Меню Рубрики

Количественный химический анализ вод магний

Химический анализ природной и питьевой воды. Метод ионообменной хроматографии и титриметрический метод определения ионов кальция и магния. Особенности приготовления растворов. Устранение мешающего влияния катионов железа, марганца, цинка, меди и олова.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методика определения ионов кальция и магния в природных водах (определение общей жесткости воды)

2. Приготовление растворов

3.1 Титриметрический метод

3.2 Метод ионообменной хроматографии

Химический анализ природной и питьевой воды показывает, что любая вода представляет собой не чистое вещество с формулой Н2О, а смесь большого количества веществ.

Многочисленные анализы природных вод показали, что среди большого числа компонентов, растворенных в них, 90 % солесодержания составляют карбонаты, гидрокарбонаты, хлориды и сульфаты кальция, магния и натрия. О.А. Алекиным предложена классификация природных вод по результатам их химического анализа. По преобладающему аниону воды делятся на три класса: карбонатные (гидрокарбонатные), хлоридные и сульфатные. По преобладающему катиону воды делятся на три группы: кальциевые, магниевые и натриевые.

В природных водах постоянно находятся ионы кальция и магния, обеспечивающие жесткость воды. Источник их поступления в воду — растворение гипса, известняков и доломитов, входящих в состав горных пород. В санитарно-гигиеническом отношении ионы кальция и магния не представляют большой опасности, но чрезмерная жесткость воды делает ее непригодной для бытовых целей, т.к. образующаяся накипь выводит из строя нагревательные элементы электрических систем нагрева воды. Оптимальная жесткость воды — до 7 мг-экв/л.

Для определения ионов кальция и магния используются два метода:

2. метод ионообменной хроматографии

1. Наиболее точный и распространенный метод определения общей жесткости — комплексометрический, основанный на образовании ионами Са 2+ и Mg 2+ прочных внутрикомплексных соединений с трилоном Б. В качестве индикатора при определении общей жесткости используется эриохром черный. В зависимости от общей жесткости концентрация рабочего раствора трилона Б и объем пробы воды могут быть различными.

Для определения кальция в природных водах преимущественно используются трилонометрический метод с индикатором мурексидом.

Содержание магния проводят расчетным методом, зная общую жесткость и содержание кальция.

2. Приготовление растворов

Раствор трилона Б с концентрацией 0,02 моль/дм 3 эквивалента.

Навеску 3,72г. трилона Б растворяют в 1 дм 3 дистиллированной воды. Точную концентрацию устанавливают по стандартному раствору хлорида цинка. Раствор хранят в полиэтиленовой посуде, проверяют его концентрацию не реже 1 раза в месяц.

Раствор хлорида цинка с концентрацией 0,02 моль/ дм 3 эквивалента.

Отвешивают на технических весах около 0,35 г металлического цинка, смачивают его небольшим количеством концентрированной соляной кислоты и сейчас же промывают дистиллированной водой. Цинк сушат в сушильном шкафу при 105 течение 1ч, затем охлаждают и взвешивают на аналитических весах.

Навеску цинка помещают в мерную колбу вместимостью 500 см 3 , в которую предварительно вносят 10-15 см 3 дистиллированной воды и 1,5 см 3 концентрированной соляной кислоты. Цинк растворяют. После растворения цинка объём раствора доводят до метки на колбе дистиллированной водой. Рассчитывают молярную концентрацию эквивалента раствора хлорида цинка CZn(1/2 ZnCl2), моль/дм 3 , по формуле:

где m — навеска металлического цинка, г; 32,69 — молярная масса эквивалента Zn 2+ , г/моль; V — объём мерной колбы, см 3 .

Буферный раствор NH4Cl +NH4OH.

7,0 г хлорида аммония растворяют в мерной колбе вместимостью 500 см 3 в 100 см 3 дистиллированной воды и добавляют 75 см 3 концентрированного раствора аммиака. Объем раствора доводят до метки дистиллированной водой и тщательно перемешивают. Буферный раствор хранят в стеклянной или полиэтиленовой посуде не более 2 месяцев. Гидроксид натрия, 2 моль/дм 3 .

40 г гидроксида натрия растворяют в мерной колбе вместимостью 500 см 3 и раствор доводят до метки дистиллированной водой.

Индикатор эриохром черный Т.

Растереть в ступке 0,25 г эриохрома черного Т с 50 г хлорида натрия.

0,5 г мурексида растереть с 100 г хлорида натрия. Водный раствор лучше не готовить, т.к. мурексид нестоек в растворе.

Раствор сульфида натрия, 4%.

2 г сульфида натрия растворяют в 50 см 3 дистиллированной воды. Хранят в плотной закрытой полиэтиленовой посуде не более недели.

Раствор гидрохлорида гидроксиламина.

5 г гидрохлорида гидроксиламина растворяют в 100 см 3 дистиллированной воды. Хранят не более 2 месяцев.

Установление точной концентрации раствора трилона Б.

В коническую колбу вместимостью 250 см 3 вносят 10 см 3 раствора хлорида цинка, добавляют дистиллированной воды приблизительно до 100 см 3 , 5 см 3 буферного раствора и 10-15 мг индикатора эриохрома чёрного Т. Содержимое конической колбы тщательно перемешивают и титруют из бюретки раствором трилона Б до перехода окраски красной в голубую. Концентрацию раствора трилона Б рассчитывают по формуле:

3.1 Титриметрический метод

Определение ионов кальция и магния

Устранение мешающих ионов

Для устранения мешающего влияния катионов железа, цинка, меди и олова в пробу добавляют 0,5 мл раствора сульфида натрия.

Для устранения мешающего влияния марганца в пробу добавляют 0,5 мл солянокислого раствора гидроксиламина.

Перед выполнением анализа пробы воды с неизвестной величиной жёсткости проводят оценочное титрование. Для этого берут 10 см 3 воды, добавляют 0,5 см 3 буферного раствора, индикатор (эриохром чёрный Т) и титруют до перехода окраски из красной в голубую. По величине израсходованного трилона Б выбирают из таблицы 1 соответствующий объём пробы воды.

ионообменный хроматография вода магний

Таблица 1. Объём пробы воды, рекомендуемый для определения жёсткости по результатам оценочного титрования

Объём израсходованного раствора трилона Б, см 3

Рекомендуемый объём пробы, см 3

v Определение суммы кальция и магния

К пробе необходимого объёма (см. Оценочное титрование) 100 см 3 добавляют 5 см 3 буфера, индикатор (эриохром чёрный Т) на шпателе. Сразу же титруют при перемешивании до перехода окраски от винно-красной к синей.

К пробе необходимого объёма (см. Оценочное титрование) 100 см 3 добавляют 2 см 3 NaOH (2н) и индикатора (мурексид) на шпателе. Титруют до перехода окраски от красной в фиолетовую. Окраску раствора следует сравнивать с цветом перетитрованного раствора.

Содержание кальция высчитывают по формуле:

где Стр — молярная концентрация эквивалента трилона Б, моль/дм 3 ; V’ тр — объем трилона Б, пошедший на титрование с мурексидом, см 3 (см. Определение кальция); 20,04 — масса эквивалента Ca 2+ ; Vпробы — объем пробы, взятый для анализа, см 3 .

Содержание магния высчитывают по формуле:

где Стр — молярная концентрация эквивалента трилона Б, моль/дм 3 ; V тр — объем трилона Б, пошедший на титрование с эриохромом черным Т, см 3 (см. Определение суммы кальция и магния); V’тр — объем трилона Б, пошедший на титрование с мурексидом, см 3 (см. Определение кальция); 12,15- масса эквивалента Mg 2+ ; Vпробы- объем пробы, взятый для анализа, см 3 .

v Определение общей жесткости воды

Общую жесткость находят по формуле:

где Стр — молярная концентрация эквивалента трилона Б, моль/дм 3 ; Vтр — объем раствора трилона Б, пошедшего на титрование пробы, см 3 ; Vпробы — объем пробы, взятый для анализа, см 3 .

Метод добавок. Для определения данным методом в пробу вводят добавку, равную 50-150% (желательно 100%) жёсткости воды (см. Определение общей жёсткости воды) ГСО 8206-2002.

Затем высчитывают общую жесткость воды с добавкой.

a. Результаты измерений, полученных в условиях воспроизводимости для пробы 1.

Проба 1: оз. Среднее, с. Озёрное, 85 км от берега, дата: 1.10.13, время: 16.55, t = +3.

Установлена точная концентрация трилона Б: Стрилона = 0,002226 (моль/дм 3 ). При выполнении оценочного титрования объем необходимой пробы соответствует 100 (мл).

источник

Настоящий нормативный документ устанавливает пламенный атомно-абсорбционный метод определения массовых концентраций магния, кальция и стронция в питьевых, природных и сточных водах. Диапазоны определяемых концентраций указаны в таблице 1.

Мешающее влияние со стороны сопутствующих элементов: алюминия, кремния, титана, цинка, щелочных металлов, серной кислоты, фосфорной кислоты в воздушно-ацетиленовом пламени устраняют введением в анализируемые растворы хлорида лантана.

Блок-схема анализа приведена в Приложении 1.

Диапазоны определяемых концентраций

Диапазоны определяемых концентраций, мг/дм 3

Питьевая и природная вода

При соответствующем дальнейшем разбавлении возможен анализ проб с более высокими содержаниями кальция, магния и стронция.

Метод основан на измерении резонансного поглощения света свободными атомами магния, кальция или стронция при прохождении света через атомный пар исследуемого образца, образующийся в пламени.

Настоящая методика обеспечивает получение результатов анализа с погрешностями, не превышающими значений, приведенных в табл. 2.

3.1.1. Атомно-абсорбционный спектрометр с пламенным атомизатором.

3.1.2. Лампы с полым катодом на кальций, магний, стронций.

3.1.4. Государственные стандартные образцы (ГСО) состава водных растворов магния, кальция и стронция с относительной погрешностью аттестованных значений массовых концентраций не более 1 % при Р = 0,95.

3.1.5. Бидистиллятор стеклянный БС ТУ 25-11.1592 или установка для получения деионизированной воды (степень чистоты 2 по ГОСТ Р 52501).

3.1.6. Плитка электрическая по ГОСТ 14919 или баня песчаная, или микроволновая печь с закрытыми стаканами, например, MDS-2000 (СЕМ) или Mars 5 (СЕМ).

Примечание : Допускается использовать средства измерений и вспомогательное оборудование с метрологическими и техническими характеристиками не хуже, чем у вышеуказанных

Диапазон измеряемых концентраций, относительные показатели точности, правильности, повторяемости и воспроизводимости методики при доверительной вероятности Р = 0,95

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), s r( d ), %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости) s R( d ), %

Показатель правильности (границы относительной систематической погрешности при вероятности Р = 0,95) ± d c, %

Показатель точности (границы, в которых находится погрешность методики при Р = 0,95), ± d , %

3.2.1. Колбы мерные вместимостью 25, 50, 100, 1000 см 3 , по ГОСТ 1770, 2 класс точности.

3.2.2. Пипетки градуированные вместимостью 1, 2, 5, 10 см 3 , по ГОСТ 29227 или с одной меткой по ГОСТ 29169.

3.2.3. Цилиндры мерные наливные вместимостью 50, 100, 1000 см 3 , по ГОСТ 1770, 2 класс точности.

3.2.4. Стаканы химические термостойкие из боросиликатного стекла вместимостью 50, 100, 1000 см 3 , по ГОСТ 25336.

3.2.5. Полиэтиленовые емкости или емкости из боросиликатного стекла для хранения проб вместимостью 500 см 3 .

3.3.1. Фильтры мембранные с диаметром пор 0,45 мкм (тип МФА-МА по ТУ 6-05-1903) или 5 мкм, или аналогичные.

3.3.3. Ацетилен растворенный газообразный по ГОСТ 5457.

3.3.4. Фильтры обеззоленные «белая лента» по ТУ 6-09-1678.

3.3.5. Бумага индикаторная универсальная по ТУ 6-09-1181.

3.4.1. Лантан хлористый семиводный, LaCl 3 × 7H 2 O, х.ч., ТУ 6-09-4773.

3.4.2. Кислота соляная, конц. (d = 1,18 г/см 3 ), НСl, о.с.ч., ГОСТ 3118, или фиксаналы соляной кислоты с концентрацией 0,1 моль/дм 3 .

3.4.3. Кислота азотная, конц. (d = 1,42 г/см 3 ), HNO 3 , о.с.ч., ГОСТ 4461.

3.4.4. Вода дистиллированная по ГОСТ 6709 или вода для лабораторного анализа по ГОСТ Р 52501 (степень чистоты 2).

3.4.5. Перекись водорода 30 %, ос.ч., ТУ 2611-003-57856778.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

4.2. При работе с оборудованием необходимо соблюдать правила электробезопасности по ГОСТ 12.1.019.

4.3. Обучение работающих безопасности труда должно быть организовано в соответствии с ГОСТ 12.0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

К выполнению измерений и обработке их результатов допускают лиц, имеющих высшее инженерно-химическое образование, владеющих методом атомно-абсорбционного анализа, знающих принцип действия, конструкцию и правила эксплуатации данного оборудования.

К выполнению работ по пробоподготовке допускают лиц, имеющих среднее специальное химическое образование, обученных методике подготовки проб.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

относительная влажность воздуха

7.1. Отбор проб воды осуществляют в соответствии с ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб» и ГОСТ Р 51593-2000 «Отбор проб. Питьевая вода».

7.2. Пробы отбирают в емкости из полиэтилена или боросиликатного стекла. Требуемый объем пробы не менее 0,2 дм 3 .

7.3. При определении растворенных кальция, магния и стронция пробы воды фильтруют через мембранный фильтр 0,45 мкм и подкисляют азотной кислотой до рН

7.4. При определении общего содержания кальция, магния и стронция нефильтрованные пробы воды подкисляют концентрированной азотной кислотой до рН 3 кислоты на 1 дм 3 пробы). Срок хранения проб 1 месяц.

7.5. Срок хранения проб без консервации 2 суток.

7.6. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

Подготовку спектрометра к работе проводят в соответствии с инструкцией по эксплуатации. Рекомендуемая длина волны для измерения кальция — 422,7 нм; для магния — 285,2 нм; для стронция — 460,7 нм.

Примечание : Условия определения элементов (длина волны, ширина щели, расход газов, скорость распыления раствора и др.) могут варьироваться в зависимости от модели спектрометра и версии используемого программного обеспечения.

8.2.1. Приготовление 1 % (v/v) раствора азотной кислоты

В мерную колбу вместимостью 1 дм 3 наливают 700 — 800 см 3 дистиллированной воды и осторожно приливают к ней 10 см 3 концентрированной азотной кислоты, отмеренные цилиндром. Объем раствора доводят до метки водой и перемешивают.

Срок хранения раствора 3 месяца при комнатной температуре.

0,1 моль/дм 3 раствора соляной кислоты

В мерную колбу вместимостью 1 дм 3 наливают 700 — 800 см 3 дистиллированной воды и осторожно приливают к ней 8 см 3 концентрированной соляной кислоты, доводят объем до метки дистиллированной водой и тщательно перемешивают.

При использовании фиксаналов соляной кислоты в мерную колбу вместимостью 1 дм 3 наливают 700 — 800 см 3 дистиллированной воды и в колбу количественно переносят содержимое ампулы, доводят до метки дистиллированной водой и тщательно перемешивают.

Срок хранения раствора 3 месяца.

8.2.3. Приготовление спектроскопического буферного раствора

250 г хлористого лантана растворяют в 500 — 600 см 3 0,1 моль/дм 3 раствора НСl, переносят в мерную колбу вместимостью 1 дм 3 , доводят до метки 0,1 моль/дм 3 раствором НСl.

В закрытом стеклянном сосуде раствор устойчив в течение 3 месяцев.

8.2.4. Приготовление градуировочных растворов кальция

10 см 3 стандартного раствора кальция ГСО (С = 1 мг/см 3 ) с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 . Доводят до метки 1 % (v/v) раствором азотной кислоты и перемешивают. Полученный основной градуировочный раствор содержит 0,1 мг/см 3 кальция. Срок хранения раствора 2 месяца при температуре 2 — 10 °С или 14 суток при комнатной температуре.

10 см 3 основного градуировочного раствора с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 и доводят объем до метки 1 % (v/v) раствором азотной кислоты (промежуточный раствор). Концентрация кальция в полученном растворе 10 мг/дм 3 . Срок хранения раствора 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

Градуировочные растворы кальция готовят в соответствии с таблицами 3 и 4, добавляя в мерные колбы по 5 см 3 раствора соли лантана перед доведением объема до метки 1 % (v/v) раствором азотной кислоты. Срок хранения растворов 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

8.2.5. Приготовление градуировочных растворов магния

10 см 3 стандартного раствора магния ГСО (С = 1 мг/см 3 ) с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 . Доводят объем до метки 1 % (v/v) раствором азотной кислоты и перемешивают. Полученный основной градуировочный раствор содержит 0,1 мг/см 3 магния. Срок хранения раствора 2 месяца при температуре 2 — 10 °С или 14 суток при комнатной температуре.

10 см 3 основного градуировочного раствора с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 и доводят объем до метки 1 % (v/v) раствором азотной кислоты (промежуточный раствор). Концентрация магния в полученном растворе 10 мг/дм 3 . Срок хранения раствора 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

Градуировочные растворы магния готовят в соответствии с таблицами 5 и 6, добавляя в мерные колбы по 5 см 3 раствора соли лантана перед доведением объема до метки 1 % (v/v) раствором азотной кислоты. Срок хранения растворов 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

Читайте также:  Сдать анализ воды из колодца

8.2.6. Приготовление градуировочных растворов стронция

10 см 3 стандартного раствора стронция ГСО (С = 1 мг/см 3 ) с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 . Доводят объем до метки 1 % (v/v) раствором азотной кислоты и перемешивают. Полученный основной градуировочный раствор содержит 0,1 мг/см 3 стронция. Срок хранения раствора 2 месяца при температуре 2 — 10 °С или 14 суток при комнатной температуре.

10 см 3 основного градуировочного раствора с помощью пипетки переносят в мерную колбу вместимостью 100 см 3 и доводят объем до метки 1 % (v/v) раствором азотной кислоты (промежуточный раствор). Концентрация стронция в полученном растворе 10 мг/дм 3 . Срок хранения раствора 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

Градуировочные растворы стронция готовят в соответствии с таблицей 7, добавляя в мерные колбы по 0,5 см 3 раствора соли лантана перед доведением объема до метки 1 % (v/v) раствором азотной кислоты. Срок хранения растворов 1 месяц при температуре 2 — 10 °С или 14 суток при комнатной температуре.

Распыляют градуировочные растворы в пламени горелки и регистрируют поглощение каждого элемента при требуемой длине волны.

Оптическую плотность градуировочных растворов измеряют в порядке возрастания массовой концентрации определяемого элемента.

Градуировочную характеристику, выражающую зависимость показаний прибора от количества определяемого элемента (мг/дм 3 ), устанавливают по среднеарифметическим результатам трех измерений для каждой точки за вычетом среднеарифметического результата трех измерений холостой пробы. Для установления градуировочной характеристики используют не менее 5 точек. Холостой пробой является 1 % раствор азотной кислоты, к которому добавляют такое же количество спектроскопического буфера, как и в градуировочные растворы.

Через каждые десять проб повторяют измерение одного из градуировочных растворов. Если измеренная концентрация этого градуировочного раствора отличается от истинной более, чем на 8 %, градуировку повторяют полностью.

Приготовление шкалы градуировочных растворов кальция
(используется при анализе проб питьевых, природных и сточных вод)

Объем основного раствора кальция (100 мг/дм 3 ), см 3

Объем промежуточного раствора кальция, (10 мг/дм 3 ), см 3

Концентрация градуировочного раствора кальция, мг/дм 3

Приготовление шкалы градуировочных растворов кальция
(используется при анализе проб дистиллированной или деионизированной воды)

Объем промежуточного раствора кальция, (10 мг/дм 3 ), см 3

Концентрация градуировочного раствора кальция, мг/дм 3

Приготовление шкалы градуировочных растворов магния
(используется при анализе проб питьевых, природных и сточных вод)

Объем промежуточного раствора магния, (10 мг/дм 3 ), см 3

Объем раствора магния с концентрацией 1 мг/дм 3 , см 3

Концентрация градуировочного раствора магния, мг/дм 3

Приготовление шкалы градуировочных растворов магния
(используется при анализе проб дистиллированной или деионизированной воды)

Объем промежуточного раствора магния, (10 мг/дм 3 ), см 3

Объем раствора магния с концентрацией 1 мг/дм 3 , см 3

Концентрация градуировочного раствора магния, мг/дм 3

Приготовление шкалы градуировочных растворов стронция

Объем промежуточного раствора стронция, (10 мг/дм 3 ), см 3

Концентрация градуировочного раствора стронция, мг/дм 3

При определении растворенных металлов пробу воды фильтруют через мембранный фильтр с диаметром пор 0,45 мкм. Фильтрат подкисляют концентрированной азотной кислотой до рН = 2 — 3. К 50 см 3 фильтрата добавляют 2,5 см 3 конц. азотной кислоты и в полученном растворе определяют содержание металлов.

При определении взвешенных (суспендированных) форм металлов хорошо перемешанную пробу воды определенного объема фильтруют через обеззоленный фильтр. Осадок с фильтром подвергают озолению конц. азотной кислотой при нагревании на электроплитке с закрытой спиралью, либо на песчаной бане, или в микроволновой печи. Полученный раствор фильтруют через мембранный фильтр 0,45 мкм, количественно переносят в мерную колбу, доводят объем до метки дистиллированной водой и в нем определяют содержание элементов. Концентрацию взвешенных (суспендированных) форм элементов рассчитывают с учетом объема взятой для анализа пробы воды.

При определении кислото-экстрагируемых металлов хорошо перемешанную пробу воды подкисляют азотной кислотой до рН = 2 — 3, нагревают на водяной бане или электроплитке, охлаждают, фильтруют через мембранный фильтр 0,45 мкм. Объем полученного раствора доводят до первоначального объема пробы воды и в полученном растворе определяют содержание металлов.

При определении общего содержания металлов нефильтрованную хорошо перемешанную пробу воды подвергают кислотному озолению на электроплитке, песчаной бане или в микроволновой печи (МВП).

Примечание 1: При анализе сточных вод предпочтительно проводить минерализацию в микроволновой печи.

При использовании электроплитки, песчаной или водяной бани к 50 см 3 тщательно гомогенизированной пробы анализируемой воды добавляют 2,5 см 3 концентрированной азотной кислоты и нагревают, не доводя до кипения, до образования влажных солей. Если проба содержит значительное количество органических веществ, например, проба сточной воды, в процессе нагрева добавляют 1 — 3 см 3 перекиси водорода до получения прозрачного раствора. Объем полученного раствора доводят до первоначального объема пробы воды дистиллированной водой. Полученные растворы в зависимости от дисперсности и размеров частиц осадка фильтруют через мембранный фильтр с диаметром пор 0,45 или 5,00 мкм или через фильтр «белая лента» и в полученном растворе определяют содержание металлов.

При использовании микроволновой печи к 50 см 3 тщательно гомогенизированной пробы воды в стакане, предназначенном для микроволновой печи, приливают 2,5 см 3 концентрированной азотной кислоты, выдерживают 15 — 30 мин. Подготовленные стаканы ставят в турель микроволновой печи и проводят разложение по подобранному лабораторией режиму.

По окончании разложения пробы воды охлаждают в закрытых стаканах для микроволновой печи, затем открывают стаканы и фильтруют полученные растворы через мембранный фильтр с диаметром пор 0,45 или 5,00 мкм (в зависимости от дисперсности и размера частиц осадка) или через фильтр «белая лента».

Независимо от способа минерализации предварительно проводится холостой опыт для каждого типа используемых фильтров.

При необходимости подготовленные пробы анализируемой воды разбавляют таким образом, чтобы величина измеряемого сигнала абсорбции попадала в диапазон построенного для каждого элемента градуировочного графика. Например, при необходимости разбавления пробы в 5 раз в мерную колбу вместимостью 50 см 3 вносят 10 см 3 пробы, 5 см 3 раствора хлорида лантана при определении кальция и магния, или 0,5 см 3 при определении стронция, доводят объем до метки дистиллированной водой. Можно использовать меньшие объемы, например: в мерную колбу вместимостью 10 см 3 вносят 2 см 3 пробы, 1 см 3 спектроскопического буфера при определении кальция и магния, или 0,1 см 3 при определении стронция, доводят объем до метки дистиллированной водой. При разбавлении пробы более чем в 5 раз для доведения объема используют 1 % (v/v) раствор азотной кислоты.

Примечание 2: Для разбавления проб возможно использовать программируемый автоматический разбавитель.

Перед проведением серии анализов контролируются чистота посуды и качество используемых реактивов путем предварительного анализа холостого опыта.

При обработке результатов измерений содержания кальция, магния и стронция в анализируемой воде следует учитывать разбавление пробы. Содержание металла в пробе рассчитывают по формуле:

А — содержание металла в анализируемой пробе воды, найденное по градуировочному графику или рассчитанное с использованием градуировочных коэффициентов, мг/дм 3 ;

V 1 — объем колбы, в которой проводили разбавление, см 3 ;

V — объем пробы анализируемой воды, см 3 .

Результаты анализа в протоколе представляют в виде:

Значения d (показатель точности) приведены в табл. 2

12.1. При необходимости проверку приемлемости результатов измерений, полученных в условиях повторяемости (сходимости), осуществляют в соответствии с требованиями раздела 5.2. ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений не должно превышать предела повторяемости (r). Значения r приведены в таблице 8.

12.2. При необходимости проверку приемлемости результатов измерений, полученных в условиях воспроизводимости, проводят с учетом требований раздела 5.3 ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений, полученными двумя лабораториями, не должно превышать предела воспроизводимости (R). Значения R приведены в таблице 8.

Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

— контроль стабильности результатов измерений путем контроля стабильности среднеквадратического отклонения повторяемости, промежуточной прецизионности и погрешности;

— контроль исполнителем процедуры выполнения измерений путем оценки погрешности при реализации отдельно взятой контрольной процедуры.

Периодичность контроля исполнителем процедуры выполнения измерений и алгоритмы контрольных процедур (с использованием метода добавок, с использованием образцов для контроля и т.п.), а также реализуемые процедуры контроля стабильности результатов измерений регламентируют во внутренних документах лаборатории.

Диапазон измеряемых массовых концентраций и пределы повторяемости и воспроизводимости результатов измерений при доверительной вероятности Р = 0,95

(относительное значение допускаемого расхождения между двумя параллельными результатами измерений), r, %

(относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

источник

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВЫХ КОНЦЕНТРАЦИЙ МАГНИЯ, КАЛЬЦИЯ, СТРОНЦИЯ В ПРОБАХ ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОД ПЛАМЕННЫМ АТОМНО-АБСОРБЦИОННЫМ МЕТОДОМ

И.о. директора ФГБУ «Федеральный центр анализа и оценки техногенного воздействия» А.Г.Кудрявцев 15 декабря 2017 г.

Методика допущена для целей государственного экологического контроля

Методика измерений аттестована Центром метрологии и сертификации «СЕРТИМЕТ» Уральского отделения РАН (Аттестат аккредитации N RA.RU.310657 от 12.05.2015), рассмотрена и одобрена федеральным государственным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия» (ФГБУ «ФЦАО»).

Настоящее издание методики введено в действие взамен ПНД Ф предыдущего издания и действует со 2 июля 2018 года до выхода нового издания.

Методика зарегистрирована в Федеральном информационном фонде по обеспечению единства измерений. Информация о методике представлена на сайтах www.fundmetrology.ru в разделе «Сведения об аттестованных методиках (методах) измерений» и www.rossalab.ru в разделе «Методики анализа».

Заместитель директора ФГБУ «ФЦАО»

Разработчик:

© ЗАО «РОСА», 1998

Адрес: 119297, г.Москва, ул.Родниковая, 7, стр.35

Телефон: (495) 502-44-22, телефон/факс: (495) 439-52-13

http://www.rossalab.ru

e-mail: quality@rossalab.ru

1 ОБЩИЕ ПОЛОЖЕНИЯ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий нормативный документ устанавливает методику измерений массовых концентраций магния, кальция, стронция пламенным атомно-абсорбционным методом в пробах питьевых, природных и сточных вод.

Примечание — Под питьевыми водами подразумеваются воды централизованных и нецентрализованных систем водоснабжения, воды расфасованные в емкости (упакованная питьевая вода), минеральные воды. Под природными водами подразумеваются поверхностные и подземные воды, в том числе источники питьевого водоснабжения, грунтовые, талые, атмосферные осадки (дождь, снег, град). Под сточными водами подразумеваются воды производственные, хозяйственно-бытовые, ливневые и очищенные.

Допускается применение методики для анализа вод бассейнов и аквапарков, технических вод (открытых и закрытых систем технического водоснабжения, восстановленных), вытяжек (из материалов, используемых в системах водоснабжения, из продукции, изготовленной из полимерных материалов, из укупорочных материалов, из продукции текстиля, меха и кожи, из материалов, используемых при изготовлении игрушек и прочей продукции).

Диапазоны измерений массовых концентраций определяемых элементов указаны в таблице 1.

Мешающее влияние со стороны сопутствующих элементов: алюминия, кремния, титана, цинка, серной кислоты, фосфорной кислоты в воздушно-ацетиленовом пламени устраняют введением в анализируемые пробы раствора хлорида лантана (спектроскопического буфера).

Таблица 1 — Перечень определяемых показателей и диапазоны измерений

Диапазоны измерений массовых концентраций, мг/дм

Питьевая и природная вода

Блок-схема проведения анализа приведена в приложении А.

ГОСТ 12.0.004-2015 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения.

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования.

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности.

ГОСТ 12.4.009-83 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание.

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков.

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия.

ГОСТ 5457-75 Ацетилен растворенный и газообразный технический. Технические условия.

ГОСТ 6709-72 Вода дистиллированная. Технические условия.

ГОСТ 11125-84 Кислота азотная особой чистоты. Технические условия.

ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия.

ГОСТ 14919-83 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия.

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры.

ГОСТ 28311-89 Дозаторы медицинские лабораторные. Общие технические требования и методы испытания.

ГОСТ 29169-91 Посуда лабораторная стеклянная. Пипетки с одной отметкой.

ГОСТ 29227-91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования.

ГОСТ 31861-2012 Вода. Общие требования к отбору проб.

ГОСТ Р 12.1.019-2009 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты.

ГОСТ Р 52501-2005 Вода для лабораторного анализа. Технические условия.

ГОСТ Р 53228-2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р 56237-2014 Вода питьевая. Отбор проб на станциях водоподготовки и в трубопроводных распределительных системах.

ГОСТ OIML R 76-1-2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике.

МУ 2.1.4.2898-11 Методические указания. Санитарно-эпидемиологические исследования (испытания) материалов, реагентов и оборудования, используемых для водоочистки и водоподготовки.

МУК 4.1/4.3.2038-05 Методы контроля. Химические факторы/физические факторы. Санитарно-эпидемиологическая оценка игрушек. Методические указания.

ТУ 6-05-1903-87* Мембраны «Владипор» типа МФА-МА.
________________
* ТУ, упомянутые здесь и далее по тексту, не приводятся. За дополнительной информацией обратитесь по ссылке. — Примечание изготовителя базы данных.

ТУ 6-09-1181-89 Бумага индикаторная универсальная для определения РН 1-10 и 7-14. Технические условия.

ТУ 6-09-1678-95 Фильтры обеззоленные (белая, красная, синяя ленты).

ТУ 6-09-4773-84 Хлориды иттрия и редкоземельных элементов (лантана, празеодима, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия, лютеция, неодима, самария).

ТУ 2114-002-14555954-2004 Воздух сжатый.

ГОСТ 177-88 Водорода перекись. Технические условия.

ТУ 2642-001-33813273-97 Стандарт-титры (Фиксаналы; Нормадозы).

Примечание — Если ссылочный стандарт заменен (изменен), то следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Настоящая методика обеспечивает получение результатов измерений с погрешностью, не превышающей значений, приведенных в таблице 2.

Таблица 2 — Диапазоны измерений определяемых показателей, значения показателей точности, воспроизводимости и повторяемости

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), , %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), , %

Показатель точности (границы относительной погрешности при доверительной вероятности 0,95), , %

источник

1. Гидроксиды КОН и NaOH образуют с катионом Mg2+ белый аморфный осадок гидроксида магния Mg(OH)2, растворимого в кислотах и солях аммония.

Опыт. В первую пробирку возьмите 4 капли раствора соли маг-ния, прибавьте 4 капли насыщенного раствора хлорида аммония NH4C1.

Во вторую пробирку возьмите 4 капли раствора соли магния и прибавьте 4 капли воды (чтобы концентрация растворов была одинаковая).

Затем в обе про-бирки прибавьте осадитель — гидроксид аммония NH4OH. В первой пробирке осадок не вападает так как образуется комплексное соединение.

2. Гидрофосфат натрия Na2HPO4 дает с катионом Mg2+в присутствии гидроксида и хлорида аммония NH4OH и NH4C1 белый кристаллический осадок фосфата магния-аммония MgNH4PO4:

Хлорид аммония добавляют, чтобы не выпал аморфный осадок гидроксида магния Mg(OH) 2.

Опыт. Возьмите 3—4 капли раствора соли магния и смешайте с 4—6 каплями 2 н. раствора хлороводородной кислоты и 3—5 каплями раствора гидрофосфата натрия Na2HPO4. После этого прибавьте к раствору по одной капле 2 н. раствора аммиака, перемешивая раствор после каждой капли. Вначале аммиак нейтрализует при-бавленную кислоту, причем образуется хлорид аммония NH4C1, препятствующий образованию гидроксида магния Mg(OH)2. После окончания реакции выпадает характерный кристаллический осадок—фосфат магния-аммония MgNH4PO4.

1. Реакция проводится в аммиачной среде при рН 8.

2. Избыток катионов NH4 + мешает выпадению осадка MgNH4PO4.

3.Не следует брать избыток хлороводородной кислоты.

3. Магнезон I (napa-нитробензолазорезорцин) или магнезон II (пара-нитробензолазо—нафтол) в щелочной среде дает красную или красно-фиолетовую окраску. Эта реакция основана на свойстве гидроксида магния адсорбировать некоторые красители.

Опыт. На фарфоровую пластинку (предметное стекло) поместите 1—2 капли анализируемого на катион Mg 2+ раствора и добавьте 1—2 капли щелочного раствора реактива. Появляется синяя окраска или синий осадок. Если раствор имеет сильнокислую реакцию, то появляется желтая окраска. В данном случае к раствору надо добавить несколько капель щелочи.

Реакцию необходимо проводить в щелочной среде при рН>10.

Читайте также:  Сдать анализ воды в минске

Реакции мешает наличие солей аммония.

Из полученного хлорида магния приготовить 100 мл 0,1н. раствора (растворить 0,0476 г MgCl2 в 100 мл воды). Отдельно готовят 250 мл 0,1 н. раствора этилендиаминтетраацетата натрия (трилона Б) (4,65 г в 250 мл воды), и 0,1 н. раствор сульфата магния ( 1,23 г MgSO47H2O в 100 мл воды). Устанавливают титр трилона Б по сульфату магния. Для этого отбирают аликвоту сульфата магния (25 мл), прибавляют 50 мл воды, 25 мл аммиачной буферной смеси (100 мл 20-процентного раствора хлорида аммония и 100 мл 20-процентного раствора аммиака доводят водой до одного литра), 20-30 мг сухой смеси индикатора хромогена черного с хлоридом натрия и титруют из бюретки приготовленным раствором трилона Б до перехода красной окраски в синюю. Так поступают 3 раза, по среднему значению высчитывают нормальную концентрацию трилона Б по формуле Сн1*V1=Cн2*V2.

Установив титр трилона Б по сульфату магния, приступают к определению концентрации приготовленного раствора хлорида магния. По выше приведенной формуле рассчитывают нормальную концентрацию хлорида магния. И по формуле mxн*V(р)*Mэ (в 100 мл воды) рассчитывают истинную массу хлорида магния в полученном в ходе синтеза соединении. Процентное содержание MgCl2 находят по формуле =mx/0,0476.

источник

Магний. В поверхностные воды магний поступает в основном за счет процессов химического выветривания и растворения доломитов, мергелей и других минералов. Значительные количества магния могут поступать в водные объекты со сточными водами металлургических, силикатных, текстильных и других предприятий.

В речных водах содержание магния обычно колеблется от нескольких единиц до десятков миллиграммов в 1 дм 3 .

Содержание магния в поверхностных водах подвержено заметным колебаниям: как правило, максимальные концентрации наблюдаются в меженный период, минимальные — в период половодья.

ПДКвр ионов Мg 2+ составляет 40 мг/дм 3 .

Для определения содержания магния в незагрязненных по­верхностных и грунтовых природных водах, как и в большинстве речных вод, можно применять расчетный метод по разности ре­зультатов определения общей жесткости и концентрации катиона кальция. Для анализа загрязненных вод на содержание магния необходимо применять прямое определение магния.

Массовую концентрацию катиона магния (Смг) в мг/л оп­ределяют расчетным методом, производя вычисления по формуле:

где СОЖ и СКА – результаты определения общей жесткости (мг-экв/л) и массовой концентрации катиона кальция (мг/л) соответственно; 0,05 – коэффициент пересчета концентрации катиона кальция в миллиграмм-эквивалентную форму; 12,16 – эквивалентная масса магния.

Полученный результат округлите до целых чисел (мг/л).

Карбонаты и гидрокарбонаты. Основным источником гидрокарбонатных и карбонатных ионов в поверхностных водах являются процессы химического выветривания и растворения карбонатных пород типа известняков, мергелей, доломитов, например:

Некоторая часть гидрокарбонатных ионов поступает с атмосферными осадками и грунтовыми водами. Гидрокарбонатные и карбонатные ионы выносятся в водоемы со сточными водами предприятий химической, силикатной, содовой промышленности и т.д.

По мере накопления гидрокарбонатных и особенно карбонатных ионов последние могут выпадать в осадок:

В речных водах содержание гидрокарбонатных и карбонатных ионов колеблется от 30 до 400 мг HCO3 — /дм 3 , в озерах – от 1 до 500 мг HCO3 — /дм 3 , в морской воде – от 100 до 200 мг/дм 3 , в атмосферных осадках – от 30 до 100 мг/дм 3 , в грунтовых водах – от 150 до 300 мг/дм 3 , в подземных водах – от 150 до 900 мг/дм 3 .

Как отмечалось выше (в разделе «Щелочность и кислотность»), карбонаты и гидрокарбонаты представляют собой компо­ненты, определяющие природную щелочность воды. Их содержание в воде обусловлено процессами растворения атмосферного СО2, взаимодействия воды с находящимися в прилегающих грунтах известняками и, конечно, жизненными процессами дыхания всех водных организмов.

Определение карбонат- и гидрокарбонат-анионов является титриметрическим и основано на их реакции с водородными ионами в присутствии фенолфталеина (при определении карбонат-анионов) или метилового оранжевого (при определении гидрокарбонат-анионов) в качестве индикаторов. Используя эти два индикатора, удается наблюдать две точки эквивалентности: в первой точке (рН 8,0-8,2) в присутствии фенолфталеина полнос­тью завершается титрование карбонат-анионов, а во второй (рН. 4,1-4,5) – гидрокарбонат-анионов. По результатам титрования можно определить концентрации в анализируемом растворе основных ионных форм, обуславливающих потребление кислот (гидроксо-, карбонат- и гидрокарбонат-анионов),а также величины свободной и общей щелочности воды, т.к. они находятся в стехиометрической зависимости от содержания гидроксол-, карбонат- и гидрокарбонат-анионов.Для титрования обычно используют титрованные растворы соляной кислоты с точно известным значением концентрации 0,05 г-экв/л либо 0,1 г-экв/л.

Определение гидрокарбонат-анионов основано на реакции:

Присутствие карбонат-аниона в концентрациях, определя­емых аналитически, возможно лишь в водах, рН которых более 8,0-8,2. В случае присутствия в анализируемой воде гидроксо-анионов при определении карбонатов протекает также реакция нейтрализации:

Определение гидрокарбонат-анионовосновано на реакции:

Таким образом, при титровании по фенолфталеину в реак­ции с кислотой участвуют анионы ОН — и СО3 2- , а при титровании по метиловому оранжевому – ОН — , СО3 2- и НСО3 — .

Величина карбонатной жесткости рассчитывается с уче­том эквивалентных масс участвующих в реакциях карбонат- и гидрокарбонат-анионов.

При анализе карбонатных природных вод правильность получаемых результатов зависит от величины потребления кис­лоты на титрование по фенолфталеину и метилоранжу. Если тит­рование в присутствии фенолфталеина обычно не вызывает труд­ностей, т.к. происходит изменение окраски от розовой до бесцветной, то в присутствии метилового оранжевого, при изме­нении окраски от желтой до оранжевой, определить момент окон­чания титрования иногда довольно сложно. Это может привести к значительной ошибке при определении объема кислоты, израсхо­дованной на титрование. В этих случаях, для более четкого выяв­ления момента окончания титрования, определение полезно прово­дить в присутствии контрольной пробы, для чего рядом с титруемой пробой помещают такую же порцию анализируемой воды (во вто­рой склянке), добавляя такое же количество индикатора.

В результате титрования карбоната и гидрокарбоната, ко­торое может выполняться как параллельно в разных пробах, так и последовательно в одной и той же пробе, для расчета значений концентраций необходимо определить общее количество кисло­ты (V) в миллилитрах, израсходованной на титрование карбоната (VK) и гидрокарбоната (VГК). Следует иметь в виду, что при определении потребления кислоты на титрование по метилоранжу (Vмо) происходит последовательное титрование и карбонатов, и гидрокарбонатов. По этой причине получаемый объем кислоты Vмо содержит соответствующую долю, обусловленнуюприсутствием в исходной пробе карбонатов, перешедших после реакции с катионом водорода в гидрокарбонаты, и не характеризует полностью концентрацию гидрокарбонатов в исходной пробе. Следовательно, при расчете концентраций основных ионных форм, обусловливающих потребление кислоты, необходимо учесть относительное потребление кислоты при титровании по фенолфталеину (Vф) и метилоранжу (Vмо). Рассмотрим несколько возможных вариантов, сопоставляя величины Vф и Vмо.

1. Vф = 0. Карбонаты, а также гидроксо-анионы в пробе отсутствуют, и потребление кислоты при титровании по метилоранжу может быть обусловлено только присутствием гидрокарбонатов.

2. Vф ¹ 0, причем 2Vф Vмо. В данном случае в исходной пробе гидрокарбонаты отсутствуют, но присутствуют не только карбонаты, но и другие потребляющие кислоту анионы, а именно – гидроксо-анионы. При этом содержание последних эквивалентно составляет Vон = 2Vф – Vмо. Содержание карбонатов можно рассчитать, составив и решив систему уравнений:

VOH = 2VФ – VMO

5. VФ = Vмо. В исходной пробе отсутствуют и карбонаты, и гидрокарбонаты, и потребление кислоты обусловлено присутстви­емсильных щелочей, содержащих гидроксо-анионы.

Присутствие свободных гидроксо-анионов в заметных ко­личествах (случаи 4 и 5) возможно только в сточных водах.

Массовые концентрации анионов (не солей!) рассчитыва­ются на основе уравнений реакций потребления кислоты кар­бонатами (Ск) и гидрокарбонатами (Сгк) в мг/л по формулам:

где Vк и Vгк – объем раствора соляной кислоты, израсходованной на титрование карбоната и гидрокарбонатасоответственно, мл;
Н – точная концентрация титрованного раствора соляной кислоты (нормальность), г-экв/л; VA – объем пробы воды, взятой для анализа, мл; 60 и 61 – эквивалентная масса карбонат- и гидрокарбонат-аниона соответственно, в соответствующих реакциях; 1000 – коэффициент пересчета единиц измерений.

Результаты титрования по фенолфталеину и метилоранжу позволяют рассчитать показатель щелочности воды, который чис­ленно равен количеству эквивалентов кислоты, израсходован­ной на титрование пробы объемом 1 л. При этом потребление кис­лоты при титровании по фенолфталеину характеризует свободную щелочность, а по метилоранжу – общую щелочность, которая измеряется в мг-экв/л. Показатель щелочности используется в Рос­сии, как правило, при исследовании сточных вод. В некоторых других странах (США, Канаде, Швеции и др.) щелочность опре­деляется при оценке качества природных вод и выражается мас­совой концентрацией в эквиваленте СаСО3.

Следует иметь в виду, что при анализе сточных и загрязнен­ных природных вод получаемые результаты не всегда корректно отражают величины свободной и общей щелочности, т.к. в воде, кроме карбонатов и гидрокарбонатов, могут присутствовать соеди­нения некоторых других групп (см. «Щелочность и кислотность»).

Дата добавления: 2014-12-26 ; Просмотров: 1853 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

«ПНД Ф 16.2.2:2.3:3.34-02 (ФР.1.31.2005.01765). Количественный химический анализ почв. Методика выполнения измерений содержания кальция, магния, общей жесткости в твердых и жидких отходах производства и потребления, осадках, шламах, активном иле, донных отложениях комплексонометрическим методом»

Документ по состоянию на август 2014 г.

Утверждаю
Директор ФГУ
«Центр экологического
контроля и анализа»
Г.М.ЦВЕТКОВ
6 августа 2002 года

Методика допущена для целей государственного экологического контроля.

Методика рассмотрена и одобрена научно-техническим советом ФГУ «Федеральный центр анализа и оценки техногенного воздействия (ФГУ «ФЦАО»).

Протокол заседания НТС ФГУ «ФЦАО» от 15 августа 2005 г.

Методика выполнения измерений аттестована Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»), Свидетельство об аттестации N 28-05 от 6 мая 2005 года, регистрационный код МВИ по Федеральному реестру ФР.1.31.2005.01765.

Настоящая методика предназначена для измерений содержания кальция и магния (как в растворенной, так и в нерастворенной форме) в пробах твердых и жидких отходов производства и потребления, осадков, шламов, активного ила очистных сооружений, донных отложений природных и искусственно созданных водоемов комплексонометрическим методом и расчета общей жесткости. Методика позволяет определить массовую концентрацию кальция от 10,0 мг/куб. дм (мг/кг) до 100000 мг/куб. дм (мг/кг), магния — от 10,0 мг/куб. дм (мг/кг) до 100000 мг/куб. дм (мг/кг).

Определению мешают ионы железа (св. 10 мг/куб. дм), марганца (св. 0,3 мг/куб. дм), алюминия (св. 20 мг/куб. дм), цинка (св. 0,3 мг/куб. дм), высокая цветность анализируемой пробы, анионы (от 1,0 мг/куб. дм до 200,0 мг/куб. дм), (от 1,0 мг/куб. дм до 200,0 мг/куб. дм), (от 0,5 мг/куб. дм до 50,0 мг/куб. дм), (от 0,1 мг/куб. дм до 5,0 мг/куб. дм).

Устранение мешающих влияний предусмотрено в ходе подготовки пробы. При содержании мешающих веществ выше указанных концентраций следует использовать другой метод.

При соблюдении всех регламентированных условий и проведении анализа в точном соответствии с методикой анализа значение погрешности (и ее составляющих) результатов анализа не превышает значений, приведенных в таблице 1, для соответствующих диапазонов измерений.

Наименование иона Диапазон измерений содержания иона, мг/куб. дм (мг/кг) Показатель точности (границы относительной погрешности),

, %,

, %

, %

3.1.1 Иономер универсальный ЭВ-74, диапазон измерений (1 — 14) ед. pH, относительная погрешность не превышает (+/- 0,05) ед. pH;

3.1.2 Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г по ГОСТ 24104-2001;

3.1.3 Гири Г-2-210 по ГОСТ 7328-2001;

3.1.4 Колбы мерные 1-100-2, 1-250-2, 1-500-2, 1-1000-2 по ГОСТ 1770-74;

3.1.5 Пипетки градуированные вместимостью (1, 2, 5, 10) куб. см по ГОСТ 29227-91;

3.1.6 Пипетки с одной отметкой вместимостью (25, 50, 100) куб. см по ГОСТ 29169-91;

3.1.7 ГСО 7682-9 состава водного раствора ионов кальция с массовой концентрацией ионов кальция 1,00 г/куб. дм, с относительной погрешностью аттестованного значения, не превышающей +/- 1%;

3.1.8 МСО 0139:2000 (ГСО 5225-90) состава раствора ионов магния с массовой концентрацией ионов магния 1,00 г/куб. дм с относительной погрешностью аттестованного значения +/- 1%;

3.1.9 Цилиндры мерные 3-10-2, 3-100-2, 3-500-2 по ГОСТ 1770-74;

3.1.10 Бюретки 1-10, 1-25, 1-50, 1-100 по ГОСТ 29252-91.

3.2 Вспомогательные устройства и оборудование

3.2.1 Сушильный шкаф с терморегулятором и термометром ШСС или СНОЛ. Температура нагрева до 473 К (200 °C) по ТУ 64-1-909-80;

3.2.2 Печь муфельная лабораторная СНОЛ. Температура нагрева до 873 К (600 °C) по ТУ 16-531651;

3.2.3 Воронки стеклянные диаметром (13 — 15) см по ГОСТ 25336-82;

3.2.4 Стаканы химические, ТС, объем 600 куб. см, 1000 куб. см по ГОСТ 25336-82;

3.2.5 Колбы конические, ТХС, Кн-2-250-34, Кн-2-500-34, Кн-2-1000-34 по ГОСТ 25336-82;

3.2.6 Эксикатор по ГОСТ 25336-82;

3.2.7 Склянка для отбора и хранения проб вместимостью (500 — 5000) куб. см;

3.2.8 Плитка электрическая закрытого типа по ГОСТ 14919-83;

3.2.9 Фильтры бумажные обеззоленные «белая лента» по ТУ 6-09-1678-86;

3.2.10 Бумага индикаторная «универсальная» по ТУ 6-09-1181-76;

3.2.11 Штатив металлический лабораторный;

3.2.12 Ступка фарфоровая по ГОСТ 9147-80.

3.3.1 Кислота соляная марки «х.ч.» по ГОСТ 3118-77;

3.3.2 Кислота серная марки «х.ч.» по ГОСТ 4204-77;

3.3.3 Натрия гидроксид по ГОСТ 4328-77;

3.3.4 Аммиак водный по ГОСТ 3760-79;

3.3.5 Аммоний хлористый по ГОСТ 3773-72;

3.3.6 Трилон Б по ГОСТ 10652-73;

3.3.7 Кислотный хром темно-синий по ТУ 6-09-3870-84

3.3.8 Натрий хлористый по ГОСТ 4233-77;

3.3.9 Гидроксиламин солянокислый по ГОСТ 5456-79;

3.3.10 Кальций углекислый по ГОСТ 4530-76;

3.3.11 Магний сернокислый 7-водный по ГОСТ 4523-77;

3.3.12 Вода дистиллированная по ГОСТ 6709-72;

3.3.13 Уголь активированный по ТУ 9444-019-00480230-98;

3.3.14 Цинк гранулированный металлический, марка ЦВ или ЦР по ГОСТ 3640-73.9.

Примечание — Допускается применение других средств измерений, вспомогательных устройств, реактивов и материалов, технические и метрологические характеристики которых не хуже указанных выше и обеспечивают нормируемую точность измерений.

Средства измерений должны быть поверены в установленном порядке.

Метод основан на последовательном определении кальция и магния в одной пробе водной вытяжки твердых отходов, осадков, донных отложений или в натуральной пробе шламовых вод с образованием комплексов с трилоном Б в присутствии индикатора кислотного хрома темно-синего в щелочной среде при pH = (12 — 13) для ионов и pH = (10 +/- 0,1) для ионов . Метод определения кальция основан на способности ионов кальция образовывать с трилоном Б малодиссоциированное, устойчивое в щелочной среде при pH = (12 — 13) соединение по реакции:

Магний осаждается в виде гидроксида и не мешает определению.

Определение магния начинают только тогда, когда весь кальций будет связан в комплекс. Пробу воды подкисляют, доводят до значения pH = (10 +/- 0,1) и титруют магний, используя тот же индикатор, до перехода окраски из ярко-розовой в сине-голубую.

5.1 При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76.

5.2 Электробезопасность при работе с электроустановками соблюдается по ГОСТ 12.1.019-79.

5.3 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

5.4 Организация обучения работающих безопасности труда производится по ГОСТ 12.0.009-90.

К выполнению измерений и обработке их результатов допускают специалистов, имеющих высшее или среднее специальное химическое образование или опыт работы в химической лаборатории, прошедших соответствующий инструктаж, освоивших метод в процессе тренировки.

Условия окружающей среды, при которых обеспечивается требуемая точность измерений, следующие:

— относительная влажность воздуха, %

— напряжение питания электросети, В

— частота переменного тока, Гц

8.1 Отбор проб производится в соответствии с ГОСТ 17.4.3.01-83 «Охрана природы. Почвы. Общие требования к отбору проб», ГОСТ 17.4.4.02-84 «Охрана природы. Почвы. Метод отбора и подготовки проб для химического, бактериологического, гельминтологического анализа», ГОСТ 17.1.5.01-80 «Охрана природы. Гидросфера. Общие требования к отбору проб донных отложений водных объектов для анализа их загрязнения», а также в соответствии с методическими рекомендациями ПНД Ф 12.1:2.2:2.3.2-03 «Отбор проб отходов промышленного производства и потребления, почв, грунтов, осадков биологических очистных сооружений, шламов промышленных сточных вод, донных отложений искусственно созданных водоемов, прудов-накопителей и гидротехнических сооружений» (ОАО «Каустик», НТФ «Хромос», 1999 г.).

Читайте также:  Сдать анализ воды в королеве

8.2 Пробы твердых отходов, осадки с иловых и шламовых площадок отбирают методом точечных проб, послойно с глубины (0 — 5) см, (5 — 20) см, (20 см — не более 1 м), массой не менее 200 г каждая.

8.3 Пробы жидких осадков отбирают из трубопроводов или других технологических сооружений с учетом их конструкции.

8.4 Донные отложения водоемов и прудов отбирают согласно ГОСТ 17.1.5.01-80 «Охрана природы. Гидросфера. Общие требования к отбору проб донных отложений водных объектов для анализа их загрязненности».

8.5 Объем пробы должен быть не менее 1 куб. дм (1 кг). Пробу не консервируют и хранят не более 7 суток.

8.6 Если при хранении отобранной пробы на стенках и на дне сосуда образуется осадок карбоната кальция, необходимо временно перенести пробу в другой сосуд, прилить в первый сосуд несколько миллилитров соляной кислоты, разбавленной в соотношении кислота:вода (1:5), обмыть ею стенки и дно для растворения осадка и влить обратно в пробу. Перед титрованием такую пробу нейтрализуют раствором гидроксида натрия с молярной концентрацией 1,0 моль/куб. дм. Увеличением объема пробы за счет прибавленной кислоты можно пренебречь, если первоначальный объем пробы был более 400 куб. см.

9.1 Приготовление растворов

9.1.1 Приготовление раствора кальция с массовой концентрацией 1,00 мг/куб. см

9.1.1.1 Раствор кальция с массовой концентрацией (1,00 +/- 0,01) мг/куб. см готовят из ГСО (согласно инструкции по применению ГСО) или готовят аттестованную смесь по ГОСТ 4212-76 (с последующей аттестацией согласно НД) из соли углекислого кальция по п. 9.1.1.2.

9.1.1.2 5 г углекислого кальция прокаливают в муфельной печи до постоянной массы при температуре (250 — 300) °C. Навеску 2,4970 г кальция углекислого (результат взвешивания записывают до четвертого десятичного знака), предварительно доведенного до постоянной массы, растворяют в 10 куб. см раствора соляной кислоты с массовой долей 25%, переносят в мерную колбу вместимостью 1 куб. дм и доводят до метки дистиллированной водой.

Раствор хранят в полиэтиленовой посуде не более 1 года.

9.1.2 Приготовление раствора магния с массовой концентрацией 1 мг/куб. см

9.1.2.1 Раствор магния с массовой концентрацией (1,00 +/- 0,01) мг/куб. см готовят из ГСО (согласно инструкции по применению ГСО) или готовят аттестованную смесь по ГОСТ 4212-76 (с последующей аттестацией согласно НД) из соли магния сернокислого по п. 9.1.2.2.

9.1.2.2 10,1400 г магния сернокислого 7-водного (результат взвешивания записывают до четвертого десятичного знака) растворяют в небольшом количестве дистиллированной воды в мерной колбе вместимостью 1 куб. дм, содержащей 1 куб. см раствора серной кислоты с молярной концентрацией 1,0 моль/куб. дм, и доводят до метки дистиллированной водой.

Раствор хранят в полиэтиленовой посуде из темного стекла не более 1 года.

9.1.3 Приготовление раствора серной кислоты с молярной концентрацией 1,0 моль/куб. дм

В мерную колбу вместимостью 250 куб. см, заполненную до половины дистиллированной водой, осторожно приливают пипеткой 14 куб. см концентрированной серной кислоты ( = 1,835 г/куб. см), перемешивают, охлаждают и доводят до метки дистиллированной водой.

Раствор хранят в стеклянной посуде не более 6 месяцев.

9.1.4 Приготовление раствора соляной кислоты с молярной концентрацией 1,0 моль/куб. дм

В мерную колбу вместимостью 1 куб. дм, заполненную до половины дистиллированной водой, пипеткой приливают 80 куб. см концентрированной соляной кислоты ( = 1,19 г/куб. см). Перемешивают и доводят до метки дистиллированной водой.

Раствор хранят в стеклянной посуде не более 6 месяцев.

9.1.5 Приготовление раствора гидроксида натрия с молярной концентрацией 1,0 моль/куб. дм

40,0000 г гидроксида натрия (результат взвешивания записывают до четвертого десятичного знака) растворяют в фарфоровом стакане в (500 — 700) куб. см дистиллированной воды. Охлаждают. Количественно переносят в мерную колбу вместимостью 1 куб. дм и доводят объем раствора до метки дистиллированной водой. Закрывают полиэтиленовой пробкой и в течение 20 дней выдерживают до полного осаждения углекислого натрия, нерастворимого в растворе указанной концентрации. Для анализа используют отстоявшийся прозрачный раствор. Раствор хранят в полиэтиленовой посуде не более 6 месяцев.

9.1.6 Приготовление раствора гидроксида натрия с молярной концентрацией 2,0 моль/куб. дм

80,0000 г гидроксида натрия (результат взвешивания записывают до четвертого десятичного знака) растворяют в фарфоровом стакане в (500 — 700) куб. см дистиллированной воды. Охлаждают. Количественно переносят в мерную колбу вместимостью 1 куб. дм и доводят до метки дистиллированной водой. Закрывают полиэтиленовой пробкой и в течение 20 дней выдерживают до полного осаждения углекислого натрия, нерастворимого в растворе указанной концентрации. Для анализа используют отстоявшийся прозрачный раствор. Раствор хранят в полиэтиленовой посуде не более 6 месяцев.

9.1.7 Приготовление аммиачно-буферного раствора pH = (10 +/- 0,1)

20,00 г аммония хлористого (результат взвешивания записывают до второго десятичного знака) растворяют в мерной колбе вместимостью 1 куб. дм в небольшом количестве дистиллированной воды, цилиндром добавляют 100 куб. см раствора аммиака и доводят объем раствора до метки дистиллированной водой. Раствор хранят в полиэтиленовой посуде в течение 2 месяцев. Перед проведением анализа проводят измерение pH раствора.

9.1.8 Приготовление индикатора кислотного хрома темно-синего

0,100 г препарата (результат взвешивания записывают до третьего десятичного знака) помещают в фарфоровую ступку, добавляют 10 г хлористого калия или хлористого натрия. Смесь растирают и хранят в герметично закрытой банке из темного стекла не более 1 месяца.

9.1.9 Приготовление раствора солянокислого гидроксиламина с массовой долей 5%

5,0 г гидроксиламина солянокислого помещают в колбу вместимостью 100 куб. см, добавляют 95 куб. см дистиллированной воды и перемешивают. Раствор устойчив в течение 6 месяцев.

9.1.10 Приготовление 0,1 н основного раствора трилона Б

18,6200 г трилона Б (результат взвешивания записывают с точностью до четвертого десятичного знака) количественно переносят в мерную колбу вместимостью 1000 куб. см, предварительно заполненную на 1/2 объема дистиллированной водой. Доводят объем в колбе до метки дистиллированной водой, перемешивают до полного растворения реактива.

Раствор хранят в полиэтиленовой посуде не более 1 года.

Допускается приготовление раствора из стандарт-титра, согласно инструкции к применению.

9.1.11 Приготовление 0,05 н раствора трилона Б

9.1.11.1 Навеску 9,3100 г трилона Б (результат взвешивания записывают с точностью до четвертого десятичного знака) количественно переносят в мерную колбу вместимостью 1000 куб. см, предварительно заполненную на 1/2 объема дистиллированной водой. Доводят объем в колбе до метки дистиллированной водой, перемешивают до полного растворения.

9.1.11.2 Допускается приготовление 0,05 н раствора трилона Б путем разбавления 0,1 н основного раствора трилона Б, приготовленного по п. 9.1.10.

Для этого пипетками вместимостью 100 куб. см отмеряют по 100,0 куб. см 0,1 н раствора трилона Б и дистиллированной воды, тщательно перемешивают.

9.1.11.3 Допускается приготовление раствора из стандарт-титра, согласно инструкции по применению.

9.1.11.4 Раствор хранят в полиэтиленовой посуде не более 3-х месяцев с проверкой коэффициента поправки 1 раз в месяц.

9.1.12 Приготовление 0,01 н раствора трилона Б

0,01 н раствор трилона Б готовят путем разбавления основного 0,1 н раствора трилона Б, приготовленного по п. 9.1.10.

100,0 куб. см 0,1 н раствора трилона Б, отмеренного пипеткой вместимостью 100 куб. см, вносят в мерную колбу вместимостью 1000 куб. см, предварительно заполненную на 1/2 объема дистиллированной водой. Доводят объем в колбе до метки дистиллированной водой, перемешивают.

Раствор хранят в полиэтиленовой посуде не более 3-х месяцев с проверкой коэффициента поправки 1 раз в месяц.

9.1.13 Приготовление 0,1 н раствора хлористого цинка

3,269 г металлического гранулированного цинка (результат взвешивания записывают с точностью до третьего десятичного знака) растворяют в мерной колбе вместимостью 1000 куб. см в 30 куб. см соляной кислоты, разбавленной в соотношении с водой 1:1. Доводят объем в колбе до метки дистиллированной водой только после полного растворения цинка и тщательно перемешивают.

Получают точно 0,1 н раствор хлористого цинка.

Соответствующим разведением этого раствора вдвое получают 0,05 н или 0,01 н растворы хлористого цинка.

Если навеска неточная (больше или меньше 3,269 г), то рассчитывают количество кубических сантиметров исходного 0,1 н раствора хлористого цинка для приготовления точно 0,05 н (должен содержать 1,6345 г цинка в 1 куб. дм) или точно 0,01 н (должен содержать 0,3269 г цинка в 1 куб. дм) растворов.

9.1.14 Приготовление 0,1 н, 0,05 н и 0,01 н растворов сернокислого магния

9.1.14.1 Раствор готовят из фиксанала. Содержимое ампулы фиксанала 0,01 н раствора сернокислого магния растворяют в 100 куб. см дистиллированной воды.

9.1.14.2 Для приготовления 0,05 н раствора сернокислого магния содержимое ампулы фиксанала 0,01 н раствора сернокислого магния растворяют в 200 куб. см дистиллированной воды.

9.1.14.3 0,01 н раствор сернокислого магния готовят из фиксанала согласно прилагаемой инструкции, растворяя содержимое ампулы в 1000 куб. см дистиллированной воды.

9.1.15 Установление поправочного коэффициента к нормальности раствора трилона Б

9.1.15.1 В коническую колбу вместимостью 250 куб. см пипеткой вместимостью 10 куб. см вносят 10,0 куб. см 0,1 н раствора хлористого цинка (или 10,0 куб. см 0,1 н раствора сернокислого магния), пипеткой вместимостью 2 куб. см добавляют 2,0 куб. см раствора гидроксида натрия с молярной концентрацией 1,0 моль/куб. дм и навеску (0,10 — 0,15) г индикатора кислотного хрома темно-синего, взвешенного с точностью 0,01 г.

Раствор тщательно перемешивают и титруют при сильном взбалтывании 0,1 н раствором трилона Б до перехода окраски раствора в синий цвет с фиолетовым оттенком.

9.1.15.2 Поправочный коэффициент (K) к раствору трилона Б рассчитывают по формуле

где 10 — количество 0,1 н раствора хлористого цинка, взятое для установления поправочного коэффициента, куб. см;

— количество 0,1 н раствора трилона Б, израсходованное на титрование, куб. см.

Поправочный коэффициент к раствору трилона Б устанавливают и проверяют 1 раз в месяц при температуре (20 +/- 1) °C, в противном случае используют температурную поправку по ГОСТ 25794.1-83.

В случае использования 0,05 н или 0,01 н раствора трилона Б для установления поправочного коэффициента (K) применяют 0,05 н или 0,01 н растворы хлористого цинка (сернокислого магния) соответственно.

9.1.16 Приготовление раствора серной кислоты (1:5)

В термостойкую колбу вносят отмеренные мерным цилиндром 100 куб. см дистиллированной воды и добавляют при осторожном помешивании 20 куб. см концентрированной серной кислоты. Медленно перемешивают и охлаждают. Раствор хранят не более 6 месяцев.

9.1.17 Приготовление раствора серной кислоты (1:1)

В термостойкую колбу вносят отмеренный мерным цилиндром 1 объем дистиллированной воды и добавляют при осторожном помешивании 1 объем концентрированной серной кислоты. Медленно перемешивают и охлаждают. Раствор хранят не более 6 месяцев.

9.1.18 Приготовление раствора соляной кислоты с массовой долей 25%

В мерную колбу вместимостью 100 куб. см к 35 куб. см дистиллированной воды приливают 55 куб. см концентрированной соляной кислоты ( = 1,19 г/куб. см). Перемешивают.

Раствор хранят не более 6 месяцев.

9.1.19 Приготовление раствора соляной кислоты с массовой долей 18%

В мерную колбу вместимостью 100 куб. см к 53 куб. см дистиллированной воды приливают 39,5 куб. см концентрированной соляной кислоты ( = 1,19 г/куб. см). Перемешивают.

Раствор хранят не более 6 месяцев.

9.2 Устранение мешающих влияний

9.2.1 Для устранения мешающего влияния ионов железа (св. 10 мг/куб. дм); марганца (св. 0,3 мг/куб. дм); алюминия (св. 20 мг/куб. дм); цинка (св. 0,3 мг/куб. дм) в пробу добавляют перед выполнением измерений по п. 10 (0,2 — 0,5) куб. см раствора гидроксиламина солянокислого с массовой долей 5%.

9.2.2 Для устранения мешающего влияния анионов (, , , ) пробу следует оттитровать сразу после добавления щелочи.

9.2.3 При высокой цветности, затрудняющей титрование, пробу (фильтрат) перед выполнением анализа пропускают через колонку с активированным углем БАУ. Колонка представляет собой стеклянную трубку длиной (25 — 30) см и диаметром (1,5 — 2,0) см, обеспечивающую прохождение исследуемой пробы со скоростью 2 куб. см в минуту. Колонку заполняют активированным углем БАУ, подготовленным по п. 9.4.

Влажность следует определять как отношение массы воды, удаленной из исследуемой пробы высушиванием до постоянной массы, к массе влажной пробы.

Пробу твердых отходов, осадка, шлама, активного ила, донных отложений, отходов производства и потребления, отобранную согласно п. 8, тщательно перемешивают. Делят анализируемую пробу на две равные части. Одну часть анализируют в соответствии с п. 10.

Из второй части пробы отбирают навеску 100,0 г (для жидких проб) и (5 — 20) г (для твердых проб) для определения влажности. Пробу помещают в заранее высушенный, взвешенный и пронумерованный бюкс и плотно закрывают крышкой (или в выпарительную чашку). Пробу жидких осадков (шламов) предварительно выпаривают на водяной бане досуха.

Бюкс (или выпарительную чашку) открывают и вместе с крышкой помещают в нагретый сушильный шкаф и высушивают при температуре (105 +/- 2) °C в течение 5 часов. Охлаждают до комнатной температуры в эксикаторе в течение (30 +/- 2) мин., взвешивают с точностью до второго десятичного знака.

Снова помещают бюкс (или выпарительную чашку) в сушильный шкаф с температурой t = (105 +/- 2) °C на (30 +/- 2) мин., охлаждают до комнатной температуры в эксикаторе в течение (30 +/- 2) мин. и взвешивают с точностью до второго десятичного знака.

Высушивание проводят до получения разности масс высушенного осадка в бюксе (выпарительной чашке) при двух последующих взвешиваниях не более 0,02 г.

Если при повторном взвешивании пробы наблюдается увеличение массы, то за результат принимают наименьшую массу.

Влажность исследуемой пробы W, в долях единицы, вычисляют по формуле (2)

где — масса влажной пробы (разность масс бюкса (фарфоровой чашки) с влажным осадком и пустого бюкса (фарфоровой чашки), г;

— масса пробы, высушенной при (105 +/- 2) °C (разность масс бюкса (фарфоровой чашки) с высушенной пробой и пустого бюкса (фарфоровой чашки), г.

9.4 Подготовка к работе активированного угля БАУ

Свежую порцию угля (или бывшего в употреблении) перед работой кипятят с раствором соляной кислоты с массовой долей 18% в течение (2 — 3) часов. В случае появления интенсивной окраски операцию повторяют с новой порцией соляной кислоты до тех пор, пока слой кислоты над углем не станет бесцветным. Уголь отмывают дистиллированной водой до нейтральной реакции (контролируя по универсальной лакмусовой бумаге) и заливают раствором гидроксида натрия с молярной концентрацией 2 моль/куб. дм на (10 — 12) часов. Если появится окраска, операцию повторяют. После полного извлечения окрашенных веществ уголь отмывают дистиллированной водой до нейтральной реакции и хранят под слоем дистиллированной воды. После пропускания через колонку каждой пробы (фильтрата) колонку отмывают вначале раствором гидроксида натрия с молярной концентрацией 0,1 моль/куб. дм до исчезновения окраски, а затем дистиллированной водой до нейтральной реакции.

10.1 Жидкие пробы с влажностью более 90% и объемом не менее 200 куб. см отфильтровывают через фильтр обеззоленный «белая лента» диаметром (9 — 15) см. Для ускорения фильтрации допускается применение водоструйного насоса.

10.2 При необходимости устраняют мешающие влияния по п. 9.2.

10.3 Рекомендуемый для выполнения измерений объем пробы (фильтрата) и нормальность раствора трилона Б в зависимости от содержания кальция и магния указаны в таблице 2.

источник