Меню Рубрики

Химический анализ воды на свинец

Настоящий документ устанавливает фотометрическую методику количественного химического анализа проб природных и очищенных сточных вод для определения в них ионов свинца при массовой концентрации от 0,002 до 0,03 мг/дм 3 .

Если массовая концентрация ионов свинца в анализируемой пробе превышает верхнюю границу диапазона, то допускается разбавление пробы таким образом, чтобы концентрация ионов свинца соответствовала регламентированному диапазону.

Мешающие влияния, обусловленные присутствием в пробе органических веществ, ионов меди, цинка, кадмия, никеля, серебра, ртути, висмута устраняются специальной подготовкой пробы к анализу (п. 9).

Фотометрический метод определения массовой концентрации ионов свинца основан на взаимодействии свинца с дифенилтиокарбазоном (дитизоном) в четыреххлористом углероде с образованием комплексного соединения, окрашенного в красный цвет. Оптическую плотность раствора комплексного соединения измеряют при l = 520 нм.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателей точности, повторяемости и воспроизводимости методики

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ± d , %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости) s r, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), s R, %

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Спектрофотометр или фотоколориметр, позволяющий измерять оптическую плотность при длине волны l = 520 нм

Кюветы с толщиной поглощающего слоя 20 мм

Весы лабораторные 2 класса точности, ГОСТ 24104

ГСО с аттестованным содержанием ионов свинца

Воронки делительные ВД-3-1000 ХС, ГОСТ 25336.

Колбы конические Кн-1-1000-29/32, ГОСТ 25336.

Холодильники ХШ-1-200-29/32 ХС, ГОСТ 25336.

Бумага универсальная индикаторная, ТУ-6-09-1181.

Баня водяная, ТУ 46-22-606-75.

Бутыли из стекла или полиэтилена с притертыми или винтовыми пробками вместимостью 500 — 1000 см 3 для отбора и хранения проб и реактивов.

Феноловый красный, ГОСТ 4599.

Четыреххлористый углерод, ГОСТ 20288 (продажный реактив перегоняют, собирая фракцию, кипящую при 76 °С).

Натрий лимоннокислый, ТУ 6-09-2248-78.

Калий железистосинеродистый трехводный, ГОСТ 4207. ( * )

Аскорбиновая кислота, ГОСТ 4815. ( * )

Вес реактивы должны быть квалификации х.ч. или ч.д.а.

4.1 . При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007 .

4.2 . Электробезопасность при работе с электроустановками по ГОСТ 12.1.019 .

4.3 . Организация обучения работающих безопасности труда по ГОСТ 12.0.004 .

4.4 . Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009 .

Выполнение измерений может производить химик аналитик, владеющий техникой экстракционно-фотометрического анализа и изучивший инструкцию по эксплуатации спектрофотометра или фотоколориметра.

Измерения проводятся в следующих условиях:

температура окружающего воздуха (20 ± 5) °С;

атмосферное давление (84,0 — 106,7) кПа (630 — 800 мм. рт. ст);

относительная влажность (80 ± 5) %;

напряжение сети (220 ± 10) В;

частота переменного тока (50 ± 1) Гц.

Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб». ( * )

7.1 . Бутыли для отбора и хранения проб воды обезжиривают раствором CMC, промывают водопроводной водой, обрабатывают хромовой смесью, тщательно промывают водопроводной, затем 3 — 4 раза дистиллированной водой.

7.2 . Пробы воды (объем не менее 1000 см 3 ) отбирают в полиэтиленовые бутыли, предварительно ополоснутые отбираемой водой.

7.3 . Пробы анализируют не позднее, чем через 2 часа после отбора или консервируют следующим образом: к пробе добавляют 3 см 3 концентрированной HN О3 на 1 дм 3 воды, или 3 см 3 ледяной уксусной кислоты на 1 дм 3 воды. Срок хранения законсервированной пробы — 1 месяц.

Если требуется определить свинец в растворенной форме, пробу фильтруют через бумажный фильтр «синяя лента» до консервирования ( * ) .

7.4 . Проба воды не должна подвергаться воздействию прямого солнечного света. Для доставки в лабораторию сосуды с пробами упаковывают в тару, обеспечивающую сохранность и предохраняющую от резких перепадов температуры. При отборе проб составляют сопроводительный документ по утвержденной форме, в котором указывают:

цель анализа, предполагаемые загрязнители;

должность, фамилия отбирающего пробу, дата.

Подготовку прибора к работе и оптимизацию условий измерения производят в соответствии с рабочей инструкцией по эксплуатации прибора. Прибор должен быть поверен.

Дважды перегоняют воду в приборе из стекла, не содержащего свинца, и проверяют ее на отсутствие свинца раствором дитизона.

300 — 500 см 3 воды встряхивают с 20 см 3 раствора дитизона (по п. 8.2.9 ). Процедуру повторяют до тех пор пока цвет дитизона не будет оставаться зеленым. Избыток дитизона удаляют встряхиванием бидистиллированной воды с четыреххлористым углеродом. Дитизон считают полностью удаленным, если после очередного встряхивания слой растворителя остается бесцветным.

Для приготовления всех реактивов и растворов используют эту воду.

0 ,1 г индикатора растворяют в 100 см 3 20 %-ного раствора спирта-ректификата.

100 г натрия лимоннокислого растворяют в небольшом количестве воды, помещают в мерную колбу на 500 см 3 и доводят до метки бидистиллированной водой.

Очищают от микроэлементов экстракцией в делительной воронке раствором дитизона (по п. 8.2.9.) порциями по 5 — 10 см 3 до прекращения окраски дитизона. Продолжительность каждой экстракции 1 мин. После этого из раствора извлекают остатки дитизона экстракцией четыреххлористым углеродом порциями по 10 см 3 до полного удаления дитизона, т.е. пока очередная порция четыреххлористого углерода не станет бесцветной. Продолжительность каждой экстракции 1 мин.

500 см 3 соляной кислоты осторожно приливают к 500 см 3 бидистиллированной воды.

8.2.4 . Калий железистосинеродистый ( * ) , водный раствор.

Навеску (1 г) калия железистосинеродистого ( * ) помещают в мерную колбу на 50 см 3 , растворяют в небольшом количестве воды, перемешивают и доводят до метки бидистиллированной водой.

Навеску (10 г) гидроксиламина солянокислого помещают в мерную колбу на 500 см 3 , растворяют в небольшом количестве воды, перемешивают и доводят до метки бидистиллированной водой.

Раствор очищают экстракцией раствором дитизона (по п. 8.2.9.) порциями по 5 — 10 см 3 до прекращения изменения окраски дитизона. Продолжительность каждой экстракции 1 мин. После этого из раствора извлекают остатки дитизона экстракцией четыреххлористым углеродом порциями по 10 см 3 до полного удаления дитизона, т.е. пока очередная порция четыреххлористого углерода не станет бесцветной. Продолжительность каждой экстракции 1 мин.

8.2.6 . Приготовление основного градуировочного раствор свинца.

Раствор готовят из ГСО с аттестованным содержанием свинца в соответствии с прилагаемой к образцу инструкцией.

Раствор устойчив в течение года и хранится в склянке с притертой пробкой при комнатной температуре.

1 см 3 раствора должен содержать 0,1 мг свинца.

8.2.7 . Приготовление рабочего градуировочного раствора свинца.

Рабочий раствор готовят в день проведения анализа разбавлением основного раствора в 100 раз бидистиллированной водой.

1 см 3 раствора должен содержать 0,001 мг свинца.

8.2.8 . Приготовление основного раствора дитизона.

0 ,05 г дитизона очищенного (см. приложение) растворяют в 500 см 3 четыреххлористого углерода. Раствор хранят в темной склянке при 3 — 5 °С в течение нескольких месяцев.

8.2.9 . Приготовление рабочего раствора дитизона.

25 см 3 основного раствора дитизона разбавляют четыреххлористым углеродом и объём доводят до 250 см 3 . Измеряют оптическую плотность полученного раствора ( l = 520 нм, кювета 20 мм) против четыреххлористого углерода. Прибавляя в колбу по каплям раствор дитизона (по п. 8.2.8) или четыреххлористого углерода, устанавливают оптическую плотность, равную 0,350. Раствор готовят в день определения и хранят в темной склянке ( * ) .

8.2.10 . Приготовление раствора аммиака, 17 %-ный раствор.

Раствор получают путем изопиестической дистилляции концентрированного раствора аммиака. Для этого на дно эксикатора наливают 1 дм 3 концентрированного аммиака, а на вкладыш ставят выпарительную чашку с 500 см 3 бидистиллированной воды. Через двое суток аммиак, полученный в чашке, будет иметь концентрацию примерно 17 %.

Для построения градуировочного графика необходимо приготовить образцы для градуировки определяемого компонента с концентрациями 0,002 — 0,03 мг/дм 3 . Условия анализа, его проведение должны соответствовать описанным в пунктах 6 и 9.

Состав и количество образцов для градуировки для построения градуировочного графика приведены в таблице 2. Погрешность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,8 %.

Состав и количество образцов для градуировки при анализе свинца

Массовая концентрация свинца в градуировочных растворах, мг/дм 3

Аликвотная часть рабочего раствора с концентрацией 0,001 мг/см 3 , помещенного в мерную колбу на 500 см 3

В качестве холостой пробы используют бидистиллированную воду (п. 8.2), которую проводят через весь ход анализа ( * ) .

Растворы готовят в мерных колбах вместимостью 500 см 3 . Полученные растворы переносят в конические колбы со шлифом емкостью 1 дм 3 , подкисляют 10 см 3 раствором соляной кислоты (по п. 8.2.3), прибавляют по 0,5 г персульфата аммония, вставляют в горла колб пробки-холодильники. Кипятят в течение 20 минут. Далее поступают как указано в п. 9.

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных. Из оптической плотности каждого градуировочного раствора вычитают оптическую плотность холостой пробы ( * ) .

Строят градуировочный график в координатах оптическая плотность — концентрация в мг/дм 3 .

Контроль стабильности градуировочной характеристики проводят не реже одного раза в месяц или при смене партии реактивов. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

где Х — результат контрольного измерения массовой концентрации ионов свинца в образце для градуировки;

С — аттестованное значение массовой концентрации ионов свинца в образце для градуировки;

s Rл среднеквадратическое отклонение внутрилабораторной прецизионности, установленное при реализации методики в лаборатории.

Примечание. Допустимо среднеквадратическое отклонение внутрилабораторной прецизионности при внедрении методики в лаборатории устанавливать на основе выражения: s Rл = 0,84 s R, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Значения s R приведены в таблице 1.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

0 ,5 дм 3 исследуемой воды, предварительно подкисленной (20 см 3 соляной кислоты по п. 8.2.3 на 1 дм 3 пробы), помещают в колбу на 1 дм 3 , прибавляют 0,5 г персульфата аммония и, вставив в горло колбы пробку-холодильник, кипятят на медленном огне в течение 20 мин., после чего пробу охлаждают под струей воды.

К охлажденной пробе приливают

15 см 3 аммиака (по п. 8.2.10), затем по каплям доводят кислотность среды до рН = 2 (контроль по универсальной индикаторной бумаге). Пробу переносят в делительную воронку емкостью 1 дм 3 и экстрагируют 10 см 3 раствора дитизона (по п. 8.2.9 ) в течение 2 минут. После расслоения водной и органической фаз экстракт сливают и отбрасывают. Повторяют экстракцию до тех пор, пока слой органического растворителя не перестанет изменять окраску.

К очищенной пробе прибавляют 5 — 6 капель раствора фенолового красного (по п. 8.2.1) и, приливая по каплям аммиак (по п. 8.2.10), нейтрализуют пробу до оранжевой окраски (рН = 6,8 — 7,3). Затем приливают 5 см 3 раствора калия железистосинеродистого ( * ) (по п. 8.2.4), 5 см 3 раствора солянокислого гидроксиламина (по п. 8.2.5), 5 см 3 раствора лимоннокислого натрия (по п. 8.2.2) и встряхивают содержимое воронки в течение 30 сек. Затем прибавляют по каплям аммиак (по п. 8.2.10) до появления малиновой окраски и избыток

5 капель (рН = 8,0 — 8,5). Приливают 10 см 3 раствора дитизона (по п. 8.2.9) и экстрагируют свинец в течение 2 минут. После расслоения сливают окрашенный слой органического растворителя в кювету, фильтруя его через воронку с небольшим слоем ваты. Измеряют оптическую плотность раствора при длине волны l = 520 нм в кювете с толщиной слоя 20 мм против четыреххлористого углерода. Вычитают оптическую плотность холостой пробы (см. п. 8.3) ( * ) . Содержание свинца находят по градуировочному графику.

Содержание ионов свинца (мг/дм 3 ) рассчитывают по формуле

где С — концентрация свинца, найденная по градуировочному графику, мг/дм 3 ;

500 — объем, до которого была разбавлена проба, см 3 ;

V — объем, взятый для анализа, см 3 .

За результат анализа Хсрпринимают среднее арифметическое значение двух параллельных определений Х1и Х2

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 3.

Значения предела повторяемости вероятности Р = 0,95

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-3.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4.

Значения предела воспроизводимости при вероятности Р = 0,95

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

11.1 . Результат анализа X ср в документах, предусматривающих его использование, может быть представлен в виде: Хср± D , Р = 0,95,

Читайте также:  Биохимический анализ можно пить воду

где D — показатель точности методики.

Значение D рассчитывают по формуле: D = 0,01 × d × Хср . Значение d приведено в таблице 1.

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде: Хср± D л , Р = 0,95, при условии D л D ,

где Хср— результат анализа, полученный в соответствии с прописью методики;

± D л — значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов анализа.

Примечание. При представлении результата анализа в документах, выдаваемых лабораторией, указывают:

— количество результатов параллельных определений, использованных для расчета результата анализа;

— способ определения результата анализа (среднее арифметическое значение или медиана результатов параллельных определений).

11.2 . В том случае, если массовая концентрация ионов свинца в анализируемой пробе превышает верхнюю границу диапазона, то допускается разбавление пробы таким образом, чтобы массовая концентрация ионов свинца соответствовала регламентированному диапазону.

Результат анализа Хсрв документах, предусматривающих его использование, может быть представлен в виде: Хср± D ’, Р = 0,95,

где ± D ’ — значение характеристики погрешности результатов анализа, откорректированное на величину погрешности взятия аликвоты.

11.3 . Если массовая концентрация ионов свинца в анализируемой пробе ниже минимально определяемой по методике концентрации, то допускается концентрирование. В этом случае одновременно с анализируемой пробой ведут анализ аттестованного (стандартного) раствора с содержанием ионов свинца, соответствующим содержанию их в исходной рабочей пробе. Результат анализа исходной рабочей пробы признают удовлетворительным, если выполняется следующее условие:

где X — результат контрольного измерения массовой концентрации ионов свинца в образце для контроля (стандартном растворе);

С — аттестованное значение массовой концентрации ионов свинца в образце для контроля (стандартном растворе);

К — норматив оперативного контроля процедуры анализа.

D ” — значение характеристики погрешности результатов анализа, откорректированное на величину концентрирования пробы.

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

— оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

— контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

12.1 . Алгоритм оперативного контроля процедуры анализа с использованием метода добавок

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры Ккс нормативом контроля К.

Результат контрольной процедуры Кк рассчитывают по формуле:

где Х ¢ ср — результат анализа массовой концентрации ионов свинца в пробе с известной добавкой — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 10;

Хср результат анализа массовой концентрации ионов свинца в исходной пробе — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 10.

Норматив контроля К рассчитывают по формуле

где , — значения характеристики погрешности результатов анализа, установленные в лаборатории при реализации методики, соответствующие массовой концентрации ионов свинца в пробе с известной добавкой и в исходной пробе соответственно.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: D л = 0,84 · D , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

При невыполнении условия (2) контрольную процедуру повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

12.2 . Алгоритм оперативного контроля процедуры анализа с применением образцов для контроля

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры Ккс нормативом контроля К.

Результат контрольной процедуры Кк рассчитывают по формуле:

где C ср — результат анализа массовой концентрации ионов свинца в образце для контроля — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 10;

С — аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле:

где ± D л — характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: D л = 0,84 · D , с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

При невыполнении условия (3) контрольную процедуру повторяют. При повторном невыполнении условия (3) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.

В 100 см 3 четыреххлористого углерода растворяют 1,0 г дитизона. Раствор переносят в делительную воронку на 500 см 3 , приливают 100 см 3 раствора аммиака (1 см 3 концентрированного аммиака, разбавленного до 100 см 3 бидистиллированной водой) и 5 см 3 5 %-ного раствора аскорбиновой кислоты. Содержимое воронки встряхивают в течение 2 мин. После расслоения жидкости органический слой сливают в чистую делительную воронку. Водный раствор дитизона фильтруют в колбу на 1 дм 3 через бумажный фильтр, предварительно промытый раствором соляной кислоты (1:20) и бидистиллированной водой. К органическому раствору дитизона приливают новую порцию раствора аммиака и раствора аскорбиновой кислоты, и содержимое воронки встряхивают в течение 2 мин. Операцию очистки дитизона повторяют 5 — 6 раз до тех пор, пока водно-аммиачный раствор не будет окрашиваться в оранжевый цвет. Все порции водного раствора дитизона фильтруют в колбу на 1 дм 3 . Приливают соляную кислоту (1:1) до выпадения дитизона в осадок. При этом водный слой приобретает бледно-зеленоватый цвет. Осадок фильтруют через бумажный фильтр, промывают 3 раза 1 %-ным раствором аскорбиновой кислоты и сушат на воздухе. Дитизон хранят в темном месте.

источник

Экскурсоводы Рима часто поражают туристов рассказами о банях, коммуникации которых сохранились до наших дней. Восхищенным гостям вечного города гиды часто говорят, что состояние труб настолько хорошее, что даже сейчас там можно принимать водные процедуры. Можно, но не нужно. А точнее, жизненно опасно. Ведь свинцовые сплавы, из которых сделаны трубопроводы, после тысячелетних коррозий опасны для жизни купальщика.

Но не думайте возмущаться глупыми римскими сантехниками, которые не могли подобрать материал безопаснее. Во-первых, этот блестящий металл и его соединения представляют собой ковкое, легкоплавкое и мягкое вещество, не способное проводить электричество. А значит, идеально подходит для таких целей. А во-вторых, этот элемент использовался в составе труб и сантехники практически до конца прошлого века. Поэтому жителям старых построек и владельцев частных колодцев нужно понимать, что свинец легко может оказаться в их питьевой воде. Но это еще не все…

В чистом виде Pb в природе встречается крайне редко. Но как любое минеральное сырье он содержится в минеральных отложениях и рудах. Он вымывается и выветривается из подземных и горных пород, попадая в результате круговорота веществ и вод в различные источники. Большой «вклад» в загрязнение водоемов и рек этим элементом вносит человек. Свинец оказывается в воде со стоками промышленных и горно-обогатительных предприятий, в результате скапливания бытовых отходов и сжигания угля.

Нужно ли его бояться? Ведь это вещество необходимо человеческому организму для стимуляции роста и обновления различных тканей и регулирования количества гемоглобина в крови. Но только в малых дозах. Превышение суточной нормы превращает его в токсичный загрязнитель, приравниваемый к яду. В случае отравления этим металлом, люди могут наблюдать у себя бессонницу, вялость, слабость, сильные головные боли, раздражительность, головокружение, тошноту, депрессию, потерю аппетита. Постепенное его накапливание в организме ведет к серьезным заболеваниям, среди которых энцефалопатия, железодефицитная анемия, поражение почечных канальцев, первичное бесплодие. Крайне негативное воздействие оказывается на здоровье детей, беременных женщин и развитие плода.

Все вышеперечисленные опасности для человеческого организма должны побуждать людей внимательно относиться к тому, что они пьют. Анализ воды из колодца, водопровода или скважины – это в наши дни уже не роскошь, а жизненная необходимость для предотвращения многих заболеваний. В случае нахождения промышленных стоков недалеко от питьевого источника незамедлительно отправляйте пробу в химическую лабораторию «ИОН». Современные технологии и высокопрофессиональные сотрудники помогут вам решить эту проблему!

Ученые установили, что ПДК свинца в воде составляет 0,03 мг/дм3. При превышении этой цифры единственный способ избавиться от загрязнения – это водоочистное сооружение (фильтры обратного осмоса). Кипячение воды никак не поможет вам избавиться от этого загрязнителя, поэтому доверьте дело специалистам.

Тяжелые металлы – это токсичные и крайне опасные вещества, способные значительно ухудшить здоровье человека и даже привести к гибели. Биогенные элементы – это исключение среди тяжелых металлов, которые необходимы всем живым организмам. Атомный вес тяжелых металлов составляет более 40.

Марганец в воде – довольно распространенное явление. Это вещество представляет из себя легкорастворимый минерал, занимающий 14 место среди общего количества. Содержание марганца в воде способно как принести организму пользу, так и причинить вред.

* Бесплатный выезд для физических лиц в пределах МКАД при заказе на сумму более 5 000 ₽. Подробнее в разделе Доставка и оплата

© 1997-2019 — Лаборатория ИОН. Все права защищены.

источник

Анализ «Минимальный» включает базовый набор из 18 показателей, характеризующих качество воды: обобщённые показатели (в т. ч. жёсткость, минерализацию, перманганатную окисляемость) и базовый список катионов и анионов.

Исследование не предполагает анализ содержания в воде тяжёлых металлов, органических загрязнителей и канцерогенов, а также ксенобиотиков.

Как правило, набор «Минимальный» не используется для подтверждения качества источников централизованного водоснабжения, но подходит для источников нецентрализованного водоснабжения.

Для исследования питьевой воды рекомендуется набор «Оптимальный»

  • подходит для колодцев, скважин, родников в случае, если ранее уже осуществлялся более расширенный анализ воды из Вашего источника;
  • позволяет оценить качество фильтров и очистных систем, которые Вы уже используете;
  • позволяет подобрать обезжелезивающие фильтры и умягчители и по составу анионов установить необходимость использования систем обратного осмоса;
  • обладает высокой точностью, подтверждённой Межлабораторными Сличительными Испытаниями и поверками.
  • не подходит для подтверждения полной безопасности для здоровья и подбора комплексной водоподготовки (лучше выбрать более развёрнутые варианты исследований).
Определяемый показатель Нормативный документ на методику
Органолептические показатели
Запах при 20 °C ГОСТ Р 57164-2016
Цветность ГОСТ 31868-2012 Метод Б (Cr-Co)
Мутность Методика определения выбирается лабораторией
Обобщённые показатели
Жесткость общая РД 52.24.395-2017
Перманганатная окисляемость / Перманганатный индекс ПНД Ф 14.1:2:4.154-99 (издание 2012 г.)
Водородный показатель (pH) / pH РД 52.24.495-2017
Сухой остаток / Минерализация (плотный остаток) ПНД Ф 14.1:2:4.261-2010 (издание 2015 г.)
Удельная электропроводность РД 52.24.495-2005
Общая щелочность ГОСТ 31957-2012 Метод А.2 Способ 1
Свободная щелочность ГОСТ 31957-2012 Метод А.2
Неорганические соединения
Гидрокарбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Карбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Нитрат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фторид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Элементы
Железо ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кальций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Магний ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Марганец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)

Не нашли нужные показатели?

Анализ проводится с использованием передовых методик и техник анализа, в том числе фотометрии, ионной хроматографии, атомной абсорбции и потенциометрии, что обеспечивает высокую точность и низкие уровни риска получения недостоверных результатов.

Углублённый физико-химический анализ воды по 30 показателям, который включает в себя полный набор обобщённых показателей (в т. ч. жёсткость, минерализацию, перманганатную окисляемость) и содержит базовый перечень тяжёлых металлов и металлоидов (в т. ч. кадмий, мышьяк); не включает разделение опасных органических компонентов.

Оптимален для оценки качества источников централизованного водоснабжения, так как анализируется, в том числе, алюминий — компонент очистки воды, способный попадать в водопроводную воду на станциях очистки Водоканала. По сравнению с набором «Минимальный» даёт более полное представление о качестве воды и её безопасности для здоровья.

Для исследования питьевой воды рекомендуется набор «Оптимальный»

  • подходит для проверки широкого спектра источников воды, контроль качества воды в которых осуществляется как минимум раз в год;
  • включает определение концентраций тяжёлых металлов и металлоидов;
  • позволяет подобрать систему очистки воды от широкого перечня загрязнителей;
  • позволяет оценить качество фильтров и очистных систем, которые Вы уже используете;
  • обладает высокой точностью, подтверждённой Межлабораторными Сличительными Испытаниями и поверками.
  • не подходит для подтверждения полной безопасности для здоровья (лучше обратить внимание на наборы «Расширенный» или «Максимальный»).
Определяемый показатель Нормативный документ на методику
Органолептические показатели
Запах при 20 °C ГОСТ Р 57164-2016
Цветность ГОСТ 31868-2012 Метод Б (Cr-Co)
Мутность Методика определения выбирается лабораторией
Обобщённые показатели
Жесткость общая РД 52.24.395-2017
Перманганатная окисляемость / Перманганатный индекс ПНД Ф 14.1:2:4.154-99 (издание 2012 г.)
Водородный показатель (pH) / pH РД 52.24.495-2017
Сухой остаток / Минерализация (плотный остаток) ПНД Ф 14.1:2:4.261-2010 (издание 2015 г.)
Удельная электропроводность РД 52.24.495-2005
Общая щелочность ГОСТ 31957-2012 Метод А.2 Способ 1
Свободная щелочность ГОСТ 31957-2012 Метод А.2
Неорганические соединения
Бромид-ион ПНД Ф 14.1.175-2000 (издание 2014 г.)
Гидрокарбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Ионы аммония / Аммиак и ионы аммония ПНД Ф 14.1:2:4.276-2013 (издание 2013 г.)
Карбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Нитрат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Нитрит-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фосфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фторид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Хлорид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Элементы
Алюминий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Железо ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кадмий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Калий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кальций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Магний ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Марганец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Мышьяк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Натрий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Свинец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Читайте также:  Биохимическое потребление кислорода анализ воды

Не нашли нужные показатели?

Анализ проводится с использованием передовых методик и техник анализа, в том числе фотометрии, ионной хроматографии, атомной абсорбции и потенциометрии, масс-спектрометрии и флуоресцентного анализа, что обеспечивает высокую точность и низкие уровни риска получения недостоверных результатов.

Развёрнутый физико-химический и органолептический анализ воды по 48 показателям включает в себя полный набор обобщённых показателей (в т. ч. жёсткость, минерализацию, перманганатную окисляемость), полный перечень тяжёлых металлов и металлоидов (в т. ч. ртуть, свинец, кадмий, мышьяк), а также анализ сероводорода и нефтепродуктов; не включает разделение опасных органических компонентов.

Подходит для оценки безопасности воды из всех источников, в том числе расположенных в районах с неблагоприятной экологической обстановкой.

Для исследования питьевой воды рекомендуется набор «Оптимальный»

  • отлично подходит для проверки любых источников водоснабжения;
  • включает определение концентраций полного набора тяжёлых металлов и металлоидов;
  • включает анализ на нефтепродукты и сероводород;
  • позволяет подобрать систему очистки воды от исчерпывающего перечня загрязнителей;
  • позволяет принять решение об установке аэратора в составе водоподготовки;
  • позволяет оценить качество фильтров и очистных систем, которые Вы уже используете;
  • обладает высокой точностью, подтверждённой Межлабораторными Сличительными Испытаниями и поверками.
  • требует использования консерванта для сероводорода и дополнительной тары для нефтепродуктов во время отбора проб.
Определяемый показатель Нормативный документ на методику
Органолептические показатели
Запах при 20 °C ГОСТ Р 57164-2016
Цветность ГОСТ 31868-2012 Метод Б (Cr-Co)
Мутность Методика определения выбирается лабораторией
Обобщённые показатели
Жесткость общая РД 52.24.395-2017
Перманганатная окисляемость / Перманганатный индекс ПНД Ф 14.1:2:4.154-99 (издание 2012 г.)
Водородный показатель (pH) / pH РД 52.24.495-2017
Сероводород ПНД Ф 14.1:2:4.178-02 (издание 2010 г.)
Сухой остаток / Минерализация (плотный остаток) ПНД Ф 14.1:2:4.261-2010 (издание 2015 г.)
Удельная электропроводность РД 52.24.495-2005
Общая щелочность ГОСТ 31957-2012 Метод А.2 Способ 1
Нефтепродукты Методика определения выбирается лабораторией
Кремнекислота (в пересчете на кремний) ПНД Ф 14.1:2:4.215-06 (издание 2011 г.)
Свободная щелочность ГОСТ 31957-2012 Метод А.2
Неорганические соединения
Бромид-ион ПНД Ф 14.1.175-2000 (издание 2014 г.)
Гидрокарбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Ионы аммония / Аммиак и ионы аммония ПНД Ф 14.1:2:4.276-2013 (издание 2013 г.)
Карбонат-ион ГОСТ 31957-2012 Метод А.2 Способ 1
Нитрат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Нитрит-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфид-ион ПНД Ф 14.1:2:4.178-02 (издание 2010 г.)
Фосфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фторид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Хлорид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Элементы
Алюминий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Барий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Бериллий Методика определения выбирается лабораторией
Бор / Ионы бората ГОСТ 31949-2012
Ванадий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Железо ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кадмий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Калий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кальций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кобальт ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Литий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Магний ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Марганец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Медь ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Молибден ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Мышьяк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Натрий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Никель ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Свинец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Серебро ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Стронций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Хром ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Цинк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Ртуть Методика определения выбирается лабораторией

Не нашли нужные показатели?

Анализ проводится с использованием передовых методик и техник анализа, в том числе фотометрии, ионной хроматографии, атомной абсорбции и потенциометрии, масс-спектрометрии и флуоресцентного анализа, спектрофотомерии, жидкостно-жидкостной экстракции, что обеспечивает высокую точность и низкие уровни риска получения недостоверных результатов.

Наиболее подробный физико-химический и органолептический анализ воды по 56 важным показателям согласно СанПиН 2.1.4.1074 включает в себя полный набор обобщённых показателей (в т. ч. жёсткость, минерализацию, перманганатную окисляемость, щёлочности, pH), полный перечень тяжёлых металлов и металлоидов (в т. ч. ртуть, свинец, кадмий, мышьяк), анализ сероводорода и нефтепродуктов; а также опасных органических компонентов, в том числе канцерогенов и ксенобиотиков.

Для проведения это анализа задействуется практически весь парк аналитического оборудования МГУ. Набор пользуется большой популярностью среди ТСЖ и строительных организаций.

2,5 л (пластик) + 0,2 л (стекло)

Для исследования питьевой воды рекомендуется набор «Оптимальный»

  • учитывает основные требования СанПиН 2.1.4.1074 в полном объёме и гарантирует безопасность для жизни и здоровья потребителей;
  • вместе с этим анализом Испытательный Центр МГУ проводит микробиологические исследования бесплатно;
  • включает анализ на опасные, канцерогенные вещества и ксенобиотики;
  • включает анализ на нефтепродукты и сероводород;
  • включает в себя полный набор тяжёлых металлов и металлоидов;
  • позволяет подобрать систему очистки Вашей воды от полного перечня загрязнителей;
  • позволяет принять решение об установке аэратора в составе водоподготовки;
  • позволяет оценить качество фильтров и очистных систем, которые Вы уже используете;
  • обладает высокой точностью, подтверждённой Межлабораторными Сличительными Испытаниями и поверками.
  • требует использования консерванта для сероводорода и дополнительной тары для нефтепродуктов;
  • аналитические работы занимают относительно много времени – до 5 рабочих дней.
Определяемый показатель Нормативный документ на методику
Органолептические показатели
Запах при 20 °C ГОСТ Р 57164-2016
Цветность ГОСТ 31868-2012 Метод Б (Cr-Co)
Мутность Методика определения выбирается лабораторией
Обобщённые показатели
Жесткость общая РД 52.24.395-2017
Перманганатная окисляемость / Перманганатный индекс ПНД Ф 14.1:2:4.154-99 (издание 2012 г.)
Водородный показатель (pH) / pH РД 52.24.495-2017
Общий хлор / Остаточный активный хлор / Сумма свободного и связанного хлора (хлораминов) ПНД Ф 14.1:2:4.113-97 (издание 2018 г.)
Сероводород ПНД Ф 14.1:2:4.178-02 (издание 2010 г.)
Сухой остаток / Минерализация (плотный остаток) ПНД Ф 14.1:2:4.261-2010 (издание 2015 г.)
Удельная электропроводность РД 52.24.495-2005
Общая щелочность ГОСТ 31957-2012 Метод А.2 Способ 1
Нефтепродукты Методика определения выбирается лабораторией
Кремнекислота (в пересчете на кремний) ПНД Ф 14.1:2:4.215-06 (издание 2011 г.)
Неорганические соединения
Бромид-ион ПНД Ф 14.1.175-2000 (издание 2014 г.)
Ионы аммония / Аммиак и ионы аммония ПНД Ф 14.1:2:4.276-2013 (издание 2013 г.)
Нитрат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Нитрит-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Сульфид-ион ПНД Ф 14.1:2:4.178-02 (издание 2010 г.)
Фосфат-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Фторид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Хлорид-ионы ПНД Ф 14.1:2:4.132-98 (издание 2008 г.)
Элементы
Алюминий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Барий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Бериллий Методика определения выбирается лабораторией
Бор / Ионы бората ГОСТ 31949-2012
Ванадий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Железо ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кадмий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Калий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кальций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Кобальт ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Литий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Магний ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Марганец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Медь ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Молибден ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Мышьяк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Натрий ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Никель ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Свинец ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Селен ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Серебро ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Стронций ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Титан ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Хром ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Цинк ЦВ 3.18.05-2005 (ФР.1.31.2005.01714)
Ртуть Методика определения выбирается лабораторией
Органические соединения
АПАВ ПНД Ф 14.1:2:4.158-2000 (издание 2014 г.)
Формальдегид ПНД Ф 14.2:4.227-2006 (издание 2018 г.)
Летучие органические соединения (ВТЕХ)
Бензол ПНД Ф 14.1:2:3.171-2000 (издание 2017 г.)
о-Ксилол ПНД Ф 14.1:2:3.171-2000 (издание 2017 г.)
Толуол ПНД Ф 14.1:2:3.171-2000 (издание 2017 г.)
м-,п- Ксилолы ПНД Ф 14.1:2:3.171-2000 (издание 2017 г.)
Полиароматические углеводороды (ПАУ)
Бенз(a)пирен ПНД Ф 14.1:2:4.70-96 (издание 2012 г.)
Фенолы и фенолпроизводные
Фенол Методика определения выбирается лабораторией

Не нашли нужные показатели?

Анализ проводится с использованием передовых методик и техник анализа, в том числе фотометрии, ионной хроматографии, атомной абсорбции и потенциометрии, масс-спектрометрии и флуоресцентного анализа, жидкостной хроматографии, газовой хроматографии, спектрофотомерии, жидкостно-жидкостной и твердофазной экстракции, что обеспечивает высокую точность и низкие уровни риска получения недостоверных результатов.

источник

ПНД Ф 14.1;2.54-96 Количественный химический анализ вод. Методика выполнения измерений массовой концентрации свинца в природных и очищенных сточных водах

МИНИСТЕРСТВО ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ И ПРИРОДНЫХ
РЕСУРСОВ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
МАССОВОЙ КОНЦЕНТРАЦИИ
СВИНЦА В ПРИРОДНЫХ И ОЧИЩЕННЫХ
СТОЧНЫХ ВОДАХ ФОТОМЕТРИЧЕСКИМ
МЕТОДОМ С ДИТИЗОНОМ

Методика допущена для целей государственного экологического контроля

Методика рассмотрена и одобрена Главным управлением аналитического контроля и метрологического обеспечения природоохранной деятельности (ГУАК) и Главным метрологом Минприроды РФ.

В соответствии с требованиями ГОСТ Р ИСО 5725-1-2002 ? ГОСТ Р ИСО 5725-6-2002 и на основании свидетельства о метрологической аттестации № 224.01.03.028/2004 в МВИ внесены изменения (Протокол № 1 заседания НТС ФГУ «ФЦАМ» МПР России от 03.03.2004).

Настоящий документ устанавливает фотометрическую методику количественного химического анализа проб природных и очищенных сточных вод для определения в них ионов свинца при массовой концентрации от 0,002 до 0,03 мг/дм 3 .

Если массовая концентрация ионов свинца в анализируемой пробе превышает верхнюю границу диапазона, то допускается разбавление пробы таким образом, чтобы концентрация ионов свинца соответствовала регламентированному диапазону.

Мешающие влияния, обусловленные присутствием в пробе органических веществ, ионов меди, цинка, кадмия, никеля, серебра, ртути, висмута устраняются специальной подготовкой пробы к анализу (п. 9).

Фотометрический метод определения массовой концентрации ионов свинца основан на взаимодействии свинца с дифенилтиокарбазоном (дитизоном) в четыреххлористом углероде с образованием комплексного соединения, окрашенного в красный цвет. Оптическую плотность раствора комплексного соединения измеряют при l = 520 нм.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателей точности, повторяемости и воспроизводимости методики

Диапазон измерений, мг/дм 3

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ± d, %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости) sr, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), sR, %

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Спектрофотометр или фотоколориметр, позволяющий измерять оптическую плотность при длине волны l = 520 нм

Кюветы с толщиной поглощающего слоя 20 мм

Весы лабораторные 2 класса точности, ГОСТ 24104

ГСО с аттестованным содержанием ионов свинца

ПНД Ф 14.1:2.54-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Воронки В-25-38 ХС, ГОСТ 25336.

Воронки делительные ВД-3-1000 ХС, ГОСТ 25336.

Бюретка 1(2)-2-25-0,1 ГОСТ 29251 ( * ) .

ПНД Ф 14.1:2.54-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Колбы конические Кн-1-1000-29/32, ГОСТ 25336.

Холодильники ХШ-1-200-29/32 ХС, ГОСТ 25336.

Бумага универсальная индикаторная, ТУ-6-09-1181.

Баня водяная, ТУ 46-22-606-75.

Выпарительная чаша № 8, ГОСТ 9147.

Бутыли из стекла или полиэтилена с притертыми или винтовыми пробками вместимостью 500 — 1000 см 3 для отбора и хранения проб и реактивов.

Феноловый красный, ГОСТ 4599.

Аммоний надсернокислый, ГОСТ 20478.

Гидроксиламина гидрохлорид, ГОСТ 5456.

Четыреххлористый углерод, ГОСТ 20288 (продажный реактив перегоняют, собирая фракцию, кипящую при 76 °С).

Натрий лимоннокислый, ТУ 6-09-2248-78.

Соляная кислота, ГОСТ 3118.

Калий железистосинеродистый трехводный, ГОСТ 4207. ( * )

Аскорбиновая кислота, ГОСТ 4815. ( * )

ПНД Ф 14.1:2.54-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Вода дистиллированная, ГОСТ 6709.

Вес реактивы должны быть квалификации х.ч. или ч.д.а.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

4.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019.

4.3. Организация обучения работающих безопасности труда по ГОСТ 12.0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик аналитик, владеющий техникой экстракционно-фотометрического анализа и изучивший инструкцию по эксплуатации спектрофотометра или фотоколориметра.

Измерения проводятся в следующих условиях:

температура окружающего воздуха (20 ± 5) °С;

атмосферное давление (84,0 — 106,7) кПа (630 — 800 мм. рт. ст);

относительная влажность (80 ± 5) %;

напряжение сети (220 ± 10) В;

частота переменного тока (50 ± 1) Гц.

Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб». ( * )

ПНД Ф 14.1:2.54-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

7.1. Бутыли для отбора и хранения проб воды обезжиривают раствором CMC, промывают водопроводной водой, обрабатывают хромовой смесью, тщательно промывают водопроводной, затем 3 — 4 раза дистиллированной водой.

Читайте также:  Биологический анализ воды из колодца

7.2. Пробы воды (объем не менее 1000 см 3 ) отбирают в полиэтиленовые бутыли, предварительно ополоснутые отбираемой водой.

7.3. Пробы анализируют не позднее, чем через 2 часа после отбора или консервируют следующим образом: к пробе добавляют 3 см 3 концентрированной HNО3 на 1 дм 3 воды, или 3 см 3 ледяной уксусной кислоты на 1 дм 3 воды. Срок хранения законсервированной пробы — 1 месяц.

Если требуется определить свинец в растворенной форме, пробу фильтруют через бумажный фильтр «синяя лента» до консервирования ( * ) .

ПНД Ф 14.1:2.54-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

7.4. Проба воды не должна подвергаться воздействию прямого солнечного света. Для доставки в лабораторию сосуды с пробами упаковывают в тару, обеспечивающую сохранность и предохраняющую от резких перепадов температуры. При отборе проб составляют сопроводительный документ по утвержденной форме, в котором указывают:

цель анализа, предполагаемые загрязнители;

должность, фамилия отбирающего пробу, дата.

Подготовку прибора к работе и оптимизацию условий измерения производят в соответствии с рабочей инструкцией по эксплуатации прибора. Прибор должен быть поверен.

Дважды перегоняют воду в приборе из стекла, не содержащего свинца, и проверяют ее на отсутствие свинца раствором дитизона.

300 — 500 см 3 воды встряхивают с 20 см 3 раствора дитизона (по п. 8.2.9). Процедуру повторяют до тех пор пока цвет дитизона не будет оставаться зеленым. Избыток дитизона удаляют встряхиванием бидистиллированной воды с четыреххлористым углеродом. Дитизон считают полностью удаленным, если после очередного встряхивания слой растворителя остается бесцветным.

Для приготовления всех реактивов и растворов используют эту воду.

8.2.1. Феноловый красный, спиртовой раствор.

0,1 г индикатора растворяют в 100 см 3 20 %-ного раствора спирта-ректификата.

8.2.2. Натрий лимоннокислый, водный раствор.

100 г натрия лимоннокислого растворяют в небольшом количестве воды, помещают в мерную колбу на 500 см 3 и доводят до метки бидистиллированной водой.

Очищают от микроэлементов экстракцией в делительной воронке раствором дитизона (по п. 8.2.9.) порциями по 5 — 10 см 3 до прекращения окраски дитизона. Продолжительность каждой экстракции 1 мин. После этого из раствора извлекают остатки дитизона экстракцией четыреххлористым углеродом порциями по 10 см 3 до полного удаления дитизона, т.е. пока очередная порция четыреххлористого углерода не станет бесцветной. Продолжительность каждой экстракции 1 мин.

500 см 3 соляной кислоты осторожно приливают к 500 см 3 бидистиллированной воды.

8.2.4. Калий железистосинеродистый ( * ) , водный раствор.

Навеску (1 г) калия железистосинеродистого ( * ) помещают в мерную колбу на 50 см 3 , растворяют в небольшом количестве воды, перемешивают и доводят до метки бидистиллированной водой.

ПНД Ф 14.1:2.54-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

8.2.5. Гидроксиламин солянокислый, раствор.

Навеску (10 г) гидроксиламина солянокислого помещают в мерную колбу на 500 см 3 , растворяют в небольшом количестве воды, перемешивают и доводят до метки бидистиллированной водой.

Раствор очищают экстракцией раствором дитизона (по п. 8.2.9.) порциями по 5 — 10 см 3 до прекращения изменения окраски дитизона. Продолжительность каждой экстракции 1 мин. После этого из раствора извлекают остатки дитизона экстракцией четыреххлористым углеродом порциями по 10 см 3 до полного удаления дитизона, т.е. пока очередная порция четыреххлористого углерода не станет бесцветной. Продолжительность каждой экстракции 1 мин.

8.2.6. Приготовление основного градуировочного раствор свинца.

Раствор готовят из ГСО с аттестованным содержанием свинца в соответствии с прилагаемой к образцу инструкцией.

Раствор устойчив в течение года и хранится в склянке с притертой пробкой при комнатной температуре.

1 см 3 раствора должен содержать 0,1 мг свинца.

8.2.7. Приготовление рабочего градуировочного раствора свинца.

Рабочий раствор готовят в день проведения анализа разбавлением основного раствора в 100 раз бидистиллированной водой.

1 см 3 раствора должен содержать 0,001 мг свинца.

8.2.8. Приготовление основного раствора дитизона.

0,05 г дитизона очищенного (см. приложение) растворяют в 500 см 3 четыреххлористого углерода. Раствор хранят в темной склянке при 3 — 5 °С в течение нескольких месяцев.

8.2.9. Приготовление рабочего раствора дитизона.

25 см 3 основного раствора дитизона разбавляют четыреххлористым углеродом и объём доводят до 250 см 3 . Измеряют оптическую плотность полученного раствора (l = 520 нм, кювета 20 мм) против четыреххлористого углерода. Прибавляя в колбу по каплям раствор дитизона (по п. 8.2.8) или четыреххлористого углерода, устанавливают оптическую плотность, равную 0,350. Раствор готовят в день определения и хранят в темной склянке ( * ) .

ПНД Ф 14.1:2.54-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

8.2.10. Приготовление раствора аммиака, 17 %-ный раствор.

Раствор получают путем изопиестической дистилляции концентрированного раствора аммиака. Для этого на дно эксикатора наливают 1 дм 3 концентрированного аммиака, а на вкладыш ставят выпарительную чашку с 500 см 3 бидистиллированной воды. Через двое суток аммиак, полученный в чашке, будет иметь концентрацию примерно 17 %.

Для построения градуировочного графика необходимо приготовить образцы для градуировки определяемого компонента с концентрациями 0,002 — 0,03 мг/дм 3 . Условия анализа, его проведение должны соответствовать описанным в пунктах 6 и 9.

Состав и количество образцов для градуировки для построения градуировочного графика приведены в таблице 2. Погрешность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,8 %.

Состав и количество образцов для градуировки при анализе свинца

Массовая концентрация свинца в градуировочных растворах, мг/дм 3

Аликвотная часть рабочего раствора с концентрацией 0,001 мг/см 3 , помещенного в мерную колбу на 500 см 3

В качестве холостой пробы используют бидистиллированную воду (п. 8.2), которую проводят через весь ход анализа ( * ) .

ПНД Ф 14.1:2.54-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Растворы готовят в мерных колбах вместимостью 500 см 3 . Полученные растворы переносят в конические колбы со шлифом емкостью 1 дм 3 , подкисляют 10 см 3 раствором соляной кислоты (по п. 8.2.3), прибавляют по 0,5 г персульфата аммония, вставляют в горла колб пробки-холодильники. Кипятят в течение 20 минут. Далее поступают как указано в п. 9.

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных. Из оптической плотности каждого градуировочного раствора вычитают оптическую плотность холостой пробы ( * ) .

ПНД Ф 14.1:2.54-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Строят градуировочный график в координатах оптическая плотность — концентрация в мг/дм 3 .

Контроль стабильности градуировочной характеристики проводят не реже одного раза в месяц или при смене партии реактивов. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

где Х — результат контрольного измерения массовой концентрации ионов свинца в образце для градуировки;

С — аттестованное значение массовой концентрации ионов свинца в образце для градуировки;

s среднеквадратическое отклонение внутрилабораторной прецизионности, установленное при реализации методики в лаборатории.

Примечание. Допустимо среднеквадратическое отклонение внутрилабораторной прецизионности при внедрении методики в лаборатории устанавливать на основе выражения: ?= 0,84 ?R, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Значения sR приведены в таблице 1.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

0,5 дм 3 исследуемой воды, предварительно подкисленной (20 см 3 соляной кислоты по п. 8.2.3 на 1 дм 3 пробы), помещают в колбу на 1 дм 3 , прибавляют 0,5 г персульфата аммония и, вставив в горло колбы пробку-холодильник, кипятят на медленном огне в течение 20 мин., после чего пробу охлаждают под струей воды.

К охлажденной пробе приливают

15 см 3 аммиака (по п. 8.2.10), затем по каплям доводят кислотность среды до рН = 2 (контроль по универсальной индикаторной бумаге). Пробу переносят в делительную воронку емкостью 1 дм 3 и экстрагируют 10 см 3 раствора дитизона (по п. 8.2.9) в течение 2 минут. После расслоения водной и органической фаз экстракт сливают и отбрасывают. Повторяют экстракцию до тех пор, пока слой органического растворителя не перестанет изменять окраску.

К очищенной пробе прибавляют 5 — 6 капель раствора фенолового красного (по п. 8.2.1) и, приливая по каплям аммиак (по п. 8.2.10), нейтрализуют пробу до оранжевой окраски (рН = 6,8 — 7,3). Затем приливают 5 см 3 раствора калия железистосинеродистого ( * ) (по п. 8.2.4), 5 см 3 раствора солянокислого гидроксиламина (по п. 8.2.5), 5 см 3 раствора лимоннокислого натрия (по п. 8.2.2) и встряхивают содержимое воронки в течение 30 сек. Затем прибавляют по каплям аммиак (по п. 8.2.10) до появления малиновой окраски и избыток

5 капель (рН = 8,0 — 8,5). Приливают 10 см 3 раствора дитизона (по п. 8.2.9) и экстрагируют свинец в течение 2 минут. После расслоения сливают окрашенный слой органического растворителя в кювету, фильтруя его через воронку с небольшим слоем ваты. Измеряют оптическую плотность раствора при длине волны ? = 520 нм в кювете с толщиной слоя 20 мм против четыреххлористого углерода. Вычитают оптическую плотность холостой пробы (см. п. 8.3) ( * ) . Содержание свинца находят по градуировочному графику.

ПНД Ф 14.1:2.54-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Содержание ионов свинца (мг/дм 3 ) рассчитывают по формуле

где С — концентрация свинца, найденная по градуировочному графику, мг/дм 3 ;

500 — объем, до которого была разбавлена проба, см 3 ;

V — объем, взятый для анализа, см 3 .

За результат анализа Хср принимают среднее арифметическое значение двух параллельных определений Х1 и Х2

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 3.

Значения предела повторяемости вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-3.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4.

Значения предела воспроизводимости при вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

11.1. Результат анализа Xср в документах, предусматривающих его использование, может быть представлен в виде: Хср ± D, Р = 0,95,

где D — показатель точности методики.

Значение D рассчитывают по формуле: D = 0,01?d?Хср. Значение d приведено в таблице 1.

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде: Хср ± Dл, Р = 0,95, при условии Dл 3 четыреххлористого углерода растворяют 1,0 г дитизона. Раствор переносят в делительную воронку на 500 см 3 , приливают 100 см 3 раствора аммиака (1 см 3 концентрированного аммиака, разбавленного до 100 см 3 бидистиллированной водой) и 5 см 3 5 %-ного раствора аскорбиновой кислоты. Содержимое воронки встряхивают в течение 2 мин. После расслоения жидкости органический слой сливают в чистую делительную воронку. Водный раствор дитизона фильтруют в колбу на 1 дм 3 через бумажный фильтр, предварительно промытый раствором соляной кислоты (1:20) и бидистиллированной водой. К органическому раствору дитизона приливают новую порцию раствора аммиака и раствора аскорбиновой кислоты, и содержимое воронки встряхивают в течение 2 мин. Операцию очистки дитизона повторяют 5 — 6 раз до тех пор, пока водно-аммиачный раствор не будет окрашиваться в оранжевый цвет. Все порции водного раствора дитизона фильтруют в колбу на 1 дм 3 . Приливают соляную кислоту (1:1) до выпадения дитизона в осадок. При этом водный слой приобретает бледно-зеленоватый цвет. Осадок фильтруют через бумажный фильтр, промывают 3 раза 1 %-ным раствором аскорбиновой кислоты и сушат на воздухе. Дитизон хранят в темном месте.

2. Приписанные характеристики погрешности измерений и ее составляющих. 1

3. Средства измерений, вспомогательное оборудование, материалы, реактивы.. 2

3.1. Средства измерений, оборудование и материалы.. 2

4. Условия безопасного проведения работ. 3

5. Требования к квалификации операторов. 3

6. Условия выполнения измерений. 3

7. Отбор и хранение проб воды.. 3

8. Подготовка к выполнению измерений. 4

8.1. Подготовка прибора к работе. 4

8.2. Приготовление вспомогательных растворов. 4

8.3. Построение градуировочного графика. 5

8.4. Контроль стабильности градуировочной характеристики. 6

10. Обработка результатов измерений. 7

11. Оформление результатов анализа. 8

12. Контроль качества результатов анализа при реализации методики в лаборатории. 9

источник