Меню Рубрики

Метод анализа хрома в воде

«Количественный химический анализ вод. Методика выполнения измерений массовой концентрации ионов хрома в природных и сточных водах фотометрическим методом с дифенилкареазидом. ПНД ф 14.1:2.52-96»

Документ по состоянию на август 2014 г.

Утверждаю
Заместитель Министра
охраны окружающей среды
и природных ресурсов
Российской Федерации
В.Ф.КОСТИН
20 марта 1996 года

Методика допущена для целей государственного экологического контроля.

Методика рассмотрена и одобрена Главным управлением аналитического контроля и метрологического обеспечения природоохранной деятельности (ГУАК) и Главным метрологом Минприроды РФ.

В соответствии с требованиями ГОСТ Р ИСО 5725-1-2002 — ГОСТ Р ИСО 5725-6-2002 и на основании свидетельства о метрологической аттестации N 224.01.03.026/2004 в МВИ внесены изменения (Протокол N 1 заседания НТС ФГУ «ФЦАМ» МПР России от 03.03.2004).

Настоящий документ устанавливает методику количественного химического анализа проб природных и сточных вод для определения в них ионов хрома общего, трех- и шестивалентного при массовой концентрации от 0,01 до 1,0 мг/куб. дм.

Если массовая концентрация ионов хрома в анализируемой пробе превышает верхнюю границу диапазона, то допускается разбавление пробы таким образом, чтобы концентрация ионов хрома соответствовала регламентированному диапазону.

Если массовая концентрация ионов хрома в анализируемой пробе ниже минимально определяемой, то допускается концентрирование.

Мешает определению также железо (1 мг/куб. дм), образующее с этим реактивом соединение, окрашивающее анализируемый раствор в желто-бурый цвет. Влияние железа можно частично устранить добавлением фосфорной кислоты, что предусматривается в ходе определения (см. п. 9.1).

Марганец при большом его содержании в пробе при окислении персульфатом может выпасть в осадок в виде гидрата диоксида марганца: осадок тогда отделяют фильтрованием через пористую пластинку или через стеклянную вату (см. п. 9.2).

Настоящая Методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведенных в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Спектрофотометр или фотоколориметр, позволяющий измерять оптическую плотность при длине волны лямбда = 540 нм.

Кюветы с толщиной поглощающего слоя 10 и 50 мм.

Весы лабораторные, 2 класса точности, ГОСТ 24104.

Стандартный образец с аттестованным содержанием ионов хрома.

Фильтры обеззоленные, ТУ 6-09-1678.

Бумага индикаторная, универсальная, ТУ-6-09-1181.

Воронки стеклянные для фильтрования, ГОСТ 25336.

Бутыли из стекла или полиэтилена с притертыми или винтовыми пробками вместимостью 500 — 1000 куб. см для отбора и хранения проб и реактивов.

Калий двухромовокислый, ГОСТ 4220.

Аммоний надсернокислый, ГОСТ 20478.

Спирт этиловый, #ГОСТ 18300#.

Натрия гидроокись, ГОСТ 4328.

Дифенилкарбазид, ГОСТ 5859.

Фосфорная кислота, ГОСТ 6552.

Азотная кислота, ГОСТ 4461.

Трихлоруксусная кислота, ТУ 6-09-1926-77.

Вода дистиллированная, ГОСТ 6709.

Все реактивы должны быть квалификации х.ч. или ч.д.а.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами, ГОСТ 12.1.007.

4.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019.

4.3. Организация обучения работающих безопасности труда по ГОСТ 12.0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой фотометрического и спектрофотометрического анализов, изучивший инструкцию по работе с соответствующими приборами.

Измерения проводятся в следующих условиях:

температура окружающего воздуха (20 +/- 5) °C;

атмосферное давление (84,0 — 106,7) кПа (630 — 800 мм рт. ст.);

относительная влажность (80 +/- 5)%;

напряжение сети (220 +/- 10) В;

частота переменного тока (50 +/- 1) Гц.

Отбор проб производится в соответствии с требованиями #ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб»#.

7.1. Подготовка посуды для отбора проб

Бутыли для отбора и хранения проб воды обезжиривают раствором СМС, промывают водопроводной водой, обрабатывают раствором азотной кислоты (1:1), тщательно промывают водопроводной, затем 3 — 4 раза дистиллированной водой.

7.2 Пробы воды (объем не менее 500 куб. см) отбирают в стеклянные или полиэтиленовые бутыли, предварительно ополоснутые отбираемой водой.

7.4. Проба воды не должна подвергаться воздействию прямого солнечного света. Для доставки в лабораторию сосуды с пробами упаковывают в тару, обеспечивающую сохранность и предохраняющую от резких перепадов температуры. При отборе проб составляют сопроводительный документ по утвержденной форме, в котором указывают:

цель анализа, предполагаемые загрязнители;

должность, фамилия отбирающего пробу, дата.

Подготовку спектрофотометра или фотоэлектроколориметра к работе проводят в соответствии с рабочей инструкцией по эксплуатации прибора. Прибор должен быть поверен.

8.2.1. Гидроокись натрия, водный раствор.

40 г NaOH растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу на 1 куб. дм и доводят до метки дистиллированной водой. Хранят под защитой от контакта с воздухом.

8.2.2. Серная кислота, водный раствор.

27,3 куб. см серной кислоты пл. 1,84 г/куб. см вносят небольшими порциями при перемешивании в 150 — 200 куб. см дистиллированной воды, переносят в мерную колбу вместимостью 1 куб. дм и доводят до метки дистиллированной водой.

8.2.3. Серная кислота, разбавленный раствор (1:1).

Смешивают равные объемы серной кислоты и дистиллированной воды, осторожно приливая кислоту в воду.

8.2.4. Фосфорная кислота, концентрированная, 85%-ная.

8.2.5. Азотная кислота, разбавленный раствор (1:1).

Смешивают равные объемы кислоты и дистиллированной воды, приливая кислоту в воду.

8.2.6. Дифенилкарбазид, 1,0%-ный спиртовой раствор.

Растворяют 0,50 г дифенилкарбазида в 50 куб. см этилового спирта. Раствор хранят в темной склянке. Если раствор приобретает при хранении окраску, он непригоден для использования.

8.2.7. Персульфат аммония, 0,1%-ный раствор.

0,1 г персульфата аммония растворяют в 100 куб. см дистиллированной воды. Раствор применяют свежеприготовленным.

8.2.8. Трихлоруксусная кислота, раствор.

Растворяют 163,4 г трихлоруксусной кислоты

в 500 куб. см дистиллированной воды, переносят в мерную колбу на 1 куб. дм и доводят до метки этой же водой.

8.2.9. Приготовление основного градуированного раствора из ГСО с аттестованным содержанием.

Раствор готовят в соответствии с прилагаемой к образцу инструкцией.

1 куб. см раствора должен содержать 1 мг хрома. Срок хранения — один месяц.

8.2.10. Приготовление рабочего градуированного раствора (I).

Рабочий раствор готовят в день проведения анализа разбавлением основного раствора в 100 раз бидистиллированной водой. В 1 куб. см раствора содержится 0,010 мг хрома.

8.2.11. Приготовление рабочего градуировочного раствора (II).

Раствор готовят в день проведения анализа разбавлением рабочего раствора (I) в 10 раз бидистиллированной водой.

1 куб. см раствора должен содержать 0,001 мг хрома.

Для приготовления реактивов и разбавления пробы используют бидистиллированную воду, полученную в стеклянном приборе.

Для построения градуировочного графика необходимо приготовить образцы для градуировки с концентрациями ионов хрома примерно 0,01 — 1,0 мг/куб. дм. Условия анализа, его проведение должны соответствовать описанным в пунктах 6 и 9.1 #или п. 9.3 (если предполагается работать с высоким содержанием кальция в пробах)#.

Состав и количество образцов для построения градуировочных графиков приведены в таблице 2. Погрешность, обусловленная процедурой приготовления, для образцов для градуировки не превышает 2,8%.

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных.

Строят градуировочный график в координатах, оптическая плотность — концентрация в мг/куб. дм.

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал или при смене партии реактивов. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных Методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

п. 8.2.6), снова перемешивают и через 10 — 15 мин. измеряют оптическую

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4.

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

Примечание. При представлении результата анализа в документах, выдаваемых лабораторией, указывают:

— количество результатов параллельных определений, использованных для расчета результата анализа;

— способ определения результата анализа (среднее арифметическое значение или медиана результатов параллельных определений).

11.2. В том случае, если массовая концентрация хрома в анализируемой пробе превышает верхнюю границу диапазона, то допускается разбавление пробы таким образом, чтобы массовая концентрация хрома соответствовала регламентированному диапазону.

11.3. Если массовая концентрация ионов хрома в анализируемой пробе ниже минимально определяемой по Методике концентрации, то допускается концентрирование. В этом случае одновременно с анализируемой пробой ведут анализ аттестованного раствора с содержанием ионов хрома соответствующим содержанию их в исходной рабочей пробе. Результат анализа исходной рабочей пробы признают удовлетворительным, если выполняется следующее условие:

источник

Инструментальные методы определения хрома.

Аналитический метод Применение Предел определения Мешающие вещества Избирательность
Атомная абсорбционная спектроскопия (пламенная) Пресная и морская вода, промышленные стоки, пыль, осадки, биологические плотные материалы и жидкости, сплавы. 2 мкг/л Вещества, присутствующие в исходной пробе, обычно не переходят в органический раствор. Из холодной пробы экстрагируется только шестивалентный хром.
Атомная абсорбционная спектроскопия (электротермальная) Биологические плотные материалы и жидкости: ткани, кровь, моча; промышленные стоки. 0,005 мкг/л Не описаны для крови и мочи. Промышленные – Na + , K + , Ca + , Mg + , Cl — , F — — »10% Определяется общий хром.
Эмиссионная спектроскопия (индуктивно-сопряженный источник) Широкий спектр биологических материалов и образцов окружающей среды. 4 мкг/л Не описаны. Определяется общий хром.
Эмиссионная спектроскопия (дуговая) Широкий спектр проб из окружающей среды. 0,5 нг. Не описаны. Определяется общий хром.
Спектрофотометрия Природная и промышленные сточные воды, 5 – 400 мкг/л, более высокие конц. необходимо разбавить. 3 мкг/л Помехами могут быть железо, ванадий, ртуть. После хелатирования в растворе определяется только Cr(VI)
Рентгеновская флуоресценция Атмосферные частицы, геологические материалы. 2-10 мкг/л Влияет размер частиц и пробы. Определяется общий хром.
Нейтронный активационный анализ Аэрозоли, пресная и соленая вода, осадки, металлы, пищевые продукты. обычный предел: 10 нг. g-излучение элементов. Определяется общий хром.
Газовая хроматография Кровь, сыворотка, природная вода. 0,03 пг Избыток хелатного агента и электронпоглащающих компонентовв пробе. Определяется хелатированный и экстрагированный хром.
Масс-спектрометрия с дилюцией стабильного изотопа Все биологические материалы. Не ожидается. Высокая избирательность и точность »1%.
Газовая хроматография (атомно-спектроскопическая детекция) Кровь, сыворотка, биологический материал. »1 нг Не описаны. Определяется хелатированный и экстрагированный хром.
Газовая хроматография (масс-спектрометрическая детекция) Кровь, плазма, сыворотка. 0,5 пг Не описаны. Определяется хелатированный и экстрагированный хром.
Хемилюминисценция Пресные природные воды, растворенные биологические материалы. 30 нг/л Co(II), Fe(II), Fe(III) Определяются лишь ионы Cr(III)

Хром относится к аналитической группе (NH4)2S. Для его обнаружения применяют реакции с Н2О2 (синее окрашивание вследствие образования надхромовой кислоты), хромотроповой кислотой (красное окрашивание), бензидином (синее окрашивание).

Для определения хрома используют титриметрические методы – титрование раствором соли Мора (NH4)2Fe(SO4)2•6H2O после предварительного окисления Сr(III) персульфатом аммония, Н2О2 и др.

Для определения малых концентраций хрома используют фотометрические методы, главным образом основанные на реакции с дифенилкарбазидом (красно-фиолетовое окрашивание). Методы, основанные на собственно окраске ионов Сr(III), хромат- и дихромат-ионов, а также синей окраске надхромовой кислоты, менее чувствительны.

Известны полярографические, люминесцентные, кинетические, методы определения этого элемента. Перспективны газохроматографические методы с использованием ацетилацетона и, особенно, его фторпроизводных – трифтор- и гексафторацетилацетона.

Применяют разнообразные физические методы, в первую очередь – спектральный анализ. Наиболее интенсивные линии спектра хрома отвечают длинам волн 425,435, 427,480 и 428,972 нм. Часто используют также линии УФ области, например 283,56 и 301,48 нм. При определении малых количеств хрома применяют методы предварительного отделения примесей и концентрирования путем отгонки, экстракции, осаждения и т. п.

Для определения так же используются атомно-абсорбционная спектрометрия, рентгенофлюоресцентный анализ и, особенно, радиоактивационный анализ.

Вывод. Хром относится к аналитической группе (NH4)2S. Для его обнаружения применяют реакции с Н2О2 (синее окрашивание вследствие образования надхромовой кислоты), хромотроповой кислотой (красное окрашивание), бензидином (синее окрашивание).

Читайте также:  Систему очистки воды по анализу

Хром — важный компонент во многих легированных сталях (в частности, нержавеющих), а также и в ряде других сплавов. Используется в качестве износоустойчивых и красивых гальванических покрытий (хромирование). Хром применяется для производства сплавов: хром-30 и хром-90, незаменимых для производства сопел мощных плазмотронов и в авиакосмической промышленности.

На протяжении многих десятилетий с момента открытия металлического хрома применение находил лишь крокоит и некоторые другие его соединения в качестве пигментов при изготовлении красок. В 1820 Кохлен предложил использовать дихромат калия как протраву при крашении тканей. В 1884 началось активное использование растворимых хромовых соединений в качестве дубильных веществ в кожевенной промышленности. Впервые хромит нашел применение во Франции в 1879 как огнеупорное вещество, но основное его использование началось в 1880-х в Англии и Швеции, когда стала наращивать обороты промышленная выплавка феррохрома. В небольших количествах феррохром умели получать уже в начале XIX в., так Бертье еще в 1821 году предложил восстанавливать смесь оксидов железа и хрома древесным углем в тигле. Первый патент на изготовление хромистой стали был выдан в 1865году. Промышленное производство высокоуглеродистого феррохрома началось с использованием доменных печей для восстановления хромита коксом. Феррохром конца XIX в. был очень низкого качества, так как содержал обычно 7–8% хрома, и был известен под названием «тасманского чугуна» ввиду того, что исходная железохромовая руда ввозилась из Тасмании. Переломный момент в производстве феррохрома наступил в 1893, когда Анри Муассан впервые выплавил высокоуглеродистый феррохром, содержащий 60% Cr. Основным достижением в этой отрасли стала замена доменной печи на электродуговую, созданную Муассаном, что позволило увеличить температуру процесса, уменьшить расход энергии и значительно повысить качество выплавляемого феррохрома, который стал содержать 67–71% Cr и 4–6% С. Способ Муассана до сих пор лежит в основе современного промышленного производства феррохрома. Восстановление хромита обычно ведут в открытых электродуговых печах, и шихту загружают сверху. Дуга образуется между погруженными в шихту электродами.

Несмотря на большое значение высокоуглеродистого феррохрома для получения многих сортов нержавеющих сталей, он не пригоден для выплавки некоторых высокохромистых сталей, так как наличие углерода (в виде карбида Cr23C6, кристаллизующегося по границам зерен) делает их хрупкими и легко поддающимися коррозии. Производство низкоуглеродистого феррохрома стало развиваться с началом использования промышленного алюмотермического восстановления хромитов. Сейчас алюмотермический процесс вытеснен силикотермическим процессом (процессом Перрена) и симплекс-процессом, заключающемся в смешении высокоуглеродистого феррохрома с частично окисленным порошком феррохрома, последующем брикетировании и нагревании до 1360°С в вакууме. Феррохром, приготовленный симплекс-процессом, обычно содержит всего 0,008% углерода, а брикеты из него легко растворяются в расплаве стали. Феррохром используется в качестве легирующей добавки к низколегированным сталям. При содержании более 12% хрома сталь почти не ржавеет [1].

Коррозионную стойкость железных сплавов можно значительно увеличить нанесением на их поверхность тонкого слоя хрома. Такая процедура называется хромированием. Хромированные слои хорошо противостоят воздействию влажной атмосферы, морского воздуха, водопроводной воды, азотной и многих органических кислот. Все способы хромирования можно разделить на два вида – диффузионные и электролитические. Диффузионный способ Беккера – Дэвиса – Штейнберга заключается в нагревании до 1050–1100°С хромируемого изделия в атмосфере водорода, засыпанного смесью феррохрома и огнеупора, предварительно обработанных хлороводородом при 1050°С. Находящийся в порах огнеупора CrCl2 улетучивается и хромирует изделие. В процессе электролитического хромирования металл осаждается на поверхности обрабатываемого изделия, выступающего в качестве катода. Электролит часто представляет собой соединение шестивалентного хрома (обычно CrO3), растворенное в водной H2SO4. Хромовые покрытия бывают защитные и декоративные. Толщина защитных покрытий достигает 0,1 мм, они наносятся непосредственно на изделие и придают ему повышенную износостойкость. Декоративные покрытия имеют эстетическое значение, и наносятся на подслой другого металла (никеля или меди), выполняющего собственно защитную функцию. Толщина такого покрытия всего 0,0002–0,0005 мм [1].

Вывод. На протяжении многих десятилетий с момента открытия металлического хрома применение находил лишь крокоит и некоторые другие его соединения в качестве пигментов при изготовлении красок. Коррозионную стойкость железных сплавов можно значительно увеличить нанесением на их поверхность тонкого слоя хрома.

источник

Казанский Государственный Технический Университет

на тему: «ХРОМ И МЕТОДЫ ЕГО ОПРЕДЕЛЕНИЯ»

1.1. Современное состояние технологической линии

1.2. Характеристика твердых отходов процесса хромирования

1.3. Хром, его физические и химические свойства, хромирование

2.1. Титрование сульфатом железа (II) и перманганатом

2.2. Колометрические методы. Хроматный метод

2.3. Метод с дефинилкарбазидом

2.4. Атомно-абсорбционный метод

3. Теория определения хрома экспериментально. Качественный анализ компонентов твердых отходов процесса хромирования

Хромирование начали применять в промышленности с конца двадцатых годов нашего столетия. Этот процесс существенно отличается от большинства других катодных гальванических процессов в силу ряда химических, электрических и технологических особенностей. Несмотря на некоторую свою «необычность», хромирование получило очень широкое распространение. Вряд ли можно назвать другое гальваническое покрытие, обладающее более обширным ассортиментом технически полезных свойств и используемое в более разнообразных областях промышленности. Нельзя забывать так же о том, что шламы гальванических процессов являются основным источником загрязнения почвы, водоемов и сельскохозяйственных угодий. При неэффективной очистке гальваностоков тяжелые металлы попадают в природные водоемы, почву и по пищевым цепям доходят до человека. Аналогичная ситуация возникает при выщелачивании тяжелых металлов кислотными дождями и природными органическими кислотами из шламов в местах их захоронений. Таким образом, круг замыкается, и растворы солей тяжелых металлов в конечном итоге попадают в водоемы.

В настоящее время гальванические производства имеют практически все предприятия машиностроительной, электротехнической и других отраслей промышленности России. Переработка гальванических шламов для предприятий обременительна, поэтому после нейтрализации (перевода в менее растворимые соединения) направляются на захоронение. Однако это не решает проблемы сохранения окружающей среды. Поскольку и после нейтрализации шламы являются в той или иной степени токсичными. Попадание ионов тяжелых металлов в почву и воду вызывает антропогенные геохимические аномалии в атмосфере, гидросфере, приводит к ослаблению жизнедеятельности почвенных бактерий, определяющих плодородие почвы, оказывает вредное воздействие на живые организмы растительного и животного мира. В частности хром является весьма канцерогенным веществом, вызывающий опухолевые процессы.

В последнее время установлено, что ионы тяжелых металлов нарушают работу кальмодумина – основного регулятора процессов жизнедеятельности организма, в результате чего развиваются наследственные болезни, сердечно-сосудистые расстройства, рак и др.

К концу ХХ века из ежегодно образовывающихся в России более чем 20 млн. тонн неутилизируемых высокотоксичных промышленных отходов 0,75 млн. тонн составили гальваношламы.

Несмотря на значительное снижение объемов гальванического производства в последние годы, которое по некоторым оценкам достигло 40-50 %, проблема утилизации гальванических шламов и сточных вод гальванического производства остается для Российской Федерации одной из наиболее важных.

Задача: определить качественный состав компонентов твердожидких отходов гальванического производства процесса хромирования.

1.1 Современное состояние технологической линии хромирования

Современные сложные технологические производства во всех отраслях промышленности широко используют различные гальванические процессы. Находят применение такие процессы, как нанесение покрытий, травление, электрохимические методы размерной обработки, обезжиривание и др. Реализация гальванических процессов осуществляется в ваннах, или в среде проточного электролита. В процессе эксплуатации рабочие жидкости интенсивно загрязняются продуктами электролиза в виде шлама, ионами тяжелых металлов, жировыми загрязнениями после промывочных операций.

Электрохимический процесс хромирования происходит в несколько стадий. Первоначально стальную деталь химически обезжиривают путем опускания ее в ванну, содержащую смесь растворов определенного количества (см. Приложение). В качестве обезжиривателя выступает вода питьевая. В конце процесса на дне ванны остаются отходы (см. Приложение). Затем производят промывку в горячей проточной воде, после чего производят обезжиривание электрохимическое, также сопровождающееся выделением отходов. По окончании обезжиривания промывают в горячей, затем в холодной проточной воде. Далее — химическая активация, промывка в холодной проточной воде. Затем непосредственно производят электрохимическое хромирование, после чего на дне ванны остаются отходы. Процесс хромирования завершается промывкой в проточной холодной воде, после чего промывают стальную деталь в проточной горячей воде. Далее — производят транспортировку и выгрузку готовых деталей.

Следует отметить, что на предприятии используются устаревшие технологические процессы, и отсутствует сортировка твердо-жидких отходов гальванических производств. Твердо-жидкие отходы, для упрощения далее называемые «твердые отходы гальванического производства», образуются при периодической зачистке ванн каждой гальванической линии (виды ванн и периодичность зачистки приведены в Приложении). При определении количества образования данного вида отходов отсутствует методологический подход к оценке их образования, полный учет их образования и точный анализ состава.

1.2 Характеристика твердых отходов процесса хромирования

В работе анализировались методы определения твердо-жидких отходов гальванических производств с целью оценки качественного состава твердых отходов техпроцесса хромирование. Характеристика технологического процесса приведена в Приложении.

Отходы хранятся на территории цехов в закрытых металлических емкостях по 50 кг каждая. По статистическим данным на КАПО им. С.П. Горбунова за год образуется в среднем 10 т твердых гальванических отходов в год. (Данные не уточняются ввиду того, что отходы с основных ванн технологических процессов не сортируются).

1.3 Хром, его физические и химические свойства, хромирование

Хром – серебристый с голубоватым отливом металл. Атомный вес его 52, удельный вес 7,1 г/см3, температура плавления 1830 о С, электрохимический эквивалент 0,323 г/а-ч, нормальный потенциал 0,55 в.

Благодаря склонности к пассивации хром длительное время сохраняет блеск. Он стоек во влажной атмосфере, к действию щелочей, органических кислот, серы, серной и азотной кислот.

В гальванической паре с железом хром является катодом, несмотря на более электроотрицательный потенциал.

Пассивная пленка, покрывающая хром, сдвигает его потенциал в положительную сторону, а значительная пористость хромовых покрытий вызывает необходимость создания подслоя для защиты стальных изделий.

Хром обладает рядом ценных качеств. Кроме упомянутой уже химической стойкости и способности длительное время сохранять блеск, хрому свойственна высокая твердость, низкий коэффициент трения, значительная жаростойкость. Эти свойства хромовых покрытий делают гальваническое хромирование весьма распространенным видом покрытия, которое практически нельзя заменить другим.

Основные области применения хрома – декоративная защита, повышение износостойкости трущихся деталей, поршневых колец и цилиндров, мерительного и режущего инструмента, коррозионно-стойкие комбинированные покрытия.

Декоративные хромовые покрытия осаждают на предварительно никелированные или омедненные и никелированные покрытия.

Разработаны электролиты, позволяющие непосредственно на стали получать малопористые хромовые покрытия, обладающие защитными и декоративными свойствами. Технология получения комбинированного двухслойного хрома позволяет сочетать в покрытии коррозионно-стойкие и защитные функции.

Хромовые осадки отличаются высокими внутренними напряжениями, поэтому на хромовых покрытиях уже при толщине слоя 0,1 мк образуется сетка мелких трещин. При увеличении толщины хромового покрытия старые трещины перекрываются вновь образовавшимися.

В зависимости от условий хромирования сеть трещин может быть различной. Это свойство хромовых покрытий используют для предания деталям антифрикционных свойств, а также для создания новой технологии получения комбинированного защитно-декоративного никель-хромового покрытия. Хромовые покрытия в 5-8 раз повышают износостойкость стали. Самой высокой износостойкостью отличаются матовые хромовые покрытия, самой низкой – блестящие.

Наибольшее влияние на твердость хромовых покрытий имеет режим электролиза – температура электролита и применяемая плотность тока.

Наиболее удовлетворительными методами определения хрома являются колориметрические и объемный. Объемный метод основан на окисление хрома до хромата, прибавление избыточного количества сульфата железа (II) и титрование избытка последнего перманганатом. Колориметрический метод пригоден для определения малых количеств хрома, какие обычно содержаться в горных породах. При значительном содержании хрома, когда колориметрические методы не применимы, пользуются объемным методом.

источник

Количественный химический анализ вод. Методика измерений массовой концентрации ионов хрома в питьевых, поверхностных и сточных водах фотометрическим методом с дифенилкарбазидом

Документ устанавливает методику измерений массовой концентрации ионов хрома общего, трех- и шестивалентного в питьевых, природных (пресных, включая воды поверхностных и подземных источников) и сточных водах фотометрическим методом с дифенилкарбазидом. Методика предназначена для измерения показателей состава питьевых, природных и сточных вод.

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ
В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

Директор ФГБУ
«Федеральный центр анализа и
оценки техногенного воздействия»

_________________ В.В. Новикова

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ
МАССОВОЙ КОНЦЕНТРАЦИИ ИОНОВ ХРОМА
В ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОДАХ
ФОТОМЕТРИЧЕСКИМ МЕТОДОМ
С ДИФЕНИЛКАРБАЗИДОМ

Методика допущена для целей государственного
экологического контроля

Настоящий документ устанавливает методику измерений массовой концентрации ионов хрома общего, трех- и шестивалентного в питьевых, природных (пресных, включая воды поверхностных и подземных источников) и сточных водах фотометрическим методом с дифенилкарбазидом. Методика предназначена для измерения показателей состава питьевых, природных и сточных вод.

Диапазон измерений от 0,010 до 3,0 мг/дм 3 .

Если массовая концентрация ионов хрома в анализируемой пробе ниже минимально определяемой, то допускается концентрирование путем упаривания.

Если массовая концентрация ионов хрома в анализируемой пробе превышает верхнюю границу диапазона, то допускается разбавление пробы таким образом, чтобы массовая концентрация ионов хрома соответствовала регламентированному диапазону.

Определению мешают присутствующие в высоких массовых концентрациях (свыше 200 мг/дм 3 ) ионы ртути. С дифенилкарбазидом также вступают в реакцию и окрашивают раствор ванадий и молибден (VI), присутствие этих элементов допустимо при массовых концентрациях до 200 мг/дм 3 .

Мешает определению железо (III) при содержании более 1 мг/дм 3 , образующее с дифенилкарбазидом соединение, окрашивающее анализируемый раствор в желто-бурый цвет. Влияние железа устраняется добавлением ортофосфорной кислоты, что предусматривается в ходе определения.

Марганец при большом его содержании в пробе при окислении персульфатом может выпасть в осадок в виде диоксида марганца: осадок тогда отделяют фильтрованием через пористую пластинку.

При определении хрома (VI) на результаты может повлиять то обстоятельство, что хром в виде хромата и бихромата может окислять некоторые содержащиеся в пробе вещества в интервале времени между отбором пробы и анализом. В подобных случаях хром определяют непосредственно после отбора пробы.

В водах с высоким содержанием растворенных веществ может оказывать мешающее влияние повышенное содержание кальция, который в реакции с серной кислотой в ходе определения дает помутнение, вызванное осаждением сульфата кальция. В таких случаях рекомендуется использовать вариант определения, при котором вместо серной кислоты применяют трихлоруксусную кислоту (п. 9.3).

В нейтральных или щелочных водах раздельное определение хрома (VI) и хрома (III) затруднено тем, что при подкислении таких вод, если они (как это обычно бывает) содержат восстановители — соли железа, сульфиты, многие органические вещества и т.п., происходит восстановление хрома (VI) до хрома (III).

В водах, содержащих окрашенные органические вещества, а также органические вещества, приводящие к восстановлению хрома при подкислении пробы, определить хром (VI) фотометрическим методом трудно даже тогда, когда эти воды имеют кислую реакцию, и поэтому по данной методике в мутных и окрашенных водах определяют только общее содержание хрома.

При невозможности устранения мешающих влияний при определении хрома по данной методике необходимо проводить определение хрома в соответствии с другими аттестованными методиками измерений.

Методика измерений должна обеспечивать выполнение измерений с погрешностью (неопределенностью), не превышающей норм точности измерений показателей состава и свойств вод, установленных ГОСТ 27384-2002 .

Значения показателя точности измерений 1 — расширенной относительной неопределенности измерений по настоящей методике при коэффициенте охвата 2 приведены в таблице 1. Бюджет неопределенности измерений приведен в приложении А.

1 В соответствии с ГОСТ Р 8.563-2009 (п. 3.4) в качестве показателя точности измерений использованы показатели неопределенности измерений).

Диапазон измерений, мг/дм 3

Суммарная стандартная относительная неопределенность, u , %

Расширенная относительная неопределенность, U при коэффициенте охвата k = 2, %

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке качества проведения испытаний в лаборатории;

— оценке возможности использования настоящей методики в конкретной лаборатории.

При выполнении измерений должны быть применены следующие средства измерений, вспомогательное оборудование, материалы, реактивы.

3.1 Средства измерений, стандартные образцы

Спектрофотометр или фотоколориметр, позволяющий измерять оптическую плотность при длине волны λ = 540 нм.

Весы лабораторные неавтоматического действия, обеспечивающие в диапазоне от 1 г до 210 г измерения с относительной погрешностью не более 0,1 %. Весы должны быть поверены.

Государственные стандартные образцы (ГСО) состава раствора ионов хрома с массовой концентрацией 1 мг/см 3 . Относительная погрешность аттестованных значений массовой концентрации не более 1 % при Р = 0,95.

Колбы мерные вместимостью 50; 100; 500; 1000 см 3 по ГОСТ 1770-74 , 2 класс точности.

Пипетки градуированные вместимостью 1; 2; 5 и 10 см 3 по ГОСТ 29227-91 , 2 класс точности.

Пипетки с одной отметкой вместимостью 1; 2; 5; 25 и 50 см 3 по ГОСТ 29169-91 , 2 класс точности.

Цилиндры мерные вместимостью 50; 100 и 250 см 3 по ГОСТ 1770-74 , 2 класс точности.

Шкаф сушильный с температурным режимом (105 ± 2) °С, например, СНОЛ по ТУ 16-681.032-84.

3.2 Вспомогательное оборудование, материалы

Кюветы с толщиной поглощающего слоя 10 и 50 мм.

Баня песчаная или плитка электрическая с регулятором температуры по ГОСТ 14919-83 .

Фильтры обеззоленные по ТУ 6-09-1678-95.

Бумага индикаторная универсальная (с шагом 1 ед. pH) по ТУ 6-09-1181-89.

Колбы конические плоскодонные термостойкие КН-1(2)-100 (250) по ГОСТ 25336-82 .

Воронки стеклянные для фильтрования по ГОСТ 25336-82 .

Фильтры Шотта по ГОСТ 25336-82 или фильтры мембранные с диаметром пор 0,40 — 0,45 мкм, например, производства фирмы Millipore или фирмы Владипор.

Холодильник бытовой любой марки, обеспечивающий хранение проб при температуре (2 — 8) °С.

Бутыли из полимерного материала или боросиликатного стекла с притертыми или винтовыми пробками вместимостью не менее 250 см 3 для отбора и хранения проб.

1 Допускается использование других средств измерений утвержденных типов, обеспечивающих измерения с установленной точностью.

2 Допускается использование другого оборудования с метрологическими и техническими характеристиками, аналогичными указанным.

3 Средства измерений должны быть поверены в установленные сроки.

Калий двухромовокислый по ГОСТ 4220-75 .

Аммоний надсернокислый (персульфат аммония) по ГОСТ 20478-75 .

Спирт этиловый ректификованный по ГОСТ Р 55878-2013 .

Серная кислота по ГОСТ 4204-77 .

Натрия гидроокись по ГОСТ 4328-77 .

Кислота ортофосфорная по ГОСТ 6552-80 .

Кислота азотная по ГОСТ 4461-77 .

Трихлоруксусная кислота по ТУ 6-09-1926-77.

Вода дистиллированная по ГОСТ 6709-72 .

1 Все реактивы, используемые для измерений, должны быть квалификации ч.д.а. или х.ч.

2 Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных.

Фотометрический метод определения массовой концентрации ионов хрома основан на реакции дифенилкарбазида в кислой среде с бихромат-ионами с образованием соединения фиолетового цвета, в котором хром содержится в восстановленной форме в виде хрома (III), а дифенилкарбазид окислен до дифенилкарбазона.

Измерение проводят при длине волны λ = 540 нм.

В одной порции пробы проводят окисление хрома (III) до хрома (VI) персульфатом и определяют суммарное содержание в пробе обеих форм хрома, в другой порции пробы окисление хрома (III) не проводят и определяют только содержание хрома (VI). По разности между полученными результатами находят содержание хрома (III).

При выполнении измерений массовой концентрации ионов хрома необходимо соблюдать следующие требования техники безопасности.

5.1 При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами ГОСТ 12.1.007-76 .

5.2 Электробезопасность при работе с электроустановками по ГОСТ Р 12.1.019-2009 .

5.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004-90 .

5.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83 .

5.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88 .

5.6 Используемую в работе посуду не допускается мыть хромовой смесью! Для обработки стеклянной посуды необходимо применять моющие средства, раствор азотной кислоты и тщательно промывать водопроводной, а затем дистиллированной водой.

Выполнение измерений может производить химик-аналитик, владеющий техникой фотометрического анализа, изучивший инструкции по эксплуатации спектрофотометра или фотоколориметра и получивший удовлетворительные результаты при выполнении контроля процедуры измерений.

Измерения проводятся в следующих условиях:

— температура окружающего воздуха (20 ± 5) °С;

— атмосферное давление (84,0 — 106,7) кПа (630 — 800 мм рт. ст.);

— относительная влажность не более 80 % при t = 25 °С;

— напряжение сети (220 ± 22) В.

При подготовке к выполнению измерений должны быть проведены следующие работы: отбор и хранение проб, подготовка прибора к работе, приготовление вспомогательных и градуировочных растворов, установление и контроль стабильности градуировочной характеристики.

8.1.1 Отбор проб природных и сточных вод производится в соответствии с требованиями ГОСТ 31861-2012 «Вода. Общие требования к отбору проб», ПНД Ф 12.15.1-08 (Издание 2015 г.) «Методические указания по отбору проб для анализа сточных вод».

Отбор проб питьевых вод производится в соответствии с требованиями ГОСТ Р 56237-2014 «Вода питьевая. Отбор проб на станциях водоподготовки и в трубопроводных распределительных системах».

При необходимости определения хрома (VI) анализ осуществляют непосредственно после отбора пробы, так как хромат или бихромат может окислять некоторые вещества, находящиеся в пробе между взятием пробы и ее исследованием. Срок хранения пробы при этом не более 6 часов после отбора пробы при обычных условиях и не более 24 часов при хранении в тёмном месте при температуре (2 — 8) °С.

8.1.2 Бутыли для отбора и хранения проб воды при необходимости обезжиривают раствором синтетического моющего средства, промывают водопроводной водой, обрабатывают раствором азотной кислоты (1:1), тщательно промывают водопроводной, затем 3 — 4 раза дистиллированной водой.

8.1.3 Пробы воды (объём не менее 250 см 3 ) отбирают в бутыли из полимерного материала или стекла, предварительно ополоснутые отбираемой водой.

8.1.4 Пробы анализируют не позже, чем через 6 часов после отбора. При определении общего содержания хрома допускается консервирование (приблизительно 5 см 3 концентрированной азотной кислоты (HNO3) на 1 дм 3 воды до достижения pH пробы не менее 2 ед. pH по универсальной индикаторной бумаге). Срок хранения законсервированной пробы составляет не более 1 месяца.

Если требуется отдельно определить хром в растворимой и нерастворимой формах, часть пробы фильтруют через фильтр с диаметром пор 0,45 мкм (до консервации), и в ней определяют растворенную форму. В этом случае, пробу необходимо отбирать только в емкости из полимерного материала, консервировать при этом следует полученный фильтрат.

8.1.5 Проба воды не должна подвергаться воздействию прямого солнечного света. Для доставки в лабораторию сосуды с пробами упаковывают в тару, обеспечивающую сохранность и предохраняющую от резких перепадов температуры. При отборе проб составляют сопроводительный документ по утвержденной в лаборатории форме, в котором указывают:

цель анализа, предполагаемые загрязнители;

должность, фамилия отбирающего пробу, дата.

8.2 Подготовка прибора к работе

Подготовку спектрофотометра или фотоэлектроколориметра к работе проводят в соответствии с рабочей инструкцией по эксплуатации прибора.

8.3 Приготовление вспомогательных растворов

40 г NaOH растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу на 1 дм 3 и доводят до метки дистиллированной водой. Срок хранения в полиэтиленовом флаконе с плотно завинчивающейся крышкой — 6 месяцев.

27,3 см 3 серной кислоты плотностью 1,84 г/см 3 вносят небольшими порциями при перемешивании в (150 — 200) см 3 дистиллированной воды, переносят в мерную колбу вместимостью 1 дм 3 и доводят до метки дистиллированной водой. Срок хранения — 6 месяцев.

Смешивают равные объёмы серной кислоты и дистиллированной воды, осторожно приливая кислоту в воду. Срок хранения — 6 месяцев.

8.3.4 Азотная кислота, разбавленный раствор (1:1)

Смешивают равные объёмы кислоты и дистиллированной воды, приливая кислоту в воду. Срок хранения — 6 месяцев.

Растворяют 0,50 г дифенилкарбазида в 50 см 3 этилового спирта. Раствор хранят в тёмной склянке не более 7 суток. Если раствор приобретает при хранении окраску, он непригоден для использования.

10,0 г персульфата аммония растворяют в 100 см 3 дистиллированной воды. Раствор хранят не более 5 суток.

Растворяют 163,4 г трихлоруксусной кислоты приблизительно в 500 см 3 дистиллированной воды, переносят в мерную колбу на 1 дм 3 и доводят до метки этой же водой. Срок хранения составляет не более 3 месяцев.

8.3.8 Приготовление основного градуировочного раствора из ГСО 2 с аттестованным содержанием ионов хрома

В качестве основного градуировочного раствора используется ГСО 3 (1 см 3 раствора должен содержать 1 мг хрома).

Основной градуировочный раствор готовят из ГСО и хранят в соответствии с инструкцией по применению.

2 Приготовление градуировочных растворов из бихромата калия приведено в Приложении Б.

3 Разрешается использование ГСО состава водного раствора ионов хрома другого значения при условии приготовления градуировочных растворов с указанными значениями массовой концентрации хрома.

8.3.9 Приготовление рабочего градуировочного раствора (I)

Рабочий раствор готовят в день проведения анализа разбавлением основного раствора в 100 раз бидистиллированной водой. В 1 см 3 раствора содержится 0,010 мг хрома.

8.3.10 Приготовление рабочего градуировочного раствора (II)

Раствор готовят в день проведения анализа разбавлением рабочего раствора (I) в 10 раз бидистиллированной водой.

Для этого в мерную колбу вместимостью 50 см 3 пипеткой вносят

5,0 см 3 рабочего градуировочного раствора (I). Объём раствора доводят до метки дистиллированной водой и перемешивают. Раствор используют свежеприготовленным 1 см 3 раствора должен содержать 0,001 мг хрома.

8.4 Построение градуировочных графиков

8.4.1 Градуировочный график для определения хрома (VI)

Для построения градуировочного графика необходимо приготовить образцы для градуировки с массовой концентрацией ионов хрома 0,01 — 1,0 мг/дм 3 .

Для этого в ряд мерных колб вместимостью 100 см 3 необходимо поместить аликвоту соответствующего рабочего градуировочного раствора в соответствии с таблицей 2. Далее объём разбавляют дистиллированной водой до приблизительно 80 см 3 , перемешивают и приливают 1 см 3 серной кислоты (1:1), 0,3 см 3 фосфорной кислоты, тщательно перемешивают, вносят 2 см 3 раствора дифенилкарбазида (по п. 8.3.5), доводят объём дистиллированной водой до 100 см 3 и снова перемешивают.

Полученный раствор переносят в кювету через 10 — 15 минут и фотометрируют при λ = 540 нм по отношению к холостой пробе. Холостой пробой служит нулевой раствор (номер образца 1 в таблице 2).

Холостые пробы для определения хрома общего и хрома шестивалентного приготавливаются отдельно!

Состав и количество образцов для градуировки приведены в таблице 2). Неопределенность, обусловленная процедурой приготовления, для образцов для градуировки не превышает 2,8 %.

Таблица 2 — Состав и количество образцов для градуировки

Массовая концентрация ионов хрома в градуировочных растворах, мг/дм 3

Аликвотная часть растворов (см 3 ), помещенных в мерную колбу на 100 см 3

Рабочий раствор (II) с массовой концентрацией 0,001 мг/см 3 .
График 1 (кювета 50 мм)

Рабочий раствор (I) с массовой концентрацией 0,010 мг/см 3 .
График 2 (кювета 10 мм)

8.4.2 Градуировочный график для определения хрома общего

Для построения градуировочного графика для определения хрома общего необходимо в конические колбы вместимостью доя 250 см 3 поместить аликвоты соответствующих рабочих градуировочных растворов в соответствии с таблицей 2, развести дистиллированной водой до приблизительно 80 см 3 , прилить 0,3 см 3 серной кислоты (по п. 8.3.3) и 10 см 3 раствора персульфата аммония. Полученную смесь необходимо прокипятить в течение 20 — 25 мин (весь персульфат должен разложиться, так как даже следы неразложившегося персульфата аммония мешают последующему фотометрическому определению с дифенилкарбазидом) — при этом объём упаривается приблизительно до 50 см 3 .

Охлажденный раствор переносят в мерную колбу вместимостью 100 см 3 и дальше продолжают анализ как при определении хрома (VI), начиная со стадии добавления серной кислоты.

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочных графиков каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных. При построении градуировочных графиков по оси ординат откладывают значения оптической плотности, а по оси абсцисс — величину концентрации вещества в колориметрируемой пробе воды, мг/дм 3 .

8.4.3 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал, а также при смене партий реактивов, после поверки или ремонта прибора. Средствами контроля являются вновь приготовленные образцы для градуировки.

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

где X — результат контрольного измерения массовой концентрации ионов хрома в образце для градуировки, мг/дм 3 ;

С — аттестованное значение массовой концентрации ионов хрома, мг/дм 3 ;

uI(TOE) — стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности, %.

Если условие стабильности градуировочной характеристики не выполняется, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

Отбирают такой объём предварительно профильтрованной анализируемой воды, чтобы в нем содержалось от 0,001 до 0,1 мг хрома (полученное значение массовой концентрации не должно превышать верхнюю границу диапазона градуировочной характеристики), переносят в мерную колбу вместимостью 100 см 3 . Пробу нейтрализуют раствором гидроксида натрия (по п. 8.3.1) или раствором серной кислоты (по п. 8.3.2) до рН = 4 ед. рН, контролируя значение pH по универсальной индикаторной бумаге. Затем приливают 1 см 3 серной кислоты (по п. 8.3.3), 0,3 см 3 фосфорной кислоты, перемешивают, вносят 2 см 3 раствора дифенилкарбазида (по п. 8.3.5), снова перемешивают. Далее доводят объём дистиллированной водой до 100 см 3 и через 10 — 15 мин измеряют оптическую плотность при λ = 540 нм по отношению к холостой пробе.

В случае, если окраска и мутность пробы не уничтожены в процессе фильтрования, необходимо измерить оптическую плотность данной пробы подготовленной так же, как и при анализе, но без реактива дающего окраску — без дифенилкарбазида («корректирующий раствор») и вычесть из полученной оптической плотности раствора с дифенилкарбазидом.

9.2 Определение суммарного (общего) содержания хрома (III) и (VI)

В термостойкую колбу вносят 100 см 3 первоначально неразбавленной, разбавленной или сконцентрированной пробы, содержащей в этом объёме (0,001 — 0,1) мг хрома, нейтрализуют раствором едкого натра (по п. 8.3.1) или раствором серной кислоты (по п. 8.3.2) до pH около 4 ед. рН, контролируя значение pH по универсальной индикаторной бумаге. Затем прибавляют 0,3 см 3 раствора серной кислоты (по п. 8.3.2) и 10 см 3 раствора персульфата аммония (по п. 8.3.6) и кипятят 20 — 25 мин для восстановления Cr 6+ до Cr 3+ .

Если выпал осадок диоксида марганца (в процессе окисления персульфатом в случае присутствия больших количеств марганца), его отфильтровывают через фильтр Шотта или стеклянную фильтрующую пластинку.

Раствор выпаривают примерно до 50 см 3 , охлаждают, переносят в мерную колбу вместимостью 100 см 3 , и дальше продолжают анализ, как при определении хрома (VI), начиная со стадии добавления серной кислоты: приливают 1 см 3 серной кислоты (по п. 8.3.3), 0,3 см 3 фосфорной кислоты, перемешивают, вносят 2 см 3 раствора дифенилкарбазида (по п. 8.3.5), снова перемешивают и доводят объём дистиллированной водой до 100 см 3 — через 10 — 15 мин измеряют оптическую плотность при λ = 540 нм по отношению к холостой пробе.

Определив суммарное содержание обеих форм хрома и содержание хрома (VI) по формуле 2, по разности находят содержание хрома (III).

Отбирают такой объём, предварительно профильтрованной, анализируемой воды (pH = 7,0), чтобы в нем содержалось от 0,001 до 0,1 мг хрома (VI), переносят в мерную колбу вместимостью 100 см 3 , добавляют 2 см 3 раствора трихлоруксусной кислоты (по п. 8.3.7) и 1 см 3 раствора дифенилкарбазида (по п. 8.3.5). Объём доводят дистиллированной водой до 100 см 3 , хорошо перемешивают и через 15 мин измеряют оптическую плотность.

10.1 Массовую концентрацию ионов хрома X (мг/дм 3 ) рассчитывают по формуле

где С — массовая концентрация хрома, найденная по градуировочному графику, мг/дм 3 ;

100 — объём, до которого была разбавлена проба, см 3 ;

V — объём, взятый для анализа, см 3 .

10.2 За результат измерений принимают единичное значение или в случае анализа нестандартных проб сточной воды (со сложной матрицей, существенным превышением значения ПДК и т.д) Хср — среднее арифметическое значение двух параллельных определений Х1 и Х2:

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 3.

Диапазон измерений, мг/дм 3

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

При невыполнении условия (4) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно разделу 5 ГОСТ Р ИСО 5725-6-2002 .

Результат измерений в документах, предусматривающих его использование, может быть представлен в виде:

где X, Хср — результат измерений массовой концентрации, установленный по п. 10, мг/дм 3 ;

U — значение показателя точности измерений (расширенная неопределенность измерений с коэффициентом охвата 2).

Значение U приведено в таблице 1.

Допускается результат измерений в документах, выдаваемых лабораторией, представлять в виде:

При представлении результата измерений в документах, выдаваемых лабораторией, указывают:

— количество результатов параллельных определений, использованных для расчета результата измерений;

— способ определения результата измерений (среднее арифметическое значение или медиана результатов параллельных определений).

Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

— оперативный контроль процедуры измерений;

— контроль стабильности результатов измерений на основе контроля стабильности среднего квадратического отклонения (СКО) повторяемости, СКО промежуточной (внутрилабораторной) прецизионности и правильности.

Периодичность контроля исполнителем процедуры выполнения измерений и алгоритмы контрольных процедур, а также реализуемые процедуры контроля стабильности результатов измерений регламентируют во внутренних документах лаборатории.

Ответственность за организацию проведения контроля стабильности результатов анализа возлагают на лицо, ответственное за систему менеджмента качества в лаборатории.

Разрешение противоречий между результатами двух лабораторий проводят в соответствии с 5.3.3 ГОСТ Р ИСО 5725-6-2002 .

12.2 Оперативный контроль процедуры измерений с использованием метода добавок

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К.

Результат контрольной процедуры Кк рассчитывают по формуле:

где Хʹср — результат анализа массовой концентрации ионов хрома в пробе с известной добавкой — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4), мг/дм 3 .

Хср — результат анализа массовой концентрации ионов хрома в исходной пробе — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4), мг/дм 3 .

Сд — величина добавки, мг/дм 3 .

Норматив контроля К рассчитывают по формуле:

где — стандартные отклонения промежуточной прецизионности, соответствующие массовой концентрации ионов хрома в пробе с известной добавкой и в исходной пробе соответственно, мг/дм 3 .

Процедуру измерений признают удовлетворительной при выполнении условия:

При невыполнении условия (7) контрольную процедуру повторяют. При повторном невыполнении условия (7) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

12.3 Оперативный контроль процедуры измерений с использованием образцов для контроля

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры Ккс нормативом контроля К.

Результат контрольной процедуры Кк рассчитывают по формуле:

где Сср — результат анализа массовой концентрации ионов хрома в образце для контроля — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4), мг/дм 3 ;

С — аттестованное значение образца для контроля, мг/дм 3 .

Норматив контроля К рассчитывают по формуле

где σI(TOE) — стандартное отклонение промежуточной прецизионности, соответствующие массовой концентрации ионов хрома в образце для контроля, мг/дм 3 .

Процедуру анализа признают удовлетворительной при выполнении условия:

При невыполнении условия (10) контрольную процедуру повторяют. При повторном невыполнении условия (10) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4.

Диапазон измерений, мг/дм 3

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно разделу 5 ГОСТ Р ИСО 5725-6-2002 .

Таблица А.1 — Бюджет неопределенности измерений

Стандартная относительная неопределенность, %

Приготовление градуировочных растворов, uI , %

Степень чистоты реактивов и дистиллированной воды, u 2 , %

Подготовка проб к анализу, u 3 , %

Стандартное отклонение результатов измерений, полученных в условиях повторяемости 4 , ur (σ r ), %

Стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности 5 , uI(TOE) σI(TOE) , %

Стандартное отклонение результатов измерений, полученных в условиях воспроизводимости, uR ( σR ), %

Суммарная стандартная относительная неопределенность, uR , %

Расширенная относительная неопределенность, ( U отн. ) при k = 2, %

1 Оценка (неопределенности) типа А получена путем статистического анализа ряда наблюдений.

2 Оценка (неопределенности) типа В получена способами, отличными от статистического анализа ряда наблюдений

4 Согласно ГОСТ Р ИСО 5725-3-2002 учтено при расчете стандартного отклонения результатов измерений, получаемых в условиях воспроизводимости.

5 Согласно ГОСТ Р ИСО 5725-3-2002 учтено при расчете стандартного отклонения результатов измерений, получаемых в условиях воспроизводимости.

Б.1 Приготовление основного градуировочного раствора

Растворяют (2,828 ± 0,001) г бихромата калия, высушенного в течение 2 часов при (105 ± 2) °С, и доводят до метки бидистиллированной водой в мерной колбе вместимостью 1 дм 3 .

1 см 3 раствора содержит 1,0 мг хрома.

Срок хранения раствора — 2 месяца при температуре (2 — 8) °С.

Б.2 Приготовление рабочих градуировочных растворов

Рабочий градуировочный раствор (I) с массовой концентрацией ионов хрома 0,010 мг/дм 3 и рабочий градуировочный раствор (II) с массовой концентрацией ионов хрома 0,001 мг/дм 3 готовят соответствующим разведением основного градуировочного раствора в мерных колбах бидистиллированной водой.

Растворы готовят в день проведения анализа.

источник

Обозначение: ПНД Ф 14.1:2:4.52-96
Название рус.: Количественный химический анализ вод. Методика измерений массовой концентрации ионов хрома в питьевых, поверхностных и сточных водах фотометрическим методом с дифенилкарбазидом
Статус: действует
Дата актуализации текста: 05.05.2017
Дата добавления в базу: 01.09.2013
Утвержден: 22.06.2016 ФГБУ Федеральный центр анализа и оценки техногенного воздействия
Опубликован: ФБУ ФЦАО (2011 г. ) ФГБУ ФЦАО (2016 г. )
Ссылки для скачивания: