Меню Рубрики

Химический анализ содержания примесей в воде

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них содержания взвешенных веществ (3 мг/дм 3 и более) и общего содержания примесей (10 мг/дм 3 и более) гравиметрическим методом.

Результаты определения могут быть искажены при наличии в пробе значительных количеств масел и жиров, поэтому при отборе пробы должно быть исключено попадание в нее поверхностной пленки.

Гравиметрический метод определения взвешенных веществ основан на выделении их из пробы фильтрованием воды через мембранный фильтр с диаметром пор 0,45 мкм или бумажный фильтр «синяя лента» и взвешивании осадка на фильтре после высушивания его до постоянной массы.

Определение общего содержания примесей (суммы растворенных и взвешенных веществ) осуществляют выпариванием известного объема нефильтрованной анализируемой воды на водяной бане, высушиванием остатка при 105 °С до постоянной массы и его взвешиванием.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Диапазон измерений, значения показателей точности, правильности, повторяемости, воспроизводимости

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ± δ, %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), σr, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), σR, %

Общее содержание примесей

Шкаф сушильный лабораторный с температурой нагрева до 130 °С

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Стаканчики для взвешивания (бюксы)

Тигли фарфоровые с крышками 3 (2)

Чашки биологические (Петри) ЧБН-1-100

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Используемая для анализа соляная кислота должна быть квалификации ч.д.а. или х.ч.

Допускается использование соляной кислоты, изготовленной по другой нормативно-технической документации, в том числе импортной, с квалификацией не ниже ч.д.а.

5.1 . При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007 .

5.2 . Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019 .

5.3 . Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004 .

5.4 . Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009 .

Выполнение измерений может производить химик-аналитик, владеющий техникой гравиметрического анализа и изучивший инструкцию по эксплуатации лабораторных весов.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

• относительная влажность не более 80 % при температуре 25 °С;

8.1 . Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2 . Посуду, предназначенную для отбора и хранения проб, промывают раствором соляной кислоты 1:1, а затем дистиллированной водой.

8.3 . Пробы воды отбирают в стеклянную посуду. Использование полиэтиленовой посуды допускается, если анализ пробы будет выполнен в тот же день.

Объем отбираемой пробы должен быть не менее 1000 см 3 при содержании взвешенных веществ 3 и не менее 500 см 3 при содержании взвешенных веществ 50 мг/дм 3 и выше.

8.4 . Пробы анализируют не позднее, чем через 6 часов после отбора или хранят в холодильнике при t

8.5 . При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

Фильтры кипятят в дистиллированной воде 5 — 10 мин. Кипячение проводят 3 раза, сливая после каждого раза воду и заменяя ее свежей. Затем фильтры помещают в чашки Петри и сушат в сушильном шкафу при 105 °С в течение часа. Чистые фильтры хранят в закрытых чашках Петри.

Перед использованием фильтр маркируют карандашом с мягким грифелем, с помощью пинцета помещают в маркированный бюкс, сушат при 105 °С в течение 1 часа, охлаждают в эксикаторе и взвешивают закрытый бюкс с фильтром на лабораторных весах с точностью до 0,1 мг.

Бумажные обеззоленные фильтры «синяя лента» маркируют, складывают, помещают в воронки и промывают 100 — 150 см 3 дистиллированной воды. Затем пинцетом вынимают фильтр из воронки, помещают в сложенном виде в маркированный бюкс и высушивают в сушильном шкафу при 105 °С в течение 1 часа. Затем охлаждают бюксы с фильтрами в эксикаторе и, закрыв их крышками, взвешивают на лабораторных весах с точностью до 0,1 мг. Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более 0,5 мг.

Фарфоровые тигли с крышками промывают раствором соляной кислоты (п. 9.4), затем дистиллированной водой, сушат, прокаливают при 600 °С в течение 2 ч, охлаждают в эксикаторе и взвешивают с точностью до 0,1 мг. Повторяют прокаливание до тех пор, пока разница между взвешиваниями будет не более 0,5 мг.

30 см 3 соляной кислоты смешивают с 170 см 3 дистиллированной воды. Раствор хранят в плотно закрытой посуде не более 1 года.

Подготовку прибора для вакуумного фильтрования осуществляют в соответствии с инструкцией по его эксплуатации.

Подготовленный и взвешенный мембранный фильтр пинцетом извлекают из бюкса, зажимают в ячейке прибора вакуумного фильтрования и пропускают отмеренный объем тщательно перемешанной анализируемой пробы воды. Этот объем зависит от содержания взвешенных веществ в воде и подбирается с таким расчетом, чтобы масса осадка взвешенных веществ на фильтре находилась в пределах 3 — 200 мг.

После пропускания нужного объема воды приставший к стенкам ячейки для фильтрования осадок смывают на фильтр порцией фильтрата. Фильтр с осадком дважды промывают дистиллированной водой порциями по 10 см 3 , извлекают пинцетом из устройства для фильтрования, помещают в тот же бюкс, в котором его взвешивали до фильтрования, подсушивают сначала на воздухе, а затем в сушильном шкафу при 105 °С в течение 1 часа, после чего взвешивают.

Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более 0,5 мг при массе осадка до 50 мг и 1 мг при массе более 50 мг.

Взвешенный бумажный фильтр помещают в воронку, смачивают небольшим количеством дистиллированной воды для хорошего прилипания и пропускают отмеренный объем тщательно перемешанной анализируемой пробы воды, подобранный с таким расчетом, чтобы масса осадка взвешенных веществ на фильтре находилась в пределах 3 — 200 мг.

По окончании фильтрования дают воде полностью стечь, затем фильтр с осадком трижды промывают дистиллированной водой порциями по 10 см 3 , осторожно вынимают пинцетом и помещают в тот же бюкс, в котором его взвешивали до фильтрования. Фильтр высушивают 2 ч при 105 °С, охлаждают в эксикаторе и, закрыв бюкс крышкой, взвешивают.

Повторяют процедуру сушки, пока разница между взвешиваниями будет не более 0,5 мг при массе осадка до 50 мг и 1 мг при массе более 50 мг.

Выпарительные чашки помещают на водяную баню, в них постепенно приливают тщательно перемешанный отмеренный объем анализируемой пробы воды, содержащий от 10 до 250 мг примесей, и упаривают до объема 5 — 10 см 3 . Упаренную пробу количественно переносят в тигель (п. 9.3), промывая чашки 2 — 3 раза дистиллированной водой порциями по 4 — 5 см 3 . Упаривают пробу в тигле досуха. После выпаривания дно тигля для удаления накипи обтирают фильтровальной бумагой, смоченной раствором соляной кислоты, и ополаскивают дистиллированной водой.

Если необходимо определить содержание только растворенных веществ (сухой остаток), для упаривания берут отфильтрованную воду.

Тигли переносят в сушильный шкаф, сушат при 105 °С в течение 2 ч, охлаждают в эксикаторе, закрывают крышками и взвешивают.

Повторяют процедуру сушки и взвешивания до тех пор, пока разница между взвешиваниями не превысит 0,5 мг при массе осадка менее 50 мг и 1 мг при массе более 50 мг.

Содержание взвешенных веществ в анализируемой пробе воды X , мг/дм 3 , рассчитывают по формуле:

где m фо — масса бюкса с мембранным или бумажным фильтром с осадком взвешенных веществ, г;

m ф — масса бюкса с мембранным или бумажным фильтром без осадка, г;

V — объем профильтрованной пробы воды, дм 3 .

Общее содержание примесей в анализируемой пробе воды х, мг/дм 3 , рассчитывают по формуле:

m 2 — масса тигля с высушенным остатком, г;

V — объем пробы воды, взятый для упаривания, дм 3 .

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 2.

При превышении предела воспроизводимости могут быть использованы методы проверки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

Значения предела воспроизводимости при вероятности Р = 0,95

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

источник

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД
МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ СОДЕРЖАНИЙ ВЗВЕШЕННЫХ ВЕЩЕСТВ И ОБЩЕГО СОДЕРЖАНИЯ ПРИМЕСЕЙ В ПРОБАХ ПРИРОДНЫХ И ОЧИЩЕННЫХ СТОЧНЫХ ВОД ГРАВИМЕТРИЧЕСКИМ МЕТОДОМ
ПНД Ф 14.1:2.110-97

Методика допущена для целей государственного экологического контроля.

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них содержания взвешенных веществ (3 мг/куб. дм и более) и общего содержания примесей (10 мг/куб. дм и более) гравиметрическим методом.

Результаты определения могут быть искажены при наличии в пробе значительных количеств масел и жиров, поэтому при отборе пробы должно быть исключено попадание в нее поверхностной пленки.

Гравиметрический метод определения взвешенных веществ основан на выделении их из пробы фильтрованием воды через мембранный фильтр с диаметром пор 0,45 мкм или бумажный фильтр «синяя лента» и взвешивании осадка на фильтре после высушивания его до постоянной массы.

Определение общего содержания примесей (суммы растворенных и взвешенных веществ) осуществляют выпариванием известного объема нефильтрованной анализируемой воды на водяной бане, высушиванием остатка при 105 °C до постоянной массы и его взвешиванием.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведенных в таблице 1.

¦ Диапазон измерений ¦ Показатель ¦ Показатель ¦ Показатель ¦

¦ массовой концентрации ¦ точности ¦ повторяемости ¦ воспроизводимости ¦

¦ взвешенных веществ и ¦ (границы ¦ (относительное ¦ (относительное ¦

¦ общего содержания ¦ относительной ¦ среднеквадрати- ¦ среднеквадратическое ¦

¦ примесей, ¦ погрешности ¦ ческое ¦ отклонение ¦

¦ мг/куб. дм ¦ при ¦ отклонение ¦ воспроизводимости), ¦

¦ ¦ вероятности ¦ повторяемости), ¦ сигма , % ¦

¦ от 3,0 до 10,0 вкл. ¦ 30 ¦ 10 ¦ 15 ¦

¦ св. 10,0 до 50,0 вкл. ¦ 20 ¦ 7 ¦ 10 ¦

¦ Общее содержание примесей ¦

¦ от 10,0 до 30,0 вкл. ¦ 25 ¦ 10 ¦ 12 ¦

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Весы лабораторные общего назначения с наибольшим

пределом взвешивания 200 г и ценой наименьшего

деления 0,1 мг любого типа ГОСТ 24104-2001

Цилиндры мерные ГОСТ 1770

4.2. Вспомогательные устройства

Плитки электрические с закрытой спиралью

и регулируемой мощностью нагрева ГОСТ 14919

Шкаф сушильный лабораторный с температурой

Прибор вакуумного фильтрования ПВФ-35

или ПВФ-47 ТУ-3616-001-32953279-97

Воронки лабораторные ГОСТ 25336

Колбы конические ГОСТ 25336

Стаканчики для взвешивания (бюксы) ГОСТ 25336

Стаканы химические ГОСТ 25336

Чашки выпарительные 3(4) ГОСТ 9147

Тигли фарфоровые с крышками 3(2) ГОСТ 9147

Чашки биологические (Петри) ЧБН-1-100 ГОСТ 25336

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств

измерений и вспомогательных устройств с характеристиками не хуже, чем у

приведенных в п. п. 4.1 и 4.2.

Фильтры мембранные Владипор типа МФАС-МА

или МФАС-ОС-2 (0,45 мкм) с диаметром,

соответствующим ячейке прибора вакуумного

фильтрования, или фильтры бумажные обеззоленные

«синяя лента» ТУ 6-55-221-1029-89

диаметром 5,5 — 11 см ТУ 6-09-1678

Бумага фильтровальная ТУ 2642-001-42624157-98

Соляная кислота ГОСТ 4204

Вода дистиллированная ГОСТ 6709

Используемая для анализа соляная кислота должна быть квалификации ч.д.а. или х.ч.

Допускается использование соляной кислоты, изготовленной по другой нормативно-технической документации, в том числе импортной, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой гравиметрического анализа и изучивший инструкцию по эксплуатации лабораторных весов.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

— температура окружающего воздуха (22 +/- 6) °C;

— атмосферное давление (84 — 106) кПа;

— относительная влажность не более 80% при температуре 25 °C;

— частота переменного тока (50 +/- 1) Гц;

— напряжение в сети (220 +/- 22) В.

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором соляной кислоты 1:1, а затем дистиллированной водой.

8.3. Пробы воды отбирают в стеклянную посуду. Использование полиэтиленовой посуды допускается, если анализ пробы будет выполнен в тот же день.

Объем отбираемой пробы должен быть не менее 1000 куб. см при содержании взвешенных веществ

8.4. Пробы анализируют не позднее чем через 6 часов после отбора или хранят в холодильнике при t

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

Фильтры кипятят в дистиллированной воде 5 — 10 мин. Кипячение проводят 3 раза, сливая после каждого раза воду и заменяя ее свежей. Затем фильтры помещают в чашки Петри и сушат в сушильном шкафу при 105 °C в течение часа. Чистые фильтры хранят в закрытых чашках Петри.

Перед использованием фильтр маркируют карандашом с мягким грифелем, с помощью пинцета помещают в маркированный бюкс, сушат при 105 °C в течение 1 часа, охлаждают в эксикаторе и взвешивают закрытый бюкс с фильтром на лабораторных весах с точностью до 0,1 мг.

Читайте также:  Анализ из околоплодны вод плода

Бумажные обеззоленные фильтры «синяя лента» маркируют, складывают, помещают в воронки и промывают 100 — 150 куб. см дистиллированной воды. Затем пинцетом вынимают фильтр из воронки, помещают в сложенном виде в маркированный бюкс и высушивают в сушильном шкафу при 105 °C в течение 1 часа. Затем охлаждают бюксы с фильтрами в эксикаторе и, закрыв их крышками, взвешивают на лабораторных весах с точностью до 0,1 мг. Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более 0,5 мг.

Фарфоровые тигли с крышками промывают раствором соляной кислоты (п. 9.4), затем дистиллированной водой, сушат, прокаливают при 600 °C в течение 2 ч, охлаждают в эксикаторе и взвешивают с точностью до 0,1 мг. Повторяют прокаливание до тех пор, пока разница между взвешиваниями будет не более 0,5 мг.

30 куб. см соляной кислоты смешивают с 170 куб. см дистиллированной воды. Раствор хранят в плотно закрытой посуде не более 1 года.

Подготовку прибора для вакуумного фильтрования осуществляют в соответствии с инструкцией по его эксплуатации.

Подготовленный и взвешенный мембранный фильтр пинцетом извлекают из бюкса, зажимают в ячейке прибора вакуумного фильтрования и пропускают отмеренный объем тщательно перемешанной анализируемой пробы воды. Этот объем зависит от содержания взвешенных веществ в воде и подбирается с таким расчетом, чтобы масса осадка взвешенных веществ на фильтре находилась в пределах 3 — 200 мг.

После пропускания нужного объема воды приставший к стенкам ячейки для фильтрования осадок смывают на фильтр порцией фильтрата. Фильтр с осадком дважды промывают дистиллированной водой порциями по 10 куб. см, извлекают пинцетом из устройства для фильтрования, помещают в тот же бюкс, в котором его взвешивали до фильтрования, подсушивают сначала на воздухе, а затем в сушильном шкафу при 105 °C в течение 1 часа, после чего взвешивают.

Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более 0,5 мг при массе осадка до 50 мг и 1 мг при массе более 50 мг.

Взвешенный бумажный фильтр помещают в воронку, смачивают небольшим количеством дистиллированной воды для хорошего прилипания и пропускают отмеренный объем тщательно перемешанной анализируемой пробы воды, подобранный с таким расчетом, чтобы масса осадка взвешенных веществ на фильтре находилась в пределах 3 — 200 мг.

По окончании фильтрования дают воде полностью стечь, затем фильтр с осадком трижды промывают дистиллированной водой порциями по 10 куб. см, осторожно вынимают пинцетом и помещают в тот же бюкс, в котором его взвешивали до фильтрования. Фильтр высушивают 2 ч при 105 °C, охлаждают в эксикаторе и, закрыв бюкс крышкой, взвешивают.

Повторяют процедуру сушки, пока разница между взвешиваниями будет не более 0,5 мг при массе осадка до 50 мг и 1 мг при массе более 50 мг.

Выпарительные чашки помещают на водяную баню, в них постепенно приливают тщательно перемешанный отмеренный объем анализируемой пробы воды, содержащий от 10 до 250 мг примесей, и упаривают до объема 5 — 10 куб. см. Упаренную пробу количественно переносят в тигель (п. 9.3), промывая чашки 2 — 3 раза дистиллированной водой порциями по 4 — 5 куб. см. Упаривают пробу в тигле досуха. После выпаривания дно тигля для удаления накипи обтирают фильтровальной бумагой, смоченной раствором соляной кислоты, и ополаскивают дистиллированной водой.

Если необходимо определить содержание только растворенных веществ (сухой остаток), для упаривания берут отфильтрованную воду.

Тигли переносят в сушильный шкаф, сушат при 105 °C в течение 2 ч, охлаждают в эксикаторе, закрывают крышками и взвешивают.

Повторяют процедуру сушки и взвешивания до тех пор, пока разница между взвешиваниями не превысит 0,5 мг при массе осадка менее 50 мг и 1 мг при массе более 50 мг.

Содержание взвешенных веществ в анализируемой пробе воды X, мг/куб. дм, рассчитывают по формуле:

m — масса бюкса с мембранным или бумажным фильтром с осадком

m — масса бюкса с мембранным или бумажным фильтром без осадка, г;

V — объем профильтрованной пробы воды, куб. дм.

Общее содержание примесей в анализируемой пробе воды x, мг/куб. дм,

m — масса тигля с высушенным остатком, г;

V — объем пробы воды, взятый для упаривания, куб. дм.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 2.

Диапазон измерений массовой
концентрации взвешенных веществ
и общего содержания примесей,
мг/куб. дм

Предел воспроизводимости (относительное
значение допускаемого расхождения между
двумя результатами измерений, полученными
в разных лабораториях), R, %

источник

ЛАБОРАТОРНЫЕ РАБОТЫ ПО ХИМИИ

Студента (тки)_________________

_______________________________

Группы________________________

Лабораторная работа №1.

Тема: АНАЛИЗ СОДЕРЖАНИЯ ПРИМЕСЕЙ В ВОДЕ.

ОПРЕДЕЛЕНИЕ ФИЗИЧЕСКИХ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ВОДЫ.

Цель работы: исследовать содержание примесей в пробах воды и сделать выводы о возможном ее использовании.

Необходимые теоретические сведения

Качество воды характеризуется ее физическими, химическими и бактериологическими свойствами.

Хозяйственно-питьевая вода относится к пищевым продуктам и ее показатели должны отвечать согласно Закону РФ «О санитарно-эпидемическом благополучии населения» от 19.04.91года, санитарным правилам СанПиН 4630-88 и требованию ГОСТа 2874-82 «Вода питьевая».

К физическим свойствам относятся ее температура, цветность, мутность, привкус и запах.

Температура:оптимальная величина для питьевых целей от 7 до 12 о С, предельно-допустимая — + 35 о С. Вода, имеющая более высокую температуру, теряет свои освежающие свойства. Температура ниже 5°С считается вредной для здоровья людей и приводит к простудным заболеваниям.

Под цветностью понимают ее окраску. Цветность придает воде неприятный вид и указывает на загрязнение воды органическими веществами.

Мутностьопределяется содержанием в воде взвешенных частиц и выражается в миллиграммах на литр (мг/л). Вода подземных источников имеет малую мутность. Наличие взвешенных веществпрепятствуют использованию воды для хозяйственно-бытовых целей (допустимое содержание — не более 2 мг/л), для питания паровых котлов. При содержании более 50-100 мг/л могут вызывать загрязнение теплообменных аппаратов.

Привкус и запахпрепятствуют использованию воды для питьевых целей. Наличие в воде органических веществ резко ухудшает ее физические (органолептические) показатели, вызывая различного рода запахи (землистый, гнилостный, рыбный, болотный, аптечный, камфорный, запах нефтепродуктов, хлорфенольный и т.д.), повышает цветность, вспениваемость, оказывает неблагоприятное действие на человека и животных.

Химические свойства воды характеризуются следующими показателями: активной реакцией, жесткостью, окисляемостью, содержанием растворенных солей.

Активная реакция воды определяется концентрацией водородных ионов. Обычно она выражается через pH – водородный показатель. При pH=7 среда нейтральная; при pH 7 среда щелочная. В воде питьевых водопроводов значение рНдолжно находиться в пределах 6,5 — 9,5. Малые значения рН обычно вызывают коррозию труб, что может ухудшить вкус воды.

Жесткость воды определяется содержанием в ней солей кальция и магния. Она выражается в миллиграмм-эквивалентах на литр (мг·экв/л). Вода подземных источников имеет большую жесткость, а вода поверхностных источников — относительно невысокую (3-6 мг·экв/л).

Жесткая вода содержит много минеральных солей, от которых на стенках посуды, котлах и других агрегатах образуется накипь — каменная соль. Жесткая вода губительна и непригодна для систем водоснабжения. Мягкая вода должна иметь жесткость не более 10 мг·экв/л.

Окисляемость обуславливается содержанием в воде растворенных органических веществ. Величина окисляемости более 5-8 мг/л кислорода указывает на возможное загрязнение источника сточными водами. Окисляемость вызывает вспенивание воды в паровых котлах и указывает на возможность развития органических обрастаний в охлаждаемых водой теплообменных аппаратах.

Содержание в воде растворенных солей (мг/л) характеризуется сухим осадком. Вода поверхностных источников имеет меньший плотный осадок, чем вода подземных источников, т.е. содержит меньше растворенных солей. Предел минерализации питьевой воды 1000 мг/л. Воды с большим содержанием солей имеют солоноватый или горьковатый привкус. Повышенный растворенный остаток в воде препятствует использованию ее для питания паровых котлов из-за снижения экономичности их работы.

Повышенное содержание железа в воде хозяйственно-питьевого водопровода влияет на вкус воды, может вызвать порчу белья и появление ржавых пятен на санитарно-технических приборах. Содержание железа в питьевой воде не должно превышать 0,3 мг/л.

Аммиак, нитраты, нитриты служат сигналом о возможном загрязнении источника бытовыми сточными водами.

Сероводород придает воде неприятный запах; вызывает коррозию труб и их зарастание в результате развития серобактерий.

Степень бактериологической загрязненности воды определяется числом бактерий, содержащихся в 1 куб.см воды и должен быть до 100. Вода поверхностных источников содержит бактерии, внесенные сточными и дождевыми водами, животными и т.д. Вода подземных артезианских источников обычно не загрязнена бактериями.

Различают патогенные (болезнетворные) и сапрофитные бактерии. Для оценки загрязненности воды патогенными бактериями определяют содержание в ней кишечной палочки.

Наличие микроорганизмов определяется в результате измерения ее биохимической потребности в кислороде (БПК). С этой целью определяют содержание кислорода в воде до и после выдерживания ее в темноте в течение 5 суток при температуре 20 о С. БПК измеряется в мг/дм 3 . БПК обычно рассматривается как мера загрязнения воды. Если загрязняющие органические вещества сбрасываются в воду, в ней начинается их естественная очистка. Она происходит в результате действия определенных микроорганизмов, которые используют растворенный в воде кислород для окисления загрязняющих веществ. Считается, что в зависимости от степени загрязненности воды БПК имеют следующие значения:

Степень загрязнения воды БПК, мг/дм 3
Практически чистая Слабое загрязнение Сильное загрязнение 30 – 80 > 80

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8761 — | 7494 — или читать все.

источник

Выпускается в 7-ми различных вариантах исполнения — ручное или автоматическое управление, корпус из армированного пластика или нержавейки, есть вариант нержавеющего корпуса с нижним сливом для простоты консервации на зиму. Посмотреть все варианты исполнения фильтров

Анализ воды из скважины, колодца или водопровода сделать в лаборатории Санкт-Петербурге, стоимость экспертизы питьевой воды, где сделать, цена.

Согласно санитарным нормам питьевая вода должна быть безопасна в эпидемиологическом и радиационном отношении, безвредна по химическому составу, и иметь приятные органолептические свойства. Поэтому, целесообразно проверить качество воды из вашего источника — сделать анализ качества воды на соответствие требованиям санитарных норм и правил на питьевую воду. Для выбора системы очистки воды из скважины или колодца важно проверить воду не менее, чем по 15-ти основным показателям.

Требования (нормативы), которым должна соответствовать вода, изложены в санитарных нормах и правилах РФ (СанПиН) и международных нормативах Всемирной организации здравоохранения (ВОЗ), основные положения которых приведены в представленной ниже таблице. И так, рассмотрим основные показатели качества воды.

К органолептическим свойствам воды относят следующие характеристики: запах, привкус, цветность и мутность.

Запах и привкус воды объясняются присутствием в ней естественных или искусственных загрязнений. Природа запахов и привкусов очень различна, и может быть обусловлена как наличием в воде определенных растворенных солей, так и содержанием различных химических и органических соединений.

Кроме того, следует отметить, что запах и привкус может появиться в воде на нескольких этапах: из исходной природной воды, в процессе водоподготовки (в том числе в водонагревателе), при транспортировке по трубопроводам. Правильное определение источника запахов и привкусов — залог успешности их устранения.

Величина (интенсивность) запаха определяется по 6-ти бальной шкале. Например, запах тухлых яиц обусловлен наличием в воде сероводорода (Н2S), а также присутствием сульфатредуцирующих бактерий, вырабатывающих этот газ, а гнилостный запах обусловлен присутствием в воде природных органических соединений. Химические запахи (например, бензиновый, фенольный) указывают на антропогенный характер загрязнений.

Вкус воды обусловлен растворенными в воде природными веществами, каждое из которых придает воде определенный привкус:

  • солоноватый — хлоридом натрия;
  • горьковатый — сульфатом магния;
  • кисловатый — растворенным углекислым газом или растворенными кислотами.

Приятный или неприятный вкус воды обеспечивается как наличием, так и концентрацией находящихся в ней примесей.

Под цветностью понимается естественная окраска природной и питьевой воды. Цветность косвенно характеризует наличие в воде некоторых органических и неорганических растворенных веществ и является одним из важных показателей, позволяющих правильно выбрать систему водоочистки.

Цветность воды определяется сравнением с растворами специально приготовленной шкалы цветности (на основе определенных концентраций хромово-кобальтового раствора) и выражается в градусах цветности этой шкалы. По требованиям к питьевой воде данный показатель не должен превышать 20 градусов.

Главными «виновниками» цветности воды, являются вымываемые из почвы органические вещества (в основном гуминовые и фульвовые кислоты). Повышенная цветность воды также может свидетельствовать о возможной ее техногенной загрязненности. Наличие гуминовых кислот может приводить к определенной биологической активности воды, повышает проницаемость в кишечнике ионов металлов: железа, марганца и др.

Показатель, характеризующий наличие в воде взвешенных веществ неорганического происхождения (например, карбонаты различных металлов, гидроокиси железа), органического происхождения (коллоидное железо и т.п.), минерального происхождения (песка, глины, ила), а также микробиологического происхождения (бактерио-, фито- или зоопланктона). Мутность выражается в мг/дм3.

Мутность также может быть обусловлена наличием на поверхности и внутри взвешенных частиц различных микроорганизмов, которые защищают их как от химического, так и от ультрафиолетового обеззараживания воды. Поэтому снижение мутности в процессе очистки воды способствует также значительному снижению уровня микробиологического загрязнения.

Химические показатели характеризуют химический состав воды. К данным показателям относят водородный показатель воды рН, жесткость и щелочность, минерализацию (сухой остаток), анионный и катионный состав (неорганические вещества), содержание органических веществ.

Показатель, характеризующий интегральную загрязненность воды, т.е. содержание в воде окисляющихся органических и неорганических примесей, которые в определенных условиях способны окисляться сильным химическим окислителем. К упомянутым выше загрязнителям относятся в основном органические вещества — для воды из поверхностных источников, и неорганические ионы (Fe 2+ ,Mn 2+ , и т.п.) — для воды из артезианских скважин.

Различают несколько видов окисляемости воды: перманганатную (ПМО), бихроматную, иодатную. Как видно из названий — при этом для проведения химического анализа воды используются соответствующие окислители. Показатель окисляемости — мгО2/л. Это количество миллиграмм кислорода, эквивалентное количеству реагента (окислителя), пошедшего на окисление веществ, содержащихся в 1 л воды.

Величина бихроматной окисляемости обычно используется для определения такого важного показателя воды как ХПК — химическая потребность в кислороде. ХПК используется для характеристики загрязненных природных поверхностных вод, а также для сточных вод. Этот показатель свидетельствует о степени биогенной загрязненности воды.

Читайте также:  Анализ и очистка сточных вод

Бихроматная окисляемость позволяет получить значение наиболее полно характеризующее присутствие органических загрязнителей, за исключением таких химически инертных веществ как бензин, керосин, бензол, толуол и т.п. Считается, что при определении этого показателя окисляются до 90% органических примесей.

На практике для характеристики питьевой воды обычно используется показатель перманганатная окисляемость (ПМО) или перманганатный индекс (ПМИ). Чем больше значение ПМО, тем выше концентрация загрязнителей. Отметим, что величина перманганатной окисляемости ниже, чем значение, полученное для бихроматной примерно в 3 раза.

Водородный показатель или рН представляет собой логарифм концентрации ионов водорода, взятый с обратным знаком, т.е. pH = -logH + 1. Величина рН определяется количественным соотношением в воде ионов Н + и ОН — , образующихся при диссоциации воды. Если ионы ОН — в воде преобладают, что соответствует значению рН>7, то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н + , что соответствует рН + >+ HCO3

В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и многие другие ее характеристики.

Обычно уровень рН для воды, используемой в хозяйственных и питьевых целях, нормируется в пределах интервала 6-9.

Эта величина характеризует количество растворенных неорганических и органических веществ. В первую очередь это сказывается на органолептических свойствах воды. Установлено, что до 1000 мг/л вода может быть использована для водопотребления.

Величина сухого остатка влияет на вкусовые качества питьевой воды. Человек может без риска для своего здоровья употреблять воду с сухим остатком до 1000 мг/л. При большем значении вкус воды чаще всего становится неприятным горько-соленым. Следует также отметить, что у воды с низким уровнем сухого остатка вкус может отсутствовать и употреблять ее тоже не очень приятно.

Этот показатель характеризует свойство воды, связанное с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния (так называемых «солей жёсткости»).

Вода с большим содержанием таких солей называется жёсткой, с малым содержанием — мягкой.

Численное выражение жёсткости воды — это концентрация в ней катионов кальция и магния. По ГОСТ Р 52029-2003 жесткость выражается в градусах жесткости (°Ж), что соответствует концентрации щелочноземельного элемента, численно равной 1/2 его моля, выраженной в мг/дм³ (г/м³) (1 °Ж = 1 мг-экв/л).

Различают временную (карбонатную) жёсткость, обусловленную гидрокарбонатами кальция и магния (катионов Ca 2+ и Mg 2+ и анионов HCO3).

При кипячении воды гидрокарбонатные анионы вступают в реакцию с этими катионами и образуют с ними малорастворимые карбонатные соли, которые осаждаются на нагревательных элементах в виде накипи белого цвета, называемой в простонародии известью.

Временную жесткость можно устранить кипячением — отсюда и ее название.

Постоянная (некарбонатная) жесткость воды вызвана присутствием солей, не выпадающих в осадок при кипячении. В основном, это сульфаты и хлориды кальция и магния (CaSO4, CaCl2, MgSO4, MgCl2). Следует отметить, что именно присутствие соли CaSO4, растворимость которой с повышением температуры воды понижается, приводит к образованию плотной накипи.

Вода с высокой жесткостью наносит большой вред бытовым электронагревательным приборам, образуя накипь и тем самым вызывая их перегрев и разрушение, образует неприятные матовые налеты на сантехнике; в ней плохо пенятся мыло и шампуни, а поэтому увеличивается их расход.

Жесткая вода сушит кожу и вредит волосам; отрицательно влияет на качество приготовленной пищи, полезные вещества которой могут образовывать с солями жесткости плохо усваиваемые организмом соединения.

Жесткая вода вредна и для организма человека: увеличивается риск развития мочекаменной болезни, нарушается водно-солевой обмен.

Иногда в качестве характеристики встречается показатель «полная жесткость» воды, равный сумме постоянной и переменной (карбонатной) жесткости.

Его токсичное влияние на организм человека незначительно, но все же употребление питьевой воды с повышенным содержанием железа может привести к отложению его соединений в органах и тканях человека.

В общем случае в воде железо может встречаться в свободной форме в виде двух- и трехвалентных ионов:

Fe 2+ , как правило, в артезианских скважинах при отсутствии растворенного кислорода. Вода с повышенным содержанием такого железа может быть первоначально прозрачна (Fe 2+ ), но при отстаивании или нагреве приобретает желтовато-бурую окраску. Это происходит в результате окисления растворенного железа до Fe 3+ с образованием нерастворимых солей трехвалентного железа:

Fe 3+ — содержится в поверхностных источниках водоснабжения в так называемом окисленном состоянии, и, как правило, в нерастворимом виде.

Существует еще одна форма присутствия железа в природной воде — это органическое железо. Оно встречается в воде в разных формах и в составе различных комплексных соединений трехвалентных ионов железа с растворенными неорганическими и органическими соединениями, и, главным образом, с солями гуминовых кислот — гуматами. Повышенное содержание такого железа наблюдается в болотных водах, и вода имеет бурое или коричневатое окрашивание.

Органические соединения железа, как правило, растворимы или имеют коллоидную структуру (коллоидное железо) и очень трудно поддаются удалению. Коллоидные частицы из-за своего малого размера и высокого поверхностного заряда, который не позволяет частицам сближаться и препятствует их укрупнению, предотвращая образование конгломератов, создают в воде суспензии и не осаждаются, находясь во взвешенном состоянии и, тем самым, обуславливают мутность исходной воды.

На вкус такая вода имеет характерный неприятный металлический привкус, образует ржавые подтеки. Присутствие в воде коллоидного железа способствует развитию железистых бактерий, что еще больше ухудшает вкусовые качества воды и вызывает отложение осадка на внутренней поверхности трубопроводов и санитарно-технического оборудования вплоть до их полного засорения.

Марганец входит в состав многих ферментов, гормонов и витаминов, которые влияют на процессы роста, кровообразование, формирование иммунитета. Однако, повышенное его содержание в воде может оказывать токсический и мутагенный эффект на организм человека.

Вода с повышенным содержанием марганца обладает металлическим привкусом. Его присутствие приводит к значительно более быстрому износу бытовой техники и систем отопления, поскольку он способен накапливаться в виде черного налета на внутренних поверхностях труб с последующим отслаиванием и образованием взвешенного в воде осадка черного цвета. Кроме того, повышенное содержание марганца приводит к образованию черных пятен на посуде, белом белье при стирке, окрашивает ногти и зубы в серовато-черный цвет.

Также существуют «марганцевые» бактерии, которые, как и «железистые» бактерии, могут развиваться в такой воде и становиться причиной зарастания и закупорки трубопроводов.

Показатель, чаще всего характеризующий наличие в воде органических веществ животного или промышленного происхождения. Источниками азота аммонийного являются: животноводческие фермы, хозяйственно бытовые сточные воды, сточные воды с сельскохозяйственных угодий, предприятий пищевой и химической промышленности.

Указанные соединения являются главным образом продуктами распада мочевины и белков. Лимитирующая величина показателя «аммонийный азот» — токсикологическая. По нормам СанПиН содержание в воде аммония не должно превышать 2,0 мг/л.

К микробиологическим показателям безопасности питьевой воды относят общее микробное число, содержание бактерий группы кишечной палочки (общие колиформные бактерии и колифаги), споры сульфитредуцирующих клостридий и цисты лямблий.

В зависимости от характеристик водного источника с целью безопасности воды могут проверяться и такие показатели, как паразитологические и радиологические.

Анализ качества питьевой воды производится исходя из норм показателей по требованиям нормативных документов государств.

В таблице представлены нормативы основных показателей качества по санитарным нормам СанПиН Российской Федерации, указанные в столбце 3 — СанПиН 2.1.4.1074-01 «Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения» и столбце 4 — СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».

Именно по этим показателям следует проверить качество воды из вашего источника и оценить необходимость установки дополнительного оборудования для очистки воды.

Для сравнения приведены нормативы Всемирной организации здравоохранения (ВОЗ).

источник

ПНД Ф 14.1:2.110-97
Количественный химический анализ вод. Методика выполнения измерений содержаний взвешенных веществ и общего содержания примесей в пробах природных и очищенных сточных вод гравиметрическим методом

Купить ПНД Ф 14.1:2.110-97 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль»

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них содержания взвешенных веществ (3 мг/дм3 и более) и общего содержания примесей (10 мг/дм3 и более) гравиметрическим методом.

3 Приписанные характеристики погрешности измерений и ее составляющих

4 Средства измерений, вспомогательные устройства, реактивы и материалы

5 Требования безопасности

6 Требования к квалификации операторов

9 Подготовка к выполнению измерений

11 Обработка результатов измерений

12 Оформление результатов анализа

13 Контроль качества результатов анализа при реализации методики в лаборатории

Дата введения 21.03.1997
Добавлен в базу 01.09.2013
Завершение срока действия 01.12.2016
Актуализация 01.01.2019

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ
ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

УТВЕРЖДАЮ
Заместитель Председателя
Государственного комитета РФ
по охране окружающей среды
________ А.А. Соловьянов
«21» марта 1997 г.

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ СОДЕРЖАНИЙ
ВЗВЕШЕННЫХ ВЕЩЕСТВ И ОБЩЕГО СОДЕРЖАНИЯ
ПРИМЕСЕЙ В ПРОБАХ ПРИРОДНЫХ И ОЧИЩЕННЫХ
СТОЧНЫХ ВОД ГРАВИМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного
экологического контроля

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них содержания взвешенных веществ (3 мг/дм 3 и более) и общего содержания примесей (10 мг/дм 3 и более) гравиметрическим методом.

Результаты определения могут быть искажены при наличии в пробе значительных количеств масел и жиров, поэтому при отборе пробы должно быть исключено попадание в нее поверхностной пленки.

Гравиметрический метод определения взвешенных веществ основан на выделении их из пробы фильтрованием воды через мембранный фильтр с диаметром пор 0,45 мкм или бумажный фильтр «синяя лента» и взвешивании осадка на фильтре после высушивания его до постоянной массы.

Определение общего содержания примесей (суммы растворенных и взвешенных веществ) осуществляют выпариванием известного объема нефильтрованной анализируемой воды на водяной бане, высушиванием остатка при 105 °С до постоянной массы и его взвешиванием.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Диапазон измерений, значения показателей точности, правильности, повторяемости, воспроизводимости

Диапазон измерений массовой концентрации взвешенных веществ и общего содержания примесей, мг/дм 3

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ± δ, %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), σr, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), σR, %

Общее содержание примесей

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Плитки электрические с закрытой спиралью и регулируемой мощностью нагрева

Шкаф сушильный лабораторный с температурой нагрева до 130 °С

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Стаканчики для взвешивания (бюксы)

Тигли фарфоровые с крышками 3 (2)

Чашки биологические (Петри) ЧБН-1-100

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм) с диаметром, соответствующим ячейке прибора вакуумного фильтрования или фильтры бумажные обеззоленные «синяя лента»

Используемая для анализа соляная кислота должна быть квалификации ч.д.а. или х.ч.

Допускается использование соляной кислоты, изготовленной по другой нормативно-технической документации, в том числе импортной, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой гравиметрического анализа и изучивший инструкцию по эксплуатации лабораторных весов.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

• температура окружающего воздуха (22 ± 6) °С;

• атмосферное давление (84 — 106) кПа;

• относительная влажность не более 80 % при температуре 25 °С;

• частота переменного тока (50 ± 1) Гц;

• напряжение в сети (220 ± 22) В.

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором соляной кислоты 1:1, а затем дистиллированной водой.

8.3. Пробы воды отбирают в стеклянную посуду. Использование полиэтиленовой посуды допускается, если анализ пробы будет выполнен в тот же день.

Объем отбираемой пробы должен быть не менее 1000 см 3 при содержании взвешенных веществ 3 и не менее 500 см 3 при содержании взвешенных веществ 50 мг/дм 3 и выше.

8.4. Пробы анализируют не позднее, чем через 6 часов после отбора или хранят в холодильнике при t 3 дистиллированной воды. Затем пинцетом вынимают фильтр из воронки, помещают в сложенном виде в маркированный бюкс и высушивают в сушильном шкафу при 105 °С в течение 1 часа. Затем охлаждают бюксы с фильтрами в эксикаторе и, закрыв их крышками, взвешивают на лабораторных весах с точностью до 0,1 мг. Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более 0,5 мг.

Фарфоровые тигли с крышками промывают раствором соляной кислоты (п. 9.4), затем дистиллированной водой, сушат, прокаливают при 600 °С в течение 2 ч, охлаждают в эксикаторе и взвешивают с точностью до 0,1 мг. Повторяют прокаливание до тех пор, пока разница между взвешиваниями будет не более 0,5 мг.

Читайте также:  Анализ и контроль качества воды

30 см 3 соляной кислоты смешивают с 170 см 3 дистиллированной воды. Раствор хранят в плотно закрытой посуде не более 1 года.

Подготовку прибора для вакуумного фильтрования осуществляют в соответствии с инструкцией по его эксплуатации.

Подготовленный и взвешенный мембранный фильтр пинцетом извлекают из бюкса, зажимают в ячейке прибора вакуумного фильтрования и пропускают отмеренный объем тщательно перемешанной анализируемой пробы воды. Этот объем зависит от содержания взвешенных веществ в воде и подбирается с таким расчетом, чтобы масса осадка взвешенных веществ на фильтре находилась в пределах 3 — 200 мг.

После пропускания нужного объема воды приставший к стенкам ячейки для фильтрования осадок смывают на фильтр порцией фильтрата. Фильтр с осадком дважды промывают дистиллированной водой порциями по 10 см 3 , извлекают пинцетом из устройства для фильтрования, помещают в тот же бюкс, в котором его взвешивали до фильтрования, подсушивают сначала на воздухе, а затем в сушильном шкафу при 105 °С в течение 1 часа, после чего взвешивают.

Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более 0,5 мг при массе осадка до 50 мг и 1 мг при массе более 50 мг.

Взвешенный бумажный фильтр помещают в воронку, смачивают небольшим количеством дистиллированной воды для хорошего прилипания и пропускают отмеренный объем тщательно перемешанной анализируемой пробы воды, подобранный с таким расчетом, чтобы масса осадка взвешенных веществ на фильтре находилась в пределах 3 — 200 мг.

По окончании фильтрования дают воде полностью стечь, затем фильтр с осадком трижды промывают дистиллированной водой порциями по 10 см 3 , осторожно вынимают пинцетом и помещают в тот же бюкс, в котором его взвешивали до фильтрования. Фильтр высушивают 2 ч при 105 °С, охлаждают в эксикаторе и, закрыв бюкс крышкой, взвешивают.

Повторяют процедуру сушки, пока разница между взвешиваниями будет не более 0,5 мг при массе осадка до 50 мг и 1 мг при массе более 50 мг.

Выпарительные чашки помещают на водяную баню, в них постепенно приливают тщательно перемешанный отмеренный объем анализируемой пробы воды, содержащий от 10 до 250 мг примесей, и упаривают до объема 5 — 10 см 3 . Упаренную пробу количественно переносят в тигель (п. 9.3), промывая чашки 2 — 3 раза дистиллированной водой порциями по 4 — 5 см 3 . Упаривают пробу в тигле досуха. После выпаривания дно тигля для удаления накипи обтирают фильтровальной бумагой, смоченной раствором соляной кислоты, и ополаскивают дистиллированной водой.

Если необходимо определить содержание только растворенных веществ (сухой остаток), для упаривания берут отфильтрованную воду.

Тигли переносят в сушильный шкаф, сушат при 105 °С в течение 2 ч, охлаждают в эксикаторе, закрывают крышками и взвешивают.

Повторяют процедуру сушки и взвешивания до тех пор, пока разница между взвешиваниями не превысит 0,5 мг при массе осадка менее 50 мг и 1 мг при массе более 50 мг.

Содержание взвешенных веществ в анализируемой пробе воды X, мг/дм 3 , рассчитывают по формуле:

где mфо — масса бюкса с мембранным или бумажным фильтром с осадком взвешенных веществ, г;

mф — масса бюкса с мембранным или бумажным фильтром без осадка, г;

V — объем профильтрованной пробы воды, дм 3 .

Общее содержание примесей в анализируемой пробе воды х, мг/дм 3 , рассчитывают по формуле:

m2 — масса тигля с высушенным остатком, г;

V — объем пробы воды, взятый для упаривания, дм 3 .

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 2.

При превышении предела воспроизводимости могут быть использованы методы проверки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

Значения предела воспроизводимости при вероятности Р = 0,95

Диапазон измерений массовой концентрации взвешенных веществ и общего содержания примесей, мг/дм 3

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

источник

Химический, микробиологический анализы воды из скважин, и центрального водоснабжения, с примером допустимых показателей

Вода – это источник энергии и жизни человека, поэтому на всех этапах строительства, начиная с изысканий, обязательно проводят анализ воды из скважин, колодцев и водоемов, находящихся непосредственно на территории объекта. Состав воды подвержен постоянному воздействию внешних факторов, ведь не исключено, что ранее около водоема, скважины или колодца располагались промышленные предприятия, захоронения тяжелых металлов или несанкционированная свалка отходов. Определить годность воды к использованию в бытовых условиях может своевременный анализ воды.

Исследования помогают установить химический состав и свойства воды и выявить концентрацию всех вредных примесей. Это необходимо для обеспечения любого объекта строительства качественной питьевой водой, а также для расчетов и выбора подходящего очистительного и распределительного оборудования. От состава и свойств воды зависит расчетный срок службы прокладываемых коммуникаций и здоровье людей, использующих ее для питьевых или бытовых нужд. Именно по этой причине одним из основных этапов геоизысканий является обязательное проведение различных анализов воды из скважины, которое назначается застройщиками любых объектов, в том числе и промышленных.

Емкости, используемые для анализа воды

При этом стоит учесть, что подобные лабораторные исследования рекомендуется проводить систематически, так как химический состав воды подвержен изменениям под действием внешней среды.
Выделяют 3 основных вида показателей:

  • Физические показатели, которые позволяют оценить основные свойства воды, а именно ее вкус, цвет, мутность, температурные данные, запах и информацию о взвешенных частицах в составе.
  • Химические показатели. Они позволяют охарактеризовать состав воды за счет оценки концентрации основных ионов. Также в процессе исследования определяют основные показатели жесткости, уровень pH, число общей минерализации и содержание отдельных ионов, отвечающих за качество воды, фтора, железа, калия и т. д. Стоит отметить, что избыток железа влияет на цвет воды и вызывает образование осадка в трубах, который может негативно влиять на сантехническое оборудование и трубы. В то время как избыток меди влияет на вкусовые качества.
  • Бактериологические показатели также отвечают за качество воды и позволяют своевременно определить заражение различными микроорганизмами. Чаще всего бактерии попадают в жидкость под воздействием внешних факторов и человеческой жизнедеятельности. Например, заражение может произойти при попадании сточных вод, при контакте воды с животными и при загрязнении различными промышленными отходами.

Показатели качества воды определяются:

  • химическим анализом;
  • органолептическим исследованием, в результате которого определяется жесткость и наличие железа;
  • токсическим анализом, направленным на определение наличия опасных веществ;
  • микробиологическим исследованием, позволяющим определить содержание бактерий в скважине, водоеме или колодце.

Результаты проверки указывают на количество определенных веществ в разных единицах измерения. При знании норм можно самостоятельно оценить основные показатели. Если все в норме, то жидкость можно считать чистой и пригодной к использованию. В противном случае нужно проводить дополнительную фильтрацию. Обычно в результатах указывают предельно допустимую концентрацию (ПДК) примесей. Этот показатель говорит, что количество определенного вещества не несет негативного воздействия. ПДК прописываются в нормативных документах.

Исследование производят для установления точного химического состава воды, а также для оценки основных свойств. Характер исследования может отличаться в зависимости от поставленных задач. Химический анализ воды подразделяют на общий и специальный. Во время общего анализа воды определяется ее общая характеристика, необходимая для ее классификации, а также для получения информации о содержании отдельных солей и ионов. Данные результаты имеют широкое назначение.

Согласно СанПиН 2.1.4.559-96, на сегодняшний день в результате исследования воды обязательно устанавливают концентрацию ионов кальция, магния, натрия, которые наряду с другими составляют основу шестикомпонентного анализа, также позволяющего определить содержание железа и уровень pH. Исследование не включает в себя определение газового состава.

Краткое описание основных исследуемых в процессе химического анализа показателей:

  • Водородный коэффициент (pH) зависит от концентрации ионов.
  • Жесткость воды определяют исходя из концентрации в ней солей кальция и магния.
  • Щелочность базируется содержанием гидроксидов, анионов слабых кислот, бикарбонатов и карбонатов.
  • Хлориды связаны с присутствием в жидкости обычной соли. При наличии с хлоридами азотсодержащих веществ есть угроза загрязнения централизованного водоснабжения бытовыми отходами.
  • Сульфаты могут вызывать проблемы пищеварительной системы.
  • Элементы, содержащие азот, показывают присутствие в жидкости животной органики. К ним относится аммиак, нитриты, нитраты.
  • Фтор и йод. Оба вещества несут негативные последствия как при избытке, так и при дефиците. Первое вещество может вызвать рахит, заболевания зубов и крови. Второе – проблемы щитовидной железы.
  • Железо в составе воды может находиться в растворенном, не растворенном, коллоидном состоянии, а также в виде органических примесей и бактерий.
  • Марганец вместе с железом оставляют желтые потеки труб, аналогичные следы остаются и на чистом белье, а также вызывают характерный привкус. Это пагубно действует на печень.
  • Сероводород можно встретить в подземных водах, проводя анализ колодезной воды. Вещество относится к ядам, серьезно влияющим на здоровье людей. В воде, используемой для бытовых и питьевых нужд, присутствие сероводорода крайне опасно и запрещено.
  • Хлор – наиболее распространенное средство санитарной обработки водопроводной воды. Вещество оказывает пагубное воздействие на организм и является одной из причин генетических мутаций, тяжелых отравлений, онкологических болезней. Однако в воде часто наблюдается остаточный хлор, используемый для ее обеззараживания, в безопасной концентрации.
  • Натрий и калий – следствие растворения коренных пород.

Среди специальных анализов подземных вод важное место занимают:

  • Санитарный, направленный на определения уровня жесткости и кислотности, содержания солей и ионов NH4, NO2, NO3. Анализ выявляют в целях определения пригодности воды для питья и бытового использования и уровня ее загрязненности.
  • Бальнеологический анализ – кроме главных ионов, позволяет выявить уровень газовых компонентов, радиоактивность, число сульфатов, железо, мышьяк, литий и ряд иных показателей качества. Он считается наиболее полным и применяется для нормирования целебных источников минеральной воды, установленных требованиям ГОСТ Р 54316-2011, расположенных , например, в Карловых Варах, Ессентуках, Железноводске, Трускавце.
  • Технический анализ производят для того, чтобы оценить коррозионные и агрессивные свойства воды, а также определить ее пригодность для использования в нефтедобыче, для питания паровых котельных установок или в иной технической сфере.
  • Поисковый анализ питьевой воды используют наряду с техническим анализом для поиска агрессивных примесей и оценки способов ее дальнейшего использования.

Анализы воды из скважины проводят как в стационарных лабораторных условиях, так и с использованием полевых лабораторных установок непосредственно на объекте строительства. В полевых условиях часто используют исследовательские лаборатории и передвижные конструкции для анализа, разработанные учеными А. А. Резниковым (ПЛАВ), И. Ю. Соколовой и другими. Данный вид оборудования обычно состоит из упакованных смонтированных комплектов оборудования, посуды и реактивов, которые предназначены для исследований объемным, колориметрическим и нефелометрическим методами.

Химическая экспертиза воды имеет широкий спектр действия и применяется для:

  • анализа питьевой воды;
  • определения чистоты промышленных источников;
  • подбора фильтров на производстве.

Для точности результатов рекомендуют соблюдать следующие требования:

  • Емкость для пробы воды на анализ должна быть стерильной. Объем тары – 500 гр. Простерилизовать посуду может лаборатория, проводящая исследование, но процедуру несложно провести и дома. Для этой цели пробирку необходимо простерилизовать кипятком или паром. Также можно подержать емкость 10-15 мин в духовке или над открытым огнем.
  • Перед забором нужно продезинфицировать кран открытым пламенем и обтереть спиртом. После этих манипуляций нужно спустить воду на полной мощности в течение 5-7 мин. Запрещается притрагиваться к крышке и горловине тары.
  • Жидкость необходимо оградить от тепла и прямых солнечных лучей, так как такое воздействие способно нарушить качество, и результаты будут недостоверными. Лучше во время перевозки поместить пробирку в холодное место.
  • Образец нужно передать в лабораторию и приступить к определениям максимум через 3 часа после забора.

К образцу прилагают документацию, содержащую информацию о виде источника (колодец, скважина, природный водоем и т. д.), место пробы, правильную дату и время забора, а также точный юридический адрес источника.

Изображение результатов химического анализа

Качество воды из скважины и ее состав можно определить несколькими методиками. Каждая из них устанавливает определенный показатель. Химический состав воды из скважины, водоема или колодца обычно изображают в ионной, процент-эквивалентной или эквивалентной форме. Ионная форма позволяет выразить химический состав питьевой воды в виде отдельных ионов, содержащихся в ней. Они выражаются в миллиграммах (мг) или же в граммах (гр), изредка данные могут быть предоставлены как отношение к массе и объему исследуемой жидкости.

Вода в процессе визуального исследования

Сегодня все сертифицированные лаборатории, куда доставляются пробы, предоставляют результаты гидрохимических исследований в ионной форме, которая является основным изображением состава воды. Ионная форма считается основной и используется для дальнейших переходов. Если надо выполнить перевод результатов, изображенных в виде отношения к единице объема, к составу, отнесенному к единице массы, количество отдельных ионов нужно поделить на плотность, а в случае обратного перехода — помножить.

Эквивалентная форма изображения результатов и получила значительное распространение. Она дает развернутое представление о свойствах воды, позволяет определить содержание ионов и установить происхождение вод. Форма используется в аналитических целях и позволяет контролировать результаты.

Чистая водопроводная вода

Эквивалент иона представляет собой частное от деления ионной массы на валентность иона. В качестве примера можно рассмотреть содержание иона натрия в эквивалентном виде иона: Na+ = 23/1, а эквивалент иона С = 35,5/1, из этого следует вывод, что на 23 единицы массы иона Na+ приходится 35,5 единицы иона, выраженных в эквивалентах. Исходя из этого, нужно отметить, что для перехода от ионной формы к эквивалентному изображению результатов нужно разделить количество иона, выраженное в миллиграммах (мг) или граммах (гр), на величину эквивалента иона.

Вода с избыточным содержанием железа и меди

Процент-эквивалентная форма позволяет более наглядно показать ионно-солевой состав, соотношение между ионами, а также определяет черты сходства вод с различной величиной минерализации, что делает данную форму наиболее распространенной. Но изображение содержания солей в составе исследуемых жидкостей только в одной из вышеперечисленных форм не дает возможности установить абсолютное содержание ионов в воде. По этой причине желательно предоставить результаты исследований, изобразив их в эквивалентной и ионной формах.

источник