Меню Рубрики

Качественный анализ воды по хлоридам

Определение качества воды методами химического анализа.

Опыт № 5 Водородный показатель (рН)

Питьевая вода должна иметь нейтральную реакцию (рН около 7). Значение рН воды водоемов хозяйственного, питьевого, культурно-бытового назначения регламентируется в пределах 6,5 — 8,5.

Оценивать значение рН можно разными способами.

1. Приближенное значение рН определяется следующим образом.

В пробирку наливают 5 мл исследуемой воды, 0,1мл универсального индикатора, перемешивают и по окраске раствора определяют рН:

· Розово – оранжевая – рН около 5

2. Можно определить рН с помощью универсальной индикаторной бумаги, сравнить её окраску со шкалой.

3.Наиболее точно значение рН можно определить на рН – метре или шкале набора Алямовского.

По результатам нашего исследования:

Октябрьский район – рН около 6 — кислая

Ульбинский район – рН около 5- кислая

ВЫВОД: Повышенная кислотность в воде Ульбинского, Октябрьского районов и КШТ свидетельствует о плохом качестве исследуемой воды. Такая вода отрицательно влияет на организм человека, и может вызвать заболевания желудочно-кишечного тракта.

Опыт № 6 Определение хлоридов и сульфатов

Концентрация хлоридов в водоемах – источниках водоснабжения допускается до 350 мг/л.

Много хлоридов попадает в водоемы со сбросами хозяйственно- бытовых и промышленных сточных вод. Этот показатель весьма важен при оценке санитарного состояния водоема. Таблица №4

Осадок или помутнение Концентрация хлоридов, мг/л
Опалесценция или слабая муть 1-10
Сильная муть 10-50
Образуются хлопья, но осаждаются не сразу 50-100
Белый объемистый осадок Более 100

Качественное определение хлоридов с приближенной количественной оценкой проводят следующим образом. В пробирку отбирают 5мл исследуемой воды и добавляют 3 капли 10 %-ного раствора нитрата серебра. Приблизительное содержание хлоридов определяют по осадку или помутнению (см таблицу).

Определение содержания хлоридов

Содержание хлоридов (х) в мг/л вычисляют по формуле

Где, 1,773 – масса хлорид ионов (мг), эквивалентная 1 мл точно 0,05 н. раствора нитрата серебра; V-объем раствора нитрата серебра, затраченного на титрование, мл.

Для расчета по опыту мы взяли 8мг/л (нитрат серебра)

Вывод: в воде КШТ –сильная муть, около 10-50 мг/л хлоридов; Ульбинский и Октябрьский районы – слабая муть, около 1-10мг/л;

Качественное определение сульфатов с приближенной количественной оценкой проводят так:

В пробирку вносят 10мл исследуемой воды, 0.5 мл соляной кислоты (1:5) и 2мл 5%-ного раствора хлорида бария, перемешивают. По характеру выпавшего осадка определяют ориентировочное содержание сульфатов: при отсутствии мути концентрация сульфат ионов менее 5мг/л; при слабой мути, появляющейся не сразу, а через несколько минут – 5-10мг/л; при слабой мути, появляющейся сразу, после добавления хлорида бария, -10-100мг/л; сильная, быстро оседающая муть свидетельствует о достаточно высоком содержании сульфат –ионов (более 100мг/л).

КШТ – ярко выраженная муть, 10-100мг/л; Ульбинский р-н – слабая муть, 5-10мг/л; Октябрьский район – слабая муть, образующаяся сразу после добавления хлорида бария,10-100мг/л;

ВЫВОД: Значительное превышение ПДК обнаружено в исследуемой воде Октябрьского района и КШТ, что может стать причиной некоторых сердечно-сосудистых заболеваний.

Опыт №7 Обнаружение фосфат — ионов.

Реагент: молибдат аммония (12,5г (NH4 )2 МоО4 растворить в дистиллированной Н2 О и профильтровать, объем довести дистиллированной водой до 1л); азотная кислота (1:2); хлорид олова.

К 5мл подкисленной пробы воды прибавляют 2,0мл молибдата аммония и по каплям(6капель) вводят раствор хлорида олова. Окраска раствора синяя при концентрации фосфат ионов более 10мг/л, голубая более 1мг/л, бледно-голубая -более 0,01мг/л.

ВЫВОД: В воде Ульбинского района и КШТ окраска раствора бледно-голубая, содержание фосфат- ионов – более 0,01мг/л, Октябрьский район окраска голубая- более 1 мг/л.

Опыт №8 Обнаружение нитрат – ионов.

Реагент: дифениламин (1г (С6 Н5 )2 NH растворить в 100мл H2 SO4 )

К 1мл пробы воды по каплям вводят реагент. Бледно- голубое окрашивание наблюдается при концентрации нитрат –ионов более 0,001мг/л, голубое –более 1мг/л, синее- более 100мг/л.

ВЫВОД: концентрация нитрат –ионов со всех трех водозаборов одинаковая, более 0,001мг/л

Качественное и количественное обнаружение катионов тяжелых металлов

Методы анализа: качественный анализ, включающий в себя дробный метод, разработанный Н.А Танаевым .Он открыл ряд новых, оригинальных реакций, позволяющих обнаруживать в растворе какой-либо определенный катион в присутствии большого числа других катионов, не прибегая к их предварительному осаждению. Количественный анализ, включающий атомно-эмиссионный метод, основанный на излучении атомных спектров вещества, возбуждаемых в горячих источниках света, а также сравнение и обобщение информации с литературными источниками.

Опыт №9 Обнаружение ионов свинца ( Pb 2+ )

Реагент: хромат калия (10г К2 СrO4 растворить в 90мл H2 O)

В пробирку помещают 5мл пробы воды, прибавляют 1мл раствора реагента. Если выпадает желтый осадок, содержание катионов свинца более 100мг/л; если наблюдается помутнение раствора, концентрация катионов свинца более 20 мл/л, а при опалесценции – 0,1 мг/л [6, c97-98]

ВЫВОД: Самое высокое содержание свинца в воде КШТ более 100мг/л осадок желтого цвета; октябрьский район-помутнение, более 20мг/л; Ульбинский район – опалесценция, 0,1мг/л.

Опыт №10 Обнаружение ионов кальция (Са 2+ )

Реагенты: оксалат аммония (17,5г (NH4 )2 С2 О4 растворить в воде и довести до 1л); уксусная кислота (120мл ледяной СН3 СООН довести дистиллированной водой до 1л).

В 5 мл пробы воды прибавляют 3мл уксусной кислоты, затем вводят 8мл реагента. Если выпадает белый осадок, то концентрация ионов кальция 100мг/л; если раствор мутный — концентрация ионов кальция более 1мг/л, при опалесценции – более0,01мг/л.[6, с128-129]

ВЫВОД: Самое высокое содержание ионов кальция в пробе с Октябрьского района 100мг/л, КШТ и Ульбинский район наблюдается помутнение раствора- концентрация ионов более 1мг/л

Опыт №11 Обнаружение ионов железа ( Fe 2+ )

В пробирку помещают 5мл исследуемой пробы воды, добавляют несколько капель K3 [Fe(CN)6 ] красная кровяная соль. Окраска раствора приобретает цвет под названием: турбулинская синь[6, c194-195]

ВЫВОД: Самое высокое содержание ионов железа 2 содержится в воде с КШТ, т.к по яркости окраски на первом месте- вода с КШТ, на втором – Ульбинский район, на третьем- Октябрьский район.

Опыт №12 Обнаружение ионов железа ( Fe 3+)

В пробирку помещаем 5мл пробы воды, добавляют несколько капель К4 [Fe(CN)6 ] желтая кровяная соль. Окраска раствора приобретает цвет под названием: берлинская лазурь.

ВЫВОД: Самое большое содержание ионов железа3 в воде с Октябрьского района -яркий, насыщенный цвет, в остальных двух пробах окрас менее насыщенный.

Получив результаты эксперимента, мы обратились к альтернативе, т.е возможности замены водопроводной воды талой.

Молекула воды имеет угловое строение;[1]входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине — ядро атома кислорода, межьядерные расстояния О—Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно 0,15 нм. Из восьми электронов, составляющих внешний электронный слой атома кислорода в молекуле воды две электронные пары образуют ковалентные связи О—Н, а остальные четыре электрона представляют собой две неподеленных электронных пары.

Атом кислорода в молекуле воды находится в состоянии sp2-гибридизации. Поэтому валентный угол НОН (104,3°) близок к тетраэдрическому (109,5°). Электроны, образующие связи О—Н, смещены к более электроотрицательному атому кислорода. В результате атомы водорода приобретают эффективные положительные заряды, поскольку на них создаются два положительных полюса. Центры отрицательных зарядов неподеленных электронных пар атома кислорода, находящиеся на гибридных — орбиталях, смещены относительно ядра атома и в свою очередь создают два отрицательных полюса.

Молекулярная масса парообразной воды равна 18 ед. Но молекулярная масса жидкой воды, определяемая путем изучения ее растворов в других растворителях, оказывается более, высокой. Это происходит из-за того, что в жидкой воде происходит ассоциация отдельных молекул воды в более сложные агрегаты (кластеры). Такой вывод подтверждается и аномально высокими значениями температур плавления и кипения воды. Ассоциация молекул воды вызвана образованием между ними водородных связей. По своей структуре вода представляет собой иерархию правильных объемных структур, в основе которых лежит кристаллоподобные образования, состоящие из 57 молекул и взаимодействующие друг с другом за счет свободных водородных связей. Это приводит к появлению структур второго порядка в виде шестигранников, состоящих из 912 молекул воды.

Свойства кластеров зависят от того, в каком соотношении выступают на поверхность кислород и водород. Конфигурация элементов воды реагирует на любое внешнее воздействие и примеси, что объясняет чрезвычайно лабильный характер их взаимодействия. В обычной воде совокупность отдельных молекул воды и случайных ассоциатов составляет 60% (деструктурированная вода), а 40% — это кластеры (структурированная вода).

источник

ПНД Ф 14.1:2.96-97 Количественный химический анализ вод. Методика выполнения измерений массовой концентрации хлоридов в пробах природных и очищенных сточных вод аргентометрическим методом

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ
ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

Заместитель Председателя Государственного комитета РФ по охране окружающей среды

_______________ А.А. Соловьянов

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
МАССОВОЙ КОНЦЕНТРАЦИИ ХЛОРИДОВ
В ПРОБАХ ПРИРОДНЫХ И ОЧИЩЕННЫХ СТОЧНЫХ ВОД
АРГЕНТОМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного экологического контроля

МОСКВА 1997 г.
(издание 2004 г.)

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них массовой концентрации хлоридов в диапазоне от 10,0 до 250 мг/дм 3 титриметрическим методом без разбавления и концентрирования пробы.

Если массовая концентрация хлоридов в анализируемой пробе превышает верхнюю границу, то допускается разбавление пробы дистиллированной водой таким образом, чтобы концентрация хлоридов соответствовала регламентированному диапазону.

Определению мешают высокая цветность, мутность, сероводород и сульфиды, сульфиты, тиосульфаты, цианиды, карбонаты (> 100 мг/дм 3 ), фосфаты (> 25 мг/дм 3 ), аммиак (> 5 мг/дм 3 ), а также высокие (> 10 мг/дм 3 ), концентрации металлов — свинца, железа и др.

Устранение мешающих влияний осуществляется в соответствии с п. 10.

Бромиды и иодиды титруются совместно с хлоридами, однако в воде концентрации их, как правило, не превышают 0,5 мг/дм 3 и их влиянием обычно пренебрегают.

Титриметрический метод определения массовой концентрации хлоридов основан на образовании труднорастворимого осадка хлорида серебра при прибавлении раствора нитрата серебра к анализируемой воде. После полного осаждения хлоридов избыток ионов серебра реагирует с индикатором — хроматом-калия — с образованием красновато-оранжевого осадка хромата серебра. Титрование проводят в нейтральной или слабощелочной среде (рН 7 — 10), поскольку в кислой среде не образуется хромат серебра, а в сильнощелочной возможно образование оксида серебра Ag 2 О.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости, правильности

Показатель точности (границы относительной погрешности при вероятности
Р = 0,95), ±δ, %

Показатель повторяемости (относительн ое среднеквадратическое отклонение повторяемости),
s r, %

Читайте также:  Полярографический анализ воды применяют для определения

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),
s R,%

Показатель правильности (границы относительной систематической погрешности при вероятности
Р = 0,95), ± δс, %

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованным содержанием хлоридов с погрешностью не более 1 % при Р = 0,95

Цилиндры мерные или мензурки

Плитка электрическая с закрытой спиралью и регулируемой мощностью нагрева

Печь муфельная, обеспечивающая температуру нагрева до 900 °С

Стаканчики для взвешивания (бюксы)

Колбы конические или плоскодонные

Колонка хроматографическая диаметром 1,5 — 2,0 см и длиной 25 — 30 см

Стекло часовое диаметром 5 — 7 см

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Азотная кислота концентрированная

Аммиак водный, концентрированный

Хлорид кальция безводный (для эксикатора)

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

или фильтры бумажные обеззоленные «синяя лента»

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

При выполнении измерении в лаборатории должны быть соблюдены следующие условия:

температура окружающего воздуха

не более 80 % при температуре 25 °С;

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором азотной кислоты 1:1, а затем дистиллированной водой.

8.3. Пробы воды отбирают в стеклянные бутыли. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 300 см 3 для неокрашенных вод и 400 см 3 для окрашенных.

8.4. Пробы не консервируют, хранят при комнатной температуре.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

9.1. Приготовление растворов и реактивов

9.1.1. Раствор хлорида натрия, 0,05 моль/дм 3 эквивалента.

Отвешивают 1,4610 г NaCl, предварительно прокаленного при 500 — 600 °С до полного удаления влаги, количественно переносят его в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, доводят до метки и перемешивают. Раствор устойчив при хранении в плотно закрытой склянке не более 3 мес.

9.1.2. Раствор нитрата серебра, 0,02 моль/дм 3 эквивалента.

3,40 г AgNO 3 растворяют в дистиллированной воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течение нескольких дней и затем сливают с помощью сифона прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 2 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора хлорида натрия (п. 9.2) не реже 1 раза в месяц.

9.1.3. Раствор нитрата серебра, 0,05 моль/дм 3 эквивалента.

8,49 г AgNО3 растворяют в дистиллированной воде в мерной колбе вместимостью 1 дм 3 , доводят до метки и перемешивают. При наличии мути раствор отстаивают в течение нескольких дней и затем с помощью сифона переливают прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 2 мес.

Точную концентрацию раствора определяют титрованием стандартного раствора хлорида натрия (п. 9.2) не реже 1 раза в месяц.

9.1.4. Раствор нитрата серебра, 10 %.

10 г нитрата серебра AgNО3 растворяют в 90 см 3 дистиллированной воды и прибавляют 1 — 2 капли концентрированной азотной кислоты. При появлении мути раствор отстаивают не менее суток, затем с помощью сифона переливают прозрачную жидкость в склянку из темного стекла для хранения. Срок хранения не более 3 мес.

9.1.5. Раствор хромата калия, 10 %.

50 г К2СrО4 растворяют в 150 см 3 дистиллированной воды, добавляют для удаления хлоридов 10 % раствор AgNО3 до появления слабого красновато-оранжевого осадка, дают отстояться в течение суток и затем фильтруют через фильтр «белая лента». К фильтрату добавляют 300 см 3 дистиллированной виды и перемешивают. Хранят в склянке из темного стекла не более 3 мес.

9.1.6. Раствор азотной кислоты, 0,1 моль/дм 3 .

3,5 см 3 концентрированной азотной кислоты HNO 3 растворяют в 500 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.7. Раствор азотной кислоты, 2 моль/дм 3 .

35 см 3 концентрированной азотной кислоты HNО3 растворяют в 215 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.8. Раствор соляной кислоты, 1:3.

100 см 3 концентрированной соляной кислоты НСl добавляют к 300 см 3 дистиллированной воды и перемешивают. Раствор устойчив при хранении в плотно закрытой склянке в течение 3 мес.

9.1.9. Раствор гидроксида натрия, 0,4 %.

2 r NaOH растворяют в 500 см 3 дистиллированной воды.

9.1.10. Раствор гидроксида натрия, 8 %.

40 г гидроксида натрия растворяют в 460 см 3 дистиллированной воды.

Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде в течение 2 мес.

9.1.11. Суспензия гидроксида алюминия.

Подготовку гидроксида алюминия осуществляют в соответствии с Приложением А .

9.1.12. Активированный уголь.

Подготовку активированного угля осуществляют в соответствии с Приложением А.

Для определения точной концентрации рабочего раствора нитрата серебра с приблизительной концентрацией 0,05 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 10 см 3 стандартного раствора хлорида натрия, добавляют 90 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией 0,05 моль/дм 3 эквивалента до появления красновато-оранжевого осадка. Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора AgNO 3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение, используя для титрования 100 см 3 дистиллированной воды.

Для определения точной концентрации рабочего раствора нитрата серебра с приблизительной концентрацией 0,02 моль/дм 3 эквивалента в коническую колбу вместимостью 250 см 3 помещают пипеткой 5 см 3 раствора хлорида натрия, добавляют 95 см 3 дистиллированной воды и 1 см 3 раствора хромата калия. Тщательно перемешивают и титруют раствором нитрата серебра с концентрацией эквивалента 0,02 моль/дм 3 до появления красновато-оранжевого осадка. Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора AgNO 3 более 0,05 см 3 за результат принимают среднюю величину. Одновременно выполняют холостое определение, используя для титрования 100 см 3 дистиллированной воды. Точную концентрацию растворов AgNO 3 находят по формуле:

где С1 — концентрация раствора хлорида натрия, моль/дм 3 эквивалента;

С2 — концентрация раствора нитрата серебра, моль/дм 3 эквивалента;

V 1 — объем раствора хлорида натрия, см 3 ;

V 2 — объем раствора нитрата серебра, пошедший на титрование раствора хлорида натрия, см 3 ;

V хол — объем раствора нитрата серебра, пошедший на титрование холостой пробы, см 3 .

Мешающее влияние взвешенных и коллоидных веществ устраняют предварительным фильтрованием пробы. Для удаления окрашенных веществ можно использовать два способа.

Способ 1. Анализируемую воду пропускают через колонку с активированным углем со скоростью 4 — 6 см 3 /мин, при этом первые 30 — 40 см 3 воды, прошедшие через колонку, следует отбросить.

Способ 2. 200 см 3 анализируемой воды помешают в коническую колбу вместимостью 500 см 3 , приливают 6 см 3 суспензии гидроксида алюминия и встряхивают до обесцвечивания жидкости. Дают пробе отстояться несколько минут и фильтруют через бумажный фильтр «белая лента». Первые порции фильтрата отбрасывают.

Для удаления карбонатов отмеренную для анализа пробу подкисляют раствором азотной кислоты 2 моль/дм 3 до рН 2 и нагревают несколько минут. После охлаждения доводят рН пробы до величины 7 — 8, добавляя 8 % раствор NaOH. При этом удаляются также сульфиды и сульфиты.

Аммиак удаляют нагреванием пробы, к которой добавлен 8 % раствор гидроксида натрия до рН > 12. После охлаждения пробу нейтрализуют раствором азотной кислоты 2 моль/дм 3 .

Сульфиды, сульфиты, тиосульфата, цианиды удаляют, прибавляя к отмеренной для анализа слабощелочной пробе 1 см 3 пероксида водорода и перемешивая 1 мин.

11.1. Предварительная оценка содержания хлоридов в воде

Перед выполнением определения хлоридов в пробе воды неизвестного состава проводят качественную оценку их содержания. Для этого к 5 см 3 анализируемой воды добавляют 3 капли 10 % раствора AgNO 3 и перемешивают. О содержании хлоридов судят по интенсивности помутнения пробы. В зависимости от предполагаемого содержания хлоридов выбирают объем пробы, отбираемый для титрования (таблица 2 ).

Качественная оценка содержания хлоридов в воде и рекомендуемый для титрования объем пробы воды

Ориентировочное содержание хлоридов, мг/дм 3

источник

Анализ «Минимальный» включает базовый набор из 18 показателей, характеризующих качество воды: обобщённые показатели (в т. ч. жёсткость, минерализацию, перманганатную окисляемость) и базовый список катионов и анионов.

Исследование не предполагает анализ содержания в воде тяжёлых металлов, органических загрязнителей и канцерогенов, а также ксенобиотиков.

Как правило, набор «Минимальный» не используется для подтверждения качества источников централизованного водоснабжения, но подходит для источников нецентрализованного водоснабжения.

Для исследования питьевой воды рекомендуется набор «Оптимальный»

  • подходит для колодцев, скважин, родников в случае, если ранее уже осуществлялся более расширенный анализ воды из Вашего источника;
  • позволяет оценить качество фильтров и очистных систем, которые Вы уже используете;
  • позволяет подобрать обезжелезивающие фильтры и умягчители и по составу анионов установить необходимость использования систем обратного осмоса;
  • обладает высокой точностью, подтверждённой Межлабораторными Сличительными Испытаниями и поверками.
  • не подходит для подтверждения полной безопасности для здоровья и подбора комплексной водоподготовки (лучше выбрать более развёрнутые варианты исследований).
Определяемый показатель Нормативный документ на методику
Органолептические показатели
Запах при 20 °C ГОСТ Р 57164-2016
Цветность ГОСТ 31868-2012 Метод Б (Cr-Co)
Мутность Методика определения выбирается лабораторией
Обобщённые показатели
Жесткость общая РД 52.24.395-2017
Перманганатная окисляемость / Перманганатный индекс ПНД Ф 14.1:2:4.154-99 (издание 2012 г.)
Водородный показатель (pH) / pH РД 52.24.495-2017
Сухой остаток / Минерализация (плотный остаток) ПНД Ф 14.1:2:4.261-2010 (издание 2015 г.)
Удельная электропроводность РД 52.24.495-2005
Общая щелочность ГОСТ 31957-2012 Метод А.2 Способ 1
Свободная щелочность ГОСТ 31957-2012 Метод А.2
Неорганические соединения
Гидрокарбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Карбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Нитрат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фторид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Элементы
Железо ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кальций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Магний ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Марганец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Читайте также:  Портативные системы анализа качества воды

Не нашли нужные показатели?

Анализ проводится с использованием передовых методик и техник анализа, в том числе фотометрии, ионной хроматографии, атомной абсорбции и потенциометрии, что обеспечивает высокую точность и низкие уровни риска получения недостоверных результатов.

Углублённый физико-химический анализ воды по 30 показателям, который включает в себя полный набор обобщённых показателей (в т. ч. жёсткость, минерализацию, перманганатную окисляемость) и содержит базовый перечень тяжёлых металлов и металлоидов (в т. ч. кадмий, мышьяк); не включает разделение опасных органических компонентов.

Оптимален для оценки качества источников централизованного водоснабжения, так как анализируется, в том числе, алюминий — компонент очистки воды, способный попадать в водопроводную воду на станциях очистки Водоканала. По сравнению с набором «Минимальный» даёт более полное представление о качестве воды и её безопасности для здоровья.

Для исследования питьевой воды рекомендуется набор «Оптимальный»

  • подходит для проверки широкого спектра источников воды, контроль качества воды в которых осуществляется как минимум раз в год;
  • включает определение концентраций тяжёлых металлов и металлоидов;
  • позволяет подобрать систему очистки воды от широкого перечня загрязнителей;
  • позволяет оценить качество фильтров и очистных систем, которые Вы уже используете;
  • обладает высокой точностью, подтверждённой Межлабораторными Сличительными Испытаниями и поверками.
  • не подходит для подтверждения полной безопасности для здоровья (лучше обратить внимание на наборы «Расширенный» или «Максимальный»).
Определяемый показатель Нормативный документ на методику
Органолептические показатели
Запах при 20 °C ГОСТ Р 57164-2016
Цветность ГОСТ 31868-2012 Метод Б (Cr-Co)
Мутность Методика определения выбирается лабораторией
Обобщённые показатели
Жесткость общая РД 52.24.395-2017
Перманганатная окисляемость / Перманганатный индекс ПНД Ф 14.1:2:4.154-99 (издание 2012 г.)
Водородный показатель (pH) / pH РД 52.24.495-2017
Сухой остаток / Минерализация (плотный остаток) ПНД Ф 14.1:2:4.261-2010 (издание 2015 г.)
Удельная электропроводность РД 52.24.495-2005
Общая щелочность ГОСТ 31957-2012 Метод А.2 Способ 1
Свободная щелочность ГОСТ 31957-2012 Метод А.2
Неорганические соединения
Бромид-ион ПНД Ф 14.1.175-2000 (издание 2014 г.)
Гидрокарбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Ионы аммония / Аммиак и ионы аммония ПНД Ф 14.1:2:4.276-2013 (издание 2013 г.)
Карбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Нитрат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Нитрит-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фосфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фторид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Хлорид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Элементы
Алюминий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Железо ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кадмий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Калий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кальций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Магний ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Марганец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Мышьяк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Натрий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Свинец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)

Не нашли нужные показатели?

Анализ проводится с использованием передовых методик и техник анализа, в том числе фотометрии, ионной хроматографии, атомной абсорбции и потенциометрии, масс-спектрометрии и флуоресцентного анализа, что обеспечивает высокую точность и низкие уровни риска получения недостоверных результатов.

Развёрнутый физико-химический и органолептический анализ воды по 48 показателям включает в себя полный набор обобщённых показателей (в т. ч. жёсткость, минерализацию, перманганатную окисляемость), полный перечень тяжёлых металлов и металлоидов (в т. ч. ртуть, свинец, кадмий, мышьяк), а также анализ сероводорода и нефтепродуктов; не включает разделение опасных органических компонентов.

Подходит для оценки безопасности воды из всех источников, в том числе расположенных в районах с неблагоприятной экологической обстановкой.

Для исследования питьевой воды рекомендуется набор «Оптимальный»

  • отлично подходит для проверки любых источников водоснабжения;
  • включает определение концентраций полного набора тяжёлых металлов и металлоидов;
  • включает анализ на нефтепродукты и сероводород;
  • позволяет подобрать систему очистки воды от исчерпывающего перечня загрязнителей;
  • позволяет принять решение об установке аэратора в составе водоподготовки;
  • позволяет оценить качество фильтров и очистных систем, которые Вы уже используете;
  • обладает высокой точностью, подтверждённой Межлабораторными Сличительными Испытаниями и поверками.
  • требует использования консерванта для сероводорода и дополнительной тары для нефтепродуктов во время отбора проб.
Определяемый показатель Нормативный документ на методику
Органолептические показатели
Запах при 20 °C ГОСТ Р 57164-2016
Цветность ГОСТ 31868-2012 Метод Б (Cr-Co)
Мутность Методика определения выбирается лабораторией
Обобщённые показатели
Жесткость общая РД 52.24.395-2017
Перманганатная окисляемость / Перманганатный индекс ПНД Ф 14.1:2:4.154-99 (издание 2012 г.)
Водородный показатель (pH) / pH РД 52.24.495-2017
Сероводород ПНД Ф 14.1:2:4.178-02 (издание 2010 г.)
Сухой остаток / Минерализация (плотный остаток) ПНД Ф 14.1:2:4.261-2010 (издание 2015 г.)
Удельная электропроводность РД 52.24.495-2005
Общая щелочность ГОСТ 31957-2012 Метод А.2 Способ 1
Нефтепродукты Методика определения выбирается лабораторией
Кремнекислота (в пересчете на кремний) ПНД Ф 14.1:2:4.215-06 (издание 2011 г.)
Свободная щелочность ГОСТ 31957-2012 Метод А.2
Неорганические соединения
Бромид-ион ПНД Ф 14.1.175-2000 (издание 2014 г.)
Гидрокарбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Ионы аммония / Аммиак и ионы аммония ПНД Ф 14.1:2:4.276-2013 (издание 2013 г.)
Карбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Нитрат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Нитрит-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфид-ион ПНД Ф 14.1:2:4.178-02 (издание 2010 г.)
Фосфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фторид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Хлорид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Элементы
Алюминий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Барий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Бериллий Методика определения выбирается лабораторией
Бор / Ионы бората ГОСТ 31949-2012
Ванадий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Железо ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кадмий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Калий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кальций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кобальт ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Литий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Магний ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Марганец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Медь ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Молибден ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Мышьяк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Натрий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Никель ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Свинец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Серебро ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Стронций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Хром ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Цинк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Ртуть Методика определения выбирается лабораторией

Не нашли нужные показатели?

Анализ проводится с использованием передовых методик и техник анализа, в том числе фотометрии, ионной хроматографии, атомной абсорбции и потенциометрии, масс-спектрометрии и флуоресцентного анализа, спектрофотомерии, жидкостно-жидкостной экстракции, что обеспечивает высокую точность и низкие уровни риска получения недостоверных результатов.

Наиболее подробный физико-химический и органолептический анализ воды по 56 важным показателям согласно СанПиН 2.1.4.1074 включает в себя полный набор обобщённых показателей (в т. ч. жёсткость, минерализацию, перманганатную окисляемость, щёлочности, pH), полный перечень тяжёлых металлов и металлоидов (в т. ч. ртуть, свинец, кадмий, мышьяк), анализ сероводорода и нефтепродуктов; а также опасных органических компонентов, в том числе канцерогенов и ксенобиотиков.

Для проведения это анализа задействуется практически весь парк аналитического оборудования МГУ. Набор пользуется большой популярностью среди ТСЖ и строительных организаций.

2,5 л (пластик) + 0,2 л (стекло)

Для исследования питьевой воды рекомендуется набор «Оптимальный»

  • учитывает основные требования СанПиН 2.1.4.1074 в полном объёме и гарантирует безопасность для жизни и здоровья потребителей;
  • вместе с этим анализом Испытательный Центр МГУ проводит микробиологические исследования бесплатно;
  • включает анализ на опасные, канцерогенные вещества и ксенобиотики;
  • включает анализ на нефтепродукты и сероводород;
  • включает в себя полный набор тяжёлых металлов и металлоидов;
  • позволяет подобрать систему очистки Вашей воды от полного перечня загрязнителей;
  • позволяет принять решение об установке аэратора в составе водоподготовки;
  • позволяет оценить качество фильтров и очистных систем, которые Вы уже используете;
  • обладает высокой точностью, подтверждённой Межлабораторными Сличительными Испытаниями и поверками.
  • требует использования консерванта для сероводорода и дополнительной тары для нефтепродуктов;
  • аналитические работы занимают относительно много времени – до 5 рабочих дней.
Определяемый показатель Нормативный документ на методику
Органолептические показатели
Запах при 20 °C ГОСТ Р 57164-2016
Цветность ГОСТ 31868-2012 Метод Б (Cr-Co)
Мутность Методика определения выбирается лабораторией
Обобщённые показатели
Жесткость общая РД 52.24.395-2017
Перманганатная окисляемость / Перманганатный индекс ПНД Ф 14.1:2:4.154-99 (издание 2012 г.)
Водородный показатель (pH) / pH РД 52.24.495-2017
Общий хлор / Остаточный активный хлор / Сумма свободного и связанного хлора (хлораминов) ПНД Ф 14.1:2:4.113-97 (издание 2018 г.)
Сероводород ПНД Ф 14.1:2:4.178-02 (издание 2010 г.)
Сухой остаток / Минерализация (плотный остаток) ПНД Ф 14.1:2:4.261-2010 (издание 2015 г.)
Удельная электропроводность РД 52.24.495-2005
Общая щелочность ГОСТ 31957-2012 Метод А.2 Способ 1
Нефтепродукты Методика определения выбирается лабораторией
Кремнекислота (в пересчете на кремний) ПНД Ф 14.1:2:4.215-06 (издание 2011 г.)
Неорганические соединения
Бромид-ион ПНД Ф 14.1.175-2000 (издание 2014 г.)
Ионы аммония / Аммиак и ионы аммония ПНД Ф 14.1:2:4.276-2013 (издание 2013 г.)
Нитрат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Нитрит-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфид-ион ПНД Ф 14.1:2:4.178-02 (издание 2010 г.)
Фосфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фторид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Хлорид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Элементы
Алюминий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Барий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Бериллий Методика определения выбирается лабораторией
Бор / Ионы бората ГОСТ 31949-2012
Ванадий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Железо ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кадмий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Калий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кальций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кобальт ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Литий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Магний ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Марганец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Медь ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Молибден ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Мышьяк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Натрий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Никель ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Свинец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Селен ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Серебро ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Стронций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Титан ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Хром ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Цинк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Ртуть Методика определения выбирается лабораторией
Органические соединения
АПАВ ПНД Ф 14.1:2:4.158-2000 (издание 2014 г.)
Формальдегид ПНД Ф 14.2:4.227-2006 (издание 2018 г.)
Летучие органические соединения (ВТЕХ)
Бензол ПНД Ф 14.1:2:3.171-2000 (издание 2017 г.)
о-Ксилол ПНД Ф 14.1:2:3.171-2000 (издание 2017 г.)
Толуол ПНД Ф 14.1:2:3.171-2000 (издание 2017 г.)
м-,п- Ксилолы ПНД Ф 14.1:2:3.171-2000 (издание 2017 г.)
Полиароматические углеводороды (ПАУ)
Бенз(a)пирен ПНД Ф 14.1:2:4.70-96 (издание 2012 г.)
Фенолы и фенолпроизводные
Фенол Методика определения выбирается лабораторией

Не нашли нужные показатели?

Анализ проводится с использованием передовых методик и техник анализа, в том числе фотометрии, ионной хроматографии, атомной абсорбции и потенциометрии, масс-спектрометрии и флуоресцентного анализа, жидкостной хроматографии, газовой хроматографии, спектрофотомерии, жидкостно-жидкостной и твердофазной экстракции, что обеспечивает высокую точность и низкие уровни риска получения недостоверных результатов.

источник

Количественный химический анализ вод. Методика измерений массовой концентрации хлорид-ионов в питьевых, поверхностных и сточных водах меркуриметрическим методом

Документ устанавливает методику измерений массовой концентрации хлорид-ионов в питьевых, поверхностных и сточных водах меркуриметрическим методом

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ
В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

И.о. директора ФБУ «Федеральный

центр анализа и оценки техногенного

_________________ С.А. Хахалин

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВОЙ
КОНЦЕНТРАЦИИ ХЛОРИД-ИОНОВ В ПИТЬЕВЫХ,
ПОВЕРХНОСТНЫХ И СТОЧНЫХ ВОДАХ
МЕРКУРИМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного
экологического контроля

МОСКВА 1997 г.
(издание 2011 г.)

Методика рассмотрена и одобрена федеральным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия (ФБУ «ФЦАО»).

Главный инженер ФБУ «ФЦАО», к.х.н.

«Федеральный центр анализа и оценки техногенного воздействия» (ФБУ «ФЦАО»)

Настоящий документ устанавливает методику измерений массовой концентрации хлорид-ионов в питьевых, поверхностных и сточных водах меркуриметрическим методом.

Диапазон измерений от 10 до 10000 мг/дм 3 .

Мешающие влияния, обусловленные присутствием сульфит-, тиосульфат-, сульфид-, роданид-, цианид- ионов, железа и органических веществ, устраняются специальной подготовкой пробы к анализу (п. 9.1).

Определению мешают ионы цинка, свинца, алюминия, никеля и хрома (III) при массовых концентрациях, превышающих 100 мг/дм 3 , хромат-ионы при массовых концентрациях выше 2 мг/дм 3 , также мешают бромид- и иодид- ионы. В таких водах хлориды определяют другими методами.

Значения показателя точности измерений 1 — расширенной относительной неопределенности измерений по настоящей методике при коэффициенте охвата 2 приведены в таблице 1. Бюджет неопределенности измерений приведен в Приложении А.

Таблица 1 — Диапазон измерений, показатели неопределенности измерений

Суммарная стандартная относительная неопределенность, и, %

Расширенная относительная неопределенность 2 , U при коэффициенте охвата k = 2, %

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке качества проведения испытаний в лаборатории;

— оценке возможности использования настоящей методики в конкретной лаборатории.

1 В соответствии с ГОСТ Р 8.563-2009 (п. 3.4) в качестве показателя точности измерений использованы показатели неопределенности измерений).

2 Соответствует характеристике погрешности при доверительной вероятности Р = 0,95.

При выполнении измерений применяются следующие средства измерений, вспомогательное оборудование, материалы и реактивы:

3.1 Средства измерений, вспомогательное оборудование

Весы лабораторные специального класса точности с ценой деления не более 0,1 мг, наибольшим пределом взвешивания не более 210 г по ГОСТ Р 53228-2008 .

Государственные стандартные образцы (ГСО) состава раствора хлорид-ионов с массовой концентрацией 1 мг/дм 3 . Относительная погрешность аттестованных значений массовой концентрации не более 1 % при Р = 0,95.

Плитка электрическая лабораторная с регулятором температуры и закрытой спиралью по ГОСТ 14919-83 .

Сушильный шкаф электрический (200 ° С).

Штатив лабораторный ШЛ, ТУ 64-1-707-80.

Колбы конические КН-2-250-18 ТХС ГОСТ 25336-82 .

Колбы мерные 2-100(500, 1000)-2, ГОСТ 1770-74 .

Пипетки мерные 4(5)-2-1(2); 6(7)-2-5(10); 2(3)-2-25(50), ГОСТ 29227-91

Цилиндры мерные 2-100(1000), ГОСТ 1770-74 .

Бюретки лабораторные 6-2-2(5); 2-2-10(25), ГОСТ 29251-91 .

Пробирки П-1-10-0,1 ХС, ГОСТ 1770-74 .

Стаканчики для взвешивания СВ, ГОСТ 25336-82 .

Склянки из темного стекла для хранения реактивов.

Бутыли из полимерного материала или стекла с притертыми или винтовыми пробками для отбора и хранения проб вместимостью 500 — 1000 см 3 .

1 Допускается использование других средств измерений утвержденных типов, обеспечивающих измерения с установленной точностью.

2 Допускается использование другого оборудования с метрологическими и техническими характеристиками, аналогичными указанным.

3 Средства измерений должны быть поверены в установленные сроки.

Ртуть (II) азотнокислая, ГОСТ 4520-78 .

Натрия гидроксид, ГОСТ 4328-77 .

Натрий хлористый (NaCl), ГОСТ 4233-77 или стандарт-титр NaCl по ТУ 6-09-2540-87.

Натрий фосфорнокислый, ГОСТ 9397-68.

Азотная кислота, ГОСТ 4461-77 .

Перекись водорода, ГОСТ 10929-76 .

Спирт этиловый ректификованный технический, ГОСТ 18300-87 .

Дифенилкарбазон, ГОСТ 17551-72.

Бромфеноловый синий, ТУ 6-09-1058-76.

Серебро азотнокислое, ГОСТ 1277-75 .

Уголь активированный, ГОСТ 6217-74 .

Вода дистиллированная, ГОСТ 6709-72 .

Бумага индикаторная универсальная, ТУ 6-09-1181-89.

Фильтры обеззоленные, ТУ 6-09-1678-95.

1 Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

2 Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных.

Меркуриметрический метод определения массовой концентрации хлорид-ионов основан на взаимодействии хлорид-ионов с ионами ртути (II) с образованием малодиссоциированного соединения хлорида ртути.

Избыток ионов ртути (II) образует с индикатором дифенилкарбазоном в кислой среде (рН = 2,5 ± 0,2) окрашенное в фиолетовый цвет комплексное соединение, при появлении которого прекращают титрование.

Резкость перехода окраски индикатора в значительной мере зависит от соблюдения правильного значения рН раствора. Точное установление рН предусмотрено в ходе определения использованием смешанного индикатора и азотной кислоты. Величину рН определяют с помощью рН-метра.

При выполнении измерений необходимо соблюдать следующие требования техники безопасности.

5.1 При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76 .

5.2 Электробезопасность при работе с электроустановками по ГОСТ Р 12.1.019-2009 .

5.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004-90 .

5.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83 .

5.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88 .

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического анализа, освоивший данную методику и получивший удовлетворительные результаты при выполнении контроля процедуры измерений.

Измерения проводятся в следующих условиях:

температура окружающего воздуха (20 ± 5) °С;

атмосферное давление (84,0 — 106,7) кПа (630 — 800 мм рт.ст);

относительная влажность не более 80 % при t = 25 °C;

напряжение сети (220 ± 22) В;

частота переменного тока (50 ± 1) Гц.

При подготовке к выполнению измерений должны быть проведены следующие работы: отбор проб, приготовление вспомогательных растворов, установление точной концентрации раствора нитрата ртути.

8.1 Отбор и хранение проб воды

8 .1.1 Отбор проб питьевых вод производится в соответствии с требованиями ГОСТ Р 51593-2000 «Вода питьевая. Отбор проб».

Отбор проб поверхностных и сточных вод производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб», ПНД Ф 12.15.1-08 «Методические указания по отбору проб для анализа сточных вод».

8 .1.2 Пробы воды отбирают в бутыли из полимерного материала или стекла, предварительно ополоснутые отбираемой водой. Объем отобранной пробы должен быть не менее 200 см 3 .

8 .1.3 Пробы обычно не консервируют, хранят при комнатной температуре. В исключительных случаях, чтобы подавить биологические процессы, добавляют 2 — 4 см 3 хлороформа на 1 дм 3 пробы.

8 .1.4 При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

цель анализа, предполагаемые загрязнители;

должность, фамилия отбирающего пробу, дата.

8 .2 Приготовление вспомогательных растворов

2,9222 г хлористого натрия, предварительно высушенного при 105 ° С, помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу на 1000 см 3 и доводят до метки дистиллированной водой.

Допускается приготовление раствора хлористого натрия из стандарт-титра (фиксанала).

Хранят в стеклянной емкости не более 3-х месяцев.

12,7 см 3 концентрированной азотной кислоты растворяют в дистиллированной воде в мерной колбе вместимостью 1000 см 3 и доводят до метки дистиллированной водой.

Хранят в стеклянной емкости не более 3-х месяцев.

0,5 г дифенилкарбазона и 0,05 г бромфенолового синего помещают в стакан, растворяют в 5 — 10 см 3 96 %-ного этилового спирта, переносят в мерную колбу на 100 см 3 и доводят до метки 96 %-ным этиловым спиртом.

Хранят в склянке из темного стекла в течение месяца.

4,0 г гидроксида натрия помещают в стакан, растворяют в небольшом количестве дистиллированной воды, после охлаждения раствор переносят в мерную колбу на 1000 см 3 и доводят до метки дистиллированной водой. Хранят в полиэтиленовой емкости не более 1 месяца.

5 г натрия фосфорнокислого помещают в коническую колбу и растворяют в 95 см 3 дистиллированной воды.

Хранят в стеклянной емкости не более 3-х месяцев.

0,1699 г азотнокислого серебра помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу на 100 см 3 и доводят до метки дистиллированной водой.

Хранят в емкости из темного стекла не более 3-х месяцев.

8,12 г Hg( NO 3 )2 или 8,57 г Hg( NO 3 )2 × H 2 O или 8,34 г Hg(NO 3 )2 0,5 × Н2O помещают в стакан, растворяют в небольшом количестве дистиллированной воды, приливают 1 см 3 концентрированной азотной кислоты, помещают в мерную колбу на 1000 см 3 и доводят до метки дистиллированной водой. Хранят в емкости из темного стекла не более 3-х месяцев.

8.3 Установление точной массовой концентрации раствора нитрата ртути

8 .3.1 Установить точную нормальную концентрацию раствора нитрата ртути можно, определив коэффициент поправки к массовой концентрации раствора. Коэффициент поправки определяют по ГОСТ 25794.3-83 .

8 .3.2 Установление точной нормальной концентрации раствора нитрата ртути по раствору хлористого натрия.

В коническую колбу для титрования наливают 90 см 3 дистиллированной воды, приливают 10 см 3 раствора хлористого натрия (приготовленного по п. 8.2.1), перемешивают, добавляют 0,3 см 3 смешанного индикатора, вводят по каплям раствор азотной кислоты до перехода окраски от синей к желтой, дополнительно приливают 1 см 3 раствора азотной кислоты (для установления рН = 2,5) и титруют раствором нитрата ртути (II) до изменения желтой окраски на фиолетовую.

Для точного определения нормальной концентрации раствора нитрата ртути необходимо провести три параллельных определения. Расчет нормальной концентрации раствора нитрата ртути приведен в п. 10.1.

9 .1.1 При наличии мути и окраски, мешающих определению, пробу встряхивают с активированным углем (на 100 см 3 пробы добавляют 0,5 г активированного угля). Уголь не должен содержать хлоридов, что устанавливается холостым опытом с дистиллированной водой. После обесцвечивания пробы ее фильтруют через плотный бумажный фильтр («синяя лента») и фильтр промывают дистиллированной водой.

9 .1.2 Для устранения мешающего влияния сульфит-, тиосульфат-, сульфид-, роданид- и цианид-ионов к анализируемой пробе добавляют 3 — 4 см 3 перекиси водорода, далее раствором гидроксида натрия (п. 8.2.4) доводят до рН = 9 — 11 (по универсальной индикаторной бумаге) и кипятят пробу в течение 5 — 7 мин.

9 .1.3 Определение хлорид-ионов в окрашенных, сильно загрязненных органическими веществами сточных водах, проводят после предварительного выпаривания вод в щелочной среде (рН = 9 — 10) досуха. Остаток после выпаривания слегка прокаливают в течение 5 мин. при температуре 300 °С и растворяют в горячей дистиллированной воде, приливая ее порциями.

9 .1.4 Железо мешает в массовых концентрациях, превышающих 10 мг/дм 3 , его связывают добавлением нескольких капель 5 %-ного раствора натрия фосфорнокислого.

9.2 Предварительное измерение

Для правильного выбора аликвотной части перед началом анализа проводят качественное определение массовой концентрации хлорид-ионов.

Аликвотную часть анализируемой пробы объемом 5 см 3 помещают в пробирку вместимостью 10 см 3 , подкисляют 1 — 2 каплями раствора азотной кислоты, прибавляют 3 — 5 капель раствора азотнокислого серебра и взбалтывают. По количеству осадка устанавливают аликвотную часть пробы, необходимую для проведения анализа согласно таблице 2.

источник

Обозначение: ПНД Ф 14.1:2:4.111-97
Название рус.: Количественный химический анализ вод. Методика измерений массовой концентрации хлорид-ионов в питьевых, поверхностных и сточных водах меркуриметрическим методом
Статус: действует
Дата актуализации текста: 05.05.2017
Дата добавления в базу: 01.09.2013
Утвержден: 23.03.2011 ФБУ Федеральный центр анализа и оценки техногенного воздействия
Опубликован: ФБУ ФЦАО (2011 г. )
Ссылки для скачивания: