Меню Рубрики

Катионы анионы для анализа воды

Что такое Формула Курлова?

Жесткость воды, типы жесткости.

Чему посвящен СНиП 2.03.11-85?

Какая физическая сущность движения воды в горных породах? Объясните природу явления.

Запишите закон Дарси и поясните параметры, которые он связывает.

Что такое коэффициент фильтрации и перечислите факторы, его определяющие.

Какие типы водозаборных сооружений существуют и каким способом рассчитывается водопритоки?

Что такое «защищенность подземных вод от загрязнения» и какими природными и техногенными факторами она определяется?

Геодинамические и инженерно-геологические процессы

Процессы в литосфере – это совокупность явлений, которые изменяют состояние геологической среды и могут приводить к нарушению инженерно-геологических и эколого-геологических условий. Они подразделяются на:

1. Природные (геодинамические) – проходят в естественной природной обстановке, разделяются на эндогенные и экзогенные;

2. Инженерно-геологические процессы – процессы, возникающие под влиянием деятельности человека (своей деятельностью человек провоцирует возникновение процессов).

Пример: увеличение глубины сезонного промерзания при снятии растительного покрова.

Основное отличие: инженерно-геологические процессы протекают мгновенно в геологическом времени.

ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКАЯ КЛАССИФИКАЦИЯ ПРОЦЕССОВ ТАБЛИЦА (В файле «Таблицы поперек»)

Основные задачи при изучении процессов:

  1. Оценка процесса (геологическое строение, гидрогеологические геокриологические условия, выявление причин возникновения процесса);
  2. Прогноз проявления процесса (используется метод аналогий – восстановление палеогеологических и палеогеографических условий, определявших проявление процесса);
  3. Расчет риска и ущерба от проявления процесса.

ЗНАНИЕ МЕХАНИЗМА И ДИНАМИКИ ПРИРОДНЫХ ПРОЦЕССОВ ПОЗВОЛЯЕТ ДАТЬ ПРОГНОЗ ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИМ ПРОЦЕССАМ

ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКАЯ КЛАССИФИКАЦИЯ ПРОЦЕССОВ

Характеристика процессов. Эндогенные процессы.

Эпейрогенические движения земной коры – относительные незначительные поднятия или опускания земной коры, которые могут быть выражены эпейрогенической кривой (зависимость изменении высотных отметок по реперам во времени). Характерны для платформенных областей (Дания, Прикаспийская низменность).

Вулканизм определяет непосредственное излияние лавы и сопровождающие излияние процессы и сейсмичность, которая проявляется землетрясениями. Извержение вулканов и землетрясения относятся к катастрофическим процессам, сопровождающимися человеческими жертвами. Микросейсмическое районирование (таблицы). Приращение сейсмической бальности грунтов. Определение сейсмичности площадок по инженерно-геологическим условиям.

Эндогенные процессы, вызванные деятельностью человека.

Приращение сейсмической бальности грунтов

Наименование грунтов Скорость продольных волн, км/с Приращение бальности
Скальные грунты Граниты Известняки, сланцы, гнейсы (плотные) Песчаники плотные Известняки, сланцы, песчаники нарушенные 5,6 3,5-4,5 2,2-3 1,5-2,3 0,2-0,4 0,3-0,4 0,7-1,1
Полускальные грунты Гнейсы Мергели Сцементированные пески 2,4-3 2-2,6 1,4-1,9 0,3-0,6 0,7-1 1-1,2
Крупнообломочные грунты Щебнистые и галечниковые Гравийные (из кристаллических пород) То же (из осадочных пород 1,3-2,1 1,2-1,9 1,1-1,7 0,9-1,3 1-1,4 1,1-1,5
Песчаные грунты Пески гравелистые и крупные То же средней крупности То же мелкие и пылеватые 1,1-1,6 1-1,4 0,7-1,2 1,2-1,4 1,3-1,6 1,4-1,8
Глинистые грунты Глины Суглинки Супеси Суглинки и супеси рыхлые 0,9-1,5 0,8-1,4 0,7-1,2 0,5-0,8 1,2-1,6 1,3-1,7 1,4-1,8 1,7-2,1

Определение сейсмичности площадок по инженерно-геологическим условиям (СНиП II-7-81) ТАБЛИЦА (В файле «Таблицы поперек»)

Экзогенные процессы

Подразделяются:

Процессы климатического характера;

Процессы водного характера
Процессы, обусловленные характером рельефа.

Процессы климатического характера

Выветривание

Процесс выветривания – это изменение свойств пород под действием физических, химических и биологических факторов в зоне гипергенеза при нормальной температуре и давлении.

Физическое выветривание -действие температуры (процессы замерзания – оттаивания – физическая дезинтеграция материала);

Химическое выветривание – изменение свойств пород под действием воды и углекислоты атмосферы (растворение, перенос материала, накопление);

Биологическое выветривание – изменение состава и свойств пород под действием биологических факторов (микро- и макроорганизмы).

В результате образуется кора выветривания.

Строение коры выветривания: выделяется три зоны: дисперсная, обломочная, трещинная.

Дисперсная зона характеризуется преимущественно глинистым составом, с редкой щебенкой в нижней части.

Обломочная зона представлена преимущественно щебенкой с глинистым заполнителем. Количество заполнителя уменьшается сверху вниз, размер обломков увеличивается (Внутри этой зоны возможно распределение по дисперсности).

Трещинная зона характеризуется развитием трещин в породах.

Выделяют 4 типа климатических условий, соответствующие различным типам выветривания: Т р о п и ч е с к и е, а р и д н ы е, у м е р е н н ы е, а р к т и ч е с к и е.

Т р о п и ч е с к и е –высокая среднегодовая температура воздуха, большое количество атмосферных осадков. Преобладает химическое выветривание.

А р и д н ы е – небольшое количество осадков и резкие колебания температуры. Развито физическое и химическое выветривание. Физическое выветривание преобладает.

У м е р е н н ы е – наличие сезонного промерзания и протаивания при среднегодовой температуре воздуха более 0°. Породы умеренно влажные или сильно увлажненные. Процесс выветривания протекает равномерно. Физическое и механическое выветривание

А р к т и ч е с к и е – среднегодовая температура ниже 0°, развиты многолетнемерзлые породы. Преобладает физическое выветривание.

Коры выветривания: площадные (распределены на больших площадях Урал) и линейные (процессы выветривания, приуроченные к разломным зонам).

Коры выветривания древние и молодые.

Инженерная геология и выветривание: строительство на элювиальных грунтах требует специальной подготовки, особенно в случае мощного глинистого горизонта (геотехногенные массивы). В процессе строительства при выборе котлованов происходит выветривание пород, особенно, если в породах есть минералы, склонные к окислению (Загорская ГАЭС).

Эоловые процессы

Эоловые процессы обусловлены деятельностью ветра, который способен производить как разрушительную работу (дефляция) так и аккумулятивную работу (эоловая аккумуляция).

Дефляция заключается в том, что под действием ветра отрываются и уносятся частицы. В результате образуются котловины, борозды, траншеи и другие формы рельефа протженность которых достигает до 15о км, ширина 2-10 км, глубина 100-142 м (Казахстан). Песчаные бури- результат дефляции. Процесс характерен для аридных областей. При дефляции наблюдается корразия –твердые частицы, переносимые ветром ударяются о твердые породы, обтачивают и сверлят их поверхность. В результате формируются причудливые формы в виде столбов, грибов. Дефляция разрушает инженерные сооружения.

Эоловая аккумуляция— накопление материала, переносимого воздухом. Образование барханов, дюн. Характерная особенность – перемещение, что приводит к изменению состояния земельных ресурсов. Способ защиты – фитомелиорация. Деятельность человека – выпас скота, освоение площадей под с.х., вырубка лесов приводит к проявлению эоловых процессов как инженерно-геологического явления.

Вопросы к лекции 5

  1. Геодинамические и инженерно-геологические процессы. Что это. Сходство и различие.
  2. Перечислите таксоны Инженерно-геологической классификации процессов.
  3. Основные задачи при изучении процессов.
  4. Эндогенные процессы. Причины возникновения. Подразделение.
  5. Почему происходит приращение или уменьшение сейсмической бальности?
  6. Охарактеризовать таблицу СНиП II-7-81. Определение сейсмичности площадок по инженерно-геологическим условиям.
  7. Экзогенные процессы. Причины возникновения. Подразделение.
  8. Выветривание. Типы выветривания, зоны в толще выветрелых пород.
  9. Почему при инженерно-геологических изысканиях важно детально изучить кору выветривания?
  10. Эоловые процессы. Подразделение. Почему при инженерно-геологических изысканиях важно изучать эоловые процессы?

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

источник

Определение катионов аммония (NH4 + ). Для определения катионов аммония на предметное стекло помещают несколько капель проверяемой воды и добавляют 2–3 капли раствора щелочи (NaOH или KOH). Держа стекло высоко над пламенем, раствор слегка нагревают. При нагревании со щелочами аммонийные соли, содержащиеся в природной воде, выделяют аммиак, который легко обнаруживают по характерному запаху:

Для определения аммиака можно использовать также влажную красную лакмусовую бумажку (ее посинение означает наличие аммиака).

Определение катионов меди (Сu 2+ ).В пробирку с 5 мл раствора бромистого калия осторожно приливают равный объем концентрированной серной кислоты. После охлаждения пробирки к содержимому добавляют 5 мл исследуемой воды. При наличии в воде катионов меди в растворе образуется сине-фиолетовое кольцо:

Определение катионов кальция (Ca 2+ ). К 5 мл исследуемой воды приливают каплю уксусной кислоты. После непродолжительного нагревания необходимо добавить три капли раствора щавелевокислого аммония и каплю водного раствора аммиака. При наличии катионов кальция выпадает белый кристаллический осадок – кальций оксалата, не растворимый в воде и уксусной кислоте:

Определение катионов двухвалентного железа (Fe 2+ ).К 5 мл исследуемой воды прибавляют 0,1 г калий сульфата и около 1 г красной кровяной соли ( K3[Fe(CN)6] ). В присутствии ионов двухва-лентного железа появляется сине-зеленое окрашивание:

Примерное содержание двухвалентного железа определяется по цвету раствора (табл. 1).

Таблица 1.Шкала оценки содержания Fe 2+

Цвет раствора Содержание Fe 2+ , мг/л
Сине-зеленый 6,0 – 10,0
Синий 10,1–15,0
Темно-синий 15,1–30,0

Определение катионов трехвалентного железа (Fe 3+ ). К 5 мл природной воды добавляют 1–2 капли концентрированной соляной кислоты и 5 капель 10%-ного раствора роданистого аммония NH4CNS. При наличии ионов Fe 3+ появляется красное окрашивание:

Примерное содержание трехвалентного железа определяется по цвету раствора (табл.2).

Таблица 2. Шкала оценки содержания Fe 3+

Цвет раствора Содержание Fe 3+ , мг/л
Желтовато-красный 0,4 – 1,0
Красный 1,1 – 3,0
Ярко-красный 3,1 – 10,0

Определение сульфат-ионов (SO4 2- ). К 5 мл исследуемой воды приливают 4 капли 10%-ного раствора HCl и столько же капель 5%-ного раствора BaCl2. Содержимое пробирки нагревают на пламени спиртовки. В присутствии сульфат-иона выпадает осадок белого цвета или появляется муть:Ba 2+ + SO4 2- → BaSO4↓.

Примерное содержание сульфат-ионов определяется по шкале (табл.3).

Таблица 3. Шкала оценки содержания SO4 2-

Прозрачность раствора Содержание SO4 2- , мг/л
Слабая муть, проявляющаяся через несколько минут 1,0 – 10,0
Слабая муть, появляющаяся сразу 10,1 – 100,0
Сильная муть 100,1 – 500,0
Большой осадок, быстро оседающий на дно пробирки Более 500,0

Определение хлорид-ионов (Cl — ).К 5 мл исследуемой воды приливают три капли 10%-ного раствора азотнокислого серебра, подкисленного азотной кислотой. Появление осадка или мути указывает на наличие анионов хлора (табл.4):

Таблица 4. Шкала оценки содержания Cl –

Прозрачность раствора Содержание Cl — , мг/л
Слабая муть 1,0–10,0
Сильная муть 10,1–50,0
Хлопья осаждаются не сразу 50,1–100,0
Белый объемистый осадок Более 100,0

Определение сульфид-ионов (S 2– ). Присутствие сероводорода легко определить по характерному запаху и почернению свинцовой бумажки. Для этого необходимо в пробирку взять 10 мл исследуемой воды и закрыть отверстие пробирки кусочком фильтровальной бумаги, смоченной раствором Pb(CH3COO)2. Содержимое пробирки слегка подогревают. В присутствии сероводорода бумага чернеет: Pb(CH3COO)2 + H2S → PbS↓ + 2CH3COOH.

Определение нитрат-ионов (NO3 – ). К 5 мл исследуемой воды осторожно по стенкам пробирки прилить около 1 мл раствора дифениламина в серной кислоте. При наличии нитрат-ионов на границе соприкосновения жидкостей появляется синее окрашивание.

Эта реакция является настолько чувствительной, что дает возможность открыть ничтожные следы нитрит-иона. Для того чтобы удалить его, к исследуемой порции воды добавляют несколько кристаллов хлорида аммония и кипятят 2-3 минуты. При этом образовавшийся аммоний нитрит полностью разрушается с выделением свободного азота. После удаления нитрит-иона реакцию проводят с дифениламином.

Определение нитрит-ионов (NO2 — ). Для анализа берут 10 мл исследуемой воды, к ней прибавляют две капли серной кислоты (конц. 1:3), 3 капли 3%-ного раствора йодистого калия. Образующийся при реакции йод выпадает в виде темно-серого осадка и окрашивает раствор в бурый цвет: 2I — + 2NO2 — + 4H + → I2+ 2NO + 2H2O.

Для того чтобы подтвердить наличие йода, к образовавшемуся бурому раствору прибавляют три капли крахмального клейстера. При этом раствор окрашивается в интенсивный синий цвет вследствие образования адсорбированного соединения йода с крахмалом. При нагревании раствора окраска исчезает, а при охлаждении – появляется.

Определение фосфат-ионов (РO4 3– ). Фосфаты определяются, как правило, колориметриче­ским методом (ГОСТ 18309, ИСО 6878) по реакции с молибдатом аммония в кислой среде:

Для анализа берут 20 мл исследуемой воды, к ней прибавляют пипеткой-капельницей 10 капель раствора для связывания нитритов и затем шприцем-дозатором 1 мл раствора молибдата. Склянку закрыть пробкой и встряхнуть для перемешивания раствора. Оставить пробу на 5 мин для полного протекания реакции. Затем добавить к пробе пипеткой-капельницей 2-3 капли раствора восстановителя. При наличии в воде ортофосфатов раствор приобретает синюю окраску. Проведите визуальное колориметрирование пробы. Для этого мерную склянку поместите на белое поле контрольной шкалы и, освещая склянку рассеянным белым светом достаточной интенсивности, определите ближайшее по окраске поле контрольной шкалы и соответствующее ему значение концентрации ортофосфатов (табл.5).

Таблица 5. Шкала оценки содержания РO4 3–

Окраска раствора Содержание РO4 3- , мг/л
Голубоватый 0,1 – 0,2
Светло-синий 0,2 – 1,0
Синий 1,0 – 3,5
Темно-синий Более 3,5

Дата добавления: 2018-06-01 ; просмотров: 267 ; ЗАКАЗАТЬ РАБОТУ

источник

Образец таблицы приведен на рисунке 8. Такие таблицы составляются для каждой из обрабатываемых проб в отдельности.

В качестве примера заполнения таблицы ис­пользованы результаты химического анализа воды среднекаменноугольного межпластового ненапорного водоносного горизонта, вскрытого скважиной глубиной 30 м, пробуренной на террасе реки Пахры в деревне Ям.

2. Подсчитать суммарное содержание катионов и отдельно суммарное содержание анионов, а затем общее содержание всех ионов. Размерность всех расчетов в мг/л. Результаты расчетов занести в таблицу («общая сумма»). Последнюю цифру сравнить с величиной су­хого остатка (общей минерализа­цией), приведенной в задании.

Контрольный вопрос (KB):

· Почему суммарное содержание ионов, не может быть больше су­хого остатка?

Рис.8. Пример заполнение таблицы химического состава воды.

(по Гречину П.И. и др. 2003.)

Ионы мг/л мг-экв/л %-экв
Катионы NH4 l +
Na I + +K I + 21,2
Mg 2+ 19,4
Са 2+ 68,0
Fe (общ) 0,1
A1 3 +
Сумма 108,7
Анионы
CI 1– 6,0
SO4 2– 33,2
HCO3 1 – 298,0
СО2 2–
NO3 l – 0,06
Сумма 338,1
Общая сумма 446,7 .

Пересчитать содержание ионов из ионной в эквивалентную форму.

Контрольный вопрос:

· Как определить значения переводных коэффи­циентов дляпересчета содержания ионов из ионной формы (мг/л) в эквива­лентную (мг-экв/л)?

Для пересчета используйте данные таблицы 9 и таблицы 2 приложения. Точность расчета – один знак после запятой. Если содержание двух катионов (или анионов) окажется одинаковым, то после запятой следует оставить столько цифр, чтобы можно было определить, какой из ионов преобладает.

Таблица 9. Значения коэффициентов для пересчета содержания ионов из ионной формы (мг/л) в эквивалентную форму (мг-экв/л).

Катионы Коэффициенты Анионы Коэффициенты
Na 1+ +K 1+ 0.0435 CI 1– 0.0282
Mg 2+ 0.0822 SO4 2– 0.0208
Са 2+ 0.0499 НСОз 1– 0.0164

Результаты запишите в соответствующую графу таблицы (рис.9). Данные по аниону NO3 l – и Fe(oбщ), содержание которых составляет соответственно всего 0,001 и 0,005 мг-экв/л, в таблицу не внесены и они при дальнейших расчетах не учитываются. Аналогично поступают с ионами F 1– , J 1– , Br 1– , Fe 2+ Fe 3+ , Li 1+ если данные о них присутствуют в результатах анализов. В дальнейшем все они рассматриваются в качестве «специфических компонентов» (см. далее).

Смысл этой операции заключается в следующем: ионы различаются друг от друга не только зарядом и химическим составом, но и своим молекулярным весом. Поэтому, если сравнивать содержание ионов в весовых единицах ошибки неизбежны. Например, содержащиеся в природных очень небольшом количестве, но «тяжелые» ионы йода будут казаться преобладающими над обычными, но более «легкими» ионами хлора. Значит для корректного сравнения содержания ионов разного состава надо перейти от массовых единиц к количественным.

4. Подсчитать сумму катионов и анионов (в мг-экв/л).

Результаты (отдельно для ка­тионов и отдельно для анионов) запишите в соответствующие строки второй вертикальной колонки таблицы (рис.9). Сум­мы катионов и анионов должны быть равны или могут незначи­тельно отличаться друг от друга, так как некоторые ионы (А1 3+ СОз 2+ и другие) не были учтены. Если суммы катионов (К) и анионов (А) различа­ются более чем на 5%, т.е. если 5%, то допущена ошибка в расчетах или при пе­реписывании исходных дан­ных. Эту ошибку необходимо найти и исправить.

Рис 9. Химический состав той же пробы, что и на рис.8, пересчитанный в эквивалентную форму (по Гречину П.И. и др. 2003).

Ионы мг/л мг-экв/л %-экв
Катионы NH4 l +
Na I + +K I + 21,2 0,9
Mg 2+ 19,4 1,6
Са 2+ 68,0 3,4
Fe (общ) 0,1
A1 3 +
Сумма 108,7 5,6
Анионы
CI 1– 6,0 0,2
SO4 2– 33,2 0,7
HCO3 1 – 298,0 4,9
СО2 2–
NO3 l – 0,06
Сумма 338,1 5,8
Общая сумма 446,7 .

5. Определить процент-эквивалентное содержание ионов.

Для этого сумму отдельно катионов (и, соответственно, отдельно анионов) принимают за 100% и вычис­ляют «долю» каждого катио­на (аниона). Точность — до целых единиц. При одинако­вом содержание двух катио­нов (или анионов), точность следует повысить и опреде­лить какого иона больше. Ре­зультат записать в третью вертикальную колонку таб­лицы (рис.10). Обязательно проверьте, составляет ли со­держание катионов (анионов) в сумме 100 процент-эквивалентов.

Рис.10. Заполнение таблицы химического состава воды (окончание).

Ионы мг/л мг-экв/л %-экв
Катионы NH4 l +
Na I + +K I + 21,2 0,9
Mg 2+ 19,4 1,6
Са 2+ 68,0 3,4
Fe (общ) 0,1
A1 3 +
Сумма 108,7 5,6
Анионы
CI 1– 6,0 0,2
SO4 2– 33,2 0,7
HCO3 1 – 298,0 4,9
СО2 2–
NO3 l – 0,06
Сумма 338,1 5,8
Общая сумма 446,7 .

Примечание: по указанию преподавателя при составлении таблицы кроме основных могут быть учтены и другие ионы, например F 1– .

источник

Определение концентрации водородных ионов (рН). Определение рН в полевых условиях проводят колориметрическим методом. Этот метод основан на свойствах индикаторов принимать определенную окраску в зависимости от концентрации рН в растворе. Опыт показывает, что лучше всего для этих целей применять универсальный индикатор. Для определения рН полоску индикаторной бумаги пропитывают исследуемой водой и появившееся окрашивание сравнивают со стандартной цветовой шкалой.

В лабораторных условиях можно также измерить рН с помощью рН-метра (потенциометрический метод). Этот метод определения рН растворов основан на измерении с помощью потенциометра и двух электродов э. д. с. концентрационной цепи. Причем шкала потенциометра проградуирована и в единицах рН, и в милливольтах.

Для измерения рН в интервале 1-14 используют потенциометры различных типов со стеклянными измерительными электродами. Стеклянный электрод представляет собой стеклянную трубочку, заканчивающуюся стеклянным шариком, заполненным HCl с молярной концентрацией эквивалента о,1 моль/л, в которую погружена серебряная проволочка, покрытая AgCl (хлорсеребряный электрод). На границе раздела стекло-раствор возникает скачок потенциала, величина которого зависит от состава стеклянного шарика и активной концентрации водородных ионов в растворе. Ионы щелочных металлов, входящих в состав электродного стекла, могут обмениваться на ионы водорода в растворе. При определенных условиях устанавливается равновесие между ионами водорода, вошедшими в поверхностный слой стекла, и ионами водорода в испытуемом растворе. Величина потенциала будет определяться соотношением активностей ионов водорода в стекле и растворе.

В качестве внутреннего вспомогательного электрода используют хлорсеребряный электрод в стандартном растворе соляной кислоты.

Открытие катионов аммония (NH4+). Для определения катионов аммония на предметное стекло помещают несколько капель проверяемой воды и добавляют 2-3 капли раствора щелочи (NaOH или KOH). Держа стекло высоко над пламенем, раствор слегка нагревают. При нагревании со щелочами аммонийные соли, содержащиеся в природной воде, выделяют аммиак, который легко обнаруживают по характерному запаху:

Читайте также:  Анализы котловой воды на судах

NH4OH + NaOH > NH3^ + H2O + NaCl;

Для определения аммиака можно использовать также влажную красную лакмусовую бумажку (ее посинение означает наличие аммиака).

Открытие катионов меди (Сu2+). В пробирку с 5 мл раствора бромистого калия осторожно приливают равный объем концентрированной серной кислоты. После охлаждения пробирки к содержимому добавляют 5 мл исследуемой воды. При наличии в воде катионов меди в растворе образуется сине-фиолетовое кольцо:

CuSO4 + 2KBr > CuBr2v + K2SO4;

Открытие катионов кальция (Ca2+). К 5 мл исследуемой воды прибавить каплю уксусной кислоты. После непродолжительного нагревания добавить три капли раствора щавелевокислого аммония и каплю водного раствора аммиака. При наличии катионов кальция выпадает белый кристаллический осадок кальций оксалата, нерастворимый в воде и в уксусной кислоте:

(NH4)2С2О4 + СaСl2 > 2NH4Сl +СaС2О4v;

Открытие катионов двухвалентного железа (Fe2+). К 5 мл исследуемой воды прибавляют 0,1 г калий сульфата и около 1 г красной кровяной соли ( K3[Fe(CN)6] ). В присутствии ионов двухва-лентного железа появляется сине-зеленое окрашивание:

3Fe2+ + 2K3[Fe(CN)6] > Fe3[Fe(CN)6]2v + 6K+.

Примерное содержание двухвалентного железа определяется по цвету раствора (табл.6).

источник

Ионный состав воды. Обработка воды методом ионного обмена.

Обработка воды методом ионного обмена

Конструкция и принцип работы катионитового фильтра; особенности работы Na, H, NH4 – катионитных фильтров, конструкция и принцип работы анионитных фильтров. Процесс восстановления ионных фильтров; схема работы обессоливающей установки, схема нейтрализации сточных вод.

Сущность ионного обмена заключается в способности специальных материалов (ионитов) изменять в желаемом направлении ионный состав обрабатываемой воды. Иониты представляют собой нерастворимые высокомолекулярные вещества, которые благодаря наличию в них специальных функциональных групп способны к реакциям ионного обмена, т.е. они способны поглощать из раствора положительные или отрицательные ионы в обмен на эквивалентные количества других ионов, содержащихся в ионите, имеющих заряд того же знака. По знаку заряда обменивающихся ионов иониты разделяются на катиониты и аниониты. Способность ионитов к обмену ионами с раствором определяется их строением. Иониты состоят из нерастворимой твердой основы (матрицы), которая при помещении ее в воду способна увеличивать свой объем в 1,1—2,0 раза за счет взаимодействия с полярными молекулами Н2О, что дает возможность взаимной диффузии обменивающихся ионов после завершения синтеза и превращения матрицы в ионит.

Полученную матрицу обрабатывают химическими реагентами, прививая к ней специальные функциональные группы, замещающие в бензольных кольцах ионы водорода и способные к диссоциации в растворах. Фиксированный на матрице ион (часть функциональной группы) определяет возникновение заряда и носит название потенциалообразующего. Заряд каркаса компенсируется зарядом ионов противоположного знака, называемых противоионами (рис. 4.1). Противоионы образуют диффузный слой, они подвижны вокруг матрицы и могут быть заменены другими ионами с зарядом того же знака. Появление потенциалообразующих ионов и противо-ионов может происходить не только за счет диссоциации функциональных групп, но и за счет адсорбции функциональными группами из раствора ионов с каким-либо знаком заряда. Обычно матрицу с фиксированными ионами обозначают символом R, а противоион — химическим символом, например, RNa — катионит с обменным ионом (противоионом) натрия, a ROH — анионит с обменной гидроксильной группой.

Рисунок 4.1 – Структуры элементов объема ионитов:

а – катионит; б – анионит; 1 – матрица; 2 – потенциалообразующие фиксированные ионы; 3 – ионы диффузионного слоя.

Вода всегда электрически нейтральна, поэтому сумма концентраций содержащихся ней катионов равна сумме концентраций анионов при условии, что они выражены в мгэкв/л:

Это уравнение называется уравнением электронейтральности раствора, которым пользуются при проверке правильности анализа воды.

Таблица 4.1 – Ионный состав воды

Катионы Анионы
Водород H + Гидроксильный OH —
Натрий Na + Бикарбонатный HCO3
Калий K + Карбонатный CO3 2-
Аммоний NH4 + Нитритный NO2
Кальций Ca 2+ Нитратный NO3
Магний Mg 2+ Хлоридный Cl —
Медь Cu 2+ Фторидный F —
Железо Fe 2+ Сульфатный SO4 2-
Железо Fe 3+ Силикатный SiO3 2-
Алюминий Al 3+ Ортофосфатный PO4 3-
Гидросульфидный HS —

Двухвалентное железо встречается в подземных водах чаще всего в виде бикарбонатов Fe(HCO3)2. Соединения 3-хвалентного железа встречаются в поверхностных водах, и находится в коллоидном состоянии Fe(OH3). Если в природных водах содержаться соединения азота, а именно ионы аммония NH4 + , нитрат и нитрит ионы NO3 — ,NO2 — это свидетельствует о том, что источник водоснабжения загрязнен хозяйственно бытовыми стоками. Химически чистая вода является очень слабым электролитом. Примерно 1 из 10 млн. молекул диссоциирует на ионы:

Отрицательный логарифм концентрации ионов водорода называется водородным показателем:

Для химически чистой воды pH = 7. В зависимости от значения pH водного раствора оценивается реакция среды. При 1 ≤ pH

Вода для питьевых целей по ГОСТ 2874-82 имеет pH =6,5…9,0.

4.2 Обработка воды методом ионного обмена

Обработка воды методом ионного обмена основана на пропуске исходной или частично обработанной воды через слой ионно-обменного материала практически нерастворимого в воде, но способного взаимодействовать с содержащимися в воде ионами. Обрабатываемая вода пропускается через фильтры, загруженные ионитами. Просачиваясь между зернами ионита, обрабатываемая вода обменивает часть ионов растворенных в ней электролитов на эквивалентное количество ионов ионита, в результате чего изменяется ионный состав, как фильтруемой воды, так и самого ионита. Материалы, обладающие свойствами обмена катионами называются катионитами, а анионами – анионитами. Для получения нужной формы ионита проводится регенерация. Катиониты при регенерации их растворами NaCl, H2SO4, NH4Cl образуют соответственно натриевую, водородную или аммонийную форму, которая условно обозначается NaR, H2R, NH4R. При пропуске воды содержащей катионы Са 2 + и Mg 2 + через отрегенерированный катионит протекает реакция обмена ионов кальция Са 2+ , Mg 2+ на ионы Na + , H + или NH4 + , содержащиеся в катионите. Этот процесс называется катионированием. Аниониты, отреагировавшие с щелочами (чаще всего NaOH) образуют гидроксидную форму, условно обозначаемую ROH, если через регенерирующий анионит пропускать раствор кислоты, например HCl произойдет реакция обмена анионов – анионирование и осуществится взаимная нейтрализация ионов Н + и гидроксидионов ОН — , вытесненных анионами из анионита.

По своей химической природе все катиониты являются кислотами, а все аниониты – основаниями. В зависимости от состава функционально-активных групп типы ионитов различаются по кислотности и основности. Катиониты разделяют на сильно, средне и слабо кислотные и соответственно аниониты на средне, сильно и слабо основные.

Как катионирование, так и анионирование получили широкое применение на ТЭС для умягчения, обессоливания и обескремнивания добавочной питательной воды парогенераторов, загрязненных конденсатов и подпиточной воды тепловых сетей.

Обработка воды методом ионного обмена принципиально отличается от обработки воды методом осаждения тем, что удаляемые из нее примеси не образуют осадка, и тем, что такая обработка не требует непрерывного дозирования реагентов. В связи с этим эксплуатация водоподготовительных установок, работающих по методу ионного обмена, значительно проще, габариты аппаратов меньше, а эффект обработки выше, чем установок работающих по методу осаждения.

В качестве ионитов в РФ используются сульфоуголь и синтетические смолы, относящиеся к разряду пластических масс.

Протекая через ионит, первоначально насыщенный ионами А (рис. 4.2), обрабатываемый раствор, содержащий ионы В, будет постоянно контактировать с новыми слоями свежего (неиспользованного) ионита. Со временем верхние слои ионита отдадут все ионы А и потеряют свою ионообменную способность, они как бы истощатся (зона а). Вследствие этого переходная зона, в которой происходит ионный обмен (зона b), будет все дальше и дальше перемещаться вниз по слою. При определенных условиях эта зона достигает стационарной ширины. Распределение концентраций обменивающихся ионов в этой зоне носит название фронта фильтрования. В нижних слоях (зона с) ионит еще полностью насыщен ионами А. Когда нижняя граница переходной зоны достигнет конца слоя ионита, наступит проскок иона В в фильтрат, что служит обычно сигналом для отключения фильтра на регенерацию.

Рисунок 4.2 – Схема ионообменного процесса в ионитном фильтре:

· — ионит, насыщенный ионами А;

o — ионит, насыщенный ионами В.

В зависимости от коэффициента селективности обменивающихся ионов может сформироваться острый фронт фильтрования, который переносится параллельно, или размытый (диффузный), расширяющийся при движении по высоте слоя ионита. Кривая, показывающая зависимость концентрации примесей в фильтрате от времени работы фильтра (или объема пропущенного через фильтр раствора), носит название выходной кривой. Примеры выходных кривых при остром и диффузном фронтах фильтрования приведены на рис. 4.3.

Рисунок 4.3 – Фронты фильтрования и выходные кривые в ионитных фильтрах:

1 – диффузионный фронт фильтрования; 2 – выходная кривая при диффузионном слое; 3 – острый фронт фильтрования; 4 – выходная кривая при остром фронте; х – высота слоя ионита; t — время работы фильтра.

От вида кривой фронта фильтрования зависит степень использования обменной емкости при работе фильтра, поэтому при обосновании ионообменной технологии иониты подбирают так, чтобы сорбция наиболее важных ионов в водоподготовке происходила при остром фронте фильтрования.

На формирование фронта фильтрования влияют также гидродинамические процессы, определяемые скоростью фильтрования, структурой зернистого слоя, конструкцией дренажных устройств и рядом других факторов.

4.3 Na – катионирование

Этот процесс применяют для умягчения воды путем фильтрования ее через слой катионита в натриевой форме (содержащего в качестве обменных ионов катионы натрия Na), для чего предварительно катионит регенерируется NaCl.

При Na – катионировании протекают реакции:

Как видно из приведенных реакций из обрабатываемой воды удаляются катионы Са 2 + и Mg 2 + , а в обрабатываемую воду поступают катионы Nа 2 + , анионный состав воды и ее щелочность при этом не изменяется, а солесодержание ее несколько возрастает.

Одноступенчатым Na–катионированием можно получить воду с остаточной жидкостью до 0,1 мгэкв/л. Однако для более глубокого умягчения воды достаточной жесткости 0,01 – 0,02 мгэкв/л требуется существенно увеличивать удельный расход соли на регенерацию фильтра, причем необходим тщательный контроль за »проскоком» жесткости.

Процесс умягчения при Na-катионировании заканчивается при наступлении »проскока» жесткости (рис. 4.4), после чего истощенный катионит в фильтре надо регенерировать, т.е. восстанавливать его способность к обмену ионами. Регенерацию истощенного катионита проводят пропуском через него 6—10 %-ного раствора NaCl. Вследствие относительно большой концентрации ионов Na в регенерационном растворе происходит замена ими поглощенных ранее катионов Са 2 + и Mg 2 + по реакциям:

R2Ca + nNa + ↔ 2RNa + Ca 2+ + (n-2)Na + ;

R2Mg + nNa + ↔ 2RNa + Mg 2+ + (n-2)Na + ,

где п — избыток NaCl против его стехиометрического количества.

Рисунок 4.4 – Выходная кривая -катионитного фильтра

Несмотря на то, что процесс обмена ионов, в том числе и при регенерации ионита, характеризуется эквивалентностью, для качественной регенерации ионитов расход реагента выбирается с определенным избытком п. При подаче раствора соли в фильтр лучше будет отрегенерирован лобовой катионит, контактирующий со свежим раствором. По мере прохождения раствора в глубинные части катионита условия регенерации будут ухудшаться вследствие повышенияконцентрации в регенерационном растворе ионов Са 2 + и Mg 2 + , вытесненных из верхних слоев катионита при обеднении регенерата ионами Na + . Аналогичное действие проявляется за счет загрязнения раствора технической соли NaCl ионами Са 2+ и Mg 2 + .

Рисунок 4.5 – Влияние расхода соли на эффект регенерации катионита

Эффект повышения обменной емкости с увеличением расхода соли при регенерации показан на рис. 4.5, из которого следует, что эффект прироста обменной емкости с увеличением расхода более 300 г/г-экв заметно снижается.

В схеме двухступенчатого Na – катионирования недостатки одноступенчатого катионирования устраняются, и обеспечивается надежно остаточная жесткость фильтра менее 0,01 мгэкв/л. Число ступеней катионирования определяется требованиями к питательной воде. Так для паровых экранированных котлов, где требуется глубокое умягчение воды целесообразно применение схемы двухступенчатого Na – катионирования. Для горячего водоснабжения, если требуется частичное умягчение достаточно одной ступени катионирования.

Основным недостатком Na – катионирования является превращение карбонатной жесткости воды в бикарбонат натрия, обусловливающий высокую натриевую щелочность котловой воды, так как в парогенераторе бикарбонат натрия превращается в карбонат и гидроксид натрия.

Умягчение путем Na – катионирования применимо для воды с относительно малой карбонатной жесткостью, превращение которой в бикарбонат натрия не вызывает чрезмерного увеличения продувки парогенераторов, а также не создает опасной для парогенераторов повышенной относительной щелочности котловой воды.

4.4 Н – катионирование

Обработка воды методом Н-катионирования предназначается для удаления всех катионов из воды с заменой их на ионы водорода. Вода за Н-катионитными фильтрами содержит избыток ионов водорода и вследствие этого имеет кислую реакцию, поэтому эта технология применяется совместно с другими процессами ионирования — Na-катионированием или анионированием.

Метод Н – катионирования основан на пропуске обрабатываемой воды через катионит отрегенерированной кислоты. В процессе фильтрования катионы, содержащиеся в обрабатываемой воде, обмениваются на ионы водорода, содержащиеся в катионите, при этом протекают следующие реакции:

Наряду с вышеприведенными реакциями протекает процесс вытеснения из катионита ранее поглощенных ионов Na + ионами Ca 2 + и Mg 2 + , вследствие чего катионит по ионам натрия истощается быстрее, чем по ионам Ca 2 + и Mg 2 + , которые, являясь двухвалентными, сорбируются катионитом лучше. Из-за неодинаковой сорбируемости ионов различной природы их »проскок» в фильтрах происходит неодновременно. При Н – катионировании природных вод до момента проскока Na в Н – катионированной воде содержаться только кислоты, при этом кислотность фильтра получается равной суммарной концентрации хлоридов и сульфатов в обрабатываемой воде. При работе Н – катионитового фильтра от момента »проскока» Na до момента проскока жесткости в фильтрате происходит нарастание концентрации Na и соответственно снижается кислотность воды.

В зависимости от требования к качеству обработанной воды технология воды Н – катионирования видоизменяется, Н – катионирование с удалением из воды Na осуществляется в системах частичного или полного химического обессоливания воды. Для снижения щелочности обрабатываемой воды возможно осуществление схемы параллельного Н-Na катионирования. Однако благодаря ряду преимуществ более широкое применение нашла схема Н – катионирования с »голодной» регенерацией фильтров и последующим Na – катионированием. Все технологические схемы Н-Na катионирования воды преследуют цель умягчения воды и одновременного снижения ее щелочности и солесодержания, а также удаления углекислоты.

4.5 Схема Н-катионирования с »голодной» регенерацией

При обычном Н – катионировании регенерация проводится с удельным расходом кислоты в 2-2,5 раза больше теоретически необходимого, который отвечает процессу эквивалентного обмена катионов между раствором и катионитом. Избыток кислоты, не участвующей в реакциях обмена ионов, сбрасывается из фильтров вместе с продуктами регенерации. При голодной регенерации Н-катионитового фильтра удельный расход кислоты равен его теоретическому расходу (удельному), т. е. 1 гэкв = 1 гэкв. Все ионы водорода регенерационного раствора при этом полностью задерживаются катионитом, вследствие чего сбрасываемый регенерационный раствор и отмывочные воды не содержат кислоты.

В отличие от обычных Н-катионитовых фильтров, в которых весь слой катионита при регенерации переводится в Н-форму при голодном режиме в Н-форму переводятся только верхние слои, а нижние слои катионита остаются в солевых формах и содержат катионы Ca 2 + , Mg 2 + , и Na + . В верхних слоях катионита отрегенерированного голодной нормой кислоты при работе фильтра имеют место все реакции ионного обмена приведенные выше для Н – катионирования.

В ниже лежащих неотрегенерированных слоях катионитные ионы водорода образовавшихся минеральных кислот обмениваются на ионы Ca 2 + , Mg 2 + , и Na + по уравнениям:

Происходит нейтрализация кислотности воды и при этом восстанавливается ее некарбонатная жесткость (постоянная жесткость), а зона слоя, содержащего ионы водорода смещается постепенно к низу.

Так как содержащаяся в воде угольная кислота является слабой, в реакциях ионного обмена она может участвовать только после удаления сильных кислот. В самых нижних слоях фильтра этот процесс завершится до полного восстановления карбонатной жесткости не успевает, поэтому фильтрат имеет малую карбонатную жесткость численно равную щелочности и содержит много углекислоты. К моменту окончания рабочего цикла фильтра ионы водорода, введенные в катионит при регенерации, полностью удаляются из катионита в виде H2CO3, который находится в равновесии с Д— гидратированной формой СО2:

Технология Н – катионирования с «голодной» регенерацией обеспечивает получение фильтрата с минимальной щелочностью (исключение сброса кислых стоков при регенерации и кислого фильтрата в рабочем цикле). Данная технология рекомендована для обработки природных вод определенного состава и при использовании катионита средне или слабокислотного типа при условии правильного осуществления режима регенерации. При непостоянстве качества исходной воды, неточном соблюдении рекомендаций по применению рассматриваемой технологи Н – катионирования во избежание колебаний щелочности и «проскоков» кислого фильтрата после Н-катионитных фильтров с голодной регенерацией в схеме водоподготовительной установки (ВПУ) устанавливаются буферные – нерегенерируемые фильтры с высотой слоя катионита 2 м и скоростью фильтрования до 40 м/ч. К буферным фильтрам не допускается подвод регенерационного раствора кислоты, взрыхляющая промывка осуществляется осветленной водой.

Рисунок 4.5 — Схема противоточного ионитового фильтра типа ФИПр:

1 – подвод исходной воды; 2 – отвод обработанной воды; 3 – 5 – подвод промывочной воды соответственно общий, в нижнее распределительное устройство (РУ) и блокирующее РУ; 6 – отвод промывочной воды; 7 – 9 – подводы регенерационного раствора соответственно общий, в нижнее РУ и в блокирующее РУ; 10, 11 – дренажи; 12 – гидрозагрузка; 13 – гидровыгрузка; 14, 15 – подвод воды для взрыхления в среднее и нижнее РУ.

Расход реагента существенно снижается, а качество фильтрата повышается при применении противоточной регенерации ионитного фильтра, схема которого приведена на рис. 4.5.

Конструкция фильтра, изготавливаемого на ТКЗ, предусматривает, кроме верхнего и нижнего распределительных устройств, также среднее и блокирующее РУ, расположенные соответственно на глубине 0,3 м и у входной поверхности слоя ионита. Среднее распределительное устройство предназначено для равномерного сбора отработанного регенерационного раствора и отмывочной воды, подаваемых через нижнее (80 %) и блокирующее (20 %) РУ. Блокирующее РУ служит для подвода раствора реагента или отмывочной воды, используемых для регенерации и зажатия блокирующего слоя ионита. Взрыхлению подвергается только блокирующий слой ионита, а через 10—20 фильтроциклов взрыхляется весь слой.

Рисунок 4.6 — Схема двухпоточного-противоточного ионитового фильтра типа ФИПр-2П: 1 – подвод исходной воды; 2 – отвод обработанной воды или отработанного регенерационного раствора и отмывочной воды; 3 – подвод исходной воды или отвод отработанной воды; 4 – подвод регенерационного раствора; 5 – подвод воды для взрыхления; 6 – подвод регенерационного раствора и отмывочной воды; 7 – подвод отмывочной воды; 8 – отвод отработанного регенерационного раствора и отмывочной воды; 9 – дренаж; 10 – подвод взрыхляющей воды, дренаж.

Промежуточным вариантом между противоточной и прямоточной регенерациями является двухпоточно-противоточная регенерация, осуществляемая в фильтре, представленном на рис. 4.6. Среднее РУ фильтров, загруженных анионитом или катионитом, заглублено в них на 0,6 и 1,0 м соответственно. Конструкция двухпоточно-противоточного фильтра позволяет использовать его как в режиме однопоточного фильтрования и двухпоточной регенерации, так и в режиме двухпоточного фильтрования и однопоточной регенерации. При любом режиме работы в выходном слое ионита осуществляется принцип противоточного ионирования, при котором обрабатываемая вода перед выходом из фильтра соприкасается с хорошо отрегенерированными слоями ионита, благодаря чему обеспечивается высокое качество фильтрата при сокращенных расходах реагентов на регенерацию ионита. При работе фильтра в режиме двухпоточного фильтрования взрыхлению подвергается весь слой ионита, при однопоточном фильтровании — только верхний слой, а взрыхление всего слоя производится через 10—20 фильтроциклов. При режиме однопоточного фильтрования и двухпоточной регенерации 40 % раствора реагента пропускается через верхний слой ионита, 60 % — через нижний. При режиме двухпоточного фильтрования и однопоточной регенерации весь регенерационный раствор проходит через оба слоя ионита сверху вниз.

Читайте также:  Анализы натощак или можно пить воду

4.6 NH4 – катионирование

При NH4 – катионировании обрабатываемая вода фильтруется через слой катионита, отрегенерированного солями аммония (NH4Cl или (NH4)2SO4). Содержащийся в катионите ион аммония обменивается на катионы Са, Mg, и Na, присутствующие в природной воде, при этом протекают реакции:

Как видно из реакций обмена в фильтрате образуются соли аммония, соответствующие имеющимся в воде анионам. NH4 – катионированная вода умягчается, а ее щелочность такая же как у исходной воды. При нагревании воды в котле соли аммония разлагаются:

Образующийся при разложении аммиак и углекислотная кислота уносятся паром, а в котловой воде остаются соляная и серная кислоты. Во избежание коррозии металла труб под действием кислот применение NH4 – катионирования в энергетической практике всегда сочетается с Na – катионированием. В процессе Na – катионирования идет превращение гидрокарбоната Na в бикарбонат, который в котле разлагается с образованием соды и едкого натрия:

Углекислота уносится паром, а Na2CO3 и NaOH нейтрализуют кислотность воды, появляющуюся при термическом разложении солей аммония. Чтобы предотвратить чрезмерное снижение щелочности котловой воды в сочетании NH4 – катионирования с Na – катионированием осуществляют с расчетом получить в умягченной воде концентрацию ионов HCO3 — на 0,3 – 0,7 мгэкв/л больше концентрации ионов аммония. Пар котлов питающихся NH4, Na – катионированной водой всегда содержит большое количество аммиака. Учитывая это обстоятельство NH4 – катионированной воды не следует применять, когда в тепловой схеме котельной установки имеются аппараты и детали из латуни или медных сплавов или когда пар используется для систем горячего водоснабжения или открытых систем теплоснабжения. На всех предприятиях, где в паре не должен содержаться аммиак от NH4 – катионирования отказываются.

4.7 Схема Na-Cl – катионирования

Этот метод основан на применении катионита в Na – форме и анионита в Cl – форме. Регенерация обоих ионов проводится раствором поваренной соли.

Cl – катионирование осуществляется после предварительного Na – катионирования. Обрабатываемая вода умягчается, в ней остаются только соли Na (NaНСО3, NaCl, Na2SO4, NaNO3 и т.д.). Затем при пропуске Na – катионированной воды через сильноосновный анионит в Cl – форме протекают реакции обмена анионов, содержащихся в Na – катионированной воде, на ионы Cl, находящихся в анионите:

В результате сорбции иона HCO3 — снижается щелочность обрабатываемой воды, она минимальна в начале рабочего цикла, а затем постоянно увеличивается. Конец рабочего цикла Cl – анионитового фильтра устанавливают по возрастанию щелочности фильтрата до заданной величины.

Практика показала, что применение слабоосновных анионитов в описанной технологии оказалось невозможным, так как после 2–3х регенераций раствором поваренной соли аниониты этого типа не восстанавливают обменоемкости. Применение сильноосновных анионитов сопряжено с необходимостью использования таких методов предварительной очистки, чтобы обрабатываемая вода не содержала железо и органических веществ.

В подземных водах часто содержится 2-х валентное железо и поэтому вода должна предварительно обезжелезиваться.

Поверхностные воды, для которых обязательна коагуляция, обычно, при необходимости снижения щелочности обрабатываются известью, после чего они не нуждаются в Na–Cl — катионировании.

Для регенерации анионита требуется поваренная соль высокого качества с минимальным содержанием примесей.

Условия применения данной технологии:

1.

2. мгэкв/л

В котельных агрегатах требуется глубоко умягченная вода, для чего применяется 2х-ступенчатое Na – катионирование. В случае Na-Cl – катионирования после Na – катионитных фильтров 1-й ступени, ставятся фильтры 2-й ступени, где Na – катионирование совмещается с Cl – катионированием. При этом вниз фильтра загружается катионит, а сверху помещается анионит. В процессе регенерации фильтра второй ступени раствором поваренной соли ионы + регенерируют катионит, а ионы Cl — анионит.

Расход поваренной соли — 100÷120 мг/м 3 аниона. Регенерационный раствор готовиться на умягченной воде. Расход воды на отмывку фильтров – 3÷4 м 3 /м 3 . Скорость фильтрования – 15÷20 м/ч. Количество фильтров — 2÷3.

Na-Cl – катионитный фильтр рассчитывается как Na – катионитный первой ступени, а необходимый объем анионита определяется по иону HCO3— 280÷300 гэкв/м 3 .

Слой анионита в фильтре минимально необходимый, число регенераций не более 2 раз в сутки. Слой катионита определяется как разность общей высоты слоя загрузки за вычетом высоты слоя анионита, но не менее 500 мм.

Дата добавления: 2014-12-16 ; Просмотров: 3235 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

КАЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ КАТИОНОВ И АНИОНОВ

Под качественным химическим анализом вещества понимают определение его качественного состава, т.е. открытие (идентификацию) атомов, атомных групп, ионов и молекул в анализируемом веществе.

Существует два метода качественного анализа: дробный и систематический. Дробный качественный анализ предполагает обнаружение иона или вещества в анализируемой пробе с помощью специфического реагента в присутствие всех компонентов пробы. Примером такой реакции может служить обнаружение ионов аммония при подщелачивании раствора:
NH4 + + ОН — = NH3↑ + Н2O
Однако специфических реагентов известно немного. Более распространенны групповые реагенты, дающие сходные реакции с целой группой ионов.

Групповые реагенты используются в систематическом качественном анализе, который предусматривает разделение смеси анализируемых ионов по аналитическим группам, после чего внутри каждой группы с помощью тех или иных реакций разделяют и открывают индивидуальные ионы.

I. Качественный анализ катионов.
Аналитическая классификации катионов но группам.

В основу той или иной аналитической классификации катионов по группам положены их сходства или различия по отношению к действию определенных аналитических реагентов и свойства образующихся продуктов аналитических реакций (растворимость в воде, кислотах и щелочах, способность к комплексообразованию, окислительно-восстановительные свойства).

Существует ряд классификаций катионов по группам (или химических методов качественного анализа катионов). Наиболее распространенными среди них являются три классификации: сероводородная, аммиачно-фосфатная и кислотно-основная, причем сероводородный метод анализа в настоящее время практически не используется, т.к. требует применения токсичного сероводорода и довольно продолжителен.

Применение групповых реагентов позволяет подразделить многие катионы по аналитическим группам, однако не существует классификации, охватывающей все известные катионы или, по крайней мере, катионы всех металлов.

В таблицах 1.1, 1.2 и 1.3 представлены катионы в соответствии с сероводородной, аммиачно-фосфатной и кислотно-основной классификациями. В этих таблицах перечислены не все катионы, входящие в группу, а только те из них, которые наиболее часто встречаются в фармацевтическом анализе.

Нужно отметить, что в водных растворах «голые» индивидуальные катионы металлов не существуют, поскольку они термодинамически неустойчивы и образуют комплексы различного состава. Поэтому используемая в дальнейшем форма написания катионов Mg 2+ , Bi 3+ и т.д. означает лишь, что речь идет о соединениях элементов в соответствующих степенях окисления, а не о действительном существовании таких ионов.

Таблица 1.1 Сероводородная классификация катионов.

Групповой реагент

Al 3+ , Cr 3+ , Zn 3+ , Mn 3+ , Fe 2+ , Fe 3+ , Co 2+ , Ni 2+

Cu 2+ , Cd 2+ , Mg 2+ , Bi 3+ , Sn 3+ , Sn 4+ , Sb 5+ , As 3+ , As 5+

Таблица 1.2. Аммиачно-фосфатная классификация катионов.

Групповой реагент

Li + , Mg 2+ , Са 2+ , Sr 2+ , Ba 2+ , Mn 2+ , Fe 2+ , Al 3+ , Bi 3+ , Cr 3+ , Fe 3+ *

Cu 2+ , Zn 2+ , Cd 2+ , Mg 2+ , Ni 2+

Раствор (NH4)2HPO4; фосфаты растворимы в водном аммиаке

Sn 2+ , Sn 4+ , As 3+ , As 5+ , Sb 3+ , Sb 5+

* Фосфаты двухзарядных катионов растворимы в уксусной кислоте (2 моль/л), трехзарядных — нет.

Таблица 1.3. Кислотно-основная классификация катионов.

Групповой реагент

Zn 2+ , Al 2+ , Sn 2+ , Sn 4+ , As 3+ , As 5+ , Cr 3+

Раствор NaOH в присутствии
H2O2

Mg 2+ , Sb 3+ , Sb 5+ , Bi 2+ , Mn 2+ , Fe 2+ , Fe 3+

Раствор NaOH или раствор
аммиака (25 %)

Cu 2+ , Cd 2+ , Hg 2+ , Co 2+ , Ni 2+

II. Кислотно-основная классификация катионов.
Систематический анализ катионов по кислотно-основному методу.

2.1. Кислотно-основная классификация катионов.

Данная классификация катионов основана на использовании и качестве групповых реагентов водных растворов кислот и оснований — HCl, H2SO4, NaOH или KOH, NH3*H2O.
Катионы, открываемые в рамках кислотно-основной классификации, подразделяют на шесть аналитических групп (табл. 1.3).

К первой аналитической группе относят катионы Li + , Na + , К + , NH4 + . Групповой реагент отсутствует.

Вторая аналитическая группа представлена катионами Ag + , Hg2 2+ , Pb 2+ . Групповой реагент — раствор НСl (обычно с концентрацией 2 моль/л). Групповой реагент осаждает из водных растворов катионы второй аналитической группы в виде осадков малорастворимых в воде AgCl, Hg2Cl2, РbСl2. Их произведения растворимости при комнатной температуре равны соответственно 1,8*10 -10 , 1,3*10 -18 , 1,6*10 -5 . При действии группового реагента катионы Рb 2+ осаждаются не полностью — частично они остаются в растворе.

К третьей аналитической группе относят катионы Са 2+ , Sr 2+ , Ba 2+ (Рb 2+ иногда). Групповой реагент — раствор H2SO4. Катионы осаждаются в виде малорастворимых CaSO4 (ПР = 2,5*10 -5 ), SrSO4 (ПР = 3,2*10 -7 ), BaSO4 (ПР = 1,1*10 -10 ), PbSO4, (ПР = 1,6*10 -8 ). При действии группового реагента ионы Са 2+ осаждаются не полностью. Для более полнго осаждения ионов кальция в форме CaSО4 к раствору прибавляют этанол, в присутствие которого растворимость сульфата кальция уменьшается. Осадки CaSО4, SrSО4, BaSО4 практически нерастворимы в разбавленных кислотах и щелочах. Сульфат кальция растворим в водном растворе (NH4)24 с образованием комплекса (NH4)2[Ca(SО4)2].

Четвертая аналитическая группа включает катионы Аl 3+ , Cr 3+ , Zn 2+ , As 3+ , As 5+ , Sn 2+ , Sn 4+ . Иногда сюда же относят катионы Sb 3+ . Групповой реагент — водный раствор NaOH (или КОН) в присутствии Н2О2 (обычно избыток 2 моль/л раствора NaOH в присутствии Н2О2(%)), иногда — без Н2О2. При действии группового реагента катионы IV аналитической группы осаждаются из водного раствора в виде амфотерных гидроксидов, растворимых в избытке группового реагента с образованием гидроксомплексов:

А1 3+ + 3ОН — = А1(ОН)3 Al(ОН)3 + 3ОН — = [А1(ОН)6] 3-
Сг 3+ + 3ОН — = Сг(ОН)3 Сг(ОН)3 + 3ОН — = [Сг(ОН)6] 3-
Zn 2+ + 2ОН — = Zn(OH)2 Zn(OH)2 + 2OH — = [Zn(OH)4] 2-
Sn 2+ + 2ОH — = Sn(OH)2 Sn(OH)2 + 4OH — = [Sn(OH)6] 4-

2. Открытие NH4 + :
а) раствор + KOH (NaOH) → NH3↑ (водяная баня) — запах, влажная лакмусовая бумажка синеет
б) раствор + K2[HgJ4], KOH (реактив Несслера) = [(JHg)2NH2]J ↓ — красно-бурый осадок

II. Систематический анализ смеси катионов (см. схему 1).

2.2.2. Анализ смеси катионов второй аналитической группы: Ag + ,Hg 2+ ,Pb 2+ .

Открыть ионы дробно в смеси невозможно, т.к. нет избирательного реагента, поэтому проводят систематический анализ.

К анализируемому раствору прибавляют на холоде групповой реагент-раствор (2 моль/л) HCI до полного выделения осадка, состоящего из AgCl, Hg2CI2, РиСl2 (если раствор остается прозрачным при добавлении 2 капель НCl, осаждение считается полным).

Ход систематического анализа смеси катионов данной группы представлен в схеме 2.

2.2.3. Анализ смеси катионов третьей аналитической группы: Сa 2+ , Sr 2+ , Ba 2+ .

Анализ раствора, содержащего смесь катионов третьей аналитической группы, обычно проводят по следующей схеме.

Вначале проводят предварительные испытания: в отдельных небольших пробах анализируемого раствора дробно открывают катионы, присутствующие в растворе, учитывая их взаимное влияние друг на друга. Часто этим ограничиваются. При необходимости проводят систематический анализ, как описано в схеме 3.

I. Предварительные испытания.

1. Открытие катионов бария (II):

Ва 3+ + К2Сr2O7 (в прис. СН3СОО — ) → ВаСrО4 ↓ — желтый, осадок не растворяется в разбавленной уксусной кислоте;

2. Sr 2+ и Са 2+ может открыть, только если нет Ва 2+ .
Sr 3+ + CaSО4 → SrSO4↓ + Са 2+ (реакция с гипсовой водой);
Са 2+ + K4[Fe(CN)6] + 2 NH4 + → (NH4)2Ca[Fe(CN)6]↓ белый осадок (Sr 2+ не мешает);

3. Если нет Ва 2+ и Sr 2+ , то Са 2+ + Na2C2O4 → СаС2O4 ↓ белый

Осадки гидроксидов не растворяются в полном аммиаке, за исключением Zn(OН)2, который образует аммиачный комплекс [Zn(NH3)4] 2+ . В присутствии H2О2 катионы Cr 3+ , As 3+ , Sn 2+ окисляются соответственно до СrO4 2- , AsO4 3- , [Sn(ОH)6] 2- ионов. Мышьяк (III) и мышьяк (V) считаются катионами As 3+ , As 5+ условно, т.к. в полных растворах они присутствуют и виде ионов AsO3 3- и AsO4 3- соответственно.

В пятую аналитическую группу входят катионы Mg 2+ , Мn 2+ , Sb 3+ , Sb 5+ , Bi 3+ , Fe 2+ , Fe 3+ . Групповой реагент — водный раствор NaOH (обычно 2 моль/л) или 25%-ый водный раствор аммиака. Под действием группового реагента катионы осаждаются в виде соответствующих гидроксидов, которые не растворяются в избытке группового реагента. На воздухе гидроксиды Mn(OH)2 и Fe(ОН)2 постепенно окисляются кислородом до МnО(ОH)2 и Fe(ОН)3.

К шестой аналитической группе относятся катионы Сu 2+ , Cd 2+ , Hg 2+ , Co 2+ , Ni 2+ . Групповой реагент — 25%-ый водный раствор аммиака. При действии группового реагента на водные растворы, содержащие хлориды катионов данной группы, сначала выделяются осадки различного состава: CuOHCl, CoOHCl, NiOHCI, Cd(OH)2, HgNH2CI. Осадки растворяются в избытке группового реагента с образованием соответствующих аммиачных комплексов. Осадки, выпавшие из растворов солей Со 2+ и Hg 2+ , растворяются в избытке аммиака только в присутствии солей аммония. Аммиачный комплекс кобальта (II) грязно-желтого цвета окисляется па воздухе до аммиачного комплекса кобальта (III) вишнево-красного цвета.

2.2. Систематический анализ катионов по кислотно-основному методу.

Сначала будут рассмотрены схемы анализа смесей катионов каждой аналитической группы, а затем — ход анализа смеси катионов всех аналитических групп.

2.2.1. Анализ смеси катионов первой аналитической группы: Li + , Na + , К + , NН + .

Катионы первой аналитической группы не имеют группового реагента. Катионы Li + и NH4 + мешают открытию катионов Na + и К + , поэтому из анализируемого раствора их нужно удалять. Вначале в отдельных пробах анализируемого раствора открывают катионы Li + и NН4 + , после чего эти ноны удаляют, а в остатке открывают К + , Nа + .

I. Предварительные испытания (проводят в отдельной порции анализируемого раствора).

1. Открытие катионов Li + :
а) раствор + Na2РО4 → белый Li3PO4 ↓ (рН=7-8);
б) раствор + NH4F → LiF ↓ (белый)

2.2.4. Анализ смеси катионов четвертой аналитической группы:
Zn 2+ , А
l 3+ , Sn 2+ , Sn 4+ , As 3+ , Cr 3+ , As 5+ .

При анализе раствора, содержащего катионы четвертой аналитической группы, сначала целесообразно провести предварительные испытания, а затем систематический анализ.

I. Предварительные испытания.

1. Открытие Сr 3+ (если они присутствуют, раствор должен быть сине-зеленым):
[Cr(H2О)6] 3+ (зеленый)+ Н2О2(3%) + NaOH изб. → СrО4 2- (желтый)

2. Открытие Sn 2+ :
Sn 2+ + NaOH + Bi(NO3)3 (1-2 капли) → Вi ↓ +[Sn(OH)6] 2-

3. Открытие As 3+ (AsO3 3- в растворе):
AsO3 3- + AgNO3 → Ag3AsO3↓ желтый, аморфный

4. Открытие As 5+ (AsO4 3- в растворе):
AsO4 3- + AgNO3 = Ag3AsO4 аморфный осадок шоколадного цвета

II. Систематический анализ (см. схему 4).

2.2.5. Анализ смеси катионов пятой аналитической группы:
Mg 2+ , Mn 2+ , Sb 3+ , Sb 5+ , Fe 2+ , Fe 3+ , Bi 3+

Некоторые катионы данной аналитической группы удобнее открыть в предварительных испытаниях. Систематический анализ смеси катионов проводят по схеме 5.

1. Предварительные испытания.

1. Открытие ионов Fe 2+ :
4Fe 2+ +3 K3[Fe(CN)6] → Fe4[Fe(CN)6]3 +9K + — темно-синий осадок «турнбуленовой сипи»

2. Открытие ионов Fe 3+ (если ионы присутствуют в растворе, последний имеет желтоватую окраску):
а) 4Fe 3+ + 3K4[Fe(CN)6] → Fe4[Fe(CN)6]3 +12K + — темно-синий осадок «берлинской лазури»
б)Fe 3+ + 6SCN — → [Fe(SCN)6] 3- — красное окрашивание раствора

3. Открытие ионов Мn 2+ :
а) Mn 2+ + NaBiO3 +Н + → МnO4 — + Bi 3+ + Na +
б) Мn 2+ + РbO2 + H + → МnО4 — + Рb 2+
МnO4 — — ноны окрашивают раствор в малиновый цвет.

4. Открытие ионов Bi 3+ (реакцию проводят о щелочной среде, рH=10):
Bi(OH)3 +[Sn(OH)4] 2- → Bi↓ + [Sn(OH)6] 2- черный

2.6. Анализ смеси катионов шестой аналитической группы: Сu 2+ , Сd 2+ , Hg 2+ , Cо 2+ , Ni 2+ .

Перед проведением систематического анализа в отдельных пробах анализируемого раствора можно открыть некоторые катионы с помощью характерных для них реакций.
Некоторые выводы можно сделать по окраске анализируемого раствора: так, аквакатионы Ni 2+ придают раствору зеленоватую окраску, Со 2+ — розовую, Сu 2+ — голубую.

Отдельную порцию раствора можно обработать водным раствором аммиака и проанализировать окраску раствора, зная, что водные растворы аммиачных комплексов металлов окрашены следующим образом:
[Cu(NH3)4] 2+ — синий;
[Co(NH3)6] 2+ — сине-фиолетовый;
[Co(NH3)4] 2+ — желтый;
[Cd(NH3)4] 2+ , [Hg(NH3)4] 2+ — бесцветные.
Систематический анализ проводят в соответствии со схемой 6.

2.2.7. Анализ смеси наиболее распространенных катионов всех шести аналитических групп:
Na + , К + , NH4 + , Ag + , Pb 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ , Al 3+ , Sn 2+ , Cr 3+ , Mg 2+ , Bi 3+ , Mn 2+ , Fе 3+ ,
3+ , Cu 2+ , Cd 2+ , Co 2+ , Ni 2+ .

Примерная схема анализа такого раствора заключается в следущем.

Анализируемый раствор может быть окрашенным или бесцветным. По окраске раствора высказывают предположение о присутствии или отсутствии катионов, имеющих характерную окраску. Например, если раствор прозрачный и бесцветный, можно предположить, что он не содержит катионы Сr 3+ , Fe 3+ , Сu 2+ , Со 2+ , Ni 2+ .

Некоторые предположения можно сделать и на основании измерения рН pacтвора (например, с помощью универсальной индикаторной бумаги). Если значение pН раствора находится в пределах рН = 2 — 4 и раствор не содержит осадка, то о нем отсутствуют Sn(II), Sn(IV), Sb(III), Sb(V), Bi(III), Hg(II), Fe (III), т.к. в противном случае продукты их гидролиза выделились бы в форме осадков.

Читайте также:  Анализы для воды в котельной

Анализируемый раствор обычно делят на 3 части. Одну часть используют для предварительных испытании, другую — для проведения систематического анализа, третью оставляют для контроля.

I. Предварительные испытания.

В отдельных небольших порциях анализируемого раствора (объемом примерно 0,3 — 0,5 мл) определяют наличие катионов II — VI аналитических групп действием групповых реагентов.

1. Открытие катионов II аналитической группы (Ag + , Pb 2+ ): анализируемый раствор + HCl → образование осадка белого цвета.

2. Открытие катионов III аналитической группы (Са 2+ , Sr 2+ , Ba 2+ , Pb 2+ ) (свинец (II) относится ко II аналитической группе, но дает осадок PbSO4): анализируемый раствор + H2SO4 → образование осадка белого цвета.

3. Открытие катионов IV, V, VI аналитических групп: анализируемый раствор + NaOH + Н2О2, t°→ образование осадка.

Если при добавлении избытка NaOH осадок полностью растворяется, значит, анализируемый раствор содержит катионы IV аналитической группы (Zn 2+ , Al 3+ , Sn 2+ , Cr 3+ ) и не содержит катионы V и VI аналитических групп. Также в предварительных испытаниях в отдельных порциях раствора открывают некоторые индивидуальные катионы.

4. Открытие катионов NH4 + :
a). NH4 + + КОH → NH3↑ — запах, влажная лакмусовая бумажка синеет.
б) NH4 + + K2[HgJ4], КОН (реактив Несслера) — [(JHg)2NH2]J ↓ — красно-бурый осадок.

6. Открытие ионов Na (если NH4 + удалены):
Na + + K[Sb(OH)6] → ↓ Na[Sb(OH)6] — белый мелкокристаллический

7. Открытие ионов Fe 2+ :
Fe 2+ + K3[Fe(CN)6] → темно-синий осадок «турнбулеповой сини».

8. Открытие ионов Fe 3+ :
Fe 3+ + K4[Fe(CN)6] → темно-синий осадок «берлинской лазури».

9. Открытие ионов Мn 2+ :
Мn 2+ + NaBiO3 → MnO4 — — раствор малиновый.

10. Открытие ионов Сr 3+ :
а) Сr 3+ + H2O2 + NaOH изб. → СrO4 2- синий или зеленый раствор
б) Сr 3+ + КМnO4 + H2SO4 → СrO4 2- + Мn 2+ — желтый раствор

11. Открытие ионов Bi 3+ :
а) Bi 3+ + Sn 2+ → Bi ↓ + Sn 4+ — черный
б) Bi 3+ + Сl — + Н2О → BiOCl ↓, осадок растворяется в избытке HCl — белые хлопья

12. Открытие ионов Сu 2+ :
Сu 2+ + NH3*H2O → ярко-синий раствор (мешает Ni 2+ ).

13. Открытие ионов Ni 2+ :
Ni 2+ + диметилглиоксим → красное окрашивание (мешает Cu 2+ ).

14. Открытие ионов Со 2+ :
Со 2+ + реактив Ильинского (α-нитрозо-β-нафтол) → пурпурно-красный осадок (мешают Fe 3+ , Сu 2+ ).

II. Систематический анализ.

Определив наличие катионов различных групп, приступают к их разделению помощью групповых реагентов. Ход выполнения систематического анализа описан в схеме 7.

2.2.8. Анализ раствора с осадком.

Если анализируемый объект представляет собой раствор с осадком, то вначале эту смесь центрифугируют, отделяют осадок от раствора и обе фазы анализируют отдельно.

Наличие осадка свидетельствует о присутствии в нем малорастворимых в воле соединений, например, хлоридов катионов второй аналитической группы (AgCl, РbСl), сульфатов катионов II и III аналитической группы (CaSO4, SrSO4, SrSO4. BaSO4, PbSO4, Ag2SO4), продуктов гидролиза катионов других групп и т.д.

Осадок испытывают на растворимость в разбавленном растворе уксусной кислоты (растворятся фосфаты двухзарядных катионов: Mg 2+ , Са 2+ , Сr 2+ , Ва 2+ , Мn 2+ ); в разбавленном растворе хлороводородной кислоты (растворятся фосфаты трехзарядных катионов Fe 3+ , Сr 3+ , Bi 3+ , Al 3+ и карбонаты всех катионов); в разбавленной и более концентрированной (1:1) азотной кислоте (растворятся BiOCl, РbС12), в водном растворе винной кислоты (растворится SbOCl), в водном 30%-м растворе ацетата аммония (растворится PbSO4).

III. Качественный анализ анионов. Аналитическая классификация анионов но группам.

Обычно открытие анионов в фармацевтическом анализе осуществляют с использованием разных качественных аналитических реакций в растворах на тот или иной аннон. Разумеется, не исключается применение и других методов анализа (оптических, хроматографических, электрохимических и др.).

Аналитическая классификация анионов по группам, в отличие от аналитической классификации катионов, разработана не столь подробно. Не существует общепризнанной и повсеместно принятой классификации анионов по аналитическим группам. Описаны различные классификации анионов.

Чаще всего принимают во внимание растворимость солей бария и серебра тех или иных анионов и их окислительно-восстановительные свойства в водных растворах. В любом случае удастся логически разделить на группы только часть известных анионов, так что всякая классификация анионов ограничена и не охватывает все анионы, представляющие аналитический интерес.

В табл. 3.1 и 3.2. приведены примеры классификации анионов по аналитическим группам.

По аналитической классификации анионов, основанной на образовании малорастворимых солей бария и серебра, анионы обычно делят на три группы (табл.3.1).

Таблица 3.1. Классификация анионов, основанная на образовании малорастворимых солей бария и серебра.

Групповой реагент

Раствор ВаС12 в нейтральной или слабо-щелочной среде

Сl — , Br — , J — , BrO3 — , CN — , NCS — , S 2- , С6Н5СОО —

Раствор AgNO3 в разб. (2М) азотной кислоте

1 — Бромат-ион иногда относится к III группе, так как бромат серебра AgBrO3 растворяется в разбавленной HNО3.

Осадок Ag2S растворяется при нагревании в растворе HNO3.

Если осадок нерастворим во всех вышеперечисленных растворителях, то это указывает на возможное присутствие в нем соединений: AgCl, PbCl2, CaSO4, SrSО4, BaSO4. Осадок РbСl2 растворяют, обрабатывая его кипящей дистиллированной водой, a AgCl — концентрированным раствором аммиака. Сульфаты катионов третьей аналитической группы переводят в карбонаты обработкой раствором соды и растворяют в уксусной кислоте.

Полученный раствор присоединяют к центрифугату и анализируют далее вместе как описано выше (см. п. 2.2.7).

При аналитической классификации анионов, основанной на их окислительно-восстановительных свойствах, анионы обычно делят на три группы (табл. 3.2.): анионы-окислители, анионы-восстановители и индифферентные анионы, т.е. такие, которые не обладают выраженными окислительно-восстановительными свойствами в обычных условиях.

Таблица 3.2. Классификация анионов, основанная на их окислительно-восстановительных свойствах.

Групповой реагент

I
Окислители

Раствор KI в сернокислой среде

II
Восстановители

S 2- , SO3 2- , S2O 2- , AsO3 3- , 2 NO2 — , 3 C2O4 2- , 4 CI 3 — , Br — , J — , CN — , SCN —

Раствор КМnО4 в сернокислой среде

III
Индифферентные

1 – NO3 — — ион в слабокислой среде практически не реагирует с KI.
2 — NО2 — — ион относят к I или II группе.
3 — С2O4 — заметно обесцвечивает раствор КМnO4 только при нагревании.
4 — Cl — — ион в обычных условиях медленно реагирует с раствором КМnO4.

3.1. Анализ смеси анионов.

В фармацевтическом анализе систематический анализ смеси анионов с использованием любой классификации никогда не проводится, как и в подавляющем большинстве других случаев аналитической практики. Групповой регент можно использовать для доказательства присутствия или отсутствия в смеси (в растворе) анионов той или иной аналитической группы, после чего намечают и реализуют наиболее целесообразную схему анализа данного конкретного объекта. Лекарственные субстанции и лекарственные формы обычно содержат ограниченное число анионов, причем, как правило, бывает известно, какие анионы могут присутствовать в анализируемом препарате. Поэтому при анализе лекарственных препаратов входящие в их состав анионы открывают дробным методом с помощью тех или иных частных аналитических реакций на соответствующий анион.

Общая логическая схема анализа смеси анионов обычно состоит в следующем. Вначале на первом этапе проводят предварительные испытания, в ходе которых определяют рН раствора, устанавливают с помощью групповых реагентов присутствие или отсутствие анионов первой и второй аналитических групп, выясняют наличие анионов-окислителей, анионов-восстановителей, проводят пробу па выделение газов.

Затем на втором этапе дробным методом открывают отдельные анноны в небольших пробах анализируемого раствора.

Если растворы содержат, наряду с ионами водорода H3O + , только катионы натрия и калия, (остальные катионы отсутствуют), то их непосредственно анализируют на присутствие анионов. Если же в растворах присутствуют катионы II-VI аналитических групп, то их обычно предварительно отделяют, так как они могут помешать открытию некоторых анионов. Удаление катионов II-VI аналитических групп можно осуществить либо обработкой раствором соды (Na2CO3) или поташа (К2СО3), переводя эти катионы (а также катион лития Li + ) в малорастворимые карбонаты, либо методом ионообменной хроматографии.

3.1.1. Первод катионов II — VI аналитических групп о малорастворимые карбонаты.

2СН3СООН + Na2CO3 → 2CH3COONa + H2O + CO2↑.Предварительно в отдельных порциях анализируемого раствора открывают карбонат ион и ацетат — ион (как описано ниже).

Затем к пробе анализируемого раствора (

30 капель) осторожно, по каплям прибавляют разбавленный раствор соды для нейтрализации раствора до слабощелочной реакции, после чего добавляют еще

30 капель раствора соды. Смесь нагревают до кипения и кипятят около 5 минут, периодически добавляя по каплям дистиллированную воду по мере упаривания раствора, поддерживая объем жидкой фазы приблизительно постоянным. Полученную смесь центрифугируют, центрифугат отделяют от осадка (который сохраняют для дальнейшего анализа — в случае необходимости).

К центрифугату осторожно, при перемешивании, по каплям прибавляют разбавленную уксусную кислоту до рН

7 для удаления избытка карбонат — ионов. Полученный раствор анализируют далее на присутствие анионов.

3.1.2. Предварительные испытания (проводятся в отдельной порции раствора).

1. Определение рН анализируемого раствора.
Если рН 2- , S2O3 2- , CO3 2- , S 2- , NO2 — . При рН — и NO2 — , SO3 2- и МnО4 — и так далее, т.к. они взаимодействуют между собой. В щелочной среде могут присутствовать все рассматриваемые анионы.

2. Проба на присутствие анионов неустойчивых кислот.
Если при подкислении анализируемого раствора до рН 2- , S2O3 2- , CO3 2- , S 2- , NO2 — . Желто-бурый цвет газа указывает на присутствие нитрит-ионов. Помутнение раствора при его подкислении свидетельствует о наличии в нем S2O3 2- ионов, разлагающихся с выделением элементарной серы.

3. Проба па присутствие анионов первой аналитической группы (табл.3.1).
Если анионы первой аналитической группы имеются в растворе, то при добавлении к нему раствора ВаСl2 при рН=7-9 выпадает белый осадок. Все малорастворимые соли бария, кроме сульфата бария BaSO4, растворяются при подкислении раствора, поэтому если полученный осадок полностью растворяется при прибавлении раствора НСl, то в растворе отсутствуют ионы SO4 2- .

4. Проба на присутствие анионов второй аналитической группы (табл. 3.1).
Если в анализируемом растворе присутствуют анионы второй аналитической группы, то при добавлении к нему азотнокислого раствора AgNO3 образуется осадок. Если осадок не выпадает, то это означает, что анионы второй аналитической группы в анализируемом растворе отсутствуют (возможно, присутствие ионов BrO3 — ).

5. Проба на присутствие анионов-окислителей.
Наличие анионов-окислителей (NO2 — , NO — , ВrО3 — ) устанавливают реакцией с KJ и сернокислой среде (рН

1) в присутствии раствора крахмала. Окислители переводят ионы J в йод J2, при образовании которого крахмальный раствор окрашивается в синий цвет.

6. Проба на присутствие анионов-восстановителей.

Наличие анионов-восстановителей устанавливают реакцией с йодом (раствор йода обесцвечивается, поскольку йод в нейтральной или слабокислой среде окисляет анионы-восстановители S 2- , SO3 2- , S2O3 2- , С2O4 2- , Br — , J — , SCN — , NO2 — ).

3.1.3. Дробное обнаружение анионов.

После проведения предварительных испытаний, отдельные анноны открывают дробным методом, учитывая их возможное мешающее влияние друг на друга.

Рассматриваемые анионы вступают в многочисленные реакции с различными реагентами. Многие из этих реакций представляют аналитический интерес. Ниже охарактеризованы только некоторые из этих реакций, рекомендуемые чаще других.

1. Открытие сульфат-нона.
4 2- — ион обнаруживают по реакции с катионами бария Ва 2+ :
4 2- + Ва 2+ → BaSО4
Образуется белый мелкокристаллический осадок, не растворяющийся в минеральных кислотах.

2. Открытие сульфид-поиа.
S 2- — ион обнаруживают при подкислении раствора разбавленной НCI:
S 2- + 2HCI → Н2S ↑ + 2CI — , фильтровальная бумага, смоченная раствором (СН3СОО)2Pb, чернеет:
Н2S + (СН3СОО)2Рb → PbS + 2СН3COOН.

3. Открытие сульфит — нона.
Если в растворе присутствуют анионы S 2- , S2O3 2- , сульфит-ионы сначала переводят и осадок в виде SrSO3, затем осадок отделяют, растворяют в кислоте и проводят качественную реакцию.
а). В отсутствии ионов S 2- , S2O3 2- , сульфит-ионы обнаруживают по реакции:
3 2- + J2 +H2О → SО4 2- + 2J — + 2H + , pH = 5-7. Желтый раствор йода обесцвечивается.
б). Реакция разложения сульфитов кислотами:’
SO3 2- + 2H + → SO2 ↑ + H2O.
Выделяющийся диоксид серы обнаруживают по обесцвечиванию водного раствора йода или перманганата калия (реакцию проводят в приборе для обнаружения газов).

4. Открытие тиосульфат — иона.
Ионы S2O3 2- открывают по помутнению пробы раствора при подкислении серной или хлороводородной кислотой.
S2О3 2- + 2H + ↔ H2S2О3 → S ↓ + SО2 + Н2О.
Примечание: тиосульфаты щелочных металлов, стронция, цинка, кадмия, марганца (II), железа (II), кобальта (II), никеля (II) растворимы в воде; тиосульфаты других металлов малорастворимы в воде.

5. Открытие карбонат-иона.
Если в растворе отсутствуют ионы SO3 2- , S2O3 2- , то карбонат-ион обнаруживают при подкислении раствора по выделению газообразного СО2, который вызывает помутнение известковой воды: СО3 2- + 2Н + → СО2 ↑ + Н2О.
Если же ионы SO3 2- , S2O3 2- присутствуют, то их необходимо предварительно окислить до SО4 2- и S4О6 2- соответственно раствором КМnO4 пли К2Сr2O7. В полученном растворе открывают СO3 2- — ионы.

6. Открытие оксалат — иона.
При отсутствии и растворе карбонат-ионов и анионов-восстановителей, C2O4 2- иона открывают по реакции:
↓Agl +Na2S3О3 → Na[Ag(S2О3)] • Nal. желтый

7. Открытие нитрит — иона.
NO2 — — ион открывают по реакции с реактивом Грисса-Илошвая (смесь сульфаниловой кислоты HSO3C6H42 с 1 — нафтиламином C10Н7NH2):
NO2 — + реактив Грисса → ярко-красное окрашивание.
NO3 — — ион не дает аналогичной реакции.
Если нитрит — ион открыт, то его обычно удаляют, поскольку он мешает открытию нитрат — иона NO3 — :
2 — + NH4CI → N2 + 2Н2О
Раствор используют для открытия нитрат — ионов.

8. Открытие нитрат — иона.
NO3 — + 1-дифениламин → синее окрашивание раствора; постепенно окраска изменяется на бурую, а затем на желтую.

9. Открытие ацетат — иона.
а). Ацетат — ион в сернокислой среде (H2SO4 конц.) реагирует со спирт образованием сложных эфиров уксусной кислоты:
СН3СООН + С2Н5ОН → СН3СООС2Н5 + Н2О.
Этилацетат СН3СООС2Н5 обладает характерным приятным запахом.
Реакцию катализируют соли серебра.
б). При растирании твердых проб, содержащих ацетаты, с твердыми NaНSО4, KHSO4 выделяется уксусная кислота, обнаруживаемая по характерному запаху укуса

10. Открытие тартрат-иона — ООС — СН(ОН) — СН(ОН) — СОО —
Тартрат-анион — аннон слабой двухосновной винной кислоты, хорошо растворим в воде. В растворе ионы обнаруживают по реакции с хлоридом калия о присутствии ионов:
С4Н4О6 2- + К + + Н + → ↓ KHC4H4O6. Образуется белый кристаллический осадок, растворимый в минеральных кислотах и щелочах

11. Открытие цитрат-иона – ООССН2 — С(ОН)(СОО — ) – СН2СОО — .
Цитрат-ион — анион слабой трех основной лимонной кислоты, хорошо pacтворяется в воде. Открывают ноны по реакции взаимодействия с катионами кальция в нейтральной среде:
2О4 2- + 2MnO4 — + 16H + → 10CO2↑ + 2Mn 2+ + 8H2O.
Раствор KMnO4 обесцвечивается, выделение CO2 фиксируется по помутнению известковой воды за счет образования СаСО3 ↓.
Если исследуемый раствор содержит мешающие ноны, оксалат-ион отделяют в виде осадка оксалата кальция СаС2О4, действуя избытком раствора СаС12 в уксуснокислой среде при нагревании. Полученный осадок обрабатывают разбавленной серной кислотой при нагревании, при этом С2О4 2- — ионы переходят в раствор, где их можно открыть:
↓ СаС2О4 + H24 → CaSО4 + С24 2- ↓ + 2Н + .

12. Открытие ортофосфат — иона.
РO4 3- — ионы можно обнаружить двумя способами:
а) Реакция с магнезиальной смесью (MgCl2 + NH3 + NH4Cl):
HPO4 2- + MgCI2 + NH3 + NH4MgPO4
Образуется белый мелкокристаллический осадок магнийаммонийфосфат растворяющийся в кислотах.
б) Реакция с молибдатом аммония (NH4) 2MoО4:
PO4 3- + 3NH4 + + 12MoO4 2- +24H + →↓(NH4) 3[PO4(Mo5O10) 12 + 12 H2O
Образуется желтый кристаллический осадок комплексной аммонийной фосфоромолибдеповой гетерополикислоты — фосфоромолибдат аммония.
Мешают анионы-восстановители, восстанавливающие продукт реакции молибденовой сини.

13. Открытие Сl — иона.
Хлорид-ионы осаждают в виде белого осадка хлорида серебра, который, в отличие от AgBr и AgJ, растворяется в насыщенном водном растворе (NH4) 23:
Ag + + Cl — → AgCl,
AgCl + (NH4) 2CO3 → [Ag(NH3) 2]CI + CO2 + H2O.
Раствор отделяют от осадка и доказывают присутствие в нем хлорид-ионов:
[Ag(NH3) 2]CI + 2HNO3 (конц.)→ AgCI ↓ + 2NH4NO3
Открытию Сl — иона мешают SCN — ионы, поэтому их необходимо предварительно удалить.

14. Открытие бромид- и иодид-ионов.
Обычно в присутствии Сl — ионов, бромид — и иодид-ионы открывают одновременно, учитывая, что осадок AgCI растворяется в насыщенном растворе (NH4)23, осадок AgBr в концентрированном водном аммиаке, a AgJ — в растворе тиосульфата натрия:
↓ AgBr + 2NH3 → [Ag(NH3)2]Br,
2 Сit 3- + 3СаС12 → Ca2Cit2 + 6Cl — .
При кипячении раствора из него выпадает белый осадок, растворяющийся при охлаждении смеси, а также в разбавленной соляной кислоте. Мешают С2О4 2-

15. Открытие бензоат-иона С6Н5СОО —
Бензоат-ион — анион слабой одноосновной бензойной кислоты, малорастворимой в воде.
При подкислении растворов, содержащих бензоаты, минеральными кислотам образуется белый осадок бензойной кислоты:
С6Р5СОО — + Н + → ↓C6Н5COOН.
Аналогичный эффект дают салицилат-ионы.

16. Открытие салицилат-иона НО – С6Н4 — СОО — .
Салицилат-ион — анион слабой одноосновной салициловой кислоты, очень плохо растворимой в воде.
Обнаружить его можно в нейтральной среде по реакции:
3 НОС6Н4СОО — + Fе 3+ → [Fe(HOC6H4COO) 3].
Образуется соединение сине-фиолетового или красно-фиолетового цвета, при подкислении раствора минеральными кислотами окраска раствора обесцвечивается.
В аналогичной реакции с бензоат-ионами образуется розово-желтый осадок, растворимый в кислотах.

3.1.4. Систематический анализ смеси анионов.

Не существует такая схема систематического анализа смеси анионов в растворе, которая была бы общепринятой, в отличие от систематического анализа смеси катионов.

Ниже предложен один из вариантов анализа смеси анионов. Последовательность операций в общем случае заключается в следующем. Вначале проводятся предварительные испытания, затем дробно в отдельных порциях раствора открывают некоторые анноны, после чего осуществляют разделение анионов с помощью групповых реагентов с последующим открытием анионов в разделенных осадках и растворах.

Пусть анализируемый раствор содержит наиболее распространенные анионы трех аналитических групп.
SО 2- , SO3 2- , РО4 3- , СО3 2- , NO3 — , NО2 — , CH3СOO — , Сl — , Br — , J — , S2O3 2- , S 2- .

В отдельных порциях раствора проводят предварительные испытания и дробно открывают анионы NO3 — , NO2 — , CH3COO — (обязательно!) и некоторые другие. Затем проводят систематический анализ; один возможных способов описан в схеме 8.

источник