданную глубину и открывают бутылку, потягивая за веревку, привязанную к пробке. После наполнения бутылки батометр извлекают и закрывают ее стерильной пробкой.

Пробы хлорированной воды берут во флаконы с дехлоратором, так как под действием хлора микробы в воде погибают. В качестве дехлоратора используют серноватистый натрий из расчета 10 мг на 500 см исследуемой воды.

К отобранным пробам воды прилагают сопроводительный документ с указанием соответствующих данных. Доставку проб питьевой воды осуществляют в контейнерах-холодильниках при температуре от 4 до 10 °С.

12.2. Определение общего микробного числа воды

Общее микробное число (ОМЧ) — это количество мезофильных аэробных и факультативно-анаэробных микроорганизмов, образующих колонии на мясопептонном агаре при посеве 1 см 3 воды с последующей инкубацией посевов при температуре 37±0,5 °С в течение 48 ч. ОМЧ должно быть не более 50 КОЕ/см 3 .

В зависимости от степени предполагаемого загрязнения производят посев не менее двух различных объемов воды, выбранных с таким расчетом, чтобы на чашках вырастало от 30 до 300 колоний. Водопроводную и артезианскую воду засевают в неразведенном виде по 1 см 3 . При бактериологическом исследовании загрязненных вод делают посевы разведенной воды. Разведения готовят так, как указано в разделе 8.3.

Из исследуемого образца и из пробирок с его разведениями в соответствии со степенью предполагаемого микробного загрязнения отбирают по 1 см 3 , вносят в стерильные чашки Петри и заливают 10-12 см расплавленного и остуженного до температуры 45 °С мясопептонного агара. Круговыми движениями руки, вращая чашки по горизонтальной поверхности стола, распределяют их содержимое равномерным слоем по всей площади дна. После застывания агара чашки с посевами помещают на 24 ч в термостат при температуре 37 °С. После инкубации подсчитывают число выросших колоний.

Определение микробного числа указанным методом позволяет выявить лишь мезофильные аэробные и факультативно-анаэробные микроорганизмы.

12.3. Определение содержания колиформных бактерий в воде

С эпидемиологической точки зрения особенно важным является обнаружение в воде патогенных микроорганизмов — возбудителей кишечных инфекций (брюшного тифа, дизентерии, холеры и др.) Однако в связи с большой трудностью обнаружения патогенных микроорганизмов при бактериологических анализах ограничиваются определением так называемых санитарно-показательных микроорганизмов (СПМ). К санитарно-показательным относят микроорганизмы, постоянно находящиеся в естественных полостях человека или животных. Присутствие СПМ в различных объектах внешней среды является индикатором их загрязнения человеком. Чем больше СПМ во внешней среде, тем более вероятным становится присутствие специфических возбудителей инфекционных заболеваний.

В качестве СПМ наибольшее значение имеют бактерии группы кишечных палочек (БГКП). К группе кишечных палочек относят колиформные бактерии родов Escherichia, Enterobacter, Citrobacter, Klebsiella, Serratia.

При определении количества СПМ в воде используют следующие характеристики:

• коли-титр — наименьший объем воды, в котором обнаружена одна кишечная палочка. Для питьевой воды, прошедшей очистку, титр кишечной палочки должен быть не менее 300 см 3 ;

• коли-индекс — количество кишечных палочек в 1 дм 3 воды. Коли-индекс для питьевой воды должен быть не более 3.

Колиформные бактерии определяют в воде методом мембранных фильтров или бродильным методом.

Бродильный метод. Сущность бродильного метода заключается в посеве определенных объемов исследуемой воды, инкубации

посевов при температуре 37 °С в средах накопления с последующим высевом на среду Эндо, дифференциацией выросших колоний и определением наиболее вероятного числа БГКП в 1 дм 3 воды.

При исследовании воды централизованного водоснабжения исследуемый материал дважды засевают в три объема: 100, 10 и 1 см 3 . Для исследования речной, озерной, прудовой воды готовят десятикратные разведения 1:10, 1:100, 1:1000 и засевают еще 10 см 3 и 1 см 3 без разведения. Посев воды производят в бродильные сосуды (колбы, бутылки, пробирки с поплавками), заполненные глюкозопептонной средой Эйкмана. Посевы инкубируют в термостате при температуре 37 °С в течение 24 ч.

Обработка результатов анализа. По окончании инкубации посевы просматривают и делают следующие выводы:

а) при отсутствии газообразования и изменения цвета среды дают отрицательный ответ на наличие БГКП в исследуемом объеме воды, дающим право закончить исследование через 24 ч;

б) при образовании кислоты и газа производится высев материала из бродильных сосудов на среду Эндо. Высев делается бактериологической петлей густым штрихом для получения изолированных колоний. Чашки с посевами инкубируют при температуре 37 °С в течение 24 ч. После инкубации посевы просматривают. Отсутствие на среде Эндо характерных для кишечных палочек колоний дает основание на выдачу отрицательного ответа и окончание исследования;

в) при обнаружении на среде Эндо лактозоположительных темно-красных колоний, с металлическим блеском или без него, необходимо установить принадлежность выросших микроорганизмов к семейству кишечных бактерий. С этой целью производится микроскопирование препарата из колоний и постановка оксидазного теста.

Оксидазный тест предложен для дифференциации бактерий семейства Enterobacteriaceae от грамотрицательных бактерий семейства Pseudomonodaceae и других водных сапрофитов, которые, в отличие от кишечных бактерий, вырабатывают фермент оксидазу.

Для постановки оксидазного теста со среды Эндо снимают петлей по 2-3 колонии каждого типа. Микробную массу наносят штрихом на фильтровальную бумагу, смоченную специальным реактивом (30 г α-д-нафтола растворяют в 2,5 см 3 этанола, прибавляют 7,5 см 3 дистиллированной воды и 40 мг диметил-парафенилендиамина. Раствор готовят непосредственно перед определением).

При отрицательном результате оксидазного теста бумага при контакте с колонией цвета не меняет. Если же бумага синеет в течение 1 мин при контакте с колонией, то оксидазный тест считают положительным.

Наличие в препарате грамотрицательных неспорообразующих палочек, не обладающих оксидазной активностью, позволяет немедленно дать ответ о наличии в воде БГКП.

При обнаружении на среде Эндо розовых и бесцветных колоний ведут подсчет и пересевают 2-3 изолированные колонии каждого типа в глюкозо-пептонную среду Эйкмана. Посевы инкубируют при температуре 37 °С в течение 3-4 ч. При образовании кислоты (изменение цвета среды) и газа, накапливающегося в поплавке, результат считается положительным, при отсутствии кислото- и газообразования — отрицательным.

После проведения анализа записывают в лабораторный журнал окончательные результаты (положительные и отрицательные) по каждому засеянному объему и определяют коли-титр и коли-индекс.

Метод мембранных фильтров. Сущность метода заключается в концентрировании бактерий из определенного объема воды на мембранных фильтрах с последующим выращиванием их на среде Эндо при температуре 37 °С, дифференцированием выросших колоний и подсчетом количества БГКП в 1 см 3 воды.

Подготовка мембранных фильтров. Для фильтрования воды отбирают мембранные фильтры № 3, помещают их в подогретую до температуры 80 °С дистиллированную воду и ставят на небольшой огонь для кипячения. Кипячение проводят трижды по 10 мин. После первого и второго кипячения воду сливают, а после третьего фильтры оставляют в воде до употребления.

Подготовка фильтровального аппарата. Фильтровальный аппарат стерилизуют в автоклаве или протирают ватным тампоном, смоченным в спирте, и обжигают в целях стерилизации. На столик фильтровального аппарата стерильным пинцетом помещают мембранный фильтр. Во избежание повреждения фильтра под него подкладывают кружок стерильной фильтровальной бумаги. На фильтровальный столик с положенными на него фильтрами устанавливают и закрепляют верхнюю часть прибора — воронку (рис. 12.1).

Рис. 12.1. Определение количества микроорганизмов методом мембранных фильтров

Фильтрование воды и выращивание микроорганизмов. В воронку фильтровального аппарата стерильно наливают исследуемый объем воды и с помощью водоструйного насоса создают вакуум в приемном сосуде. При анализе питьевой воды, поступающей в водопроводную сеть, необходимо брать объем не менее 333 см 3 . По окончании фильтрования мембранный фильтр профламбированным пинцетом переносят на поверхность питательной среды Эндо в чашки Петри. В настоящее время выпускают фильтры, пропитанные соответствующими питательными средами. Посевы инкубируют в термостате при температуре 37 °С в течение 18-24 ч.

Обработка результатов анализа. По окончании инкубации посевы просматривают и делают следующие выводы:

а) отсутствие микробного роста на фильтрах или обнаружение на них колоний, не характерных для БГКП, позволяет закончить исследования на этом этапе анализа с выдачей отрицательного результата на присутствие БГКП в анализируемом объеме воды;

б) при обнаружении на фильтре колоний, характерных для БГКП, исследование продолжают. Из нескольких колоний каждого типа готовят мазки, окрашивают их по Граму и микроскопируют. Отсутствие в мазках мелких грамотрицательных неспороносных палочек является основанием для прекращения анализа с выдачей отрицательного результата на присутствие БГКП в исследуемом объеме воды;

в) при наличии в мазках грамотрицательных палочек, морфологически сходных с кишечными, ставится оксидазная проба. При обнаружении на мембранных фильтрах однотипных лактозоположительных колоний (темно-красных с металлическим блеском или без него), не вырабатывающих оксидазы, анализ воды на этом этапе заканчивают и подсчитывают число выросших на мембранном фильтре колоний кишечных палочек. Результат выражают в виде коли- индекса в пересчете на 1 дм 3 воды;

г) при обнаружении на мембранных фильтрах розовых и бесцветных колоний подсчитывают их число и пересевают 2-3 изолированные колонии каждого типа в глюкозо-пептонную среду Эйкмана. После инкубации в течение 3-4 ч при температуре 37 °С отмечают изменение цвета среды за счет образования кислоты и накопления газа в поплавке. В этом случае результат считается положительным. Если изменений в среде нет, то дают отрицательный результат на присутствие БГКП.

Пример определения колииндекса: профильтровано три объема воды по 100 см 3 . На первом и втором фильтрах выросло по три колонии, на третьем — девять колоний. Всего выросло пятнадцать колоний. Таким образом, колииндекс исследуемого образца воды равен: (1000 х 15):300 = 50. Колииндекс переводится в колититр следующим образом: 1000:50 = 20.

Контрольные вопросы

1. Какие Вы знаете показатели эпидемиологической безопасности питьевой воды?

2. Что такое общее микробное число, колититр и колииндекс?

3. Какие роды микроорганизмов входят в БГКП?

4. Какими методами определяют колиформные бактерии?

5. Каковы основные критерии, по которым устанавливают присутствие колиформных бактерий в питьевой воде?

6. С какой целью проводят тест на оксидазу?

источник

Цель занятия.Ознакомить студентов с основными методами и показателями, необходимыми для санитарно-микробиологической оценки объектов внешней среды.

Оборудование и материалы. Прибор для подсчета колоний, колбы с пробами воды, бактериологические пробирки с 9 мл воды, пробирки с 10 мл расплавленного агара, мерные стериль­ные пипетки на 2 мл, стерильные чашки Петри, чашки Петри с МПА, чашки Петри с кровяным МПА, навески почвы, стериль­ная водопроводная вода в колбе — 270 мл, пробирки со средой Кесслера, Вильсона—Блера.

Для оценки санитарно-гигиенического состояния объектов окружающей среды проводят санитарно-бактериологические ис­следования, цель которых состоит в определении эпизоотологической и эпидемиологической безопасности. Показателем небла­гополучия служит выявление патогенных микроорганизмов. Од­нако прямое их обнаружение связано с большими трудностями, и прежде всего с низкой концентрацией данных микробов, кото­рые в основном не могут размножаться в воде, воздухе и почве. Поэтому в санитарно-микробиологической практике используют косвенные методы, направленные на определение микробной обсемененности объекта и обнаружение в нем так называемых санитарно-показательных бактерий. О бактериальной обсеме­ненности судят по микробному числу — общему коли­честву микроорганизмов, содержащихся в единице объема или массы (1 мл воды, 1 г почвы, 1 м 3 воздуха).

Содержание санитарно-показательных бактерий определяют по двум показателям: титру и индексу. Титром называют минимальный объем или массу, в которых выявляют данные бактерии, индексом — количество санитарно-показательных бактерий, содержащихся в соответствующем количестве среды.

К санитарно-показательным бактериям относят представи­телей облигатной микрофлоры организма человека и тепло­кровных животных, для которых среда обитания — кишечник или воздушно-дыхательные пути. Они характеризуются следую­щими свойствами: 1) постоянно выделяются с калом или ка­пельками слизи из воздушно-дыхательных путей; 2) не имеют других мест обитания; 3) способны сохраняться в окружающей среде то же время, что и патогенные бактерии, паразитирующие в кишечнике или воздушно-дыхательных путях; 4) не способны интенсивно размножаться вне организма хозяина и изменять свои свойства.

Перечисленные признаки присущи бактериям, признанным санитарно-показательными для различных объектов окружаю­щей среды.

Санитарно-показательные бактерии группы кишечных пало­чек принадлежат к различным родам семейства энтеробактерий.

Обнаружение кишечной палочки в разных объектах окружаю­щей среды считают наиболее достоверным признаком свежего фекального загрязнения. Наличие в этих же объектах бактерий родов Citrobacter и Enterobacter указывает на относительно давнее фекальное загрязнение.

Присутствие С. perfringens, С. sporogenes и других клостридий в почве свидетельствует о ее фекальном загрязнении, причем как свежем, так и давнем, поскольку эти бактерии образуют споры, что позволяет им длительно переживать в окружающей среде (в частности, в почве).

Обнаружение в объектах окружающей среды Streptococcus faecalis также свидетельствует об их фекальном загрязнении. Рез­кое увеличение количества этих бактерий в саморазогревающем­ся навозе и компостах может свидетельствовать о загрязнении почвы разлагающимися отбросами.

Гемолитические стрептококки, будучи облигатными обитате­лями носоглотки и зева, выделяются с капельками слизи ораль­но-капельным путем. Сроки выживания гемолитических стреп­тококков в окружающей среде практически не отличаются от сроков, характерных для большинства других возбудителей воз­душно-капельных инфекций. Обнаружение гемолитических стрептококков в воздухе помещений указывает на возможное его загрязнение микроорганизмами, содержащимися в зеве, носо­глотке, верхних дыхательных путях и вызывающими инфекции, передаваемые воздушно-капельным путем.

Staphylococcus aureus — также факультативный обитатель но­соглотки и зева. Его присутствие в воздухе помещений служит показателем орально-капельного загрязнения.

Одновременное обнаружение золотистого стафилококка и ге­молитических стрептококков свидетельствует о высокой степени загрязнения воздуха.

Санитарно-микробиологическое исследование воды. Вода — ес­тественная среда обитания микробов, которые в большом коли­честве поступают из почвы, воздуха, с отбросами, стоками. Осо­бенно много микроорганизмов в открытых водоемах и реках. Кроме сапрофитов в воде могут находиться возбудители инфек­ций животных и человека.

При контроле санитарного состояния воды исследованию подлежат: вода централизованного водоснабжения, колодцев, открытых водоемов (реки, озера), плавательных бассейнов, сточ­ные жидкости.

Отбор проб воды. Из открытых водоемов пробы воды отбира­ют с глубины 10. 15 см от поверхности и на расстоянии 10. 15 см от дна. Водопроводную воду набирают в стерильные флаконы объемом 0,5 л с притертой пробкой. Предварительно кран обжи­гают и спускают воду в течение 10. 15 мин. Хлорированную воду перед исследованием нейтрализуют тиосульфатом натрия из рас­чета 10 мл на 1л воды. Бактериологическое исследование проб воды следует проводить в течение двух часов после отбора или шести часов при температуре хранения 1. 5°С.

Определение микробного числа воды. Водопроводную воду засе­вают в количестве 1мл, воду открытых водоемов — по 1,0; 0,1; 0,01 мл. Все пробы вносят в стерильные чашки Петри, после чего их заливают 10. 12 мл расплавленного и охлажденного до 40. 45 °С питательного агара, который тщательно перемешивают с водой. Посевы инкубируют при 37 °С в течение 1. 2сут. Воду из открытых водоемов засевают параллельно на две серии чашек, одну из которых инкубируют при 37 ºС в течение суток, другую — 2 сут при 20 °С. Затем подсчитывают количество выросших на поверхности и в глубине колоний и вычисляют микробное число воды — количество микроорганизмов в 1 мл.

Читайте также:  Анализ ионов аммония в природных водах

Определение коли-титра и коли-индекса воды. Минимальное количество воды в мл, в котором обнаруживают бактерии группы кишечных палочек (БГКП), называют коли-титром воды, количество БГКП, содержащихся в 1л исследуемой воды, называют кол и-и ндексом воды. Коли-титр и коли-индекс воды определяют титрационным (бродильным) ме­тодом или методом мембранных фильтров.

Титрационный метод. В глюкозо-пептонную среду (1%-я пептонная вода, 0,5%-й раствор хлорида натрия, 0,5%-й раствор глюкозы, индикатор Андреде и поплавок) проводят посевы различных объемов воды.

Воду открытых водоемов исследуют в объемах 100; 10; 1 и 0,1 мл. Для анализа водопроводной воды делают посевы трех объемов по 100 мл, трех объемов по 10 мл и трех объемов по 1 мл. Посевы инкубируют при 37 °С в течение суток. О брожении судят по образованию пузырьков газа в поплавке. Из забродивших или помутневших проб делают посевы на среду Эндо. Из выросших колоний готовят мазки, окрашивают по Граму и ставят оксидазный тест, с помощью которого дифференцируют бактерии родов Escherichia, Citrobacter и Enterobacter от грамотрицательных бак­терий семейства Pseudomonadaceae и других оксидазоположительных бактерий, обитающих в воде. С этой целью 2. 3 изоли­рованные колонии наносят «штрихом» на фильтровальную бума­гу, смоченную диметил-n-фенилендиамином. При отрицатель­ном оксидазном тесте цвет бумаги не изменяется, при положительном она окрашивается в синий цвет в течение 1 мин. Грамотрицательные палочки, не образующие оксидазу, вновь ис­следуют в бродильном тесте — вносят в полужидкий питатель­ный агар с 0,5 % глюкозы и инкубируют при 37 °С в течение су­ток. При положительном результате определяют коли-титр и коли-индекс по статистической таблице.

Метод мембранных фильтров. Определенный объем воды про­пускают под давлением через мембранный фильтр № 3, предва­рительно стерилизованный кипячением в дистиллированной воде. Водопроводную воду и воду артезианских скважин фильт­руют в объеме 333 мл. Чистую воду открытых водоемов фильтру­ют в объеме 100, 10, 1 и 0,1 мл, более загрязненную воду перед фильтрованием разводят стерильной водой. Фильтры накладыва­ют на агар Эндо в чашки Петри и после инкубации при 37 °С в течение суток подсчитывают количество выросших красных колоний. Из двух-трех колоний делают мазки, окрашивают их по Граму и ставят оксидазный тест. Грамотрицательные палочки, не образующие оксидазу, принадлежат к БГКП. По существующим нормативам (ГОСТ 2874—82) питьевую воду считают качествен­ной, если ее коли-индекс не более 3, а микробное число — не бо­лее 100.

Общепринятым дополнительным показателем фекального загрязнения воды служит количество S.faecalis. Для определе­ния его титра цельную воду и ее 10-кратные разведения засева­ют в жидкую элективную среду (щелочная полимиксиновая сре­да). После инкубирования при 37 ºС в течение двух суток, а за­тем еще через сутки и двое суток делают высевы на плотные элективные среды. Фекальные стрептококки идентифицируют по морфологическим, культуральным и тинкториальным свой­ствам.

Есть данные о корреляции между содержанием в воде фекаль­ных кишечных палочек и фагами бактерий группы кишечных па­лочек. Поэтому определение данных фагов служит косвенным показателем возможного присутствия кишечных палочек в ис­следуемой пробе воды.

Санитарно-микробиологическое исследование воздуха. Мик­рофлора воздуха зависит от микрофлоры почвы и воды. Воз­дух — неблагоприятная среда для обитания микроорганизмов из-за отсутствия питательных веществ, действия солнечных лучей, высушивания. Наряду с сапрофитами в воздухе могут находиться патогенные бактерии, споры грибов родов Aspergillus, Mucor и др.

Санитарную оценку воздуха осуществляют по двум показате­лям: 1) определение микробного числа воздуха; 2) определение количества санитарно-показательных бактерий — гемолитичес­ких стрептококков и стафилококков.

Количественные микробиологические методы исследования воздуха основаны на принципах осаждения (седиментации), ас­пирации или фильтрации.

Седиментационный метод осаждения Коха. Чашки Петри с МПА оставляют открытыми на 5. 10 мин. Для определения са­нитарно-показательных бактерий берут чашки Петри с кровя­ным МПА и время экспозиции увеличивают до 40 мин. Чашки выдерживают при 37 °С и комнатной температуре 24 ч и подсчи­тывают выросшие колонии.

Микробное число воздуха (общее количество бактерий в 1 м3) определяют по формуле Омелянского

Х= а * 100 * 1000 * 5 / (b * 10 * T),

где X— количество микробов в 1 м 3 (1000 л) воздуха; а — количество выросших ко­лоний в чашках; b — площадь чашки; Т— время, в течение которого чашка была открыта; 5 — время по правилу Омелянского; 10 — объем воздуха в литрах. (Прави­ло Омелянского предусматривает, что на поверхности агара в чашке Петри площа­дью 100 см 3 за 5 мин из воздуха оседает такое количество микробов, которое нахо­дится в его 10 л.)

Прямое обнаружение патогенных микробов воздуха проводят только при специальных показаниях.

Аспирационный метод. Более точный количественный способ определения микробного числа воздуха, так как посев микроор­ганизмов из воздуха производят с помощью приборов. При использовании аппарата Кротова воздух с заданной скоростью за­сасывается через щель плексигласовой пластины и ударяется о поверхность питательной среды открытой чашки Петри, находя­щейся на вращающейся подставке, благодаря чему происходит равномерный посев бактерий из воздуха на поверхность МПА (при определении микробного числа) или кровяного МПА (при выделении гемолитических стафилококков и стрептококков). После инкубации в термостате в течение двух суток подсчитыва­ют количество выросших колоний и определяют микробное чис­ло воздуха. При исследовании воздуха могут быть использованы и другие приборы (Дьякова, Киктенко, ПАБ-1 — прибор аэро­зольный бактериологический и ПОВ-1 — прибор для отбора воз­духа). В практику входят ускоренные методы индикации микро­флоры воздуха с помощью мембранных фильтров, каскадных им-пакторов, фильтров Петрякова и др.

Санитарно-микробиологическое исследование почвы. Анализ почвы включает в себя определение микробного числа, коли-тит-ра, перфрингенс-титра и титра термофильных бактерий. По эпи­демиологическим признакам проводят определение в почве па­тогенных микроорганизмов: сальмонелл, шигелл, возбудителей столбняка, ботулизма, злокачественного отека, сибирской язвы. Бактериологический анализ почвы нужен при выборе террито­рии под пастбище, ферму, хозяйственные постройки, детские сады, больницы и др.

Предварительно делают отбор проб почвы. На обследуемой территории площадью до 1000 м 3 выделяют два участка по 25 м 3 (один — вблизи источника загрязнения, другой — в отдалении от него), берут пробы из 5 точек (4 — по углам участка, 1 — в цент­ре) на глубине 10. 20 см стерильным совком (из более глубоких мест — с помощью специального бура Некрасова или Френкеля). Пробы почвы по 200. 300 г отбирают в широкогорлые стеклян­ные банки с ватными пробками (можно все взятые с одного уча­стка пробы перемешать и на исследование направить 1 кг). На банки наклеивают этикетки, отправляют с нарочным и сопрово­дительным письмом. Пробы почвы полагается исследовать сразу же или в течение 6. 18 ч, сохраняя их при температуре не выше 1. 5ºС.

В лаборатории почву измельчают, освобождают от камней, ос­колков стекол, корней растений, просеивают через сито, тща­тельно перемешивают и отвешивают 30 г. В колбу на 500 мл наливают 270 мл стерильной водопроводной воды и вносят в нее отвешенную пробу почвы, все интенсивно встряхивают 10 мин, не давая отстояться частицам суспензии, готовят серию десятикратных последовательных разведений. Для относительно чис­тых почв достаточно 4 степени разведения, для загрязненных — 6. 9 разведений. В штатив ставят нумерованные пробирки с 9 мл стерильной воды в каждой. В первую вносят 1 мл суспензии про­бы почвы, смешивают, затем 1 мл из первой пробирки вносят во вторую, смешивают, из нее — 1 мл в третью и т. д. В результате в пробирке № 1 получается разведение 1 : 100, № 2 — 1 : 1000 и т.д. Подготовленные таким образом пробы почвы исследуют.

Определение общего микробного числа. Из последних 3. 4 про­бирок с разведенной суспензией отдельными стерильными пи­петками вносят по 1 мл в стерильные чашки Петри (каждое раз­ведение в отдельности). В каждую чашку добавляют еще по 10. 15 мл расплавленного и охлажденного до 45 ºС МПА. Равно­мерными осторожными круговыми движениями содержимое ча­шек перемешивают, оставляют на столе для уплотнения (затвердения) агара. С застывшей средой чашки перевертывают вверх дном, надписывают и помещают в термостат для культивирова­ния на 24. 48 ч при 37 °С. Выросшие колонии подсчитывают в каждой чашке, умножают на степень разведения, полученные числа суммируют и вычисляют среднеарифметическое число, что составит количество микробов, содержащихся в 1 г почвы.

Определение коли-титра, перфрингенс-титра и титра термо­фильных бактерий почвы. Для определения коли-титра почвы раз­личные разведения почвенной взвеси засевают по 1 мл в пробир­ки со средой Кесслера (на 1л дистиллированной воды — 10г пептона, 50 мл бычьей желчи — 2,5 г лактозы, 4 мл 1%-го водного раствора генцианвиолета) и инкубируют при 43 ºС в течение 48 ч. В дальнейшем исследования проводят по схеме, применяемой при определении коли-титра воды. Наибольшее разведение поч­венной суспензии, в котором отмечена ферментация лактозы (газообразование), соответствует коли-титру почвы. Для опреде­ления перфрингенс-титра почвы различные разведения почвен­ной суспензии по 1 мл засевают в пробирки со стерильным обез­жиренным молоком или железосульфитной средой Вильсона— Блера, приготовленной ex tempore. Посевы инкубируют при 43 °С в течение 24. 48 ч, после чего учитывают результаты по сверты­ванию молока или по образованию черных колоний С. perfringens в агаровом столбике среды Вильсона—Блера. Из колоний делают мазки, окрашивают по Граму, микроскопируют и вычисляют перфрингенс-титр, который соответствует наибольшему разведе­нию почвы, вызвавшему почернение и разрыв среды Вильсона— Блера в первые 12 ч роста.

Для определения титра термофильных бактерий разведения почвенной суспензии по 1 мл вносят в чашки Петри, заливают расплавленным и охлажденным агаром. Посевы инкубируют в течение суток при 60 ºС, а затем подсчитывают количество вы­росших колоний и пересчитывают на 1 г почвы.

Санитарно-микробиологическую оценку почвы проводят по комплексу показателей, из которых наиболее важный ление степени фекального загрязнения.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

1. Определить микробное загрязнение воздуха.

2. Провести исследование воды с целью установления мик­робного числа и коли-титра.

3. Определить микробное число и перфрингенс-титр почвы.

1. Что такое санитарно-показательные микроорганизмы?

2. Как определяют коли-титр воды?

3. Как определяют микробное число почвы?

4. Как определяют перфрингенс-титр почвы?

5. Какие методы применяют для определения микробного числа воздуха?

6. Что такое санитарно-показательные микробы воздуха и как их определяют?

источник

Несоответствие воды микробиологическим нормам, так же как и химическим, делает ее непригодной для питья. Если Ваш источник водоснабжения не защищен от прямого воздействия окружающей среды или коммунальные системы устарели или давно не чистились, то сделать микробиологический анализ воды просто необходимо. От этого зависит Ваше здоровье и безопасность! Особенно это важно для тех, кто пользуется колодцем. Колодезная вода – грунтовая, она на прямую контактирует с почвами, а значит, грозит «напоить» Вас и нитратами, и тяжелыми металлами, и аммиаком, и, конечно, вредными органическими веществами, которые попадают в почву в результате деятельности сельскохозяйственных ферм или угодий.

В таблице 1 представлены микробиологические показатели действующего норматива СанПиН 2.1.4.1074-01 для питьевой воды:

Таблица 1. Микробиологические нормативы для питьевой воды

Показатель Норматив СанПиН 2.1.4.1074-01
Общая микробная численность Не более 50 КОЕ в 1 мл
Общие колиформные бактерии Отсутствие в 100 мл
Термотолерантные колиформные бактерии Отсутствие в 100 мл
Колифаги Отсутствие в 100 мл
Споры сульфитредуцирующих бактерий Отсутствие в 20 мл

Стандартный микробиологический анализ питьевой воды в МГУ включает определение трех показателей: общего микробного числа, количества общих колиформных и термотолерантных колиформных бактерий.

Расширенный микробиологический анализ воды включает анализ пяти показателей: общего микробного числа, количества общих колиформных бактерий, количества термотолерантных колиформных бактерий, титр колифагов и содержание спор сульфитредуцирующих бактерий.

Часто на наших участках или поблизости имеются водоемы, где мы и наши дети с удовольствием любим провести время. Конечно, вода в данных водоемах не является питьевой, но ее безопасность для человека также, как и питьевая, регламентируется. В таблице 2 представлены микробиологические показатели действующего норматива по гигиеническим требованиям к охране поверхностных вод (СанПиН 2.1.5.980-00)

Таблица 2. Микробиологические нормативы для рекреационного водопользования, а также в черте населенных мест

Показатель Норматив СанПиН 2.1.5.980-00
Общие колиформные бактерии Не более 500 КОЕ в 100 мл
Термотолерантные колиформные бактерии Не более 100 КОЕ в 100 мл
Колифаги Не более 100 БОЕ в 100 мл
Возбудители кишечных инфекций (анализ бактерий из сем. Enterobacteriaceae рода Salmonella) Вода не должна содержать возбудителей кишечных инфекций (полное отсутствие в 1000 мл)

Микробиологический анализ воды, предназначенной не для питья, включает определение количества двух показателей: общих колиформных и колиформных термотолерантных бактерий.

Помимо двух основных показателей мы предлагаем провести дополнительный анализ на содержание: колифагов, условно-патогенных дрожжей и микромицетов (частых спутников опортунистических заболеваний) и индекса самоочищения водоёма.

При значительном превышении нормативов СанПиН 2.1.5.980-00, а также возможном фекальном загрязнении водоёма, мы предлагаем провести анализ на наличие возбудителей кишечных инфекций (род Salmonella и Enterococcus).

Метод определяет в питьевой воде общее число мезофильных аэробных и факультативно анаэробных микроорганизмов (ОМЧ), способных образовывать колонии на питательном агаре при температуре 37 °С в течение 24 часов, видимые с увеличением в 2 раза. Данный индикатор выявляет потенциальных бактерий, способных причинить вред здоровью человека.

Общие колиформные бактерии (ОКБ) – грамотрицательные, оксидазоотрицательные, не образующие спор палочки, способные расти на дифференциальных лактозных средах, ферментирующие лактозу до кислоты, альдегида и газа при температуре (37+1) °С в течение (24-48) часов. Многие представители данной группы являются микроорганизмами нормальной микрофлоры желудка, поэтому превышение данной группы микроорганизмов может говорить о возможно антропогенном (в том числе и фекальном) загрязнении воды.

Термотолерантные колиформные бактерии (ТКБ) входят в число общих колиформных бактерий, обладают всеми их признаками и, кроме того, способны ферментировать лактозу до кислоты, альдегида и газа при температуре (44±0,5) °С в течение 24 часов. Также, как и ОКБ являются индикаторной группой, однако более устойчивые в окружающей среде: вот почему обнаружение данной группы микроорганизмов в воде может говорить об однозначном загрязнении ее продуктами жизнедеятельности человека.

Колифаги, определяемые стандартным методом (МУК 4.2.1018-01), являются вирусами кишечной палочки (Escherichia coli) и рассматриваются эпидемиологами как дополнительный, а порой и более чувствительный, метод в определении загрязнения воды микроорганизмами группы кишечной палочки. Вирусные частицы, и в частности колифаги, более устойчивы к окружающей среде, чем их бактерии-хозяева. В связи с этим, наличие колифагов может служить достоверной меткой о более давнем фекальном загрязнении источника воды. Показана прямая корреляция между содержанием колифагов в воде и опасных для человека энтеровирусов, поэтому наличие колифагов в воде может говорить о вирусном заражении источника. Действующий нормативный документ (СанПиН 2.1.4.1074-01) подразумевает отсутствие колифагов в 100 мл воды.

Сульфитредуцирующие клостридии – спорообразующие анаэробные палочковидные микроорганизмы, являющиеся дополнительным микробиологическим показателем фекального загрязнения водоема. В отличие от относительно неустойчивых колиформных и термотолерантных колиформных бактерий, споры клостридий могут сохраняться в водоемах долгое время. Клостридии встречаются в кишечнике человека и домашних животных, однако, при попадании с водой в большом количестве могут вызвать пищевые отравления. К сульфитредуцирующим клостридиям относятся в том числе и опасные для человека клостридии (Clostridiumbotulinum, Clostridium perfringens, Clostridium tetani), вызывающие тяжелейшие заболевания. Согласно действующему нормативу (СанПиН 2.1.4.1074-01) споры клостридий должны отсутствовать в 20 мл воды.

Читайте также:  Анализ и контроль качества воды

К условно-патогенным дрожжам и микромицетам (плесени) относят большую неоднородную группу грибных организмов, способных сапротрофно расти при 37 °С. В нее входят такие представители, как Candida albicans и Cryptococcus neoformans, которые являются частым фактором оппортунистических заболеваний человека, вызывая кандидозы (грибковые заболевания кожи), молочницы и проч. Другие организмы микромицеты (Cladosporium cladosporioides, Aspergillusniger) могут являться активными сенсебилизаторами аллергических реакций, а иногда и самими аллергенами. В РФ не нормируется вода по плесеням и дрожжевым организмам в воде.

Общее число микроорганизмов не нормируется в воде водоемов в зонах рекреаций, поскольку уровень этой группы микроорганизмов в большей мере зависит от природных особенностей каждого объекта, времени года и т.п.

Однако при выборе нового источника водоснабжения или места рекреации в воде водоёмов дополнительно следует определять общую микробную численность, вырастающую:

  • при температуре 37 °С в течение 24 часов;
  • при температуре 22 °С в течение 72 часов.
  1. ОМЧ при 37 °С представлена большей частью алохтонной микрофлорой (внесенную в водоем в результате антропогенного загрязнения, в том числе фекального);
  2. ОМЧ при 20-22 °С представлена, помимо алохтонной, аборигенной микрофлорой (естественной, свойственной для данного водоёма).

Соотношение численности этих групп микроорганизмов позволяет судить об интенсивности процесса самоочищения. При завершении процесса самоочищения коэффициент ОМЧ 22 °С/ ОМЧ 37 °С. В местах загрязнения хозяйственно-бытовыми сточными водами численные значения обеих групп близки.

Показатель позволяет получить дополнительную информацию о санитарном состоянии водоемов, источниках загрязнения, процессах самоочищения.

источник

1) при выборе источника централизованного хозяйственно- питьевого водоснабжения и периодическом контроле этого источника;

2) при контроле эффективности обеззараживания питьевой воды централизованного водоснабжения;

3) при наблюдении за подземными источниками централизованного водоснабжения, за такими как артезианские скважины, почвенные воды и т. д.;

4) при определении состояния и степени пригодности воды источников индивидуального водопользования (колодцев, родников и т.д.);

5) при наблюдении за санитарно-эпидемиологическим состоянием воды открытых водоемов: водохранилищ, прудов, озер, рек;

6) при контроле эффективности обеззараживания воды плавательных бассейнов;

7) при проверке качества и степени очистки сточных вод;

8) при определении очага водных вспышек инфекционных болезней.

Все санитар н о-микробиологические исследования воды регламентируются соответствующей НТД (табл.2 ).

Объем засеваемой воды (в миллилитрах) Объемы засеваемой воды (в мл) для определения

2 или 3 повторности по 100, 10, 1 50, 5 повторностей по 10, 1 или 2 повторности по 100, 10, 1 и 0,1

50, 5 повторностей по 10, 1 или 2—3 повторности по 10; 1; 0,1; 0,01

повторностей по 10, 1 или 2-3 повторности по 10; 1;0,1; 0,001

Число положительных результатов из 3 объемов

Определение термотолерантных колиформных бактерий (ТКБ)

Из всех бактерий, входящих в состав БГКП, наибольшее санитарно-показательное значение имеют микроорганизмы рода Escherichia. По способности расщеплять лактозу при температуре 37°С из БГКП (ОКБ) принято выделять Гр(-) бактерии, которые способны ферментировать лактозу при температуре 44 ,5°С. К ним относится Е. coli, не растущая на

цитратной среде. В соответствии с международной классификацией эту группу бактерий называют термотолерантные колиформные бактерии — ТКБ.

Число ТКБ характеризует степень фекального загрязнения воды водных объектов и косвенно определяет эпидемическую опасность в отношении возбудителей кишечных инфекций. ТКБ определяют теми же методами, как и БГКП (ОКБ), кроме последнего этапа идентификации, который проводится по ферментации лактозы на полужидкой питательной среде при 44 ,5°С. В случае роста на среде Эндо типичных лактозо- положительных колоний, Гр(-), оксидазоотрицательных, спсобных ферментировать лактозу при 44 ,5°С, их учиты-вают как ТКБ , индекс или титр определяют по таблице 6.

Определение Е. coli

Определение E . coli является дополнительным показателем для расшифровки происхождения биологической контаминации, определения свежести фекального загрязнения, при оценке качества воды в случае превышения норматива. Такое исследование проводится при периодических анализах воды, а также при неожиданных изменениях в основных показателях — индекса ОКБ, ТКБ.

Группа бактерий, условно обозначаемых как E . coli , включает лактозоположительные кишечные палочки, ферментирующие лактозу до кислоты и газа при температуре 4 3-44,5 °С в присутствии ингибиторов посторонней микрофлоры и образующие индол при той же температуре. В основном это бактерии рода Escherichia , но могут быть отнесены в эту группу и представители других родов, обладающие такими же свойствами (например, Citrobacter и др.). Е. coli определяют теми же методами: мембранных фильтров, прямого посева и тит рационны м.

Различие — на этапе исследования свойств микроорганизмов, выросших на среде Эндо. Результат исследования выражают количеством E . coli в 1 л (Col i -индекс ).

Метод прямого посева применяется при определении E . coli в сточных водах и сильно загрязненной воде водоемов. На чашки со средой Эндо засевают по 0 ,1—0,5 мл пробы воды (по 4 дозы из каждой пробы), тщательно втирают шпателем и инкубируют в течение 1 6—18 ч при температуре 37°С. Учитывают рост характерных колоний, определяют биохимические совйства бактерий и определяют коли-индекс, ориентируясь на таблиц ы.

Определение энтерококков

Энтерококки в последние годы привлекают к себе внимание как микроорганизмы — показатели фекального загрязнения. Они обнаруживаются в окружающей среде, куда попадают с испражнениями человека, животных, птиц, насекомых, являясь постоянными обитателями кишечника. В почве и воде они сохраняются до 6 недель, но не размножаются и не изменяют свои основные биологические свойства. Выживаемость энтерококков в воде приближается к выживаемости патогенных энтеробактерий. Они устойчивы к повышению температуры (нагревание до 5 5—60° С выдерживают в течение 1 ч), хорошо переносят низкую температуру, обладают значительной устойчивостью к хлору. Все это дает право считать энтерококки вторым после кишечной палочки санитарно-показательным микроорганизмом при исследовании воды.

Особое значение имеет определение энтерококков в воде плавательных бассейнов как более устойчивых к действию обеззараживающих веществ, чем БГКП.

Определение энтерококков проводят методом мембранных фильтров, титрационным, а при большой загрязненности воды (свыше 30 бактерий в 1 мл) -методом прямого посева.

Сущность метода мембранных фильтров состоит в концентрации энтерококков из определенного объема воды на мембранных фильтрах с последующим подращиванием микробов на специальных средах, идентификации и определении индекса энтерококко в.

Объем воды (2-3 десятикратных разведения) выбирают с таким расчетом, чтобы на фильтрах выросло не менее 10 и не более 50 изолированных колоний (ориентируясь по таблице 8). Фильтры, через которые пропускают выбранные объемы воды, помещают в чашки Петри на среду Сланеца или желчную среду и инкубируют при температуре 37°С в течение 24 ч. На среде Сланеца вырастают характерные колонии: некрупные, выпуклые, круглые, темно-вишневые или розовые с темно- вишневым центром (окраска колоний зависит от степени восстановления ТТХ). На желчной среде колонии плоские, крупные с ровными краями, белые с кремовым или розовым оттенком, а также малиновые. Малиновый цвет характерен для колоний S. faecalis. Принадлежность колоний к энтерококкам подтверждается микроскопией мазков, окрашенных по Граму, и отсутствием каталазной активности (приложение 3).

Подсчитывают количество выросших колоний и вычисляют число энтерококков в исследуемой воде исходя из объемов воды, профильтрованных через мембранные фильтры. Общее количество колоний делят на объем воды и умножают на 1000.

Сущность титрационного метода определения энтерококков заключается в посеве различных объемов исследуемой воды в жидкую элективную среду для накопления микроорганизмов с последующим высевом на плотную молочно-ингибиторную среду для получения отдельных колоний, их идентификации и подсчета индекса энтерококков. Титрационный метод дает более точные количественные данные о содержании энтерококков в воде. Объемы воды выбирают с таким расчетом, чтобы при наиболее высоком разведении наблюдался один или несколько отрицательных результатов (при этом следует ориентироваться на таблицу 10). Каждый объем или разбавление исследуемой воды засевают в 2 или 3 повторностях. Объемы воды 100 мл и 10 мл засевают в 100 и 10 мл (соответственно) щелочно-полимиксиновой среды двойной концентрации, 1 мл и по 1 мл десятикратных разведении засевают в 5 мл этой же среды обычной концентрации. Выдерживают в термостате в течение 24 ч при температуре 37°С, затем из всех колб и пробирок, в которых наблюдается рост бактерий (помутнение, изменение цвета среды с синего на зеленый или желтый), делают высевы на сектора в чашки Петри с молочно-ингибиторной средой. Пробирки с посевами в щелочно-полимиксиновую среду, в которых еще нет признаков роста, оставляют на сутки в термостате, и если в каких-нибудь пробирках появился рост, то также делают высев на молочно- ингибиторную среду. После 24 ч инкубирования в термостате учитывают колонии ас пи дно-черны е, выпуклые, с металлическим блеском (S. faecalis), а также колонии, окруженные узкой зоной просветления с выпадением по периферии осадка пара-казеина ( S . faecium, биовар liquefaciens), мелкие серые колонии (S. faecium, биовар durans). Из части колоний (выборочно) следует приготовить мазки, окрасить по Граму. Наличие энтерококков дает возможность дать заключительный ответ. Индекс энтерококков определяют по таблице 5.

При определении энтерококков методом прямого посева (в основном при исследовании сточных вод) делают посевы исследуемой воды непосредственно на чашки Петри со средой Сланеца или желчной средой в 2 или 5 повторностях. Обычно берут 1 мл, 0,5, 0,2 и 0,1 мл из каждого десятикратного разведения. Засеваемую воду тщательно втирают шпателем в поверхность питательной среды до полного впитывания воды. Идентификация и подсчет энтерококков проводятся так же, как при определении титрационным методом.

Определение споровых сульф итредуц ирующ их клостридий

Сульфитредуцирующие клостридии (представитель этой группы микроорганизмов — Clostr > perfringens ) спорообразующие анаэробные палочковидные микроорганизмы, редуцирующие сульфит натрия на железо-сульфитном агаре при температуре 44°С в течение 16-18 ч. Метод основан на выращиван бии посевов в железо-сульфитном агаре в условиях, приближенных к анаэробным, и подсчете числа черных колоний.

Количественно эти микроорганизмы в воде можно определить методом мембранной фильтрации или прямым посевом. В качестве питательной среды для выделения и подсчета сульфитредуцирующих клостридий обычно используют среду Вильсона-Блера (ж елезосульфитный агар).

Перед посевом пробу воды прогревают на водяной бане при температуре (75±5)°С в течение 15 мин для исключения вегетативных форм. При исследовании хлорированной воды, ее можно не прогревать. Применяя метод мембранной фильтрации, пробу воды определенного объема пропускают через фильтр, который затем помещается в пробирку с подготовленной расплавленной питательной средой верхней стороной внутрь (пробирка с питательной средой после посева должна быть немедленно охлаждена в холодной воде во избежание попадания воздуха) или в чашку Петри на поверхность питательной среды, которая затем заливается той же питательной средой толстым слоем.

Метод прямого посева предполагает посев в стерильные пробирки 20 мл воды следующим образом: по 10мл в 2 пробирки (объемом не менее 30 мл), или по 5 мл в 4 пробирки (объемом не менее 15 мл ).

Сверху посевы воды заливают горячим (75-80°С) железосульфитным агаром в количестве, превышающем объем воды в 2 раза. Среду заливают по стенке пробирки, стараясь не допустить образования пузырьков воздуха. Пробирки с посевами быстро охлаждают в стакане с холодной водой, инкубируют при 44°С в течение 24 ч.

Количественному учету подлежат только те посевы, где получены изолированные колонии. Подсчитывают черные колонии, выросшие как на фильтре, так и в толще питательной сред ы. Результат анализа выражают числом к олониеобразующих единиц (КОЕ) спор сульфит-редуцирующих клостридий в определенном объеме воды (подвергнутой анализу)

Определение бактериофагов

Присутствие бактериофагов в воде, говорит о фекальном загрязнении, и является индикатором или сигналом о возможном присутствии энтеровир усо в. Поэтому методы определения бактериофагов (в т.ч. и колифагов) включены в методические указания Минздрава России (2001г.) и регламентированы Международными стандартами (ИС О 1070 5- 1:1995; 10705-2:2000; 10705-3; 10705-4).

Существует несколько методов количественного и качественного определения бактериофагов в вод е.

Все методы основаны на чувствительности музейных культур микроорганизмов и предполагают использование следующих тест-организмов (по международным стандартам): мутант Salmonella tuphimurium , непатогенный для человека, штамм Escherichia coli К -12 Hfr из соответствующей коллекции культур АТСС 23631 или NTCT12486, штамм E . coli рода CN, называемый WG5, а также бактериофаги MS2, NCT C 12487 или АТСС 15597 для контроля чувствительности тест-организмов.

Международным стандартом регламентируются методы определения бактриофагов РНК типа F и соматических бактриофагов, которые позволяют определить присутствие/отсутствие бактериофагов, а также дать их количественную оценку (ИС О 10705 -1).

Бактериофаги РНК типа F — это бактериальные вирусы, способные инфицировать определенный штамм хозяина с помощью F-фимбрий или половых фимбрий. Соматические бактериофаги являются непатогенными для человека, однако являются устойчивыми к внешним факторам, особенно к высушивани ю.

Прямой метод выявления бактериофагов. Данный метод представлен в методических указаниях МЗ РФ- МУК 4.2.671-97 и применяется при определении исследований по эпидпоказаниям или в случае необходимости получения результатов в короткие сроки.

Ход определения. За 18-24 часа перед проведением анализа необходимо сделать посев тест-культуры E.coli К12 F+(Poc . roc . HH — T мед .и би ол.препаратов им. J 1. A. Тарасевича) на косяк с питательным агаром ( МП А). Перед проведением анализа сделать смыв с косяка 5 мл стерильной водопроводной воды и по стандарту мутности приготовить взвесь тест-организма в концентрации 109 бакт. клеток/мл.

Расплавить и остудить до 45°С 2%-ный питательный агар. Исследуемую воду 100 мл внести в 5 стерильных чашек Петри (по 20 мл в каждую). В питательную среду добавить смыв E.coli (из расчета 1,5 мл на 150 мл агара) и хорошо перемешать. Полученной смесью залить по 30 мл сначала пустую чашку Петри (контроль), а затем все чашки, содержащие исследуемую воду. Содержимое чашек перемешивают вращательными движениями. После застывания питательной среды чашки переворачивают вверх дном и ставят для инкубирования в термостат при 37°С на 18-24 ч.

Учет результатов проводят путем подсчета и суммирования бляшек, выросших на 5-ти чашкках Петри. Резулшьтаты выражают в бляшкообразующих единицах (БОЕ) на 100 мл воды.

В контрольной пробе бляшки должны отсутствоват ь.

Санитарно-микробиологическая оценка воды

Оценка качества воды производится комплексно: по санитарно-микробиологическим показателям с учетом органолептических, гельминтологических и химических данных и регламентируется соответствующими ГОСТами, санитарными правилами и методическими указаниями. Безусловным показателем загрязненности воды является обнаружение патогенных микроорганизмов. В этом случае вода считается непригодной для любых целей.

Критерии оценки качества воды разработаны дифференциально в зависимости от категории воды и ее назначения представлены в таблице 1.2 (приложение 1).

При оценке питьевой воды руководствуются основным требованием: она не должна содержать патогенные бактерии и вирусы. При санитарно-бактериологической оценке воды колодцев исходят из того, чтобы в 1 л БГКП содержалось не более 10. Показателем фекального загрязнения воды колодцев является обнаружение энтерококков. Отсутствие обеззараживания колодезной воды, возможность биологической контаминации (осадки, просачивание загрязненных ливневых и грунтовых вод и т.д.) делают ее эпидемически опасной, и поэтому требуется постоянный контроль. При обнаружении в воде энтерококков вода считается непригодной к употреблению, и колодец подлежит очистк е.

Если при выборе нового источника водопользования коли- инд екс воды водоема превышает 10000 в 1 л, то проводится дополнительное исследование на присутствие Е. coli и энтерококков как показателей свежего фекального загрязнения и непосредственное обнаружение патогенных бактерий сальмонелл и шигелл.

При индексе Е. coli, энтерококков более 1000 в 1 л вода водоема расценивается как загрязненная, причем контаминация считается свежей, а вода -опасной в эпидемическом отношении. В последние годы разработаны и предложены [Григорьева Л. В., 1975] дополнительные критерии оценки санитарного состояния водоемов, в которые включены показатели титра энтерококков, перфрингенс-титр и индекс бактериофагов.

источник