Меню Рубрики

Химический анализ воды химическое потребление кислорода

ПНД Ф 14.1:2.100-97
Количественный химический анализ вод. Методика выполнения измерений химического потребления кислорода в пробах природных и очищенных сточных вод титриметрическим методом

Купить ПНД Ф 14.1:2.100-97 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль»

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них величины химического потребления кислорода (ХПК) при содержании органических веществ, эквивалентном потреблению молекулярного кислорода в диапазоне от 4,0 до 80,0 мг/дм3 титриметрическим методом без концентрации пробы.

Методика допущена для целей государственного экологического контроля

3. Приписанные характеристики погрешности измерений и ее составляющих

4. Средства измерений, вспомогательные устройства, материалы, реактивы

5. Требования безопасности

6. Требования к квалификации операторов

9. Подготовка к выполнению измерений

10. Устранение мешающих влияний

12. Обработка результатов измерений

13. Оформление результатов анализа

14. Контроль качества результатов анализа при реализации методики в лаборатории

Дата введения 01.12.2016
Добавлен в базу 01.09.2013
Завершение срока действия 01.12.2016
Актуализация 01.01.2019

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ
ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

Государственного комитета РФ

по охране окружающей среды

_____________ А.А. Соловьянов

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
ХИМИЧЕСКОГО ПОТРЕБЛЕНИЯ КИСЛОРОДА
В ПРОБАХ ПРИРОДНЫХ И ОЧИЩЕННЫХ СТОЧНЫХ ВОД
ТИТРИМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного экологического контроля

МОСКВА 1997 г.
(издание 2004 г.)

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них величины химического потребления кислорода (ХПК) при содержании органических веществ, эквивалентном потреблению молекулярного кислорода в диапазоне от 4,0 до 80,0 мг/дм 3 титриметрическим методом без концентрирования пробы.

При величине ХПК > 50 мг/дм 3 определение следует проводить при соответствующем разбавлении пробы дистиллированной водой.

Определению мешают хлориды, сульфиды, соединения железа(II), нитриты и другие неорганические вещества, способные окисляться бихроматом в кислой среде.

Мешающие влияния устраняют в соответствии с п. 10.

Титриметрический метод определения ХПК основан на окислении органических веществ избытком бихромата калия в растворе серной кислоты при нагревании в присутствии катализатора — сульфата серебра. Остаток бихромата калия находят титрованием раствором соли Мора и по разности определяют количество K2Cr2O7, израсходованное на окисление органических веществ.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости

Диапазон измерений величины ХПК, мг/дм 3

Показатель точности (границы относительной погрешности при вероятности Р = 0,95),
±d, %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости),
sr, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),
sR, %

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Весы лабораторные общего назначения с наибольшим пределом
взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначения с наибольшим пределом
взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованным содержанием ХПК с погрешностью не более 1 % при Р = 0,95

Цилиндры мерные или мензурки

4.2. Вспомогательные устройства

Плитки электрические с закрытой спиралью и регулируемой
мощностью нагрева

Шкаф сушильный лабораторный с температурой нагрева до 130 °С

Стаканчики для взвешивания (бюксы)

Установки для определения ХПК в составе:

Колба К-1-250-29/32 ТС или колба Гр-250-29/32

Обратный холодильник ХПТ-2-400-29/32 ХС

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Бихромат калия (калий двухромовокислый)

N-фенилантраниловая кислота или

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

или фильтры бумажные обеззоленные «синяя лента»

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

· температура окружающего воздуха (22 ± 6) °С;

· атмосферное давление (84 — 106) кПа;

· относительная влажность не более 80 % при температуре 25 °С;

· частота переменного тока (50 ± 1) Гц;

· напряжение в сети (220 ± 22) В.

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, моют хромовой смесью, затем тщательно (не менее 10 раз) промывают водопроводной и ополаскивают дистиллированной водой.

8.3. Пробы воды отбирают в стеклянную посуду с пробками, не загрязняющими пробу органическими соединениями.

В зависимости от целей анализа определение ХПК можно проводить в нефильтрованной или фильтрованной пробе. В последнем случае пробу предварительно фильтруют через мембранный фильтр 0,45 мкм, очищенный двухкратным кипячением в дистиллированной воде. Допустимо использование бумажных фильтров «синяя лента», промытых дистиллированной водой. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 100 см 3 .

8.4. Определение ХПК, особенно в загрязненных водах, следует проводить как можно скорее после отбора пробы. Допускается хранение пробы при температуре не выше 4 °С не более суток при консервации добавлением раствора серной кислоты (1:2) из расчета 2 см 3 на каждые 100 см 3 пробы воды.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

9.1. Приготовление растворов и реактивов

9.1.1. Раствор бихромата калия с концентрацией 0,25 моль/дм 3 эквивалента.

6,129 г бихромата калия, предварительно высушенного в течение 2 ч при 105 °С, количественно переносят его в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, доводят до метки и перемешивают. Раствор устойчив при хранении в плотно закрытой темной склянке в течение 6 мес.

9.1.2. Раствор бихромата калия с концентрацией 0,025 моль/дм 3 эквивалента.

50 см 3 раствора бихромата калия с концентрацией 0,25 моль/дм 3 эквивалента помещают в мерную колбу вместимостью 500 см 3 и доводят объем раствора до метки дистиллированной водой. Хранят в склянке с притертой пробкой в темном месте не более 6 мес.

9.1.3. Раствор соли Мора с концентрацией 0,25 моль/дм 3 эквивалента.

49,0 г соли Мора переносят в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, осторожно добавляют 10 см 3 концентрированной серной кислоты и после охлаждения доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде не более 6 мес.

9.1.4. Раствор соли Мора с концентрацией 0,025 моль/дм 3 эквивалента.

50 см 3 раствора соли Мора с концентрацией 0,25 моль/дм 3 эквивалента помещают в мерную колбу вместимостью 500 см 3 и доводят объем раствора до метки дистиллированной водой. Хранят в плотно закрытой посуде не более 3 мес.

Точную концентрацию раствора устанавливают ежедневно или перед серией определений в соответствии с п. 10.2.

В качестве индикатора используют раствор N-фенилантраниловой кислоты или ферроина (комплекс сульфата железа(II) с 1,10-фенантролином).

Для приготовления раствора N-фенилантраниловой кислоты 0,25 г реактива растворяют в 12 см 3 раствора гидрооксида натрия (для ускорения процесса раствор можно слегка подогреть) и разбавляют дистиллированной водой до 250 см 3 .

Для приготовления раствора ферроина 2,43 г индикатора растворяют в 100 см 3 дистиллированной воды.

При приготовлении раствора ферроина на основе 1,10-фенантролина растворяют 0,980 г соли Мора (NH4)2Fe(SO4)2 · 6H2O в 100 см 3 дистиллированной воды, добавляют 2,085 г 1,10-фенантролина моногидрата или 2,93 г сульфата и перемешивают до растворения последнего.

Раствор индикатора хранят в плотно закрытой склянке из темного стекла не более 3 мес.

9.1.6. Раствор гидроксида натрия, 0,4 %.

0,4 г NaOH растворяют в 100 см 3 дистиллированной воды. Раствор устойчив при хранении в плотно закрытой полиэтиленовой посуде не более 2 мес.

9.1.7. Раствор сульфата серебра.

5,0 г Ag2SO4 растворяют в 1 дм 3 концентрированной серной кислоты. Раствор устойчив в склянке из темного стекла в течение 6 мес.

9.2. Установление точной концентрации раствора соли Мора

Пипеткой вместимостью 10 см 3 отбирают 10 см 3 раствора бихромата калия с концентрацией 0,025 моль/дм 3 эквивалента (п. 9.1.2), переносят в коническую колбу, добавляют 180 см 3 дистиллированной воды и 20 см 3 концентрированной серной кислоты. После охлаждения добавляют в пробу 3 — 4 капли индикатора ферроина или 10 капель раствора N-фенилантраниловой кислоты и титруют раствором соли Мора с концентрацией 0,025 моль/дм 3 эквивалента (п. 9.1.4) до перехода окраски из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Титрование повторяют и при отсутствии расхождения в объемах титранта более 0,05 см 3 за результат принимают среднее значение. В противном случае повторяют титрование до получения результатов, отличающихся не более, чем на 0,05 см 3 .

Точную концентрацию раствора соли Мора находят по формуле:

где См — концентрация раствора соли Мора, моль/дм 3 эквивалента;

Сб — концентрация раствора бихромата калия, моль/дм 3 эквивалента;

Vб — объем раствора бихромата калия, взятый для титрования, см 3 ;

Vм — объем раствора соли Мора, пошедший на титрование см 3 .

Мешающее влияние хлоридов при концентрациях менее 300 мг/дм 3 устраняется за счет присутствия в пробе катализатора (сульфата серебра). При больших содержаниях хлоридов к пробе добавляют сульфат ртути (II) из расчета 100 мг на 10 мг хлоридов.

Мешающее влияние сульфидов и соединений железа (II) устраняют предварительной продувкой пробы воды воздухом, если она не содержит летучих органических соединений, или учитывают при расчете ХПК. В последнем случае определяют их концентрации и пересчитывают на величины ХПК, исходя из того, что 1 мг H2S и 1 мг Fe 2+ эквивалентны соответственно 0,47 и 0,14 мг O2. Таким же образом учитывают влияние нитритов (1 мг NО2 эквивалентен 0,35 мг O2).

11.1. Выполнение измерений в водах с низкой концентрацией хлоридов

Если концентрация хлоридов в пробе анализируемой воды составляет менее 300 мг/дм 3 , в колбу со шлифом установки для определения ХПК вносят с помощью пипетки 20 см 3 воды (или аликвоту, доведенную дистиллированной водой до 20 см 3 ), добавляют 10,0 см 3 раствора бихромата калия с концентрацией 0,025 моль/дм 3 эквивалента (п. 9.1.2) и 30 см 3 раствора сульфата серебра в концентрированной серной кислоте. Для равномерного кипения в колбу бросают 2 — 3 капилляра, присоединяют к ней обратный холодильник и кипятят содержимое на песчаной бане в течение 2 ч.

После охлаждения установки промывают холодильник дистиллированной водой (около 50 см 3 ), отсоединяют его, добавляют в колбу, обмывая ее стенки, еще 50 см 3 дистиллированной воды, вновь охлаждают, переносят пробу в коническую колбу, дважды споласкивая колбу, где кипятилась проба, дистиллированной водой (по 20 — 30 см 3 ). Добавляют 3 — 4 капли раствора ферроина (или 10 капель раствора фенилантраниловой кислоты) и титруют избыток непрореагировавшего бихромата калия раствором соли Мора (п. 9.1.4) до перехода окраски индикатора из синевато-зеленой в красно-коричневую при использовании в качестве индикатора ферроина и из красно-фиолетовой в синевато-зеленую при использовании N-фенилантраниловой кислоты.

Аналогичным образом проводят холостой опыт с 20 см 3 дистиллированной воды.

11.2. Выполнение измерений в водах с высокой концентрацией хлоридов

Если концентрация хлоридов в воде превышает 300 мг/дм 3 , к отобранной для анализа пробе (20 см 3 или меньшей аликвоте, доведенной до 20 см 3 дистиллированной водой) добавляют сульфат ртути из расчета 100 мг на каждые 10 мг содержащихся в пробе хлоридов и тщательно перемешивают. Далее выполняют определение, как описано в п. 11.1. Наличие небольшого количества осадка, образовавшегося после добавления сульфата ртути, не мешает определению.

12.1. Величину ХПК (бихроматной окисляемости) анализируемой пробы воды X находят по формуле:

где Vмх — объем раствора соли Мора, израсходованный на титрование в холостом опыте, см 3 ;

Vм — объем раствора соли Мора, израсходованный на титрование в пробы воды, см 3 ;

См — концентрация раствора соли Мора, моль/дм 3 эквивалента;

V — объем пробы воды, взятый для определения, см 3 ;

8,0 — масса миллиграмм-эквивалента кислорода, мг.

Если величина ХПК в анализируемой пробе превышает верхнюю границу диапазона (80 мг/дм 3 ), разбавляют пробу с таким расчетом, чтобы величина ХПК входила в регламентированный диапазон, и выполняют определение в соответствии с п. 11.2.

В этом случае величину ХПК в анализируемой пробе воды X находят по формуле:

где ХV величина ХПК в разбавленной пробе воды, мг/дм 3 ;

VV— объем пробы воды после разбавления, см 3 ;

v — объем аликвоты пробы воды, взятой для разбавления, см 3 .

12.2. Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 2.

Значения предела воспроизводимости при вероятности Р = 0,95

Диапазон измерений величины ХПК, мг/дм 3

Предел воспроизводимости (относительное значение допускаемого расхождения
между двумя результатами измерений, полученными в разных лабораториях), R, %

Читайте также:  Анализ на качество воды питьевой воды

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

Результат анализа X в документах, предусматривающих его использование, может быть представлен в виде:

где D — показатель точности методики.

Значение D рассчитывают по формуле:

Значение d приведено в таблице 1.

Если проводилось разбавление пробы воды из-за превышения величины ХПК верхней границы диапазона, значение d выбирают из таблицы 1 для величины ХПК в разбавленной пробе воды ХV.

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде:

источник

Настоящий нормативный документ устанавливает фотометрическую методику определения бихроматной окисляемости (химического потребления кислорода, далее — ХПК). Методика распространяется на следующие объекты анализа: воды питьевые; воды природные пресные, в том числе поверхностных и подземных источников водоснабжения; воды сточные производственные, хозяйственно-бытовые, ливневые и очищенные. Методика может быть использована для анализа проб талых, технических вод и проб снежного покрова.

Диапазон измеряемых значений ХПК составляет от 10 до 30000 мг/дм 3 (по методу А — от 10 до 100 мг/дм 3 и по методу Б — от 100 до 30000 мг/дм 3 ).

При значении ХПК свыше 1000 мг/дм 3 необходимо предварительное разбавление пробы.

Методика может быть использована для анализа проб воды с более высокими значениями ХПК при условии их предварительного разбавления, но не более чем в 100 раз.

Продолжительность анализа одной пробы — 4 часа, серии из 25 проб — 5 часов. Блок-схема проведения анализа приведена в приложении.

ГОСТ 12.0.004-90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.4.009-83 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 4204-77 Реактивы. Кислота серная. Технические условия

ГОСТ 4220-75 Реактивы. Калий двухромовокислый. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 27384-2002 Вода. Нормы погрешностей измерений показателей состава и свойств

ГОСТ 28311-89 Дозаторы медицинские лабораторные. Общие технические требования и методы испытаний

ГОСТ 29169-91 Посуда лабораторная стеклянная. Пипетки с одной отметкой

ГОСТ 29227-91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 29251-91 Посуда лабораторная стеклянная. Бюретки. Часть 1. Общие требования

ГОСТ Р 12.1.019-2009 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности

ГОСТ Р 51592-2000 Вода. Общие требования к отбору проб

ГОСТ Р 52501-2005 Вода для лабораторного анализа. Технические условия

ГОСТ Р 53228-2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

Примечание — Если ссылочный стандарт заменен (изменен), то следует руководствоваться заменяющим (измененным) стандартом. Пели ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на нею, применяется в части, не затрагивающей эту ссылку.

Настоящая методика обеспечивает получение результатов анализа с погрешностями, не превышающими значений, приведенных в таблице 1. Приписанные погрешности измерений не превышают нормы погрешностей, установленные ГОСТ 27384.

Таблица 1 — Диапазон измерений, значении показателей точности, воспроизводимости и повторяемости

Диапазон измерений, мг/дм 3

Показатель повторяемости
(стандартное отклонение повторяемости), σ r , %

Показатель воспроизводимости
(стандартное отклонение воспроизводимости) σ R , %

Показатель точности
(границы относительной погрешности при Р = 0,95), ±δ, %

Примечание — Показатель точности измерений соответствует расширенной неопределенности при коэффициенте охвата k = 2

Метод основан на окислении органических веществ и некоторых неорганических веществ бихромат-ионом в кислой среде при нагревании в присутствии сернокислого серебра с последующим фотометрическим измерением уменьшения оптической плотности растворов при длине волны 450 нм (метод А) или увеличения при длине волны 620 нм (метод Б).

Метод А рекомендуется использовать при анализе проб, имеющих значение ХПК до 100 мг/дм 3 (например, питьевые, природные или очищенные сточные воды).

Метод Б рекомендуется использовать при анализе проб, имеющих значение ХПК более 100 мг/дм 3 (например, сточные производственные и хозяйственно-бытовые, талые и технические воды).

Определению мешают хлориды, влияние которых устраняется в ходе анализа добавлением сернокислой ртути. Содержанием других неорганических веществ, способных окисляться бихроматом в кислой среде, пренебрегают.

5.1.1 Весы лабораторные с максимальной нагрузкой 210 г специального или высокого класса точности по ГОСТ Р 53228.

5.1.2 Государственный стандартный образец (далее — ГСО) бихроматной окисляемости воды с погрешностью аттестованного значения при доверительной вероятности Р = 0,95 не более 2 %;

5.1.3 Дистиллятор или установка любого типа для получения воды дистиллированной по ГОСТ 6709 или воды для лабораторного анализа 2 степени чистоты по ГОСТ Р 52501;

5.1.4 Дозаторы медицинские лабораторные настольные (устанавливаемые на сосуд) или ручные, одноканальные с фиксированным или варьируемым объёмом дозирования по ГОСТ 28311;

5.1.5 Колбы мерные вместимостью 100 и 1000 см 3 по ГОСТ 1770 класс точности 2;

5.1.6 Кюветы стеклянные с завинчивающимися крышками для спектрофотометра. Размеры кюветы: высота 100 мм, диаметр 16 мм;

5.1.7 Пипетки градуированные вместимостью 1; 2; 5; 10 см 3 по ГОСТ 29227, класс точности 2;

5.1.8 Пипетки с одной меткой вместимостью 1; 2; 5; 10; 100 см 3 по ГОСТ 29169, класс точности 2;

5.1.9 Реактор для проведения минерализации с ячейками под круглые кюветы, обеспечивающий температуру (150 ± 5) °С (минерализатор), например, фирмы НАСН (США);

5.1.10 Термометр для минерализатора с диапазоном шкалы от 100 °С до 200 °С и ценой деления 2 °С;

5.1.11 Склянки из темного стекла вместимостью 500; 1000 см 3 ;

5.1.12 Спектрофотометр, обеспечивающий проведение измерения при длинах волн 450 нм и 620 нм, снабженный адаптером под круглые кюветы, например, фирмы НАСН (США);

5.1.13 Стаканчики для взвешивания вместимостью 50 см 3 по ГОСТ 25336;

5.1.14 Сушильный шкаф любой марки, обеспечивающий температуру (105 ± 5) °С, например, СНОЛ-3,5 по ТУ 16-681.032;

5.1.15 Холодильник бытовой любой марки, обеспечивающий температуру (2 — 10) °С;

5.1.17 Штатив для хранения кювет;

5.1.18 Экран защитный для реактора, изготовленный из поликарбоната.

Допускается использование средств измерения, вспомогательного оборудования, лабораторной посуды с аналогичными или лучшими метрологическими и техническими характеристиками.

5.2.1 Вода дистиллированная по ГОСТ 6709 или для лабораторного анализа по ГОСТ Р 52501 (2-ой степени чистоты), (далее — вода дистиллированная);

5.2.2 Калий двухромовокислый (бихромат калия), х.ч. по ГОСТ 4220 или стандарт-титр, например, по ТУ 6-09-2540;

5.2.3 Кислота серная, ос.ч. по ГОСТ 4204;

5.2.4 Ртуть (II) сернокислая (сульфат ртути), ч.д.а. по ТУ 2624-004-48438881;

5.2.5 Салфетки из хлопчатобумажной ткани или бумажные салфетки, например, «Kimwipes»;

5.2.6 Серебро сернокислое (сульфат серебра), х.ч. по ТУ 6-09-3703.

Допускается использование реактивов более высокой квалификации, а также материалов с аналогичными или лучшими характеристиками.

6.1 При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

6.2 При работе с оборудованием необходимо соблюдать правила электробезопасности при работе с электроустановками по ГОСТ Р 12.1.019.

6.3 Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004

6.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

К выполнению измерений и обработке их результатов допускаются лица, имеющие специальное среднее или высшее образование химического профиля, владеющие техникой фотометрического анализа и изучившие правила эксплуатации используемого оборудования.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

относительная влажность воздуха

9.1 Отбор проб воды осуществляют в соответствии с ГОСТ Р 51592 и ГОСТ Р 51593. Пробы снега в соответствии с ГОСТ 17.1.5.05 переводят в талую воду при температуре окружающей среды.

9.2 Пробы отбирают в пластиковые или стеклянные флаконы. Стеклянные флаконы предпочтительнее при отборе проб с низкими значениями ХПК. Объем отбираемой пробы должен быть не менее 0,1 дм 3 .

9.3 Анализ отобранной пробы выполняют как можно быстрее. Если невозможно выполнить анализ в день отбора, то пробу консервируют серной кислотой, вносимой во флакон для отбора проб из расчета 10 см 3 H2SO4 на 1000 см 3 воды. Срок хранения пробы — 3 суток при температуре (2 — 10) °С.

9.4 При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— должность, фамилия сотрудника, отбирающего пробу.

Подготовку спектрофотометра и минерализатора к работе проводят в соответствии с инструкциями по эксплуатации.

10.2.1 Раствор бихромата калия (для выполнения анализа по методу Б)

В стаканчике отвешивают (49,03 ± 0,01) г предварительно высушенного в течение 2 часов при температуре (105 ± 5) °С бихромата калия, растворяют в небольшом количестве дистиллированной воды и количественно переносят в мерную колбу вместимостью 1000 см 3 . Объем раствора в колбе доводят до метки дистиллированной водой.

Примечание — опускается приготовление раствора бихромата калия, используемого по методу Б из стандарт-титра. Для этого содержимое ампулы растворяют в мерной колбе вместимостью 100 см 3 .

Срок хранения раствора — 3 месяца в склянке из тёмного стекла при температуре окружающей среды.

10.2.2 Раствор бихромата калия (для выполнения анализа по методу А)

В стаканчике отвешивают (4,90 ± 0,01) г предварительно высушенного в течение 2 часов при температуре (105 ± 5) °С бихромата калия, растворяют в небольшом количестве дистиллированной воды и количественно переносят в мерную колбу вместимостью 1000 см 3 . Объем раствора в колбе доводят до метки дистиллированной водой.

Раствор бихромата калия (для выполнения анализа по методу Л) можно также приготовить из стандарт-титра в соответствии с процедурой приготовления раствора, изложенной в инструкции.

Примечани е — Допускается приготовление раствора бихромата калия разбавлением 100 см 3 раствора бихромата калия, приготовленного для выполнения анализа по методу К, в колбе вместимостью 1000 см 3 дистиллированной водой.

Срок хранения раствора — 3 месяца в склянке из тёмного стекла при температуре окружающей среды.

10.2.3 Раствор сернокислого серебра в серной кислоте

В стаканчике отвешивают (13,0 ± 0,1) г сернокислого серебра, осторожно растворяют в (20 — 25) см 3 концентрированной серной кислоты, раствор количественно переносят в мерную колбу вместимостью 1000 см 3 и доводят объем раствора до метки концентрированной серной кислотой. Срок хранения раствора — 3 месяца в склянке из темного стекла при температуре окружающей среды.

В мерную колбу вместимостью 100 см 3 пипеткой переносят 10 см 3 раствора ГСО со значением ХПК 10000 мг/дм 3 и доводят объем раствора дистиллированной водой до метки. Срок хранения раствора — 3 месяца при температуре (2 — 10) °С.

10.2.5 Градуировочные растворы

При использовании метода А:

В мерные колбы вместимостью 100 см 3 пипеткой или дозатором переносят 1,0; 2,0; 5,0; 8,0; 10,0 см 3 основного градуировочного раствора со значением ХПК 1000 мг/дм 3 , приготовленного по 10.2.4, объемы растворов в колбах доводят до метки дистиллированной водой. Значения ХПК полученных растворов составляют соответственно 10; 20; 50; 80; 100 мг/дм 3 .

При использовании метода Б:

В мерные колбы вместимостью 100 см 3 пипеткой или дозатором переносят 1,0; 2,0; 4,0; 5,0; 8,0; 10,0 см 3 раствора ГСО со значением ХПК 10000 мг/дм 3 , объемы растворов в колбах доводят до метки дистиллированной водой. Значения ХПК полученных растворов составляют соответственно 100; 200; 400; 500; 800; 1000 мг/дм 3 .

При установлении градуировочных характеристик по методам А и Б используют только свежеприготовленные растворы.

10.3.1 В кюветы для измерения значений ХПК пипеткой вносят по 2 см 3 каждого градуировочного раствора, по 0,5 см 3 раствора бихромата калия (для выполнения анализа по методу А или по методу Б), по 3 см 3 раствора сернокислого серебра в серной кислоте и приблизительно 0,05 г сернокислой ртути. Готовят по два образца каждого градуировочного раствора. Одновременно готовят 3 параллельные холостые пробы. В качестве холостой пробы используют дистиллированную воду с добавлением всех реактивов.

10.3.2 Кюветы с градуировочными растворами и холостыми пробами плотно завинчивают резьбовыми пробками, несколько раз переворачивают для перемешивания содержимого кюветы и помещают для окисления в реактор ХПК, предварительно нагретый до температуры (150 ± 5) °С.

Внимание — С целью обеспечения безопасности перед реактором установить защитный экран.

10.3.3 Через два часа с момента загрузки реактор отключают, охлаждают в течение приблизительно 20 минут. Кюветы вынимают из реактора пока они ещё горячие, соблюдая меры предосторожности, и перемешивают переворачиванием дважды. Ставят кюветы в штатив и охлаждают до температуры окружающей среды.

Проводят визуальный контроль уровня раствора в кюветах. Если уровень раствора в кюветах заметно уменьшился относительно первоначального, что может быть в результате нарушения герметичности, данная проба отбраковывается и приготавливается заново.

Внимание — При использовании стеклянных фотометрических кювет наружные поверхности протирают сначала слегка увлажненной, затем чистой сухой тканевой или бумажной салфеткой. При дальнейших операциях кюветы берут руками только за резьбовые пробки, не касаясь пальцами стеклянной поверхности.

10.3.4 В соответствии с инструкцией по эксплуатации прибора для установления градуировочной характеристики сначала выбирают холостую пробу. Для этого измеряют оптическую плотность холостых проб при длине волны 450 нм (для метода А) или 620 нм (для метода Б) относительно воздуха и сравнивают полученные значения. Из трех холостых проб для дальнейших измерений выбирают ту, оптическая плотность которой находится в интервале между двумя найденными крайними значениями.

10.3.5 Проводят подготовку спектрофотометра к установлению градуировочной характеристики в соответствии с инструкцией по эксплуатации прибора.

10.3.6 В память прибора с помощью клавиатуры вводят величины значений ХПК градуировочных растворов в порядке их увеличения и измеряют значения оптической плотности растворов относительно холостой пробы, выбранной по 10.3.4. Полученные значения оптической плотности сохраняют в памяти спектрофотометра согласно инструкции к прибору.

Читайте также:  Анализ на гепатит в воду выпила

Примечание — При измерении оптической плотности по методу А значение оптической плотности каждого последующего измеренного раствора уменьшается.

10.3.7 Градуировку проводят при смене партии калия двухромовокислого, ртути сернокислой и серебра сернокислого, а так же после ремонта прибора, но не реже 1 раза в 3 месяца.

Проверку стабильности градуировочной характеристики проводят перед выполнением измерений серии проб по результатам анализа одного из градуировочных растворов. Градуировочную характеристику считают стабильной, если измеренное значение ХПК градуировочного раствора не отличается от аттестованного значения более чем на 15 %. Если условие стабильности градуировочной характеристики не выполняется для одного градуировочного раствора, необходимо выполнить повторное измерение этого раствора с целью исключения грубой погрешности.

Если градуировочная характеристика нестабильна, то выявляют причину появления нестабильности и устраняют ее, после чего проводят проверку стабильности еще раз не менее, чем по двум градуировочным растворам. При повторении нестабильности заново устанавливают градуировочную характеристику.

В кювету пипеткой или дозатором вносят 2 см 3 тщательно перемешанной анализируемой пробы, 0,5 см 3 раствора бихромата калия для метода А или для метода Б, 3 см 3 раствора сернокислого серебра в серной кислоте, добавляют шпателем приблизительно (0,04 — 0,06) г сернокислой ртути, плотно закрывают крышкой с резьбовой пробкой, несколько раз переворачивают и далее обрабатывают согласно п. 10.3.2 и 10.3.3. Измерение проводят в соответствии с инструкцией по эксплуатации спекторофотометра при длине волны 450 нм (метод А) или 620 нм (метод Б) по отношению к холостой пробе. В качестве холостой пробы используют дистиллированную воду с добавлением всех реактивов.

Примечание 1 — Если после минерализации пробы и охлаждения до температуры окружающей среды раствор остается мутным, то анализ пробы повторяют, предварительно разбавив се дистиллированной водой.

Примечание 2 — Если при выполнении анализа по методу А значение ХПК выше 100 мг/дм 3 , то анализ проводят по методу Б.

Если при выполнении анализа по методу Б значение ХПК выше 1000 мг/дм 3, то анализ повторяют, предварительно разбавив пробу дистиллированной водой.

Если при выполнении анализа но методу Б значение ХПК ниже 100 мг/дм 3 , то анализ проводят по методу А.

В случае разбавления анализируемой воды в ходе анализа, значение ХПК (мг/дм 3 ) рассчитывают по формуле

где X — значение ХПК в мг/дм 3 в анализируемой пробе;

С — значение ХПК в мг/дм 3 , согласно показаниям прибора;

V1 — объем колбы, взятой для разбавления, см 3 ;

V2 — объем пробы воды, взятой для анализа, см 3 .

Результаты измерений в протоколах анализов представляют в виде:

δ — значение характеристики погрешности (таблица 1), %;

X — значение ХПК в анализируемой пробе, мг/дм 3 .

Результаты измерений значения ХПК при занесении в протокол анализа округляют с точностью в диапазоне:

от 10 до 1000 мг/дм 3 — до 1 мг/дм 3 ;

свыше 1000 до 10000 мг/дм 3 — до 10 мг/дм 3 ;

свыше 10000 до 30000 мг/дм 3 — до 100 мг/дм 3 .

14.1 При получении двух результатов измерений (Х1, Х2) в условиях повторяемости (сходимости) осуществляют проверку приемлемости результатов в соответствии с требованиями ГОСТ Р ИСО 5725-6 (раздел 5).

Результат измерений считают приемлемым при выполнении условия:

Значения пределов повторяемости (r) приведены в таблице 2.

14.2 При получении результатов измерений в двух лабораториях (Хлаб1, Хлаб2) проводят проверку приемлемости результатов измерений в соответствии с требованиями ГОСТ Р ИСО 5725-6 (раздел 5).

Результат измерений считают приемлемым при выполнении условия:

Значения пределов воспроизводимости (R) приведены в таблице 2.

Таблица 2 — Пределы повторяемости и воспроизводимости результатов измерений

Диапазон измерений, мг/дм 3

Предел повторяемости
(при n = 2 и Р = 0,95), r, %

Предел воспроизводимости
(при n = 2 и Р = 0,95), R, %

15.1 В случае регулярного выполнения анализа по методике рекомендуется проводить контроль стабильности результатов измерений путем контроля среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности и погрешности в соответствии с рекомендациями ГОСТ Р ИСО 5725 (часть 6). Образец для контроля готовят с использованием ГСО и дистиллированной воды. Периодичность контроля регламентируют во внутренних документах лаборатории.

15.2 Оперативный контроль точности результатов измерений рекомендуется проводить с каждой серией проб, если анализ по методике выполняется эпизодически, а также при возникновении необходимости подтверждения результатов измерений отдельных проб (при получении нестандартного результата измерений; результата, превышающего ПДК, и т.п.).

В качестве образцов для контроля используют образцы, приготовленные с использованием ГСО и дистиллированной воды. Контрольные образцы со значениями ХПК менее 40 мг/дм 3 используют свежеприготовленными, а образцы со значениями ХПК (40 — 1000) мг/дм 3 хранят в течение 1 месяца при температуре (2 — 10) °С.

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры (Кк) с нормативом контроля (К).

Результат контрольной процедуры Кк рассчитывают по формуле:

где X — результат контрольного измерения значения ХПК в образце для контроля, мг/дм 3 ;

С — аттестованное значение ХПК в образце для контроля, мг/дм 3 .

Норматив контроля К рассчитывают по формуле

где Δл — характеристика погрешности аттестованного значения ХПК в образце для контроля, установленная в лаборатории при реализации методики, мг/дм 3 .

Примечание — На первом этапе проведения контроля после внедрения методики допускается считать Δл = 0,84·Δ, где Δ — приписанная характеристика погрешности методики, которую рассчитывают по формуле

Значения δ приведены в таблице 1.

Качество контрольной процедуры признают удовлетворительным при выполнении условия:

При невыполнении условия контроль повторяют. При повторном невыполнении условия выясняют причины, приводящие к неудовлетворительным результатам.

источник

Количественный химический анализ вод. Методика измерений химического потребления кислорода (ХПК) в пробах питьевых, природных и сточных вод фотометрическим методом

Нормативный документ устанавливает фотометрическую методику определения бихроматной окисляемости (химического потребления кислорода, далее — ХПК). Методика распространяется на следующие объекты анализа: воды питьевые; воды природные пресные, в том числе поверхностных и подземных источников водоснабжения; воды сточные производственные, хозяйственно-бытовые, ливневые и очищенные. Методика может быть использована для анализа проб талых, технических вод и проб снежного покрова.

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ЭКОЛОГИЧЕСКОМУ,
ТЕХНОЛОГИЧЕСКОМУ И АТОМНОМУ НАДЗОРУ

воздействия на окружающую

______________ Г.М. Цветков

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
ХИМИЧЕСКОГО ПОТРЕБЛЕНИЯ КИСЛОРОДА (ХПК)
В ПРОБАХ ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ
ВОД ФОТОМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного
экологического контроля

Методика рассмотрена и одобрена ФГУ «Федеральный центр анализа и оценки техногенного воздействия на окружающую среду» (ФГУ «ФЦАО»)

Зам. директора ФГУ «ФЦАО» — главный метролог

Аналитический центр контроля качества воды ЗАО «РОСА»

Настоящий нормативный документ устанавливает фотометрическую методику определения бихроматной окисляемости (химического потребления кислорода, ХПК) в пробах питьевой, природной и сточной воды в диапазоне измеряемых значений ХПК or 10 до 30000 мг/дм 3 (по методу А — от 10 до 100 мг/дм 3 и по методу Б — от 100 до 30000 мг/дм 3 ). При значении ХПК свыше 1000 мг/дм 3 необходимо предварительное разбавление пробы.

Продолжительность анализа одной пробы 4 часа, серии из 25 проб — 5 часов. Блок-схема анализа приведена в Приложении 1.

Настоящая методика обеспечивает с вероятностью Р = 0,95 получение результатов измерений с погрешностью, не превышающей значений, приведенных в табл. 1.

Диапазон измерений, значения показателей повторяемости, воспроизводимости, правильности и точности

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), s r, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости) s R, %

Показатель правильности (границы относительной систематической погрешности при вероятности P = 0,95), ± d c, %

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ± d , %

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний ;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Метод основан на окислении органических веществ бихромат-ионом в кислой среде при нагревании в присутствии сернокислого серебра с последующим фотометрическим определением уменьшения концентрации бихромат-ионов при длине волны 450 нм (метод А) или увеличения концентрации иона Cr(III) при длине волны 620 нм (метод Б).

Метод А рекомендуется использовать при анализе проб, имеющих значение ХПК до 100 мг/дм 3 (например, питьевые, природные или очищенные сточные воды).

Метод Б рекомендуется использовать при анализе проб, имеющих значение ХПК более 100 мг/дм 3 (например, хозяйственно-бытовые сточные воды).

Определению мешают хлориды, мешающее влияние которых устраняют в ходе анализа добавлением сернокислой ртути из расчета 0,02 г соли ртути на 1 мг хлорид-иона. Содержанием других неорганических веществ, способных окисляться бихроматом в кислой среде, пренебрегают.

3.1.1. Весы лабораторные общего назначения по ГОСТ 24104 .

3.1.2. Государственный стандартный образец (ГСО) бихроматной окисляемости воды с концентрацией 10000 мг/дм 3 ;

3.1.3. Колбы мерные вместимостью 100 и 1000 см 3 по ГОСТ 1770 , класс точности 2;

3.1.4. Пипетки градуированные вместимостью 1, 2, 5, 10, 20 см 3 по ГОСТ 29227 , класс точности 2;

3.1.5. Пипетки с одной меткой вместимостью 1, 2, 5, 10, 100 см 3 по ГОСТ 29169 , класс точности 2;

3.1.6. Спектрофотометр фирмы Hach Company (США), например, DR/2010, 2400, 2500;

3.1.7. Термометр для минерализатора с диапазоном шкалы от 100 до 200 °С и ценой деления 2 ° С.

Допускается использование других средств измерения, метрологические характеристики которых не хуже, чем у вышеуказанных.

3.2. Вспомогательные устройства

3.2.1. Адаптер кювет для спектрофотометра;

3.2.2. Дистиллятор или установка любого типа для получения воды дистиллированной по ГОСТ 6709 или деионизованной 2 степени чистоты по ИСО 3696;

3.2.3. Защитный экран для реактора ХПК, изготовленный из поликарбоната;

3.2.4. Реактор ХПК фирмы Hach Company, обеспечивающий температуру 150 ± 5 °С (COD Reactor);

3.2.5. Салфетки из хлопчатобумажной ткани или бумажные салфетки «Kimwipes»;

3.2.6. Склянки из темного стекла вместимостью 500 см 3 , 1000 см 3 ;

3.2.7. Стаканчики для взвешивания вместимостью 50 см 3 по ГОСТ 25336 ;

3.2.8. Стеклянные фотометрические кюветы для спектрофотометра (пробирки с резьбовыми пробками) для измерения. Размеры кюветы: высота 100 мм, диаметр 16 мм;

3.2.9. Сушильный шкаф СНОЛ-3,5 или любой другой, обеспечивающий температуру 105 ± 5 °С;

3.2.10. Холодильник бытовой любой марки, обеспечивающий температуру 2 — 10 °С;

3.2.12. Штатив для хранения кювет.

Допускается использование другого оборудования, технические характеристики которого не хуже, чем у вышеуказанного.

3.3.1. Вода дистиллированная по ГОСТ 6709 или деионизованная степени чистоты 2 по ИСО 3696;

3.3.2. Калий двухромовокислый (бихромат калия), х.ч. по ГОСТ 4220 или фиксанал по ТУ 6-09-2540 с концентрацией 0,1 моль/дм 3 эквивалента (0,1 н);

3.3.3. Серная кислота, о.с.ч. по ГОСТ 4204 ;

3.3.4. Сернокислая ртуть (II) (ртути сульфат), ч.д.а. по ГОСТ 5558;

3.3.5. Сернокислое серебро (серебра сульфат), х.ч. по ТУ 6-09-3703.

Допускается использование реактивов с квалификацией не ниже, чем у вышеуказанных.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007 и ГОСТ 12.4.021 .

4.2. При работе с электрооборудованием необходимо соблюдать требования по электробезопасности по ГОСТ 12.1.019 .

4.3. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009 .

4.4. Организация обучения работающих безопасности труда должна производиться по ГОСТ 12.0.004 .

4.5. Исполнители должны быть проинструктированы о мерах безопасности при работе со спектрофотометром и нагревательными приборами в соответствии с инструкциями, прилагаемыми к приборам.

К выполнению анализа, измерений и обработке их результатов допускают лиц, имеющих квалификацию инженера-химика или техника-химика, опыт работы в химической лаборатории и прошедших инструктаж по технике безопасности при работе с реактором ХПК.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

температура воздуха 20 — 28 °С;

относительная влажность воздуха не более 80 % при 25 °С;

частота переменного тока (50 ± 1) Гц;

напряжение в электросети (220 ± 10) В.

7.1. Отбор проб воды осуществляют по ГОСТ Р 51592-2000 в пластиковые или стеклянные флаконы. Стеклянные флаконы предпочтительнее при отборе проб с низкими значениями ХПК. Объем отбираемой пробы должен быть не менее 0,1 дм 3 .

7.2. Анализ отобранной пробы выполняют как можно быстрее. Если невозможно выполнить анализ в день отбора, то пробу консервируют серной кислотой, вносимой во флакон для отбора проб из расчета 10 см 3 H 2 SO 4 на 1000 см 3 воды. Срок хранения пробы 2 суток при температуре 2 — 10 °С.

7.3. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— место, дата и время отбора;

— должность, фамилия отбирающего пробу.

Подготовку спектрофотометра и минерализатора к работе проводят в соответствии с инструкциями по эксплуатации.

8.2. Приготовление растворов

8 .2.1. Приготовление раствора дихромата калия концентрации 1 моль/дм 3 эквивалента

В стаканчике отвешивают 49,03 г предварительно высушенного в течение 2 часов при температуре 105 ± 5 °С бихромата калия, растворяют в небольшом количестве дистиллированной воды и количественно переносят в мерную колбу вместимостью 1000 см 3 . Объем раствора в колбе доводят до метки дистиллированной водой. Срок хранения раствора 3 месяца в склянке из темного стекла при температуре 2 — 10 °С.

Разбавляют 100 см 3 раствора бихромата калия (1 моль/дм 3 эквивалента) в мерной колбе вместимостью 1000 см 3 дистиллированной водой.

Раствор бихромата калия с молярной концентрацией 0,1 моль/дм 3 эквивалента можно также приготовить из фиксанала в соответствии с процедурой приготовления растворов, изложенной в инструкции.

Срок хранения раствора 3 месяца в склянке из темного стекла при температуре 2 — 10 ° С.

8.2.3. Приготовление раствора сернокислого серебра в серной кислоте

В стаканчике отвешивают 13 г сернокислого серебра, осторожно растворяют в 20 — 25 см 3 концентрированной серной кислоты, раствор количественно переносят в мерную колбу вместимостью 1000 см 3 и доводят объем раствора до метки концентрированной серной кислотой. Срок хранения раствора 3 месяца в склянке из темного стекла при температуре 2 — 10 °С.

В мерную колбу вместимостью 100 см 3 пипеткой переносят 10 см 3 раствора ГСО со значением ХПК 10000 мг/дм 3 и доводят объем раствора дистиллированной водой до метки. Срок хранения раствора в течение двух месяцев при температуре 2 — 10 ° С.

В мерные колбы вместимостью 100 см 3 пипеткой переносят 1,0; 2,0; 5,0; 8,0; 10,0 см 3 основного градуировочного раствора со значением ХПК 1000 мг/дм 3 , приготовленного по п. 8.2.4, объемы растворов в колбах доводят до метки дистиллированной водой. Величина ХПК подученных растворов составляет соответственно 10, 20, 50, 80, 100 мг/дм 3 . Градуировочные растворы используют в день приготовления.

В мерные колбы вместимостью 100 см 3 пипеткой переносят 1,0; 2,0; 4,0; 5,0; 8,0; 10,0 см 3 раствора ХПК из ГСО (10000 мг/дм 3 ), объемы растворов в колбах доводят до метки дистиллированной водой. Величина ХПК полученных растворов составляет соответственно 100, 200, 400, 500, 800, 1000 мг/дм 3 . Градуировочные растворы используют в день приготовления.

Примечание : Допускается приготовление градуировочных растворов других концентраций в указанных выше диапазонах.

8.3. Установление градуировочной характеристики

8.3.1. В кюветы для измерения ХПК пипеткой вносят по 2 см 3 каждого градуировочного раствора, по 0,5 см 3 раствора бихромата калия (для метола А с концентрацией 0,1 моль/дм 3 эквивалента; для метода Б с концентрацией 1 моль/дм 3 эквивалента), по 3 см 3 раствора сернокислого серебра в серной кислоте и приблизительно 0,05 г сернокислой ртути. Готовят по два образца каждого градуировочного раствора. Одновременно готовят 3 параллельные холостые пробы. В качестве холостой пробы используют дистиллированную воду, в которую добавляют все реактивы.

8.3.2. Кюветы с градуировочными растворами и холостыми пробами плотно завинчивают резьбовыми пробками, несколько раз переворачивают для перемешивания содержимого кюветы и помещают для окисления в реактор ХПК, предварительно нагретый до температуры 150 ± 5 °С.

8.3.3. Через два часа с момента загрузки реактор отключают, охлаждают в течение приблизительно 20 минут. Кюветы вынимают из реактора пока они ещё горячие, соблюдая меры предосторожности, и переворачивают дважды. Ставят кюветы в штатив и охлаждают до комнатной температуры.

Проводят визуальный контроль уровня раствора в кюветах. Если уровень раствора в кюветах заметно уменьшился относительно первоначального, что может быть в результате нарушения герметичности, данную пробу бракуют и подготавливают заново.

Внимание : При использовании стеклянных фотометрических кювет для измерения ХПК наружные поверхности кювет протирают сначала слегка увлажненной, затем чистой сухой тканевой салфеткой. При дальнейших операциях кюветы берут руками только за резьбовые пробки, не касаясь пальцами стеклянной поверхности.

8.3.4. Для установления градуировочной характеристики сначала выбирают холостую пробу. Для этого измеряют оптическую плотность холостых проб при длине волны 450 нм (для метода А) или 620 нм (для метода Б) относительно воздуха и сравнивают полученные значения. Из трех холостых проб для дальнейших измерений выбирают ту, оптическая плотность которой находится в интервале между двумя найденными крайними значениями.

8.3.5. Проводят подготовку спектрофотометра к установлению градуировочной характеристики в соответствии с Инструкцией по эксплуатации прибора.

8.3.6. В память прибора с помощью клавиатуры вводят значения концентраций градуировочных растворов в порядке их увеличения и измеряют значения оптической плотности растворов относительно холостой пробы, выбранной по п. 8.3.4. Полученные значения оптической плотности сохраняют в памяти спектрофотометра согласно инструкции по построению градуировочного графика.

8.3.7. Проверку градуировочной характеристики проводят ежедневно по результатам анализа одного из градуировочных растворов. Градуировочную характеристику считают стабильной, если измеренное значение ХПК градуировочного раствора не отличается от аттестованного значения более чем на 0,56 (см. таблицу 1).

Если условие стабильности градуировочной характеристики не выполняется для одного градуировочного раствора, необходимо выполнить повторное измерение этого раствора с целью исключения грубой погрешности.

Если градуировочная характеристика нестабильна, то выявляют причину появления нестабильности и устраняют ее, после чего проводят проверку стабильности еще раз не менее чем по двум градуировочным растворам. При повторении нестабильности заново устанавливают градуировочную характеристику.

8.3.8. Градуировку проводят при смене партии любого реагента, приготовлении новых растворов бихромата калия и сернокислого серебра, а также после ремонта прибора, но не реже 1 раза в 3 месяца.

9.1. В кювету для измерения ХПК пипеткой вносят 2 см 3 тщательно перемешанной анализируемой пробы, 0,5 см 3 раствора бихромата калия (с концентрацией 0,1 моль/дм 3 эквивалента для метода А или с концентрацией 1 моль/дм 3 эквивалента для метода Б), 3 см 3 раствора сернокислого серебра в серной кислоте, добавляют приблизительно 0,04 — 0,06 г сернокислой ртути, плотно закрывают крышкой с резьбовой пробкой, несколько раз переворачивают и далее обрабатывают согласно п. 8.3.2 и 8.3.3. В качестве холостой пробы используют дистиллированную воду с добавлением всех реактивов.

9.2. Включают спектрофотометр, устанавливают длину волны 450 нм при использовании метода А или 620 нм при использовании метода Б и вводят в память спектрофотометра номер, присвоенный данной МВИ при установлении градуировочной характеристики по п. 8.3.5.

В кюветное отделение спектрофотометра вставляют кювету с холостой пробой, далее работают на приборе в соответствии с инструкцией по эксплуатации. Затем заменяют кювету с холостой пробой на кювету с анализируемой пробой и считывают с табло прибора показания, соответствующие содержанию ХПК в единицах мг О/дм 3 .

В случае разбавления анализируемой воды в ходе анализа, значение ХПК (мг/дм 3 ) рассчитывают по формуле

ХПК (мг/дм 3 ) рассчитывают по формуле

где X — значение ХПК в мг/дм 3 в анализируемой пробе;

С — значение ХПК в мг/дм 3 , измеренная с помощью прибора;

V 1 — объем колбы, взятой для разбавления, см 3 ;

V 2 — объем пробы воды, взятой для анализа, см 3 .

Результаты количественного анализа в протоколах анализов представляют в виде:

d — показатель точности (см. табл. 1);

X — значение ХПК в анализируемой пробе, мг/дм 3 .

Результаты измерений значения ХПК при занесении в протокол анализа округляют с точностью:

в диапазоне от 10 до 1000 мг/дм 3

в диапазоне от 1000 до 10000 мг/дм 3

в диапазоне от 10000 до 30000 мг/дм 3

12.1. При необходимости проверку приемлемости результатов измерений, полученных в условиях повторяемости (сходимости) осуществляют в соответствии с требованиями раздела 5.2. ГОСТ Р ИСО 5725-6-2002 . Расхождение между результатами измерений не должно превышать предела повторяемости ( r ). Значения r приведены в таблице 2.

12.2. При необходимости проверку приемлемости результатов измерений, полученных в условиях воспроизводимости проводят с учетом требований раздела 5.3 ГОСТ Р ИСО 5725-6-2002 . Расхождение между результатами измерений, полученными двумя лабораториями не должно превышать предела воспроизводимости (R ). Значения R приведены в таблице 2.

Пределы повторяемости и воспроизводимости результатов измерений

Предел повторяемости (относительное значение допускаемого расхождения между двумя параллельными результатами измерений), r, %

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

источник

В воде источников водоснабжения обнаружено несколько тысяч органических веществ разных химических классов и групп. Органические соединения природного происхождения (гуминовые вещества, различные амины и другие) — способны изменять органолептические свойства воды, и по этой причине они должны быть удалены в процессе водоподготовки.

Несомненно, что органические вещества техногенного происхождения при поступлении их с питьевой водой могут неблагоприятно действовать на организм. Аналитический контроль их содержания в питьевой воде затруднен не только ввиду громадного их числа, но и вследствие того, что многие из них весьма неустойчивы и в воде происходит их непрерывная трансформация. Поэтому при аналитическом контроле невозможно идентифицировать все органические соединения, присутствующие в питьевой воде.

Однако многие органические вещества обладают выраженными органолептическими свойствами (запахом, вкусом, цветом, способностью к пенообразованию), что позволяет их выявить и ограничить их содержание в питьевой воде. Примерами таких веществ являются: синтетические поверхностно-активные вещества (СПАВ), в незначительных (нетоксических) концентрациях образующие пену; фенолы, придающие воде специфический запах; многие фосфорорганические соединения.

В природной воде водоемов всегда присутствуют органические вещества. Их концентрации могут быть иногда очень малы (например, в родниковых и талых водах). Природными источниками органических веществ являются разрушающиеся останки организмов растительного и животного происхождения, как живших в воде, так и попавших в водоем с листвы, по воздуху, с берегов. Кроме природных, существуют также техногенные источники органических веществ: транспортные предприятия (нефтепродукты), целлюлозно-бумажные и лесоперерабатывающие комбинаты (лигнины), мясокомбинаты (белковые соединения), сельскохозяйственные и фекальные стоки и т.д. Органические загрязнения попадают в водоем разными путями, главным образом со сточными водами и дождевыми поверхностными смывами с почвы.

Интегральное содержание органических веществ оценивается по показателям БПК и ХПК.

Биохимическое и химическое потребление кислорода — БПК и ХПК , принятые в гигиене, гидрохимии и экологии, интегральные показатели, характеризующие содержание в воде нестабильных (неконсервативных) органических веществ, трансформирующихся в воде путем гидролиза, окисления и других процессов. Содержание таких веществ выражается через количество кислорода, необходимое для их окисления в резко кислой среде перманганатом (БПК) или бихроматом (ХПК). К таким веществам относят алифатические кислоты, некоторые эфиры, амины, спирты.

В естественных условиях находящиеся в воде органические вещества разрушаются бактериями, претерпевая аэробное биохимическое окисление с образованием CO2. При этом на окисление потребляется растворенный в воде кислород (РК). В водоемах с большим содержанием органических веществ большая часть кислорода потребляется на биохимическое окисление, лишая, таким образом, кислорода другие организмы. Поэтому увеличивается количество организмов, более устойчивых к низкому содержанию кислорода, исчезают кислородолюбивые виды. Таким образом, в процессе биохимического окисления органических веществ в воде происходит уменьшение концентрации кислорода, и эта убыль косвенно является мерой содержания в воде органических веществ. Соответствующий показатель качества воды, характеризующий суммарное содержание в воде органических веществ, называется биохимическим потреблением кислорода (БПК).

БПК — это количество кислорода в (мг), требуемое для окисления находящихся в 1 литре воды органических вещества в аэробных условиях, без доступа света, при 20 °С, за определённый период в результате протекающих в воде биохимических процессов.

Определение БПК основано на измерении концентрации РК в пробе воды непосредственно после отбора, а также после инкубации пробы. Инкубацию пробы проводят без доступа воздуха в кислородной склянке (то есть в той же посуде, где определяется значение РК) в течение времени, необходимого для протекания реакции биохимического окисления. Так как скорость биохимической реакции зависит от температуры, инкубацию проводят в режиме постоянной температуры (20±1) °С, причем от точности поддержания значения температуры зависит точность выполнения анализа на БПК. Обычно определяют БПК за 5 суток инкубации (БПК5). Может определяться также БПК10 за 10 суток и БПКполн. за 20 суток (при этом окисляется около 90 % и 99 % органических веществ соответственно). Ориентировочно принимают, что БПК5 составляет около 70 % БПКполн., но может составлять от 10 % до 90 % в зависимости от окисляющегося вещества. Погрешность в определении БПК может внести также освещение пробы, влияющее на жизнедеятельность микроорганизмов и способное в некоторых случаях вызывать фотохимическое окисление. Поэтому инкубацию пробы проводят без доступа света.

В поверхностных водах величина БПК5 колеблется в пределах от 0,5 до 5,0 мг/л; она подвержена сезонным и суточным изменениям, которые, в основном, зависят от изменения температуры и от физиологической и биохимической активности микроорганизмов. Весьма значительны изменения БПК5 природных водоемов при загрязнении сточными водами.

Таблица 1. Величины БПК5 в водоемах с различной степенью загрязненности

Обозначение: ПНД Ф 14.1:2:4.210-05
Название рус.: Количественный химический анализ вод. Методика измерений химического потребления кислорода (ХПК) в пробах питьевых, природных и сточных вод фотометрическим методом
Статус: действует
Дата актуализации текста: 05.05.2017
Дата добавления в базу: 01.09.2013
Утвержден: 04.06.2013 ФБУ Федеральный центр анализа и оценки техногенного воздействия
Опубликован: Аналитический центр контроля качества воды ЗАО РОСА (2005 г. )
Ссылки для скачивания:
Степень загрязнения (классы водоемов) БПК5, мг O2/дм 3
Очень чистые 0,5–1,0
Чистые 1,1–1,9
Умеренно загрязненные 2,0–2,9
Загрязненные 3,0–3,9
Грязные 4,0–10,0
Очень грязные 10,0

Норматив на БПКполн. не должен превышать: для водоемов хозяйственно-питьевого водопользования — 3 мг/л для водоемов культурно-бытового водопользования — 6 мг/л. Соответственно можно оценить предельно-допустимые значения БПК5 для тех же водоемов, равные 2 мг/л и 4 мг/л.

Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях, называется окисляемостью или ХПК. Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая.

Являясь интегральным (суммарным) показате­лем, ХПК в настоящее время считается одним из наиболее инфор­мативных показателей антропогенного загрязнения вод. Этот по­казатель, в том или ином варианте, используется повсеместно при контроле качества природных вод, исследовании сточных вод и др. Результаты определения окисляемости выражаются в милли­граммах потребленного кислорода на 1 литр воды (мгО/л).

В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает как характеристика, отражающая режим поступления сточных вод. Для природных малозагрязненных вод рекомендовано определять перманганатную окисляемость; в более загрязненных водах определяют, как правило, бихроматную окисляемость (ХПК).

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования величина ХПК не должна превышать 15 мг О/дм 3 ; в зонах рекреации в водных объектах допускается величина ХПК до 30 мг О/дм 3 .

В программах мониторинга ХПК используется в качестве меры содержания органического вещества в пробе, которое подвержено окислению сильным химическим окислителем. ХПК применяют для характеристики состояния водотоков и водоемов, поступления бытовых и промышленных сточных вод (в том числе, и степени их очистки), а также поверхностного стока.

Таблица 2. Величины ХПК в водоемах с различной степенью загрязненности

Степень загрязнения (классы водоемов) ХПК, мг О/дм 3
Очень чистые 1
Чистые 2
Умеренно загрязненные 3
Загрязненные 4
Грязные 5–15
Очень грязные >15

Однако не все органические вещества в равной степени уча­ствуют в реакции химического окисления. Так же, как и при биохи­мическом окислении, при химическом окислении можно выделить группы легко, нормально и тяжело окисляющихся органических веществ. Поэтому всегда существует разница между теоретически возможным и практически достигаемым значениями ХПК. Мешают точному определению ХПК в первую очередь, хлорид-анионы, как правило, содержащиеся в природных и, особенно, в сточных водах. Определению также мешают нитриты, часто присутствующие в водах, прошедших биохимическую очистку.

Нормативы на ХПК в воде водоемов: для питьевой воды – 5,0 мгО/л (для перманганатной окисляемости), ХПК – 15 мгО/л.

источник