Меню Рубрики

Химического анализа производственных сточных вод

Производственные сточные воды в основном загрязнены отходами и выбросами производства. Количественный и качественный состав таких стоков разнообразен и зависит от отрасли промышленности, ее технологических процессов. По составу сточные воды делят на три основные группы, содержащие:

  • * неорганические примеси (в том числе токсические);
  • * органические примеси;
  • * неорганические и органические загрязняющие примеси.

К первой группе относятся сточные воды содовых, сульфатных, азотно-туковых заводов, обогатительных фабрик свинцовых, цинковых, никелевых руд и т. д., в которых содержатся кислоты, щелочи, ионы тяжелых металлов и др. Сточные воды этой группы в основном изменяют физические свойства воды. Сточные воды второй группы сбрасывают нефтеперерабатывающие и нефтехимические заводы, предприятия органического синтеза, коксохимические и др. В стоках содержатся различные нефтепродукты, аммиак, альдегиды, смолы, фенолы и другие вредные вещества. Вредоносное действие сточных вод этой группы заключается, главным образом, в окислительных процессах, вследствие которых уменьшается содержание в воде кислорода, увеличивается биохимическая потребность в нем, ухудшаются органолептические показатели воды. Сточные воды третьей группы образуются в процессах гальвано-химической обработки поверхностей, производстве печатных плат электронной техники, в коксохимических и других технологических процессах. В составе этих стоков присутствуют неорганические кислоты, ионы тяжелых металлов, ПАВ, масла, красители, смолы и другие вещества.

В зависимости от концентрированности производственные сточные воды могут быть высококонцентрированными и слабоконцентрированными, по значению показателя pH стоки делятся на малоагрессивные (в том числе слабокислые и слабощелочные) и высокоагрессивные (сильнокислые и сильнощелочные).

Производственные сточные воды можно подразделить на два основных вида: незагрязненные и загрязненные.

  • 1. Незагрязненные производственные сточные воды поступают от холодильных, компрессорных, теплообменных аппаратов. Кроме того, такие стоки образуются при охлаждении технологического оборудования и продуктов производства.
  • 2. Загрязненные производственные сточные воды содержат различные примеси, такие стоки могут быть загрязнены преимущественно органическими или преимущественно минеральными примесями.

Производственные сточные воды можно различать также по физическим свойствам, например, по температуре кипения: кипящие при температуре ниже 120 °С, 120-250 °С и выше 250 °С (в зависимости от свойств содержащихся в них примесей).

По степени агрессивности сточные воды разделяют на:

  • * слабоагрессивные (слабокислые, рН 6-6,5 и слабощелочные, рН 8-9);
  • * сильноагрессивные (сильнокислые, рН 9);
  • * неагрессивные (рН 6,5-8).

Для формирования состава производственных сточных вод большое значение имеет вид перерабатываемого сырья. Так, основным загрязняющим компонентом сточных вод нефтеперерабатывающих предприятий является нефть, нефтепродукты. На современном этапе они являются основными загрязнителями внутренних водоемов, вод и морей Мирового океана. Попадая в водоемы, они создают разные формы загрязнения: плавающую на воде нефтяную пленку, растворенные или эмульгированные в воде нефтепродукты, осевшие на дно тяжелые фракции и т. д. При этом изменяется запах, вкус, окраска, поверхностное натяжение, вязкость воды, уменьшается количество кислорода, появляются вредные органические вещества, вода приобретает токсические свойства и представляет угрозу не только для человека. Всего 12 г нефти делают непригодной для употребления тонну воды. Довольно вредным загрязнителем промышленных вод является фенол. Фенол содержится в сточных водах многих нефтехимических предприятий и коксохимических производств. При этом резко снижаются биологические процессы водоемов, процесс их самоочищения, вода приобретает специфический запах карболки.

Состав сточных вод зависит также от технологического процесса, состава исходных компонентов, промежуточных продуктов, выпускаемых продуктов, состава исходной воды, местных условий и от других факторов.

источник

Промышленная деятельность зачастую не обходится без сброса сточных вод. Отработанная загрязненная жидкость попадает в окружающую среду, а значит, процесс ее сброса должен контролироваться. Для этого проводится специальное исследование — анализ сточных вод. Такая процедура выполняется по правилам и имеет свои особенности.

Сточными водами называют всю воду, загрязненную в быту или на производстве. Через канализацию или коллекторы она оказывается в водоносных слоях грунта. Другими словами, стоки могут в том числе стать причиной загрязнения питьевой воды. Стоки подразделяются на несколько групп, в зависимости от их происхождения. Они бывают:

Самыми опасными считаются именно промышленные стоки, поскольку в них могут находиться ядовитые, токсичные и радиоактивные элементы, а также тяжелые металлы, фосфаты, сульфиты. Чтобы избежать проникновения таких опасных веществ в окружающую среду, предприятия должны иметь надежные фильтры для сточных вод.

Анализ сточных вод предприятия позволяет с точностью определить содержание в них вредных элементов. Целью такого исследования является:

  • определение уровня загрязнения;
  • оценка результативности работы фильтров и очистных сооружений;
  • рекомендации по улучшению очистительных работ.

Кроме того, такая проверка должна выявить, соответствуют ли стоки установленным ГОСТам.

Для промышленных предприятий устанавливается частота проведения регулярных анализов в зависимости от рода деятельности. При обнаружении нарушений, проверка повторяется экстренно. Также проведение экспертизы потребуется в следующих случаях:

  • при исполнении программ производственной проверки;
  • для составления базы данных с последующим оформлением документации;
  • после проведения очистительных работ.

Исследование стоков проводится в лабораторных условиях либо на самом предприятии, либо в отделе СЭС. При этом проверка должна выполняться только специалистами, получившими лицензию. Лабораторные исследования сточных вод строго регламентированы и проводятся по инструкции, в которой в том числе описаны требования к оборудованию, задачи анализа, места отбора образцов и формулы подсчета сроков проведения регулярных проверок.

Экспертиза состоит из трех этапов:

  • отбор проб;
  • выполнение анализа в лаборатории сточных вод;
  • подведение итогов, составление рекомендаций (при необходимости).

Каждый этап имеет свои правила. Так, сбор образцов может производиться только в присутствии собственника (представителя) предприятия. Обязательно составляется акт. Местом сбора выбирается хорошо перемешанный поток, чтобы концентрация образца была максимально информативной. Исходя из поставленных задач, отбор может быть простым (берется единожды в подходящем месте) и смешанным (несколько простых проб, взятых в разное время, смешиваются между собой).

Химический анализ сточных вод — главный этап экспертизы. Проверка образца производится сразу по нескольким показателям качества.

  1. Физические показатели — уровень прозрачности, температура, цвет, запах. Эти признаки оцениваются визуально, поэтому считаются недостаточно информативными.
  2. Сухой остаток — определение степени загрязнения. По этому показателю стокам присваивается категория.
  3. Химические — позволяют определить щелочность и кислотность стоков. Измеряются путем наблюдения реакции взаимодействия с базовой pH.
  4. Азотсодержащие соединения и фосфор — показатель, помогающий определить качество фильтрации стоков.
  5. Токсины — коэффициент, показывающий наличие органических или неорганических токсических веществ.
  6. Синтетические поверхностно-активные вещества — большое количество СПАВ препятствует естественным процессам очистки воды, понижает содержание кислорода. Показатель не должен превышать 20 мг/л.
  7. Окисляемость — вычисляется при помощи биохимического и химического кислорода, позволяет оценить степень загрязнения стоков органическими и неорганическими веществами.
  8. Зольность — определяет количество осадка, которое остается после нагревания взвешенных примесей.

При невозможности проведения полноценного лабораторного анализа стоков может быть применен экспресс-анализ. Он требует оборудования и занимает несколько минут. Однако, несмотря на такие преимущества, экспресс-анализ намного уступает лабораторной экспертизе в достоверности и информативности результатов.

Экспресс-анализ состоит из нескольких процессов:

  • органолептического (изучение физических показателей);
  • колориметрического (определение кислотности и наличия вредных веществ);
  • титриметрического (определение щелочности и концентрации кислорода).

Экспертиза стоков — обязательная мера контроля. Своевременная проверка не только убережет предприятие от штрафа, но и поможет защитить окружающую среду от опасных веществ.

источник

Дата публикации: 01.09.2013 2013-09-01

Статья просмотрена: 14775 раз

Кутковский К. А. Виды сточных вод и основные методы анализа загрязнителей // Молодой ученый. — 2013. — №9. — С. 119-122. — URL https://moluch.ru/archive/56/7745/ (дата обращения: 21.10.2019).

Воды и атмосферные осадки, которые поступают в естественные водоемы с территорий населенных пунктов и предприятий, принято называть сточными водами. Отвод данных вод осуществляется посредством канализации или естественным путем.

Сточные воды это в большей или меньшей степени загрязненные в результате использования бытовые, промысловые и производственные воды, содержащие отбросы или отработанное тепло, а также отличающиеся изменившимися в отрицательную сторону физическими и биологическими свойствами [1, с. 1287]. Из этого можно сделать вывод о, безусловно, антропогенном происхождении и неоднородности стоков, а также о сложности очистки или утилизации данного продукта антропогенной деятельности.

Из-за ухудшившихся биологических и физических свойств, сточные воды пагубно влияют на развитие всей биосферы. Сточные воды провоцируют и ускоряют эвтрофикацию водоемов из обильного содержания в них фосфора и азота, а также приводят к изменению естественных биоценозов и, как следствие, гибели биологических видов, загрязнению объектов водопользования, используемые человеком в качестве источника питьевой воды. Так же происходит обильное воздействие на артезианские бассейны: их биологическая чистота несопоставима с их состоянием до научно-технической революции, обусловившей эру активного антропогенного воздействия на природу.

Вследствие научно-технической мысли, ее развитии и повсеместном внедрение, источниками сточных вод являются практически любые антропогенные объекты: жилые дома, образовательные учреждения, медицинские объекты, торговые склады и точки реализаций товаров, различные сервисные организации, АЗС, металлургическая промышленность, пищевая промышленность, фармацевтической промышленность, сельхозяйственные угодья и т. д.

Для контроля качества и объема поступления сточных вод разрабатываются законы и подзаконные акты, происходит внедрение и разработка как новых, так и уже зарекомендованных себя методов очистки. Формируется всесторонний анализ сточных вод, позволяющий разработать оптимальный алгоритм очистки (с учетом характера загрязнителей) для каждого промышленного объекта и оценить качество воды, покидающей очистные сооружения. Любые нарушения влекут за собой штрафы и санкции, прописанные как в Водном кодексе РФ, так и в Уголовном кодексе РФ.

Определим, какими характеристиками обладают сточные воды, и как загрязнители влияют на процесс очистки. Для начала определим классификацию сточных вод и особенности отдельных их типов.

Виды сточных вод

1) Хозяйственно-бытовые. Этот тип стоков в основном поступает из жилых домов, а так же объектов социального пользования(больницы, образовательные учреждения, торговые центры и т. д.). Отведение происходит посредством хозяйственно-бытовой и общесплавной канализации. Состав загрязнителей: 58 % — органика, 42 % — минеральные вещества. Особенность — высокое содержание азотсодержащих соединений и фосфатов, значительная степень фекального загрязнения.

2) Промышленные сточные воды. Основной загрязнитель — объекты промышленности и предприятия различного рода деятельности. Отведение происходит посредством промышленной канализации. Спектр загрязнителей характеризуется видом промышленной деятельности. Содержат органические и неорганические элементы. Наибольшую опасность для гидросферы и человека представляют нефтепродукты, органические красители, фенолы, поверхностно-активные вещества, сульфаты, хлориды и тяжелые металлы.

3) Поверхностные сточные воды. Основное поступление из дождевых и талых вод, формирующихся из атмосферных осадков, проникающих в почву и стекающих в водоемы посредством ливневой канализации с территории промышленных предприятий и населенных пунктов. Спектр возможных загрязнителей широк и определяется особенностями территории и видом антропогенной деятельности, преобладающей в районе стока.

Анализ сточных вод

Рассмотрим основные источники поступления сточных вод в экосистемы: промышленные и бытовые объекты, на них приходится основная доля поступающих на очистные сооружения стоков. [2, с. 59] Анализ именно этих источников позволяет понять специфику оценки качества сточных вод и спектр загрязнителей. На выходе из очистных сооружений не должно быть примесей, содержишихся в характерной для той или иной природы стоков, либо их количество должно быть минимальным (определяется нормативами).

Для анализа качества вод используются следующие параметры: температура, цветность, запах и прозрачность. Физические показатели качества воды малоинформативные и понятны на интуитивном уровне. Для всех типов сточных вод характерна повышенная температура, специфический запах и сниженная прозрачность (определяется по шрифту). Изменение цветности (измеряется в градусах платинокобальтовой шкалы) присущи промышленным сточным водам и зависят от вида производственной деятельности.

Так же важным методом анализа качества вод является химический анализ. Реакция (рН) коммунальных сточных вод, как правило, нейтральна (6,5–8), а реакция промышленных стоков подвержена изменениям от сильнокислой (рН менее 3) до сильнощелочной (рН более 11) в зависимости от источника поступления. В процессе очистки реакция сточных вод должна стать нейтральной.

Для определения доли примесей как сухих, так и растворенных, используется такой параметр как «сухой остаток», отражающий степень загрязненности воды примесями. Данный параметр берется из нефильтрованной пробы. Он указывает на количество в воде примесей, как взвешенных (руда, окалина, известняк, кокс и т. д.), так и растворенных. В зависимости от содержания примесей сточные воды принято делить на четыре категории: первая — сухой остаток менее 500 мг/л (коммунальные сточные воды), четвертая — выше 30 000 мг/л. Отметка 5000 мг/л разделяет вторую и третью категорию. [4, с. 76]

Процесс очистки сточных вод от взвешенных примесей происходит путем механических методов очистки, самым распространенным из которых является метод отстаивания. Для прогнозирования эффективности этого метода используется показатель «оседающие вещества». Проба воды помещается в цилиндр, после чего оценивается, какое количество взвешенных веществ осядет за 2 часа. Измеряется в мг/л и процентах от сухого остатка. Оседающие вещества в городских сточных водах, как правило, составляют 65–75 %.

Необходимость вычисления сухого остатка обусловлена дальнейшей обработкой промышленных и коммунальных стоков при помощи биологических методов (бактерии), и на этой стадии количество взвешенных веществ не должно превышать 10 г/л.

Следующим важным параметром сточных вод является зольность твердых примесей. Прокаливание сухого остатка проводят при температуре «красного» каления (500–600°С), в результате чего часть химических соединений сгорает и улетучиваются в виде оксидов, углерода, водорода, азота, серы и других примесей, вес пробы уменьшается. Массу остатка, называемого золой, делят на первоначальную массу образца и получают зольность, выраженную в процентах. Для городских сточных вод характерна зольность 25–35 %.

Еще одним показателем является окисляемость. Данный показатель является санитарным, сфера его актуальности распространяется также не только на сточные воды. Окисляемость указывает на степень загрязнения воды органическими и неорганическими веществами, но также он используется для оценки степени органического загрязнения. Окисляемость определяется при помощи аэробных гетеротрофных бактерий (биохимическая окисляемость) и посредством химических реакций (химическая окисляемость — бихроматная, иодатная и т. д.).

Единицами измерения окисляемости является потребление кислорода: БПК и ХПК — биохимическое и химическое потребление кислорода, выраженное в миллиграммах О2 на литр. Большое значение имеет соотношение БПК к ХПК, которое позволяет прогнозировать, какое количество загрязнителей может быть удалено при помощи биологических методов очистки. [3, с. 141]

Химическая окисляемость определяет общее содержание в воде восстановителей — органических и неорганических, реагирующих с окислителями. В сточных водах преобладают органические восстановители, поэтому, как правило, всю величину окисляемости относят к органическим примесям воды.

Важнейшими показателям для сохранности гидросферы и эффективности биологической очистки является содержание фосфора и азотистых соединений. В сточных водах определяется содержание общего, нитратного, нитритного и аммонийного азота. От количества соединений азота зависит степень эффективности биологической очистки. При малом содержание азота в производственных сточных водах на стадии биологической очистки добавляют в воду хлористый аммоний. В хозяйственных стоках концентрация соединений азота всегда высока, из-за обилия поступающих веществ, связанных с процессом человеческой жизнедеятельности.

Концентрация фосфора в сточных водах всегда превышает ПДК. Основой поступления фосфатов в сточные воды служат фосфатные компоненты синтетических моющих средств и фекальные стоки, поступающие как из хозяйственной, так и из промышленной сферы. Избыток фосфорсодержащих соединений является одной из главных причин эвтрофикации водоемов.

Следующими показателями состояния сточных вод являются сульфаты и хлориды. Концентрация сульфатов в городских сточных водах обычно находится на уровне 100- 150 мг/л, хлоридов — 150–300 мг/л. В промышленных стоках (в частности, на металлургических заводах) уровень хлоридов и сульфатов значительно выше, к тому же к ним добавляются цианиды, аммиак и роданистые соединения.

Представленные выше показатели важны для оценки загрязненности стоков, так же их следует учитывать и в процессе трактовки данных, полученных в ходе иных анализов. Концентрацию хлоридов важно знать при определении ХПК, так как хлориды окисляются бихроматом калия до молекулярного хлора. Поэтому при концентрации хлоридов более 200 мг/л требуется их предварительное осаждение или введение поправки к результату анализа ХПК. Синтетические поверхностно-активные вещества, или СПАВ, так же являются серьезными загрязнителями естественных водоемов. Воздействие СПАВ напрямую влияет на эвтрофикацию рек и озер, угнетение процессов самоочищения гидросферы, торможение биохимических процессов в водоемах, вызывая другие губительные для биоценоза процессы.

Читайте также:  Анализы проводимые с минеральной водой

Большинство СПАВ — органические вещества, состоящие из двух частей: гидрофобной и гидрофильной. Гидрофобная часть СПАВ соединена обычно с одной гидрофильной группой. В зависимости от физико-химических свойств гидрофильной части СПАВ делятся на три основных типа: анионактивные, катионоактивные, неионогенные. Каждый тип в свою очередь делится на классы в зависимости от химического состава гидрофобной части.

Примерно 75–80 % всех СПАВ, применяемых в быту и промышленности, составляют анионактивные. Важнейшим из них являются: алкилсульфаты с общей формулой R—O—SO3Na (где R — углеводородный радикал с числом углеродных атомов от 10 до 20); алкилсульфонаты R—SO3Na (с числом углеродных атомов 12–15) и алкиларилсульфонаты R—C6Н4—SO3Na (с числом углеродных атомов в радикале 5–18).

Так же присутствие СПАВ резко отрицательно сказывается на работе очистных сооружений, во время очистки сточных вод поверхностно-активные вещества замедляют процессы осаждения твердых взвешенных частиц, провоцируют появление пены в очистных сооружениях и препятствуют биологической очистке. Для предотвращения данных процессов содержание СПАВ в стоках, поступающих на стадию биологической очистки, не должно превышать 20 мг/л. Некоторые фракции (в частности, жесткие СПАВ) предварительно должны быть полностью удалены химическими и физико-химическими методами.

Поверхностно-активные вещества присутствуют во всех сточных водах, в том числе и хозяйственно-бытовых. Источниками СПАВ в сточных водах является результат широкого применения их в быту и промышленности в качестве моющих средств, а также смачивающих, эмульгирующих, выравнивающих, дезинфицирующих препаратов.

Наиболее высокая концентрация токсических веществ определяется в промышленных сточных водах и классифицируются на две категории — неорганические и органические. К органическим токсическим веществам относятся нефтепродукты, смолы, карбоциклические соединения, пестициды, красители, кетоны, фенолы, спирты и СПАВ. Неорганические компоненты представлены солями, щелочами, кислотами и различными химическими элементами (хром, алюминий, свинец, никель, фтор, бор, железо, ванадий и т. д.).

В хозяйственно-бытовых и сельскохозяйственных сточных водах основными биологическим загрязнителями являются бактерии, вирусы, патогенные простейшие и яйца гельминтов, источником которых являются люди и животные.

Для оценки фекальной загрязненности сточных вод используются микробиологические анализы — определение общего микробного числа и количества общих колиформ (коли-тест). Основная задача данных анализов оценить степень фекального загрязнения воды, а не выявление самого факта наличия патогенных микроорганизмов. Вывод делается на основе степени загрязнения сточных вод фекалиями: чем выше уровень загрязнения, тем выше вероятность присутствия патогенных организмов в воде.

Бактериологический анализ сточных вод необходим для оценки эффективности работы очистных сооружений и дает представление о необходимых корректировках процесса очистки сточных вод. Дезинфекция проводится хлором, который оказывает негативное воздействие на качество воды.

Последним показателем является растворенный кислород. Содержание растворенного кислорода (РК) в воде характеризует кислородный режим водоема и имеет важнейшее значение для оценки его экологического и санитарного состояния. Он также необходим для самоочищения водоемов, т. к. участвует в процессах окисления органических и других примесей, разложения отмерших организмов. Снижение концентрации РК свидетельствует об изменении биологических процессов в водоеме, о загрязнении водоема биохимически интенсивно окисляющимися веществами (в первую очередь органическими). Потребление кислорода обусловлено также химическими процессами окисления содержащихся в воде примесей, а также дыханием водных организмов. Поэтому важным фактором является соблюдение качества очищенной воды, поступающей в естественные водоемы. [5, с. 49]

Оценка качественного и количественного состава загрязнителей сточных вод необходима не только для составления плана очистных мероприятий, но и для повышения их эффективности, а так же для мониторинга и последующего прогнозирования негативного антропогенного воздействия на гидросферу и экосистему в целом. Проблемы загрязненности сточных вод, методов очистки и возвращения в естественные источники или их повторное использование, давно перестали быть чем то далеким и несбыточным. За последние 150 лет качество наземных и подземных источников воды резко ухудшилось и требует не только использования современных норм и стандартов, но так же и поиск, разработку и внедрение новых идей и подходов, как к контролю поступающих загрязняющих веществ, так и к методам очистки сточных вод.

1. Советский энциклопедический словарь/Научно-редакционный совет: А. М. Прохоров (пред.).- М.: «Советская энциклопедия», 1981.- 1287 с.

2. Водоотведение и очистка сточных вод: Учебник для вузов/С. В. Яковлев, Я. А. Карелин, Ю. М. Ласков, В. И. Калицун.- М.:Стройиздат, 1996.- 59 с.

3. Комплексное использование и охрана водных ресурсов. Под редакцией О. А. Юшманова М.: Агропромиздат 1985.- 141 с.

4. Евилович А. З. Утилизация осадков сточных вод М.: Стройиздат 1989.- 76 с.

5. Методы охраны внутренних вод от загрязнения и истощения Под редакцией И. К. Гавич М.: Агропромиздат 1985.- 49 с.

источник

Химический анализ сточных вод в собственной лаборатории предприятия или в независимой организации, аккредитованной на ведение такого рода работ, является обязательным и необходимым для всех объектов промышленного производства. Но необходим он и на частных территориях в случае, если на объекте установлен септик с функцией залпового сброса. В этом случае недоочищенная вода, попадая в окружающую среду, может нанести действительно серьезный вред.

Проводить исследование качества сбрасываемых канализационных отходов должны специалисты, которые заберут пробы на исследование, чтобы оценить объемы и масштабы проблемы. Проверка в этом случае проводится не менее масштабная, чем при изучении содержимого колодца и водопровода. А любые выявляемые несоответствия представляются экспертами с рекомендациями по исправлению нанесенного вреда. Ведь даже несвоевременная очистка ливневых канализационных колодцев в Москве и Московской области уже не раз приводила к существенному ухудшению экологии.

Экспертиза сточной воды производится в лабораторных условиях, на самом промышленном объекте или по заказу, в одном из отделений СЭС. Цена такой проверки с оценкой химического состава и проверкой основных показателей может меняться в зависимости от того, какие именно объемы проверок будет проводиться. Уточнить стоимость для предприятий и организаций всегда можно заранее, до того, как будет достигнут необходимый результат переговоров.

Проводится анализ сточных вод всегда по стандартной схеме:

  • заказ услуги, вызов специалистов;
  • выезд на объект для забора проб;
  • отбор образца для исследования, в присутствии собственника, с составлением официального акта;
  • выполнение анализа в лаборатории;
  • подведение итогов — при выявлении нарушений составляются рекомендации по их устранению.

Нормативы и стандарты ГОСТ устанавливаются не только на питьевую воду. Для канализационных стоков в этой сфере действуют еще более жесткие регламенты, особенно когда речь идет о промышленных предприятиях, способных нанести существенный вред окружающей среде. Для них может быть регламентирована частота проверочных мероприятий, а также интенсивность и объемы. В случае выявления нарушений проверка может проводиться в экстренном порядке. Анализ сточных вод в Москве в этом случае проводится по заказу собственника или иного субъекта, осуществляющего хозяйственную деятельность.

Важно понимать, что чистота окружающей среды — важнейший критерий безопасности жизнедеятельности и абсолютно необходимое явление, если производится прямой сброс сточных вод.

Специалисты СЭС напоминают:

Попадание в открытые водоемы, колодцы, скважины воды из канализационной системы, не прошедшей достаточную очистку, может привести к повышению концентрации тяжелых металлов (Pb), а также других химических элементов, фосфатов, сульфатов. Это также способно негативно отразиться на общей микробиологической безопасности водных ресурсов.

Проведение анализа сточных вод — неотъемлемая часть работы предприятий и организаций в столичном регионе. Необходимость в его проведении может возникнуть в следующих случаях:

  • при реализации программ производственного контроля;
  • при формировании базы данных для дальнейшего составления нормативной документации (специальной декларации, проектной разработки нормативов сброса, считающегося допустимым);
  • в обязательном порядке — на предприятиях по очистке воды, с оценкой качества выполненных работ (насколько чище стала вода после обработки).

Помимо этого, выполняется анализ сточных вод по запросу собственников для оценки обстановки после выявления случаев нарушения санитарных нормативов и стандартов. Здесь исследования проводятся сразу по нескольким направлениям с учетом способа сброса, применяемого на объекте.

При проведении исследования качества и безопасности сбрасываемых стоков количество параметров во многом определяется способом их сброса. Если после очистки жидкость попадает в ливневые и дождевые стоки (поверхностно), в них изменяется кислотности (содержание водорода), температурные показатели, взвеси, сульфаты и сульфиды, наличие аммонийного азота, следов продуктов нефтепереработки. Перечень может расширяться с учетом аспектов деятельности предприятия или организации, объемов существующих рисков заражения или недоочистки стоков.

Если сброс проводится непосредственно в бытовые или централизованные системы водоотведения, в обязательном порядке выполняется исследование на содержание тяжелых металлов, а также железа, цветных металлов, марганца, следов поверхностно-активных веществ (анионные). Исследуются стоки и на наличие следов фенола, и на целый ряд других параметров, по результатам проверки выдаются рекомендации.

источник

Промстоки образуются на предприятиях и выводятся с их территории через специальные канализационные коллекторы.

Спектр их загрязнителей зависит от характера деятельности того или иного предприятия. В них могут содержаться неорганические и органические загрязнители.

Наибольшую опасность в настоящее время для человека и гидросферы представляют нефтепродукты, фенолы, органические красители, сульфаты, поверхностно-активные вещества, тяжёлые металлы и хлориды.

Указанный анализ позволяет выявить специфику и спектр загрязнителей промстоков, сбрасываемых в канализацию. При повторном анализе на выходе из комплекса сооружений, выполняющих очистку, обнаруженные ранее специфические загрязнители должны полностью отсутствовать, либо их количество должно быть понижено до минимально разрешённого минимума.

Запах, цветность, прозрачность и температура. Данные физические показатели, по которым может проводиться анализ, малоинформативны. Они воспринимаются на уровне интуиции, поэтому анализируются поверхностно.

Все сточные воды обладают повышенными температурами, имеют пониженную прозрачность и специфический запах. Прозрачность определяется по стандартным шрифтам. Изменение цветности – по градусам платинокобальтовой шкалы. Степень изменения зависит от профиля производственной деятельности предприятия.

Базовая реакция рН промышленных стоков меняется в диапазонах от рН 11).

Его значение определяется при анализе нефильтрованной пробы. Указанный показатель информирует о количестве примесей, имеющихся в воде, как взвешенных (окалина, руда, кокс, известняк и т.п.) и растворённых. В зависимости от содержания этих примесей все промышленные стоки подразделяют на 4 категории:

  • первая — величина сухого остатка менее 500 мг/л (сюда входят коммунальные сточные воды);
  • вторую и третью категорию разделяет показатель в 5000 мг/л;
  • четвёртая – более 30000 мг/л.

Выявленные взвешенные примеси могут быть удалены механическими методами выполнения очистки. Самый простой из них – элементарное отстаивание.

Определить действенность данного метода позволяет использование показателя «оседающие вещества». Для его получения проба воды набирается в цилиндр и выполняется оценка количества взвешенных веществ, выпавших в осадок за два часа. Может измеряться в процентах от сухого остатка, либо в мг/л. В городских стоках он составляет от 65 до 75 процентов.

Необходимость выявления сухого остатка важна потому, что промышленные стоки требуют очистки с использованием бактерий (биологическая очистка). Кроме того, на указанной стадии величина взвешенных веществ не может превышать 10г/л. В противном случае очистка не достигнет требуемой эффективности.

Более точно говорить, что речь идёт не о сухом, а о плотном остатке, который представляет собой количество твёрдых веществ, содержащихся в фильтрованной пробе.

Значение указанного показателя определяется следующим образом. При температуре порядка 600 градусов имеющийся сухой остаток прокаливается. В результате часть из них сгорает и улетучивается, в результате вес пробы становится меньше. Масса полученного остатка делится на массу первоначальную. В результате получается значение зольности в процентах.

Указанный санитарный показатель является весьма актуальным не только в отношении сточных вод. Он позволяет получить представление о степени загрязнения воды веществами органического и неорганического происхождения. Фактически этот показатель применяется для оценки степени только органического загрязнения. Он может определяться двумя основными типами исследований:

  • проведением определённых химических реакций (вычисляется химическая окисляемость – иодатная etc, бихроматная и т.п.);
  • с использованием гетеротрофных аэробных бактерий (так называемая биохимическая окисляемость).

Величина окисляемости измеряется потребляемым количеством кислорода: ХПК (химическое) и БПК (биохимическое) потребление кислорода, показатель которого определяется в миллиграммах молекулярного кислорода на литр. Очень важным является отношение БПК/ХПК, так как оно позволяет прогнозировать вероятное количество загрязнителей, которое можно удалить, применяя биологические методы очистки.

Этот показатель считается одним из важнейших для обеспечения высокой эффективности процессов биоочистки и сохранности гидросферы. В промышленных стоках определяется содержание нитритного, нитратного, и аммонийного азота.

От количества соединений указанного вещества во многом зависит степень эффективности проводимой биоочистки. Если азота в промстоках мало, то на этапе биоочистки в воду добавляется хлористый аммоний. Но, как правило, этот показатель превышает норму.

Содержание фосфора всегда многократно превышает ПДК. Объясняется это тем, что фосфаты широко представлены в составе моющих и чистящих средств.

В промышленных стоках значение показателей существенно выше, чем в бытовых. К тому же, к ним добавляются аммиак, цианиды и роданистые соединения.

Эти показатели считаются важными не только в плане определения степени загрязнения, но и для объективной трактовки иных данных, полученных в результате анализов.

Простой пример. Если уровень хлоридов превышает 200 мг/л, то в значение соответствующего ХПК вносится поправка. Иначе придётся осаждать хлориды до того, как приступить к определению бихроматной окисляемости взятой пробы.

Естественные водоёмы максимально страдают именно от указанных типов загрязнений. СПАВ приводят к возникновению эвтрофикации озёр и рек, угнетают процессы, благодаря которым водоёмы самоочищаются, тормозят любые биохимические процессы в них. СПАВ инициируют снижение процентного содержания кислорода в водоёмах и иные процессы, являющиеся губительными для любого биоценоза.

Во время очистки промышленных стоков ПАВ замедляют процессы, обуславливающие осаждение твёрдых взвесей и провоцируют появление в очистных сооружениях пены, а также препятствуют качественной биологической очистке сбрасываемых стоков.

Поэтому содержание СПАВ в промышленных стоках, на момент их поступления в зону биологической очистки, не может превышать 20мг/л. А отдельные фракции (например, жёсткие СПАВ) необходимо предварительно полностью убрать любыми методами.

Специфические элементы, которые определяются в промышленных стоках, делятся на органические и неорганические. К первым относятся нефтепродукты, карбоциклические соединения, смолы, красители, пестициды, фенолы, кетоны, спирты и СПАВ.

Ко вторым причисляются щёлочи, соли, кислоты, иные химические элементы, в числе которых следует отметить свинец, алюминий, хром, фтор, никель, железо, бор, ванадий и т.п.

Перечень обязательных тестов, которые должны проводиться с промышленными стоками, определён действующими нормативами. В первую очередь, он увязан с характером производственного процесса.

Чаще всего присутствуют в стоках животноводческих предприятий. Выполняемый на выходе данный анализ даёт возможность оценить, насколько эффективно действуют очистные сооружения, и позволяет уточнить, какие коррективы следует внести в процесс обработки.

Это заключительный показатель, характеризующий степень загрязнения промышленных стоков и результативность работы очистных сооружений предприятия. В сточной воде концентрация кислорода, как правило, не превышает 0,5 мг/литр, либо он отсутствует совсем. После очистки показатель возрастает до 8 мг/литр.

Выполнение оценки состава загрязнений по качеству и количеству требуется не только для того, чтобы составить план проведения очистных мероприятий, но и для того, чтобы существенно повысить эффективность последних.

источник

Основные правила при работе в лаборатории. Правила обращения с реактивами, отбор и хранение проб. Особенности построения калибровочных графиков. Определение содержания в пробах воды различных веществ: сульфатов, железа, меди, цинка, хлоридов и других.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Метод определения сульфатов

2. Метод определения железа

4. Метод определения цинка

5. Метод определения хлоридов

6. Метод определения нефтепродуктов

7. Метод определения взвешенных веществ

При работе в лаборатории необходимо соблюдать следующие правила:

Читайте также:  Анализы проб воды с водоема

— соблюдать тишину в лаборатории;

— перед началом работ изучить сущность используемого метода и устройство используемой аппаратуры;

— подготовить необходимые реактивы и химическую посуду;

— рационально строить свою работу

— все работы выполнять точно и аккуратно, но без спешки, которая может привести к порче поставленного опыта;

— соблюдать все меры предосторожности при работе с ядовитыми, взрывоопасными и огнеопасными веществами.

О реактивах и обращении с ними

лаборатория реактив вода вещество

Работающие в лаборатории должны знать основные свойства применяемых ими реактивов, особенно степень их ядовитости и способность к образованию взрывоопасных и огнеопасных смесей с другими реактивами.

Приготовлять растворы нужно в таком количестве, которое необходимо для работы. Необходимо следить, чтобы на всех банках с реактивами обязательно были этикетки (или надписи восковым карандашом) с обозначением, что находиться в банке. По своему назначению реактивы делят на две основные группы: общеупотребительные и специальные. Специальные (наиболее дорогие и редкие) реактивы хранят отдельно. Все реактивы должны храниться в соответствии с их свойствами.

О реактивах и обращении с ними надо помнить следующее:

— реактивы следует предохранять от загрязнения;

— реактивы следует расходовать экономно;

на всех склянках с реактивами всегда должны быть этикетки с указанием названия реактива и степени их чистоты;

— реактивы, изменяющиеся под действием света, следует хранить только в желтых или темных склянках;

— особую осторожность следует соблюдать при обращении с концентрированными кислотами и щелочами:

— с огнеопасными реактивами следует работать вдали от огня и включенных нагревательных приборах.

1. Отбор должен обеспечивать представительные пробы, сохранение состава исследуемой воды до анализа и гарантировать от случайных загрязнений. Объем отбираемой пробы должен быть достаточным для выполнения анализа, а при необходимости и повторения его.

Для исключения искажения результатов анализа из-за сорбирования определяемых компонентов пробы стенками сосудов, пробу следует отбирать в сосуды, в которых возможно проведение всех последующих операций анализа.

За каждой пробой следует закрепить отдельный сосуд и нанести на нем метки с целевым обозначением.

Отбор единичных проб для определения нефтепродуктов осуществляют в отдельные сосуды, так как для анализа следует использовать весь объем каждой пробы.

2. При отборе проб для определения нелетучих растворенных веществ, пробо-отборное устройство должно быть продуто, если непосредственно перед этим из него проба не отбиралась. Продувку осуществляют так, чтобы промыть всю пробоотборную трассу за 15 — 20 мин., после чего устанавливают скорость истечения жидкости, обеспечивающую запаздывание пробы не более чем на 10 мин.

3. При отборе проб для определения веществ, находящихся частично в нерастворенном состоянии, после продувки устанавливаю скорость входа воды в отверстие пробозаборного устройства, равную скорость среды в трубопроводе. Пробоотборная трасса должна быть наиболее короткой для уменьшения запаздывания пробы.

Недопустимо во время отбора проб менять устанавливающуюся скорость истечения, прикасаться к запорным органам (вентилям), допускать толчки и удары по пробоотборной трассе.

4. Проба для определения растворенного кислорода должна быть защищена от контакта с воздухом.

5. Отбираемая проба должна быть охлаждена до температуры не превышающей 40 0 С.

6. Сроки выполнения анализов определяют требования эксплуатации и возможность сохранения проб.

Анализы по определению летучих веществ и веществ, находящихся одновременно в растворенном состоянии и в форме суспензированных частиц, следует выполнять сразу же после отбора проб.

Допустимые сроки хранения проб для определения:

— нефтепродуктов — не более 12 ч.;

— других компонентов — не более 2 — 3 ч.

7. При определении загрязняющих веществ в производственных в сточных водах находящихся в очень малых концентрациях, следует использовать дистиллированную воду очищенную дополнительно. Сущность метода состоит в фильтрации дистиллированной воды или конденсата через материалы (сорбенты), поглощающие органические примеси, катионы и анионы, и задерживающие нерастворенные частицы различной степени дисперсности.

8. Очищенную воду следует хранить в полиэтиленовой посуде с плотно навинчивающейся крышкой. Срок хранения — не более пяти суток.

Построение калибровочных графиков

При массовых фотоколориметрических анализах, определяя концентрацию испытуемого раствора, не сравнивают каждый раз его светопоглощение со светопоглощением эталонного раствора, а предварительно строят так называемую калибровочную кривую. Для этого пользуются серией эталонных растворов различной концентрации. Имея такую кривую, при определении концентрации испытуемого раствора достаточно измерить его светопоглощение и по калибровочной кривой найти величину концентрации, соответствующую найденному светопоглощению.

Для построения калибровочной кривой нужно приготовить серию эталонных растворов, содержащих различные количества определяемого вещества. Сначала приготовляют стандартный раствор, содержащий строго определенное количество исследуемого вещества. С помощью бюретки отбирают в мерные колбы емкостью 100 мл различные, точно измеренные объемы этого стандартного раствора и соответствующих реактивов, вызывающих окраску анализируемого раствора. Затем содержимое каждой мерной колбы разбавляют дистиллированной водой, доводя объем раствора до метки.

С помощью фотоколориметра измеряют оптические плотности приготовленных эталонных растворов, и результаты измерений записывают в виде таблицы.

Эталонный раствор………………1 2 3 4 5

Содержание определяемого вещества, мг/100 мл раствора…..1 4 6 8 10

Оптическая плотность …………0,1 0,4 0,6 0,8 1,0

На основании полученных результатов строят кривую зависимости оптической плотности раствора от его концентрации. Это и есть калибровочная кривая.

Оптическая плотность D = lg I

Рис.1 Зависимость оптической плотности раствора от концентрации.

Для ее построения на миллиметровой бумаге откладывают по оси абсцисс значения концентраций эталонных растворов, а по оси ординат величины их оптических плотностей. Затем из точек, найденных на осях, восстанавливают перпендикуляры, и точки их пересечения соединяют одной линией.

Метод определения сульфатов

Цель работы: изучить метод гравиметрического (весового) определения сульфатов

Сущность метода. Метод основан на реакции взаимодействия сульфат-ионов с ионами бария, сопровождающейся образованием малорастворимого мелкокристаллического осадка сульфата бария. Осадок сульфата бария отфильтровывают, промывают, сушат, прокаливают, взвешивают и рассчитывают в нем содержание SO4 2- и серы.

Химический процесс. Сульфат-ион SO4 2- является анионом сильной серной кислоты Н2SO4. Из солей серной кислоты малорастворимы в воде соли бария, стронция, свинца и кальция. Остальные сульфаты хорошо растворимы. Ион SO4 2- бесцветен.

Хлорид бария ВаСl2 Ва 2+ -ион при взаимодействии с растворами, содержащими SO4 2- , образует белый осадок ВаSO4. Как малорастворимая соль сильной кислоты, сульфат бария нерастворим в кислотах. Этим ВаSO4 отличается от солей бария всех других анионов, чем и пользуются при обнаружении сульфат-ионов:

Таким образом, растворимые соли бария служат реактивом на сульфат-ион.

Некоторое осложнение при этом обнаружении вносит присутствие в анализируемом растворе S2O3 2- или смеси SO3 2- и S 2- , так как в обоих случаях при подкислении выделяется белый осадок серы (подобно ВаSO4) нерастворимый в кислотах:

SO3 2- + S 2- + 6H + > 3Sv + 3H2O

Отличить ВаSO4 от серы можно, используя способность сульфата бария к образованию с KMnO4 смешанных кристаллов розового цвета.

Весовая форма в этом методе определения идентична форме осаждения. При обработке осадка при переведении его в весовую форму могут произойти следующие нежелательные процессы:

а) при озолении фильтра может произойти восстановление сульфата бария

Обратный переход сульфида бария в сульфат происходит в процессе длительного нагревания осадка на воздухе

б) при прокаливании при слишком высокой температуре наблюдается термическое разложение сульфата бария

Реактив: хлористоводородная кислота, пл. 1,19 г/см 3 ; хлорид бария, 5%-ный раствор; метиловый оранжевый, 0,1%-ный раствор.

Проведение анализа. Анализируемую воду сначала фильтруют, затем отбирают 25-200 мл, в зависимости от содержания сульфатов, о котором можно судить по предварительной пробе* (*к небольшому количеству анализируемой воды прибавляют хлористоводородную кислоту до кислой реакции и хлорид бария до полного осаждения сульфата бария. Если появится только опалесценция раствора, берут для количественного определения 200 мл анализируемой воды; если же выпадает осадок, берут меньшее количество воды. При некотором навыке по виду осадка можно заключить, какой объем анализируемой воды будет наиболее подходящим для количественного определения сульфата), Нужный объем пробы переносят в стакан, подкисляют HC1 по метиловому оранжевому и выпаривают (или разбавляют) до объема 50 мл.

Если при упаривании образовался осадок, его отфильтровывают через маленький фильтр и промывают горячей дистиллированной водой, подкисленной хлористоводородной кислотой. Фильтрат и промывные воды опять упаривают до объема 50 мл, нагревают до кипения** (** Если анализируемая сточная вода содержит сульфиты или тиосульфаты, кипятят до полного удаления сернистого газа.) и приливают к ним по каплям горячий 5%-ный раствор хлорида бария до полного осаждения сульфатов. Жидкость с образовавшимся осадком оставляют стоять на водяной или песочной бане в течение 2 ч и затем на холоду — на ночь. Ha следующий день осадок отфильтровывают через плотный фильтр (синяя лента) *** (*** Осадок сульфата бария рекомендуется переосадить, особенно в тех случаях, когда анализируемая вода содержит большое количество солей или окисление при определении «общей серы» проводилось с добавлением карбоната натрия. Для этого осадок сульфата бария обрабатывают на фильтре горячим 3-5%-ным раствором ЭДТА, предварительно доведенным до сильнощелочной реакции аммиаком. K полученному раствору прибавляют несколько капель 10%-ного раствора хлорида бария и нейтрализуют раствор хлористоводородной кислотой по метиловому красному), промывают горячей водой до исчезновения в промывной воде хлоридов (проба с раствором AgNO3, подкисленным HNO3), сушат, прокаливают 30 мин и взвешивают в виде BaSO4.

Если в сточной воде содержится много кремневой кислоты, необходимо предварительно ее отделить. При большом содержании в сточной воде железа рекомендуется предварительно восстановить его до двухвалентного. Минимальное количество сульфатов, определяемое по этому методу, составляет 2 мг/л.

Содержание сульфат-ионов (x) в мг/л и серы (у) в мг/л вычисляют по формулам:

где: а — масса прокаленного осадка сульфата бария, мг; V — объем взятой для анализа пробы, мл; 0,4116 — коэффициент пересчета BaSO4 на SO4 2- ; 0,1374 — коэффициент пересчета BaSO4 на серу.

1. В чем заключается сущность гравиметрического метода?

2. Какая реакция положена в основу методики определения сульфат-ионов в растворе?

3. Почему именно соли бария служат реактивом на сульфат-ионы?

4. Каким образом определяется объем пробы для проведения анализа?

5. Каким образом можно отличить выпавшие кристаллы сульфата бария от кристаллов серы в осадке?

6. Какие нежелательные процессы могут возникнуть в процессе обработки полученного осадка?

7. Почему исследуемую пробу необходимо подкислять соляной кислотой?

8. Присутствие каких элементов в исследуемом растворе нежелательно и почему?

Сущность метода заключается в том, что ионы трехвалентного железа образуют с сульфосалицилат-ионами комплексное соединение, раствор которого в щелочной среде окрашен в желтый цвет. Двухвалентное железо в условиях анализа переходит в трехвалентное.


Все фотоколориметрические методы определения основаны на одном общем принципе. Световой поток проходит через кювету наполненную испытуемым окрашенным раствором. Прошедший через раствор световой поток воспринимается фотоэлементом, в котором световая энергия превращается в электрическую энергию. Возникающий при этом электрический ток измеряют при помощи чувствительного гальванометра. Сила электрического тока, возникающего при действии световой энергии на фотоэлемент, прямо пропорциональна интенсивности освещения.


Для определения этим методом концентрации исследуемого вещества измеряют оптическую плотность испытуемого раствора (Dисп) и эталонного раствора, концентрация которого известна (Dэтал). Расчет проводят по формуле:


Основными преимуществами фотоколориметрических методов измерения интенсивности окраски является быстрота и легкость определений при высокой их точности.


Химический процесс. Железо образует два ряда солей: соли железа (II) и (III). Растворы солей железа (III) содержат трехзарядные катионы Fe 3+ , а растворы солей железа — двухзарядные катионы Fe 2+ . Так как реакции этих ионов совершенно различны, нужно рассматривать их отдельно.


Растворы солей железа (III) имеют желтую или красно-бурую окраску (в зависимости от образующегося комплекса). Комплексы образуются в результате соединения между собой электрически нейтральных молекул более простых по составу солей.


26,75 г аммония хлористого растворяют дистиллированной водой в мерной колбе на 250 см 3 . Объем доводят до метки дистиллированной водой.


В мерную колбу на 250 см 3 приливают 125 см 3 дистиллированной воды, затем приливают 125 см3 водного аммиака 22%. (раствор готовят под вытяжкой).


30 г сульфосалициловой кислоты растворяют дистиллированной водой в мерной колбе на 100 см 3 . Объем доводят до метки дистиллированной водой.

В мерную колбу на 100 см 3 приливают 50 см 3 дистиллированной воды, затем приливают

50 см 3 концентрированной соляной кислоты (раствор готовят под вытяжкой).

Основной стандартный раствор железа, 1мг/см 3 ГОСТ 4212-76.

Рабочий стандартный раствор, 10мкг/см 3 .

1 см 3 основного стандартного раствора помещают в мерную колбу вместимостью 100 см 3 и доводят объем раствора до метки дистиллированной водой.

Объем исследуемого раствора, содержащий 10-100 мкг железа, помещают в коническую колбу, добавляют 1 см 3 раствора соляной кислоты (1:1) и упаривают до объема 10-15 см 3 . Полученный раствор разбавляют дистиллированной водой и фильтруют, собирая фильтрат в мерную колбу вместимостью 100 см 3 , добавляют 2 см 3 раствора хлористого аммония (2 моль/дм 3 ), 2 см 3 раствора сульфосалициловой кислоты (300г/дм 3 ) и 5 см 3 аммиака (1:1). Объем раствора доводят дистиллированной водой до метки и перемешивают. Через 5 мин. делают замер пробы на КФК-2. В качестве раствора сравнения применяют дистиллированную воду.

Медь встречается в сточных водах рудообогатительных фабрик, заводов, производящих электролитную медь, гальванических цехов различных предприятий, фабрик искусственного волокна, в шахтных водах и т.д.


Для определения меди в комплексных соединениях часто требуется предварительное их разрушение. Концентрация меди в сточных водах может быть самой различной. При больших ее концентрациях рекомендуется проводить электролитическое или титриметрическое определение; при малых концентрациях более приемлемы колориметрические методы.


Поскольку сточные воды часто содержат самые различные вещества, во многих случаях наиболее точные результаты получаются при предварительном выделении меди внутренним электролизом. Выделившуюся на платиновом катоде медь можно непосредственно взвесить или, растворив в кислоте, получить совершенно чистый раствор соли меди, в котором определение последней колориметрическими методами уже не вызывает никаких затруднений.


2,5г диэтилдитиокарбамата натрия растворяют в 150-200 см 3 дистиллированной воды. Ставят на мешающее устройство для полного растворения реактива. Раствор переносят в мерную колбу на 250 см 3 и до метки доводят дистиллированной водой.


В мерную колбу на 250 см 3 приливают 125 см 3 дистиллированной воды, затем приливают 125 см 3 водного аммиака 22%. (раствор готовят под вытяжкой).

100г аммония лимонокислого растворяют в дистиллированной водой в мерной колбе на 250 см 3 .

Объем доводят до метки дистиллированной водой.

12,5г трилона Б растворяют в дистиллированной водой в мерной колбе на 250 см 3 . Объем доводят до метки дистиллированной водой.

Основной стандартный раствор меди, 1мг/см 3

Рабочий стандартный раствор, 5мкг/см 3 .

5 см 3 основного стандартного раствора помещают в мерную колбу вместимостью 1000 см 3 и доводят объем раствора до метки дистиллированной водой.

Для устранения влияния нефтепродуктов проводят предварительную экстракцию без добавления диэтилдитиокарбамата натрия.

Объем исследуемого раствора 50 см 3 помещают в делительную воронку, добавляют 100 см 3 дистиллированной воды, 5 см 3 раствора лимоннокислого аммония (400г/дм 3 ), 10 см 3 раствора трилона Б (50г/дм 3 ), 10 см 3 раствора аммиака (1:1) и 10 см 3 хлороформа и встряхивают в течении 2 мин. после отстаивания слой хлороформа удаляют. Экстракцию продолжают до тех пор, пока слой хлороформа перестанет окрашиваться. В делительную воронку добавляют 10 см 3 раствора диэтилдитиокарбамат натрия (10г/дм 3 ) и экстрагируют комплексную соль хлороформом 2 раза по 10 см 3 , энергично встряхивают раствор в течение 2 мин. после отстаивания слои хлороформа сливают через фильтр в мерную колбу вместимостью 25 см 3 . Объем объединенных экстрактов доводят хлороформом до метки и перемешивают. Оптическую плотность раствора измеряют на КФК-2. В качестве раствора сравнения используют хлороформ.

2. В каких случаях для определения меди применяют фотоколориметрические методы, а в каких титриметрические методы анализа?

B сточных водах обогатительных фабрик и гальванических цехов цинк может присутствовать в виде комплексного цианоцинката. B этом случае перед его определением надо разрушить комплексное соединение. B присутствии больших количеств органических веществ рекомендуется предварительная обработка.

Больше всех других металлов определению цинка мешает медь. В ее присутствии, в зависимости от относительного ее количества и выбранного метода определения цинка, поступают одним из следующих способов: 1) отделяют медь перед определением цинка осаждением ее внутренним или внешним электролизом или тиосульфатом натрия; 2) маскируют ее цианидом или тиосульфатом; 3) определяют суммарное содержание меди и цинка и отдельно — содержание меди; по разности находят содержание цинка. Указания о возможности применения того или иного способа даны при изложении каждого метода анализа цинка.

Цель работы: изучить метод титриметрического определения цинка с применением раствора гексацианоферрата (II) калия (концентрация цинка должна превышать 3 мг/л)

Сущность метода. При добавлении раствора гексацианоферрата (II) калия к раствору соли цинка выпадает белый осадок K2Zn3[Fe(CN)6]2, нерастворимый в воде и в разбавленных кислотах:

B качестве индикаторов применяют дифениламин — окислительно-восстановительный индикатор, бесцветный при окислительном потенциале ниже +0,776 B и окрашенный в сине-фиолетовый цвет при более высоком окислительном потенциале, и гексацианоферрат (ІІІ) калия. Последний при отсутствии в растворе гексацианоферрата (II) калия имеет окислительный потенциал, превышающий +0,776 B, и, следовательно, вызывает окрашивание дифениламина. Ho когда в растворе имеется гексацианоферрат (II) калия, потенциал гексацианоферрата (ІІІ) калия снижается и окраска дифениламина исчезает.

Рекомендуется обратное титрование. K анализируемому раствopy соли цинка прибавляют гексацианоферрат (III) калия и дифениламин, а затем в избытке титрованный раствор гексацианоферрата (II) калия. Жидкость остается окрашенной в желто-зеленый цвет. Затем титруют обратно титрованным раствором соли цинка. Когда весь избыток гексацианоферрата (II) калия будет связан цинком в нерастворимое соединение, присутствующий в растворе гексациапоферрат (III) калия вызовет окрашивание дифениламина в сине-фиолетовый цвет.

Дифениламин в качестве индикатора рекомендуется заменить 3,3′-диметилнафтидином. При обратном титровании избытка гексацианоферрата (II) солью цинка окраска переходит от зеленой к пурпурно-красной. Этот переход окраски настолько резок, что титрование можно проводить даже 0,001 M растворами гексациаиоферрата (II) и соли цинка.

Определению мешают металлы, образующие нерастворимые гексацианоферраты (II): медь, кадмий, кобальт, никель и марганец. Медь надо предварительно удалить; содержание других; металлов обычно значительно уступает содержанию цинка, пoэтому ими можно или совсем пренебречь, или ввести соответствующие поправки, определив их отдельно. Свинец в условиях определения осаждается в виде сульфата и не мешает. Мешающее влияние железа учтено в ходе анализа — оно устраняется добавлением пирофосфата.

Гексацианоферрат (III) калия (красная кровяная соль). Растворяют 1 г K3[Fe(CN)6] в 100 мл воды. Сохраняют в темной склянке. Через 5 дней pacтвор становится негодным и его надо заменять свежеприготовленным.

Сульфат цинка, приблизительно 0,05 M раствор. Растворяют 3,000 г металлического (x.ч.) цинка в разбавленной (1:5) серной кислоте, взятой в небольшом избытке, и раствор разбавляют дистиллированной водой до 1 л.

Пирофосфат натрия. Можно приготовить в лаборатории из двузамещенного натрия Na2HPO4·12H2O, прокаливая его до тех пор, пока взятая проба соли, растворенная в воде, не будет давать с нитратом серебра чисто-белый осадок (не желтоватый). Полученной после прокаливания солью можно пользоваться непосредственно или растворив ее в воде и выделив десятиводный кристаллический продукт.

Проведение анализа. Отбирают такой объем анализируемой сточной воды, чтобы в нем содержалось от 2 до 50 мг цинка, подкисляют серной кислотой (раствор должен стать от 0,5 н. до 1,5 н. по содержанию H2SO4), прибавляют к нему несколько миллилитров перекиси водорода или раствора персульфата аммония и кипятят для окисления железа и разложения избытка реактива. Затем прибавляют по 0,7-0,8 г сульфата аммония на каждые 50 мл раствора, 0,5-1 г пирофосфата натрия (для связывания железа в комплексное соединение), нагревают до 60 °C и приливают 4 капли раствора гексацианоферрата (III) калия и 2 капли раствора индикатора (дифениламина). Перемешав жидкость, наливают в нее из бюретки, постепенно и при непрерывном перемешивании, раствор гексацианоферрата (II) калия сначала до исчезновения сине-фиолетового окрашивания, а затем приливают 20-25%-ный избыток. Дают постоять 2 мин и потом оттитровывают избыток гексацианоферрата (II) калия титрованным раствором соли цинка до перехода окраски из желто-зеленой в сине-фиолетовую.

Отдельно определяют отношение концентраций растворов гексацианоферрата (II) калия и соли цинка. Для этого в другую колбу наливают раствор соли цинка в таком объеме, чтобы в нем находилось приблизительно столько же цинка, сколько и в анализируемой пробе; разбавляют водой до такого же объема и продолжают дальше титрование, как при анализе пробы. Разделив суммарное количество израсходованного раствора соли цинка (на приготовление исходного раствора и на обратное титрование) на число миллилитров добавленного раствора гексацианоферрата (II) калия, получают требуемый коэффициент (К).

где а — объем раствора соли цинка, израсходованного на обратное титрование при анализе пробы, мл; b — объем добавленного раствора гексацианоферрата (II) калия, мл; K — объем раствора соли цинка, соответствующий 1 мл раствора гексацианоферрата (II) калия, мл; V — объем анализируемой сточной воды, мл; 3 — количество цинка, содержащегося в 1 мл раствора сульфата цинка, мг.

3. Почему перед началом анализа необходимо разрушить комплексные соединения цинка в исследуемой пробе?

Сущность метода: титрование пробы раствором азотнокислого серебра до неисчезающей при перемешивании светло-оранжевой окраске, появляющейся от одной капли (избыточной) раствора азотнокислого серебра.


Аргентометрический метод объемного анализа основан на применении в качестве осадителя стандартного раствора, содержащего ионы серебра AgNO3.


Химический процесс. Определение ионов хлора в растворимых хлоридах основано на прямом титровании навески анализируемого вещества или его раствора стандартным раствором азотнокислого серебра в присутствии индикатора — хромата калия:

8,4937 г азотнокислого серебра, высушенного при температуре 105?С, растворяют в 100-200 см 3 дистиллированной воды, количественно переносят в мерную колбу на 1дм 3 и доводят объем раствора до метки. Если получается мутный раствор, ему дают отстояться в течение нескольких дней и сифонируют. Раствор хранят в темной склянке в защищенном от света месте.

Читайте также:  Анализы проводимые при определение качества воды

Определение точной концентрации азотнокислого серебра

В коническую колбу на 250 см 3 отбирают 10 см 3 раствора хлористого натрия точной концентрации, приливают 40 см 3 дистиллированной воды, 0,5 см 3 раствора хромовокислого калия и титруют раствором азотнокислого серебра. За объем, пошедший на титрование, принимают среднюю арифметическую величину двух параллельных определений, за вычетом объема, пошедшего на титрование нулевой пробы.

Нормальность титрованного раствора азотнокислого серебра (N) равна

где: N1 — нормальность раствора хлористого натрия

V1 — объем раствора хлористого натрия, взятого на титрование, см 3

V2 — объем раствора азотнокислого серебра, пошедшего на титрование, за вычетом результата нулевой пробы, см 3

2. Раствор хромовокислого калия 10%.

100 г хромовокислого калия растворяют в небольшом количестве дистил. воды, затем для удаления хлоридов добавляют пипеткой по каплям раствор азотнокислого серебра до начала образования красно-бурого осадка, через 1-2 дня раствор фильтруют через фильтр «Белая лента» в мерную колбу на 1 дм 3 и доводят объем фильтрата дистил. водой до метки.

3. Раствор хлористого натрия или хлористого калия 0,05 моль/дм 3 .

2,9221 г хлористого натрия или 3,7277 г хлористого калия, предварительно высушенного до постоянного веса при 180?С, растворяют в дистил. воде и доводят объем раствора в мерной колбе на 1 дм 3 до метки.

4. Раствор фенолфталеина 0,1%.

0,1 г фенолфталеина растворяют в 50 см 3 этилового спирта (96%). Полученный раствор количественно переносят в мерную колбу на 100 см 3 и доводят объем раствора до метки дистил. водой

5. Раствор гидроокиси натрия.

4,0 г гидроокиси натрия растворяют в дистил. воде, не содержащей углекислоты, объем доводят до 1дм 3 . раствор хранят в полиэтиленовой посуде.

6. Раствор азотной кислоты.

4,5 см 3 конц. азотной кислоты приливают пипеткой к 500 см 3 дистил. воды, перемешивают и доводят объем до 1 дм 3

7. Суспензия гидроокиси алюминия.

125 г квасцов алюмокалиевых или алюмоаммонийных растворяют в 1дм 3 дистил. воды, нагревают до 60?С и постепенно прибавляют 55 см 3 концентрированного раствора аммиака при постоянном перемешивании. После отстаивания в течении 1 часа осадок переносят в стакан, промывают декантацией дистил. водой до исчезновения свободного аммиака, хлоридов, нитритов и нитратов

9. Пробы воды, предназначенные для определения хлоридов, не консервируются, хранят при комнатной температуре. Мутные пробы перед анализом фильтруют.

Окраску прозрачных проб устраняют пропусканием через колонку, наполненную активированным углем. Первые 150 см 3 воды отбрасывают. Оставшуюся воду используют для определения хлоридов.

При наличии мути и окраски, пробу осветляют суспензией гидроокиси алюминия (3 см 3 на 100 см 3 пробы), смесь встряхивают и фильтруют через фильтр «Белая лента», промывая осадок дистил. водой. Хлориды определяют во всем объеме фильтрата.

При кислой реакции воды пробу нейтрализуют по фенолфталеину. Для этого берут 50 см 3 пробы, приливают пипеткой 2-3 капли раствора фенолфталеина (0,1%) и нейтрализуют раствором гидроокиси натрия (0,1 моль/дм 3 ) до появления розового окрашивания. По объему щелочного раствора, пошедшего на нейтрализацию 50 см 3 пробы, рассчитывают количество раствора гидроокиси натрия, необходимого для нейтрализации требуемого объема пробы.

При наличии сероводорода и гидросульфитов воду следует подкислить раствором азотной кислоты (0,1 моль/дм 3 ) по лакмусовой бумаге, и пропускать в течении нескольких минут ток воздуха до полного удаления сероводорода.

Концентрация хлоридов в пробе, мг/дм 3

Хлопья, оседающие не сразу

Концентрация хлоридов в пробе, мг/дм3

Объем пробы для титрования, см 3

Конец титрования определяют по неисчезающей при перемешивании светло-оранжевой окраске, появляющейся от одной капли (избыточной) раствора азотнокислого серебра.


Параллельно проводят аналогичное определение в нулевой пробе, в качестве которой используют дистиллированную воду, взятую в эквивалентном определяемой пробе объеме.


Сущность метода состоит в образовании окрашенной в коричнево-бурый цвет жидкости, полученной при взаимодействии примесей нефтепродуктов с серной кислотой.


Примечание. При отборе проб производственных вод для определения нефтепродуктов, необходимо учитывать их способность адсорбироваться стенками сосуда, а также всплывать при значительном содержании или переходить частично в осадок. Пробу следует отбирать в чистую склянку, по возможности освобожденную от остатков дистиллированной воды, использованной при промывании склянки.


Стандартный раствор концентрации 0,1 г/кг нефтепродуктов. В мерную колбу вместимостью 250 см 3 отмеривают пипеткой 2,5 см 3 основного раствора, доливают принятым экстрагентом до метки и хорошо перемешивают. Раствор устойчив при хранении его в хорошо закупоренной колбе.


Все отобранное количество воды дважды обрабатывают гексаном. Для этого в делительную воронку вместимостью 1000 см 3 вливают 700 — 800 см 3 отобранной воды и 50 см 3 гексана. Хорошо взбалтывают, дают расслоиться , верхний слой гексана сливают в запасную емкость, а воду сливают в другую делительную воронку такой же вместимостью, в которой повторяют экстракцию, использую уже 20 см 3 экстрагена. После этого воду отбрасывают и проводят такую же операцию со следующей порцией воды, пока не отбрасывают все ее количество. Все экстракты сливают во взвешенный и предварительно высушенный стакан вместимостью 40 — 50 см 3 , удаляют экстрагент испарением на водяной бане, остаток высушивают в сушильном шкафу при 60 — 70 0 С и взвешивают. После взвешивания все количество нефтепродуктов растворяют в мерной колбе вместимостью 50 см 3 в принятом растворе, тщательно перемешивают и пользуются в качестве стандартного раствора. Концентрация этого стандартного раствора определяется массой выделенных нефтепродуктов.

где m — масса нефтепродуктов в пробе, мг; А — среднее значение оптической плотности, соответствующие этой массе.

Отобранный объем анализируемой воды помещают в делительную воронку, дважды обмывают стенки сосуда, в котором была отобрана проба, гексаном, используя его по 10 — 15 см 3 и сливая в туже воронку. Затем, закрыв воронку пробкой, сильно взбалтывают ее содержимое, выпуская излишки воздуха через кран, повернув воронку краном кверху. Взбалтывание проводят 2 — 3 мин, после чего ставят воронку в штатив и дают жидкости полностью расслоиться. Затем верхний слой гексана осторожно сливают на сухой бумажный фильтр, полученный фильтрат собирают в чистый сухой стакан, промывают фильтр гексаном (5 — 10 см 3 ), собирая промывные растворы в тот же стакан. Для устранения влияния органических примесей, способных растворяться в гексане, может быть применено фильтрование экстракта через слой (7 — 10 см) сорбента (активированной окиси алюминия), загруженного в стеклянную трубку длинной 10 см диаметром 1 см с впаянной в нее дырчатой стеклянной пластинкой. Верхний конец трубки расширен в виде воронки, нижний оттянут до диаметра 1 мм. В трубку на стеклянную пластинку помещают слой стеклянной ваты толщиной 1 см, а сверх него насыпают сорбент толщиной 3 — 5 см. Сорбент — активированную окись алюминия — прокаливают при 800 0 С в течение 3 — 4 ч, а стеклянную вату прогревают при 250 — 300 0 С в течение 2 — 3 ч. Собранная трубка, т. е. колонка для фильтрования, должна быть промыта экстрагентом.

Фильтрование через колонку экстракта, полученного извлечением из воды нефтепродуктов, проводят со скоростью 0,5 — 1,0 см 3 в мин, на фильтрование всей порции экстракта расходуется обычно не более 20 мин. Фильтрат собирают в чистый сухой стакан; в него же собирают и промывную жидкость, т. е. 5 — 10 см 3 экстрагента., пропускаемые через сорбент после окончания фильтрования экстракта. Фильтрат выпаривают на водяной бане, к оставшимся в стакане нефтепродуктам приливают 10 см 3 концентрированной серной кислоты и в течение 5 мин нагревают жидкость на кипящей водяной бане. При этом стремятся смочить серной кислотой все части внутренней поверхности стакана, куда могли попасть капли экстракта.

Жидкости дают остыть до комнатной температуры и определяют оптическую плотность ее (Ах) на фотоколориметре со светофильтром областью светоиспускания 440 нм в кюветах с толщиной поглощающего свет слоя 20 мм. В качестве раствора сравнения используют 10 см 3 концентрированной серной кислоты, также подвергнутой нагреванию и последующему охлаждению.

При отборе проб производственных вод для определения нефтепродуктов необходимо учитывать их способность абсорбироваться стенками сосуда, а так же всплывать при значительном содержанием или переходить частично в осадок.

По градуировочному графику находят массу нефтепродуктов в анализируемой пробе. Полученную оптическую плотность находят по оси ординат и по ней массу нефтепродуктов (m) в пробе мг.

Концентрацию нефтепродуктов (С), в мг на кг, вычисляют по формуле:

где V — объем воды, использованный для определения, см 3 ; m — масса нефтепродуктов, найденная по градуировочному графику, мг; или по формуле m = к · Ак. Результат определений округляют до сотых долей.

II.Гравиметрический метод определения нефтепродуктов

Настоящая методика распространяется на производственные сточные воды с большим содержанием нефтепродуктов.

Сущность метода состоит в излечении нефтепродуктов экстрагентом, который затем удаляют испарением, остаток сушат и взвешивают. Чувствительность метода 1 мг в пробе.

Весь объем отобранной пробы переливают в делительную воронку соответствующей вместимости, споласкивают дважды сосуд, в который была отобрана проба, экстрагентом, используя каждый раз 10 — 15 см 3 его и сливая эти порции, в ту же делительную воронку. Затем сильно встряхивают содержимое делительной воронки 2 — 3 мин, выпуская воздух через кран при перевернутой воронке краном вверх. Закончив взбалтывание, ставят воронку в штатив и дают жидкости расслоиться, экстракт осторожно сливают на сухой беззольный фильтр, собирая фильтрат в чистый сухой взвешенный бюкс.

Фильтр промывают чистым экстрагентом, используя его 10 — 15 см 3 и собирая промывную жидкость в тот же бюкс. Затем ставят бюкс с экстрактом на кипящую водяную баню и выпаривают экстрагент. Бюкс с нефтепродуктами выдерживают в сушильном шкафу при 60 — 70 0 С в течение 2 ч, после чего охлаждают его с открытой крышкой в эксикаторе над прокаленным хлористым кальцием и, закрыв его крышкой, охлаждают.

Анализы с применением экстрагентов необходимо выполнять в вытяжном шкафу. При оперировании гексаном нельзя пользоваться включенными нагревательными плитками с открытой спиралью.

Концентрацию нефтепродуктов (С), в миллиграммах, мг/дм 3 , вычисляют по формуле:

где V — объем пробы, использованный для определения, см 3 ;

источник