Меню Рубрики

Для проведения анализов котловой воды

Основные показатели качества воды котельных установок. Ведение журнала водоконтроля и производство анализа воды котельных установок

Показатели качества воды. Воду, находящуюся постоянно в природном круговороте, условно делят на атмосферную, поверхностную, подземную (грунтовую) и морскую. Каждая из этих видов воды имеет свои качественные показатели, от которых зависит возможность ее использования в тех или иных целях. В судовой энергетике применение воды сводится обычно к роли теплоносителя и с этой точки зрения предпочтительнее среда с минимальной минерализацией. Однако обычная пресная вода (поверхностная) всегда содержит примеси солей и растворенные газы.

По химическому составу примеси природных вод делят на минеральные и органические.

Минеральные примеси обусловливаются содержанием в воде различных солей, кислот, оснований, находящихся преимущественно в диссоциированной форме, т. е. в виде катионов и анионов. К этой же группе примесей относятся и растворенные газы N2,О2, СО2, NH3, CH4, H2S.

Органические примеси состоят из гумусовых веществ, вымываемых из почв, а также органических веществ различных типов, поступающих из всевозможных стоков (сельскохозяйственных, промышленных).

Природные воды характеризуются высоким содержанием катионов Na+, К+, Са+, Mg+ со следами NH+, Fe2+, Мп2+, Cu2+, Zn2+, Ni2+, Al3+. Среди анионов в составе примесей основными являются НСО3, Сl-, SO2-4, HsiO-3, NO3, CO2-3. При этом натрий и калий практически не образуют труднорастворимых соединений, в то время как кальций и магний являются важнейшими примесями в процессе загрязнения теплопередающих поверхностей. Они вступают в реакцию с анионами и образуют соли с низкими коэффициентами растворимости.

В судовых условиях различают воду следующих видов:

загрязненную нефтепродуктами (сточную, льяльную).

Для котлов питательной водой служат конденсаты пара, отработавшего в главном турбоагрегате, турбогенераторах, турбоприводных насосах, подогревателях и других потребителях пара. Во время работы котла имеют место неизбежные потери воды и пара через неплотности в арматуре и трубопроводах, на сажеобдувочные устройства, на форсунки, с продувками котла и пр. Для восполнения этих утечек используют добавочную воду, в качестве которой используют дистилляты от испарителей или запасы пресной воды. Для приготовления дистиллята применяют забортную воду. Котловой водой называется вода, находящаяся внутри котла (во всех его элементах).

Рассмотренные виды воды существенно различаются по качеству, которое оценивают по таким показателям, как жесткость, содержание хлоридов, щелочность, фосфатное число, концентрация водородных ионов, содержание кислорода, масла и других нефтепродуктов и различных примесей.

Жесткость — это одна из основных характеристик качества воды. Самым распространенным показателем является общая жесткость ЖO — сумма всех растворимых в воде солей кальция (кальциевая жесткость) и магния (магниевая жесткость), выраженная в миллиграмм-эквивалентах на литр (мг-экв/л).

Для пересчета выраженных в единице мг/л концентраций кальция и магния в единице мг-экв/л их значения делят на эквивалентные массы этих катионов, т. е. используют следующие соотношения: 1 мг-экв/л жесткости = 20,04 мг/л Са+2 , 1 мг-экв/л жесткости = 12,16 мг/л Mg2+, где 20,04 и 12,16 — эквивалентные массы кальция и магния.

Таким образом, общая жесткость может быть представлена суммой карбонатной ЖKи некарбонатной ЖНК составляющих или кальциевой ЖСа и магниевой ЖMg жесткостью: ЖO= ЖK + ЖНК = ЖСа + ЖMg.

С повышением общей минерализации воды возрастает магниевая составляющая, а кальциевая уменьшается. Например, вода в Неве содержит около 0,44 мг-экв/л Са2+ и 0,1 мг-экв/л Mg2+, а для воды Средиземного моря эти показатели соответственно 3,3 и 223 мг-экв/л.

Карбонатная жесткость обусловливается присутствием в воде бикарбонатов кальция и магния: Са(НСО3)2 и Mg(HCО3)2. Карбонатную жесткость иногда называют временной, так как в процессе работы котла она уменьшается. Это вызывается тем, что бикарбонаты при нагреве воды разлагаются и образуют нерастворимые соли, которые скапливаются на поверхности нагрева (накипь). Например, растворенный в воде бикарбонат кальция при нагревании и кипении воды распадается на карбонат кальция СаСОз и угольную кислоту НСОз. Карбонат кальция выпадает в осадок.

Некарбонатная жесткость обусловливается другими солями кальция и магния, которые при нагреве воды химически не изменяются и остаются растворенными. Эти соли жесткости выпадают лишь в зоне испарения, когда концентрация их превысит предел растворимости. К этой группе относятся соли, образующиеся в результате взаимодействия Са и Mg с сильными кислотами (хлориды, сульфаты, силикаты, нитраты). Некарбонатную жесткость иногда называют постоянной (остаточной).

Хлориды — это соли соляной кислоты. Наиболее распространенной солью является хлорид натрия NaCl. Вследствие хорошей растворимости в воде (26,4 % при 15 °С; 28,4 % при 100 °С) хлорид натрия является основной составляющей солености воды, т. е., говоря о содержании хлоридов в воде, имеют в виду ее соленость. Выражается соленость через концентрацию NaCl или хлор-иона и измеряется единицей мг/л. Однако следует иметь в виду, что есть и отдельный показатель — общее солесодержание, под которым подразумевается суммарная концентрация (мг/кг) в воде молекулярно-дисперсных веществ.

При использовании пресной береговой воды в качестве добавочной происходит приток хлористых солей (наряду с другими) в котловую воду в большей степени, чем при использовании для этой цели дистиллята, в котором содержание хлоридов не превышает 5-10 мг/л. Таким образом, одним из источников увеличения хлоридов в котловой воде является добавочная вода.

Для охлаждения конденсаторов СЭУ морских судов используют морскую забортную воду. Ее характерной особенностью является высокое общее солесодержание (до 35 000 мг/л). Основными составляющими солесодержания являются хлористые соли СаСl2, MgCl2, NaCl. Через неплотности в соединениях конденсатора часть морской воды может поступать в конденсат пара, вследствие чего ухудшается качество питательной воды, а значит, и качество котловой воды (в частности, возрастает содержание хлоридов).

Щелочность, являющаяся одним из важнейших показателей качества котловой воды, представляет собой сумму миллинормальных концентраций всех анионов слабых кислот и ионов гидроксила. Она обусловливается прежде всего присутствием в воде ионов ОН-, СO2-3, НСО3, РО3-4.

В зависимости от того, какой вид ионов присутствует в воде, щелочность называют соответственно гидратной ЩГ(OH-), карбонатной ЩК(СO2-3), бикарбонатной ЩБК(НСО3), фосфатной ЩФ(РО3-4). Общая щелочность равна их сумме: ЩО= ЩГ+ ЩК+ ЩБК+ ЩФ.

Оценивается щелочность содержанием щелочных солей, пересчитанных на NaOH. Эта величина называется щелочным числом и выражается в мг/л NaOH.

В судовой документации (особенно судов зарубежной постройки) иногда щелочность выражается содержанием ионов водорода, т. е. используется водородный показатель рН. Для котловой воды рН ? 9,0 -10. Водородный показатель рН является наиболее достоверным показателем коррозионной активности воды.

При определении щелочности судовой лабораторией водоконтроля результаты получаются в нормальных единицах измерения — мг-экв/л. В нормативных документах указываются объемные единицы измерения — мг/л. Для перехода от единицы мг-экв/л к мг/л при определении показателя щелочности воды используют коэффициент 40, соответствующий химическому эквиваленту NaOH, т. е. результат анализа умножают на 40.

Фосфатное число котловой воды контролируют при поддержании фосфатно-нитратного водного режима. Фосфаты — это растворенные в воде соли фосфорной кислоты. В котловой воде должен быть всегда избыток фосфатных ионов РО3-4, что исключает выпадение в осадок накипеобразующих соединений кальция и магния. Следовательно, это приводит к предотвращению образования накипи.

Содержание фосфатов определяется обычно количеством ионов РО3-4 или выражается в виде окисла Р2О5 и измеряется в единице мг/л. Перейти от РО3-4 к Р2О5 можно расчетным путем.

Для поддержания фосфатно-нитратного водного режима в котловую воду вводят нитраты в виде натриевой селитры NaNO3 Нитраты образуют на поверхности металла, т. е. на внутренних стенках котла, защитную пленку, которая препятствует развитию коррозии. Нитрат натрия не принимает участия во внутрикотловых процессах, и его количество в котловой воде уменьшается в процессе работы вследствие уноса паром и продувания котла.

Содержание нитратов в котловой воде выражается нитратным числом в мг/л NaNО3. Его значение обычно составляет около 50 % щелочного числа котловой воды.

При исследовании влияния качества воды на внутрикотловые процессы для оценки качественного и количественного составов воды используют показатели ее электропроводности.

Накипеобразование на поверхностях нагрева. В процессе работы котла в котловой воде протекают различные физико-химические процессы, обусловливающие разрушение одних соединений и образование других. Это приводит к возникновению веществ с различной степенью растворимости. Труднорастворимые вещества выделяются из воды в виде осадка, образующего при определенных условиях накипь или шлам.

Накипью называют плотные отложения, возникающие на поверхности нагрева. К шламу относятся выпадающие вещества в виде подвижного осадка, которые могут также образовывать вторичную накипь, прикипая к поверхности труб.

Образование осадка в виде накипи или шлама происходит при наличии пересыщенного раствора, т. е. высокой концентрации солей. Испарение котловой воды, подача питательной и добавочной воды с более высокой минерализацией создают благоприятные условия для этого процесса. Произведение концентраций находящихся в растворе ионов труднорастворимого вещества называется произведением растворимости, т.е.

где СКТ ,САН — концентрация соответственно катиона и аниона труднорастворимого соединения.

Произведение концентраций при данной температуре является постоянной величиной и, если СКТСАН > ПР, происходит выпадение осадка (твердой фазы). Образующиеся в толще воды кристаллические частицы осаждаются на поверхности нагрева в виде слоя накипи или остаются во взвешенном состоянии как подвижный шлам.

Накипь может появиться в результате увеличения концентрации одного из ионов, образующих труднорастворимые соединения, что является следствием химических процессов.

Таким образом, низкое содержание Са в воде еще не означает, что не будет кальциевых отложений.

Наибольшее влияние на процесс накипеобразования оказывают катионы Са2+ и Mg2+ и анионы С2-3, ОН-, SO2-4, SiO2-3. Определенные сочетания этих катионов и анионов в виде солей представляют собой труднорастворимые вещества. Накипеобразующими соединениями, например, являются: карбонат кальция и магния (СаСО3, MgCO3), гидрат магния (Mg(OH)2), сульфат кальция (CaSO4), силикаты кальция и магния СаSiO3, MgSiO3).

Карбонат кальция образуется в результате нагрева из бикарбоната:

Повышение концентрации в воде углекислоты СО2 может смещать равновесие реакции влево, т. е. ведет к образованию бикарбоната. Однако для котловой воды, где идет процесс кипения и СО2 удаляется, наиболее характерен переход Са(НСО3)2 в карбонат СаСО3.

Аналогичная реакция идет и с бикарбонатом магния при нагревании:

При нагревании воды с высокой щелочностью происходит гидролиз карбоната магния с образованием труднорастворимого соединения гидроокиси магния:

MgCO3 + 2Н2О > Mg(OH)2 + H2CO3.

Карбонаты кальция образуют в котле карбонатную накипь. С повышением щелочности воды они осаждаются в грубодисперсном состоянии и входят в состав шлама.

Соединение Mg(OH)2 находится в воде преимущественно в виде шлама и может образовывать вторичную накипь (прикипание осаждающегося шлама).

Силикаты CaSiO3 и MgSiO3 в природной воде находятся в коллоидальной форме в небольшом количестве. Однако в случае образования силикатной накипи на поверхности нагрева слой загрязнения становится прочным, трудноудаляемым.

Одной из причин образования насыщенных растворов и выпадения осадка является понижение растворимости некоторых соединений при повышении температуры воды. Такие соединения имеют отрицательный коэффициент растворимости. К ним относятся СаСО3, CaSO4, Mg(OH)2, CaSiO4, MgSiO3.

Вторичную накипь могут образовывать продукты коррозии металла, заносимые в котел с питательной водой.

  • 1. Журнал водоконтроля (в дальнейшем — журнал) является официальным документом отражающим действия обслуживающего персонала по выполнению установленного водного режима судовой котельной установки.
  • 2. Журнал ведётся лицом, в заведовании которого находятся котлы. Вести его надлежит на всех судах, оборудованных паровыми котлами (главными, вспомогательными, утилизационными) с рабочим давлением пара ),07 МПа и более.
  • 3. Все записи в журнале производятся чернилами чётко и разборчиво. Подчистка текста, исправление его вменением написанных букв (цифр) запрещается. При необходимости внесения в текст записи исправления, они записываются в конце страницы. Текст, подлежащий исправлению должен быть зачёркнут тонкой линией так, чтобы удержание его было легко читаемо, а в конце страницы исправление или дополнение должно быть специально оговорено и скреплено подписью лица, производившего его.
  • 4. Главный (старший) механик обязан еженедельно проверять ведение журнала и удостоверять записи в нём своей подписью.

По приходу в порт ведение журнала проверяется механико-судовой службой судовладельца. Результаты проверки записываются в разделе «Замечания лиц, проверяющих ведение водного режима».

  • 5. Все листы журнала водоконтроля должны быть пронумерованы, и скреплены подписью капитана и судовой печатью.
  • 6. Законченный журнал хранится на судне в течение года, а затем, после оформления соответствующего акта, уничтожается.
  • 7. Все записи в журнале должны производиться сразу после выполнения химанализа или после снятия замеров и удостоверяться подписью лица, производившего анализ или замер.
  • 8. При составлении рейсового донесения по технической эксплуатации главный (старший) механик должен отметить случаи нарушения установленного водного режима котлов с указанием причин, вызвавших эти нарушения, и меры, принятые для предупреждения подобных случаев в дальнейшем.

Судовой обслуживающий персонал должен быть хорошо знаком с практическими методами определения качества воды и их характеристик и уметь пользоваться средствами водоконтроля для определения всех вышеперечисленных показателей, характеризующих качество котловой и питательной воды.

Определение жесткости воды с помощью трилона Б. Этот метод основан на том, что трилон Б реагирует с солями кальция и магния, содержащимися в воде.

Момент окончания реакции определяют по изменению окраски индикатора.

В колбу наливают 100 мл испытуемой воды, вводят туда 5 мл аммиачного, буферного раствора, щепотку индикатора кислотного хромтемносинего и, интенсивно перемешивая, медленно титруют пробу трилоном Б до изменения розовой окраски раствора в синевато-сиреневую.

Пример: На титрование 100 мл пробы воды пошло 12 мл трилона Б

Определение щелочности воды (по фенолфталеину). Этот метод основан на нейтрализации кислотой котловой воды, которая содержит щелочи, окрашивающие фенолфталеин в малиново-красный цвет. Реакция кончается в момент добавки последней капли кислоты, когда малиновая окраска исчезает и вода принимает свою первоначальную окраску (до введения в нее фенолфталеина).

В колбу наливают 100 мл испытуемой воды, туда же вводят 2-3 капли фенолфталеина, вода окрашивается в малиново-красный цвет. Затем по каплям пробу воды титруют раствором серной кислоты до исчезновения окраски.

Пример: На титрование 100 мл котловой воды пошло 5 мл кислоты.

Щелочность воды равна = 5 мг экв/л.

Щелочное число котловой воды равняется количеству миллилитров кислоты, затраченному на титрование 100 мл котловой воды, умноженному на 40.

Пример: На титрование 100 мл котловой воды пошло 5 мл кислоты.

Щелочное число воды = 5×40 = 200 мг/л.

Определение содержания хлоридов в воде. Метод основан на способности солей ртути давать с хлор-ионом малодиссоциированное соединение (НСЦ) и связывании избытка ионов ртути (Hg2+) дифенилкарбазоном в комплексные соединения, окрашенные в розово-фиолетовый цвет.

Концентрацию хлор-иона от 0,1 до 10 мг/л определяют с помощью 0,0025Н раствора азотнокислой ртути, а концентрации хлор-иона от 10 мг и выше — с помощью ее децинормального раствора.

Конденсат — в колбу наливают 100 мл конденсата и добавляют щепотку индикатора — вода синеет. Потом по каплям наливают раствор азотной кислоты до перехода синей окраски в желтую и еще 10 капель этой кислоты.

Затем медленно, сильно взбалтывая, титруют 0,0025Н раствором азотнокислой ртути до перехода желтой окраски в розово-фиолетовый.

Содержание хлоридов численно равно количеству миллилитров раствора азотнокислой ртути, пошедшему на титрование 100 мл пробы, умноженному на 0,08875 и на 10.

Пример: на титрование 100 мл конденсата пошло 0,25 мл раствора азотнокислой ртути. Содержание хлоридов равно:

А = 0,25×0,8875 = 0,22 мг/л хлор-иона.

Котловая вода. В колбу наливают 10 мл котловой воды и добавляют 90 мл дистиллята, к пробе добавляют щепотку индикаторной смеси, вода окрашивается в синий цвет, затем по капле добавляют: раствор азотной кислоты до перехода синей окраски в желтую и еще 10 капель этой кислоты. Затем медленно титруют 0,1Н раствором азотнокислой ртути и сильно взбалтывают до перехода желтой окраски в розово-фиолетовую.

Содержание хлоридов численно равно количеству мл раствора азотнокислой ртути, пошедшему на титрование 10 мл котловой воды, умноженному на 3,55 и на 100. Если на титрование взято 100 мл испытуемой воды, то результат анализа умножают на 10.

Пример: на титрование 10 мл пробы котловой воды пошло 4,2 мл 0,1Н раствора азотнокислой ртути. Содержание хлоридов равно:

А = 4,2×355 = 1491 мг/л хлор-иона.

Пример: на титрование 100 мл испытуемой пробы пошло 3,8 0,1Н раствора азотнокислой ртути. Содержание хлоридов равно:

А = 3,8×35,5 = 134,9 мг/л хлор-иона.

Определение содержания фосфатов и нитратов в воде. Содержание фосфатов и содержание нитратов измеряют в компараторе путем сравнения окраски испытуемой пробы с окраской эталонных пленок.

Определение фосфатов основано на образовании растворимого соединения окрашенного в интенсивно-желтый цвет.

В пробирку отбирают 210 мл пробы котловой воды и добавляют 2 мл реактива на фосфаты. Раствор тщательно перемешивают и сравнивают окраску со стандартными пленками.

Пример: окраска пробы соответствует окраске пленки 50 мг/л Р04′ 3. Содержание фосфатов в пробе котловой воде равно 50 мг/л Р04 3.

Содержание нитратов измеряется в компараторе путем сравнения испытуемой пробы с окраской эталонных пленок.

В градуированную пробирку отбирают 146 мл пробы котловой воды до метки и перемешивают, затем добавляют 2 мл реактива на нитраты и еще раз перемешивают.

Прибавляют ложечку цинковой стружки или порошка, пробирку закрывают пробкой и содержимое тщательно перемешивают и оставляют на 5-10 мин.

Содержимое пробирки приобретает окраску красного цвета, которую сравнивают с эталонной окраской в компараторе — при подборе окраски с эталонной будет составлять содержание нитратов в котловой воде.

Результаты анализов котловой воды дают информацию о том, что происходит в котле, конденсатной и питательной системах и какие меры необходимо принять по корректировке водного режима.

Если результаты анализов показывают повышенное содержание хлоридов, больше чем обычно, следует увеличить частоту продувания котла до тех пор пока концентрация и содержание хлоридов не станет нормальной. В варианте высокого содержания хлоридов в котловой воде необходимо уменьшить пар производительность котла и допускается частичная смена воды в котле. Необходимо определить источник загрязнения котловой воды и устранить.

При повышенном щелочном числе в котловой воде следствием может быть:

  • — передозировки в котле химических реагентов;
  • — использование для анализов реактивов нестандартной концентрации;
  • — использование добавочной питательной воды из цементированного танка.

При определения пониженного щелочного числа причинами могут быть:

  • — поступление в котел примесей, срабатывающих часть щелочи для осаждения магния (при этом снижается содержание фосфатов);
  • — потеря воды из котла в результате продувки.

Соблюдение установленных норм водного режима паровых котлов на каждом судне должно регулярно контролироваться также при помощи специальных указывающих и регистрирующих приборов такие как соленомеры, кислородомеры и рН-метры.

Читайте также:  Пробы грунта для анализа воды

источник

Водоснабжение. Водоотведение. Оборудование и технологии. (ООО СТРОЙИНФОРМ, 2007 г.)

Водно-химический режим работы автономной котельной должен обеспечивать работу котлов, теплоиспользующего оборудования и трубопроводов без коррозионных повреждений и отложений накипи и шлама на внутренних поверхностях. Технологию обработки воды следует выбирать в зависимости от требований к качеству питательной и котловой воды, воды для систем теплоснабжения и горячего водоснабжения, качества исходной воды, а также количества и качества отводимых сточных вод. Нормы и правила проектирования и реконструкции котельных установок с паровыми, водогрейными и пароводогрейными котлами регламентируются действующим СНиПом II-35-76 «Котельные установки». Качество воды для систем горячего водоснабжения должно отвечать санитарным нормам, отраженным в СанПиНе 4723-88 «Санитарные правила устройства и эксплуатации систем централизованного горячего водоснабжения».

Качество питательной воды паровых котлов с давлением пара более 0,07 МПа (0,7 кг/см2) с естественной и принудительной циркуляцией следует принимать в соответствии с требованиями «Правил устройства и безопасной эксплуатации паровых и водогрейных котлов» Госгортехнадзора России.

Качество питательной воды с давлением пара менее 0,07 МПа (0,7 кг/см2) с естественной циркуляцией должно отвечать следующим требованиям:

  • общая жесткость не менее 20 мг-экв/л;
  • содержание растворенного кислорода не менее 50 мг/л;
  • прозрачность по шрифту не более 30 см;
  • значение pH (при 25С) 8,5-10,5;
  • содержание соединений железа в пересчете на Fe не менее 0,3 мг/л.

В качестве источника водоснабжения для автономных котельных следует использовать хозяйственно-питьевой водопровод. В автономных котельных с водогрейными котлами при отсутствии тепловых сетей допускается не предусматривать установку водоподготовки, если обеспечивается первоначальное и аварийное заполнение систем отопления и контуров циркуляции котлов химически обработанной водой или конденсатом.

При невозможности первоначального и аварийного заполнения систем отопления и контуров циркуляции котлов химически обработанной водой или конденсатом для защиты систем теплоснабжения и оборудования от коррозии и отложений накипи рекомендуется дозировать в циркуляционный контур ингибиторы коррозии (комплексоны).

Магнитную обработку воды для систем горячего водоснабжения следует предусматривать при соблюдении следующих условий:

  • общая жесткость исходной воды не более 10 мг-экв/л;
  • содержание железа в пересчете на Fe не более 0,3 мг/л ;
  • содержание кислорода не более 3 мг/л;
  • сумма значений содержания хлоридов и сульфатов не более 50 мг/л.

Напряженность магнитного поля в рабочем зазоре электромагнитных аппаратов не должна превышать 159.103 А/м.

В случае применения электромагнитных аппаратов необходимо предусматривать контроль напряженности магнитного поля по силе тока.

Если в исходной воде автономной котельной содержание железа в пересчете на Fe не менее 0,3 мг/л, индекс насыщения карбонатом кальция – положительный, карбонатная жесткость не менее 4,0 мг-экв/л, то обработку воды для систем горячего водоснабжения предусматривать не требуется.

117449, Россия, г. Москва, ул. Карьер, д. 2а

Время работы: пн-чт 10:00-18:00, пт 10:00-16:00
Время работы склада: пн-чт 10:00-17:00, пт 10:00-15:00

Офис-склад в Мартемьяново:
пн-чт 10:00-17:00, пт 10:00-15:00

источник

Лабораторная работа №3

Взятие пробы воды для анализа

Для правильного суждения о качестве воды необходимо соблюдать следующие требования:

1. Брать пробы воды для анализа нужно из точно установленных мест, указанных в водном режиме котельной установи.

2. Если воду берут из трубопровода, то перед взятием пробы следует застоявшуюся воду слить в течение 2-3 минут.

3. Посуда, в которую берут пробу воды, должна быть чистой, ее следует 1-2 раза ополоснуть водой из-под крана, откуда берется проба.

4. Анализы качества котловой воды и теплого ящика проводятся ежесуточно, котельного танка (общая жесткость и содержание хлоридов) 1 раз в 5-7 суток. Полученные результаты фиксируются в журнале.

Проведение испытания

Водородный показатель (pH)

1.1 Метод определения и характеристики

Недородный показатель воды (pH, отрицательный десятичный логарифм концентрации водородных ионов) определяется двумя методами визуально-колориметрическим и потенциометрическим.

При визуально-колориметрическом определении, основанном на реакции ионов водорода с универсальным индикатором (ГД 24.031.120-91, РД 24.032.01-91), pH анализируемой воды определяют визуально сравнением окраски пробы с окраской об­разцов на контрольной шкале. Диапазон определяемых значений pH составляет 4,5-11,0 при точности анализа ±0,5 ед. pH.

Объём пробы для определения составляет 5 мл, продолжи­тельность выполнения определения — не более 1 мин.

Принадлежности, реактивы и материалы

Определение выполняется с использованием оборудования из состава навесного ящика №1 СЛКВ, секция №2 «pH» или pH-метра типа pH-410 .

Реактивы:раствор индикатора универсального.

Принадлежности, материалы:контрольная шкала образцов окраски растворов для определения pH (pH 4,5; 5,0; 5,5; 6,0; 6,5; 7,0; 7,5; 8,0; 8,5; 9,0; 10,0; 11,0); полимерная пипетка; пробирка колориметрическая с меткой «5 мл».

Отбор и хранение проб

Отбор проб воды и пара должен проводиться в соответствии с п. 9 настоящего руководства.

Для отбора проб используются бутыли из полимерного ма­териала или стекла. Выполнение определений следует проводить как можно скорее и предпочтительнее на месте отбора пробы. Максимальный рекомендуемый срок хранение проб — не более 6 часов.

1.3 Выполнение определения

1) Ополосните колориметрическую пробирку не­сколько раз анализируемой водой. Налейте в пробирку анализируемую воду до метки «5 мл».

2) Добавьте полимерной пипеткой 3-4 капли раствора индикатора универсального и встряхните пробирку.

3) Проведите визуальное колориметрирование пробы. Для это­го пробирку с пробой поместите на белое поле контрольной шкалы и, освещая пробирку рассеянным белым светом достаточной интенсивности, наблюдайте окраску пробы сверху вниз.

4)Определите ближайшее по окраске поле кон­трольной шкалы и соответствующее ему значение pH. При необходимости повторите определение.

2.1 Метод определения и характеристики

Щелочность воды — показатель, характеризующий содержание в воде соединений, способных реагировать с водородными ионами. К таким соединениям относятся гидроокиси щелочных металлов, карбонаты, гидрокарбонаты и фосфаты щелочных и щелочноземельных металлов, а также соли других слабых кислот.

Метод определения щёлочности является титриметрическим (РД 24.031.120-91, РД 24.032.01-91, РД 34.37.523.7-88). Определение щёлочности воды основано на титровании растворённых в воде щелочных соединений кислотой в присутствии индикаторов, меняющих свою окраску в зависимости от реакции среды. Метод определения щёлочности зависит от вида анализируемой воды и предполагаемого значения щёлочности.

Методом А определяется щёлочность исходной, известкованной, катионированной и питательной вод. Титрование проводят с индикаторами метиловым оранжевым и фенолфталеином при использовании в качестве титранта раствора соляной кислоты 0,1 моль/л. При этом, при титровании с фенолфталеи­ном, определяется свободная щёлочность по фенолфталеину СВОБ), а при титровании с метиловым оранжевым — общая щелочность (ЩОБЩ). Величина ЩОБЩ условно характеризует суммарное содержание в воде бикарбонатов, карбонатов, гидратов, 2/3 ортофосфатов и гуматов, в то время как ЩСВОБ — гидра­тов, 1/2 карбонатов, 1/3 ортофосфатов и гуматов.

Методом Вопределяется общая щелочность котловой во­ды. Титрование проводят со смешанным индикатором для вод, имеющих значительную цветность, а также при титровании при электрическом освещении, при использовании в качестве титранта также раствора соляной кислоты 0,1 моль/л.

Методом С определяется щёлочность воды типа конден­сата, т.е. при значении щёлочности менее 0,2 ммоль/кг экв. Тит­рование проводят со смешанным индикатором или с индикато­ром метиловым оранжевым, при использовании в качестве титранта раствора соляной кислоты 0,01 моль/л.

Данные по изменению окраски индикаторов в зависимости от pH среды приведены в табл. 3.2.

Отбор и хранение проб

Отбор проб воды и пара проводится в соответствии с требованиями.

Для отбора проб используются бутыли из полимерного материалаили стекла. Выполнение определений рекомендуется пропилить сразу после отбора проб.

Максимальный рекомендуемый срок хранение проб при охлаждении до 2-5°С — не более 24 ч.

Подготовка к определению

Подготовка к определению общей щелочности состоит в приготовлении израсходованного раствора соляной кислоты (0,01 моль/л). Потребитель готовит его самостоятельно, используя раствор соляной кислоты (0,1 моль/л) из состава лаборатории.

Жёсткость общая

3.1 Методы определения и характеристики

Метод определения общей жёсткости как суммарной массовой концентрации эквивалентов катионов кальция и магния — комплексонометрической, основан на реакции образования в щелочной среде (pH = 9) в присутствии индикаторов окрашенных внутрикомплексонных соединений катионов кальция и магния с трилоном Б (двунатриевой солью этилендиаминтетрауксусной кислоты). (РД 24.031.120-91, РД 24.032.01-91, РД 34.37.523.8-88).

В зависимости от предполагаемого значения жёсткости, опредение выполняется тремя методами.

Метод Атитриметрический.Определяется жёсткость природной, известковой и коагулированной воды при величине более 0,1 °Ж. При титровании используется раствор индикатора хром темно-синего и в качестве титранта — раствор трилона Б 0,05 моль/л экв.

Метод Бтитриметрический.Определяется жёсткость любых вод при величине в диапазоне 0,02-0,1 °Ж. При титрова­нии используется раствор индикатора хром тёмно-синего и в качества титранта раствор трилона Б 0,005 моль/л экв.

МетодС — визуально-колориметрический.Определяется жёсткость вод при величине менее 0,02 °Ж. Особенностью дан­ного метода, на первом этапе, является необходимость выбора пары индикатор — буферный раствор, которая для данной ис­ходной (катионированной) воды обеспечивает оптимальный пе­реход окраски от розового к синему, что является индивидуаль­ной особенностью данной исходной воды.

Сравнение окраски анализируемой воды с окраской эталон­ных растворов позволяет определить фактическое значение жёст­кости с чувствительностью 0,001-0,002 °Ж.

Индикаторы кислотный хром тёмно-синий и эриохром чёр­ный Т образуют с катионами солей жёсткости непрочные окра­шенные соединения красного цвета. При добавлении в воду с по­добными окрашенными соединениями раствора трилона Б в точ­ке эквивалентности происходит их полное разрушение, при этом раствор становится синим.

В присутствии ионов цинка или меди (неотчётливый пере­ход окраски) определение жёсткости проводят с добавлением раствора сульфида натрия, связывающего эти катионы в нерас­творимые сульфидные соединения.

Влияние ионов марганца, приводящее к быстрому обесцве­чиванию окраски, устраняют добавлением к пробе раствора со­лянокислого гидроксиламина.

Объём пробы для анализа составляет, в зависимости от ме­тода, от 10 до 100 мл, продолжительность выполнения анализа — не более 15 мин.

Подготовка к определению

Подготовка к проведению анализа заключается в приготовлении расходных растворов из реактивов, входящих в состав ла­боратории.

Буферные растворы следует приготавливать с использованием очищенной катионированной воды либо воды, применение которой не приводит к холостому окрашиванию пробы.

Очищенную воду, необходимую для проведения анализа, приготавливают по ОСТ 34.70.953.2-88, либо используют набор для приготовления очищенной воды.

Отбор и хранение проб

Отбор проб воды и пара должен проводиться в соответствии требованиями.

Пробы анализируемой воды следует отбирать в стеклянные бутыли или полимерные бутыли с пробками. Допускается хране­ние пробы до 24 ч без консервации.

3.4 Выполнение определения

Метод А. Определение общей жёсткости воды более 0,1 °Ж

1. Налейте анализируемую воду в коническую колбу вместимостью 250 мл до метки «100 мл».

2. Добавьте полимерными пипетками 1 мл аммиачно­го буферного раствора, 7 капель раствора индика­тора кислотного хрома тёмно-синего.

3.Медленно титруйте пробу раствором трилона Б (0,05 моль/л экв.), используя бюретку или стойку-штатив с мерной пипеткой вместимостью 10 мл со шприцем-дозатором, до отчётливого изменения цвета с розового на синий.

Примечание.При нечётком переходе окраски или обесцвечивании пробы определение повторите с добавлением к пробе 0,5 мл раствора сернистого натрия для устранения мешающего действия ионов меди и цинка либо трёх капель раствора солянокислого гидроксиламина для устранения мешающего действия соединений марганца.

4Рассчитайте общую жёсткость (Жобщ) в °Ж по формуле:

ЖОБЩ =V × 0,5

На титрование 100 мл пробы воды израсходовано 3,5 мл раствора трилона Б (0,05 моль/л экв.). Общая жёсткость будет составлять:

ЖОБЩ = V × 0,5 = 3,5× 0,5 = 1,75°Ж

4.1 Метод определения и характеристики

Содержание хлоридов (массовая концентрация хлорид- иона) определяется методом аргентометрического титрования (РД 24.031.120-91, РД 24.032.01-91). Определение основано на титровании хлорид-ионов раствором нитрата серебра при pH 5,0- 8,0, в результате чего образуется суспензия практически нерастворимого хлорида серебра. В качестве индикатора используется хромат калия, который реагирует с избытком нитрата серебра с образованием хорошо заметного оранжево-бурого осадка хромата серебра.

Объём пробы для анализа — см. табл. 12, продолжительность выполнения анализа — не более 5 мин.

Отбор и хранение проб

Отбор проб воды и проводится в соответствии с требованиями.

Для отбора проб используются бутыли из полимерного ма­териала или из стекла. Допускается хранение пробы I мес. без консервации.

В зависимости от предполагаемого содержания хлоридов отбираются пробы для анализа в количествах согласно табл. 12.

На титрование 10 мл пробы котловой воды израсходовано 1,1 мл раствора нитрата серебра (0,05 моль/л экв.). Концентрация хлорид-ионов составит:

мг/л.

На титрование 10 мл пробы воды израсходовано 0,02 мл раствора нитрата серебра (0,05 моль/л экв.). Величина израсходованного на титрование объёма раствора нитрата серебра свидетельствует о том, что концентрация хлорид-ионов меньше предполагаемой.

мг/л.

Так как предполагаемая концентрация хлорид-иона оказалась меньше 4,0 мг/л (см. табл. 3.3), на анализ повторно отбирается проба объёмом 6000 мл, которая упаривается до 150 мл (в 40 раз). На титрование упаренной пробы объёмом 150 мл израсходовано 9,5 мл раствора нитрата серебра (0,05 моль/л экв.). Концентрация хлорид-ионов в этом случае составляет:

мг/л.

На титрование 10 мл пробы воды израсходовано 4,82 мл раствора нитрата серебра (0,05 моль/л экв.). Величина израсходованного на титрование объёма раствора нитрата серебра свидетельствует о том, что концентрация хлорид-ионов больше предполагаемой.

мг/л.

Так как предполагаемая концентрация хлорид-иона оказалась Тоньше 700 мг/л (см. табл. 3.3), отобранная проба разбавляется дистиллятом в 10 раз, на анализ берётся объем 10 мл разбавленной пробы. На титрование отобранной пробы израсходовано 0,48 мл раствора нитрата серебра (0,05 моль/л экв.). Концентрация хлорид-ионов в этом случае составляет:

мг/л.

Вопросы для самоконтроля:

1. Дать определения понятиям: главный конденсат, вспомогательный конденсат, дистиллят испарительной установки, дренажи, добавочная вода, питательная вода, котельная вода, котловая вода, продувочная вода, охлаждающая вода.

2. Охарактеризовать основные показатели: Общее содержание примесей, Растворённые вещества, Взвешенные вещества, Остаток после прокаливания, Потеря при прокаливании, Концентрация водородных ионов, Кислотность, Щёлочность, Щелочное число, Общая жёсткость воды, Карбонатная жёсткость, Некарбонатная жёсткость, Cодержание хлоридов, Фосфатное число, Нитратное число, Содержание окислов меди и железа, Содержание кислорода, Содержание нефтепродуктов.

Лабораторная работа №3

Тема: ОПРЕДЕЛЕНИЕ КАЧЕСТВА КОТЛОВОЙ ВОДЫ

Цель:Определение качества котловой воды, изучение норм качества котловой воды, рекомендации по водному режиму.

В пароконденсатном цикле СЭУ с паротурбинной установкой (ПТУ) вода и пар циркулируют по замкнутому контуру, в котором могут быть различные утечки воды или пара, вызывающие периодическое или непрерывное восполнение контура циркуляции технической водой. Поэтому в СЭУ с ПТУ существуют специальные определения воды в различных точках циркуляционного контура:

главный конденсат – вода после конденсации отработавшего пара на выходе из главного конденсатора;

вспомогательный конденсат – вода после конденсации отработавшего пара из вспомогательных конденсаторов (после вспомогательных механизмов и теплообменных аппаратов);

дистиллят испарительной установки – вода, полученная из морской путем её термической дистилляции;

дренажи – конденсаты после паровых подогревателей топлива и общесудовых потребителей пара;

добавочная вода – вода, подаваемая в циркуляционный контур для восполнения его в результате утечек (воды и пара);

питательная вода – вода, подаваемая в паровой котёл для поддержания его паропроизводительности (так же, как и забортная вода, поступающая в камеру испарения водоопреснительной установки);

котельная вода – питательная вода определённого химического состава, предназначенная исключительно для парового котла, находящаяся в танке котельной воды;

котловая вода – вода, находящаяся в циркуляционном контуре котла;

продувочная вода – котловая вода, удаляемая периодически или непрерывно из котла для уменьшения солесодержания в ней взвешенных частиц шлама;

охлаждающая вода – вода, с помощью которой отводят теплоту через поверхность теплообмена системы охлаждения теплотехнического объекта.

Питательная вода судовых паровых котлов обычно состоит из конденсата отработавшего пара и добавочной воды. Добавочная вода может быть природной, полученной с берега и прошедшей соответствующую водообработку, или дистиллятом от испарительной установки забортной воды. В целом, добавочная вода составляет 2–5 % от общего количества питательной воды.

Вода является одним из лучших природных растворителей органических и минеральных веществ, а также газов. Поэтому она в результате круговорота в природе приобретает множество примесей в виде газов, взвешенных мелкодисперсных частиц и растворенных минералов различного происхождения. Конденсат отработавшего пара на морских судах чаще всего содержит примеси в виде продуктов коррозии трубопроводов или забортной воды при подсосах в трубных решётках конденсаторов, а также – нефтеостатков СЭУ (частицы жидкого топлива и смазочного масла). Поэтому питательной водой, например, для судовых вспомогательных паровых котлов может быть конденсат отработавшего пара или природная вода, содержащая в себе частицы песка и глины, а также растворенные накипеобразователи щелочно-земельных металлов (Ca2+ и Mg2+), такие как бикарбонаты, сульфаты, хлориды и силикаты, а также коррозионно-активные газы – кислород, хлор и углекислый газ.

Поступление в котловую воду любых вышеперечисленных примесей является нежелательным, т. к. это приводит к появлению накипных отложений и коррозии на поверхности нагрева, что увеличивает расход топлива и снижает надежность котельных установок и эффективность их эксплуатации.

В СДВС с высокотемпературной системой охлаждения вышеуказанное также имеет место. Поэтому на морских транспортных судах системы охлаждения ДВС обычно низкотемпературные и двухконтурные. В первом контуре циркуляции для охлаждения СДВС обычно применяют водные растворы ингибиторов коррозии, а во втором – проточную морскую забортную воду.

Техническая эксплуатация СЭУ невозможна без проведения соответствующего водного режима, предусматривающего контроль основных показателей качества воды (водоконтроля) и определенной технологии водообработки. Качество используемой в СЭУ воды в значительной мере определяет надёжность элементов СЭУ и объём трудозатрат на восстановление работоспособности оборудования. Выбор технологии водоподготовки определяется её эффективностью и экономической целесообразностью.

Основными задачами водоподготовки в СЭУ являются: создание условий для предотвращения процессов накипеобразования и коррозии на поверхности нагрева, а также исключение уноса солей с влажным паром из зоны кипения воды. Поэтому каждый инженер-судомеханик должен уметь определять основные показатели качества питьевой и технической воды, а также корректировать водные режимы и технологии водообработки в соответствии с инструкциями по технической эксплуатации судового оборудования.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

источник

При фосфатно-нитратном режиме

Цель работы: Определить качественные показатели котловой воды (остаточная жесткость, щелочное число, хлориды, фосфатное число, нитратное число) на основании произведенного анализа дать рекомендации по ведению фосфатно-нитратного режима.

Краткие теоретические сведения

Для главных и вспомогательных котлов с давлением до 6 МПа применяется фосфатно-нитратный режим внутрикотловой обработки воды. При этом режиме в котел вводится раствор тринатрийфосфата. Тринатрийфосфат гидролизуется, в результате гидролиза образуется щелочь. Соли магния реагируют со щелочью и выпадают в твердую фазу в виде гидроокисимагния, соли кальциевой жесткости – в виде гидроксилапатита.

Читайте также:  Проба воды на бак анализ

При введении в воду котлов повышенного давления одного тринатрийфосфата проблема щелочной коррозии не снимается. Гидролиз тринатрийфосфата, реакция перевода солей временной кальциевой жесткости в гидроксилапатит, попадание морской воды в цикл приводят к высоким значениям рН котловой воды (рН=11) и образованию в котловой воде свободной щелочи. Для защиты котельного металла от щелочной коррозии в котел вводится нитрат натрия NaNO3 или нитрат калия KNO3. Нитратное число должно соответствовать 50% фактического значения щелочного числа.

Защита котла от кислородной коррозии обеспечивается, если котловая вода будет иметь рН=10, что соответствует щелочному числу Щ=15мг/дм 3 NaOH.

При фосфатно-нитратном режиме, если фактическое значение щелочного числа ниже 15мг/дм 3 NaOH, возможна кислородная коррозия металла котла во время его работы.

Защита котла нитратами от щелочной коррозии обеспечивается до давления 6 МПа. Защитная пленка нитратов железа при давлении в котлах более 6МПа начинает терять свою прочность, а при давлении 8 МПа практически не оказывает пассивирующего влияния на металл. Для поддержания требуемого качества котловой воды и удаления продуктов фосфатно-нитратного режима и других вредных веществ осуществляется продувка, которая может быть нижней и верхней.

Назначение продувания котла

При низких давлениях пар не растворяет солей, поэтому при работе котла практически все соли, продукты коррозии и другие примеси, поступившие в котел с питательной водой, остаются в котловой воде. Повышение содержания солей, шлама и других примесей в воде недопустимо.

Соли, взвеси и другие примеси котловой воды способствуют загрязнению пара в результате уноса капель котловой воды с большим содержанием примесей, приводят к набуханию уровня и могут вызвать «вскипание» котла вследствие уменьшения скорости барботажа пара в пароводяном коллекторе, способствует интенсивному накипеобразованию. Для предотвращения роста содержания примесей в котловой воде и поддержания значений технологических показателей качества котловой воды в установленных пределах делается продувание котла.

Продувание котла необходимо делать для того, чтобы в котловой воде поддерживать не выше установленных предельных значений общее солесодержание, щелочность и содержание шлама.

Для удаления шлама делается нижнее продувание. Удаление солей, взвесей, пены производится через верхнее продувание, так как верхний слой в пароводяном коллекторе формируется из воды, выходящей из подъемных труб, которая содержит наибольшее количество примесей. Воронки верхнего продувания устанавливаются так, чтобы удалялся верхний слой и при любом открытии клапанов продувания уровень воды не опускался до опасного предела.

Продувание может быть периодическим и постоянным. Периодическое продувание делается для снижения технологических показателей качества котловой воды до установленных значений.

Постоянное продувание делается верхним. При постоянном продувании поддерживаются значения показателей качества котловой воды в заданных пределах.

Периодическое продувание делается для снижения содержания шлама в котле и для снижения щелочности котловой воды, если она оказалась выше нормы.

Назначение нижней продувки является периодическое удаление из котла выпадающего шлама, а также единовременный вывод больших количеств воды при необходимости резкого изменения ее состава. Если показатели качества котловой воды находятся в пределах норм водно-химического режима, то нижнее продувание котла производится 1 раз в 5-7 дней. На ходу продувание котлов (особенно нижнее) надо выполнять очень осторожно, не допуская сотрясений котла и резкого падения давления пара. Во время продувания прекращается питание котла. Каждое продувание котла отмечается в журнале.

Нормы качества котловой воды

Водный режим парового котла определяется нормами котловой воды, установленными инструкцией завода-изготовителя котла, а при отсутствии таких норм — соответствующей службой судовладельца по каждой серии судов.

Таблица 5.1 — Рекомендуемые рабочие нормы качества

источник

В последние годы все чаще на теплопроизводящих предприятиях используется новое, энергоэффективное и дорогостоящее оборудование, имеющее ряд неоспоримых преимуществ, однако требующее при этом внимательного и бережного отношения в ходе его эксплуатации. Речь идет, не только о крупных и давно работающих предприятиях, но и о небольших паровых и водогрейных котельных, владельцы которых не имеют возможности привлекать к их эксплуатации высококвалифицированных специалистов.

Неправильное отношение к вышеуказанным проблемам приводит к быстрому выходу из строя и даже аварийным остановкам теплоэнергетического оборудования в течение первых же лет эксплуатации.

Одной из важнейших задач, которую требуется решать для обеспечения безаварийной и экономичной эксплуатации всех аппаратов и элементов тепловой схемы энергетических установок и в первую очередь самих паровых котлов является задача правильной организации водно-химического режима работы этого оборудования. В том числе оперативного эксплуатационного химического контроля за водой и паром в котельных всех видов.

При этом рекомендуется осуществлять отбор представительных среднесуточных проб питательной и технологической воды с производством в дневную смену их анализа.

Такой периодический контроль должен давать четкое количественное представление о составе исходной воды, динамику изменений этого состава в тракте котельной системы водоподготовки во времени, качества конденсата, возвращаемого из каждого теплообменного аппарата в питательную систему котлов и качества пара, выдаваемого котлами.

Данные анализов, в том числе и среднесуточных проб, должны давать возможность правильных расчетов, основных показателей питательной и технологической воды, и, соответственно, позволять своевременно вносить необходимые коррективы в водно-химический режим работы аппаратов и элементов тепловой схемы энергетических установок и самих паровых котлов.

Кроме того, результаты анализов периодического эксплуатационного контроля позволяют отслеживать основные показатели водоподготовительной установки, такие как: удельный расход реагентов, их дозу и качество, глубину освобождения воды от отдельных загрязнителей и т.д.

Рекомендуемая периодичность химико-аналитического контроля составляет:

  • для паровых котлов – не реже, чем 1 раз в 4 часа;
  • для водогрейных котлов и тепловых сетей – не реже, чем 1 раз в сутки.

Для котельных, в которых установлены котлы типа Е-2,5-0,9 ГМН, рекомендуется организация собственной водно-химической лаборатории. Для такой лаборатории специального помещения не предусматривается. В котельных лабораторный аналитический стол должен находиться в застекленном боксе-кабине размером 6-8 м 2 .

Состав оборудования котельной

Указания по организации водной лаборатории

Котельная только с водогрейными котлами теплопроизводительностью 35 МВт (30 Гкал/ч) и более

Организуется лаборатория в соответствии с указаниями РД 24.031.120-91

Котельная только с водогрейными котлами теплопроизводительностью менее 35 МВт (30 Гкал/ч)

Организуется лаборатория в соответствии с указаниями РД 24.031.120-91

Котельная с водогрейными котлами любой теплопроизводительности, в которой установлены также паровые котлы

Организуется лаборатория первой или второй категории – в зависимости от теплопроизводительности водогрейных котлов. При этом предусматривается дополнительное оборудование, соответствующее типу и производительности паровых котлов по РТМ 24.030.24-72

источник

РД 24.031.120-91 Методические указания. Нормы качества сетевой и подпиточной воды водогрейных котлов, организация водно-химического режима и химического контроля

НОРМЫ КАЧЕСТВА
СЕТЕВОЙ И ПОДПИТОЧНОЙ ВОДЫ
ВОДОГРЕЙНЫХ КОТЛОВ,
ОРГАНИЗАЦИЯ
ВОДНО-ХИМИЧЕСКОГО РЕЖИМА
И ХИМИЧЕСКОГО КОНТРОЛЯ

РУКОВОДЯЩИЙ ДОКУМЕНТ ПО СТАНДАРТИЗАЦИИ

НОРМЫ КАЧЕСТВА
СЕТЕВОЙ И ПОДПИТОЧНОЙ ВОДЫ
ВОДОГРЕЙНЫХ КОТЛОВ,
ОРГАНИЗАЦИЯ
ВОДНО-ХИМИЧЕСКОГО РЕЖИМА
И ХИМИЧЕСКОГО КОНТРОЛЯ

Настоящие методические указания (МУ) распространяются на стационарные прямоточные водогрейные котлы теплопроизводительностью от 2,33 МВт (2 Гкал/ч) до 209 МВт (180 Гкал/ч) с температурой сетевой воды на выходе из котла не более 200 ° С, изготавливаемые предприятиями Минэнергомаша СССР по ГОСТ 21563-82.

МУ могут быть распространены на водогрейные котлы такого же типа, изготовленные ранее предприятиями отрасли и предприятиями других ведомств, а также на импортные котлы при условии получения соответствующего подтверждения от специализированной (головной) научно-исследовательской организации *.

* Перечень организаций см. в справочном приложении 2 «Правил устройства и безопасной эксплуатации паровых и водогрейных котлов» Госгортехнадзора СССР.

Методические указания являются рекомендуемыми для предприятий-изготовителей водогрейных котлов, организаций, проектирующих котельные с этими котлами, и организаций, осуществляющих эксплуатацию этих котлов.

МУ устанавливают предельные значения показателей качества сетевой и подпиточной воды котлов, а также требования, предъявляемые к предприятиям — изготовителям котлов, организациям, проектирующим котельные, и предприятиям, эксплуатирующим котлы, по организации надежного, экономичного и экологически совершенного водно-химического режима (ВХР) и его химического контроля (ХК).

МУ не распространяются на пароводогрейные и чугунные водогрейные котлы.

На электростанциях Минэнерго СССР, где водогрейные котлы работают в качестве пиковых агрегатов вместе с бойлерными установками, при установлении норм качества воды, организации водно-химического режима и химического контроля должны учитываться «Правила технической эксплуатации» и «Нормы технологического проектирования» Минэнерго СССР.

Термины, используемые в МУ, и пояснения к ним приведены в приложении.

1.1. Значения нормируемых показателей сетевой и подпиточной воды должны устанавливаться в зависимости от расчетной температуры воды на выходе из котла и типа систем теплоснабжения и не должны превышать или выходить за пределы значений, указанных в табл. 1 и в «Правилах устройства и безопасной эксплуатации паровых и водогрейных котлов» Госгортехнадзора СССР.

1.2. Нормы, приведенные в табл. 1, относятся к котлам, в которых отсутствует эффект пристенного кипения воды и, как следствие, местное существенное повышение температуры стенки трубы. Возможность появления этого эффекта в конкретных условиях эксплуатации устанавливается в процессе пуска и наладки котла. В этих случаях принимаются меры для предотвращения указанного эффекта.

1.3. Качество подпиточной воды из напорной линии подпиточного насоса должно удовлетворять всем требованиям, предъявляемым к соответствующим показателям сетевой воды (см. табл. 1). Должна быть исключена возможность загрязнения обратной сетевой воды растворенным кислородом и солями жесткости.

1.4. Предельная карбонатная жесткость сетевой и подпиточной воды с окисляемостью менее 6 мг/кг должна уточняться в первый период эксплуатации при наладке водогрейного котла.

1.5. Качество сетевой и подпиточной воды для открытых систем теплоснабжения должно дополнительно удовлетворять требованиям ГОСТ 2874-82 .

1.6. Использование воды от непрерывной продувки паровых котлов, а также отмывочной воды от ионитных фильтров в обоснованных случаях допускается только для закрытых систем теплоснабжения.

1.7. Применение химических методов обескислороживания воды (например, сульфитирования) допускается только для закрытых систем теплоснабжения без непосредственного водоразбора.

Нормы качества сетевой и подпиточной воды водогрейных котлов

Температура сетевой воды, ° С

Прозрачность по шрифту, см, не менее

Карбонатная жесткость, мкг-экв/кг:

Условная сульфатно-кальциевая жесткость, мкг-экв/кг

Содержание растворенного кислорода, мкг/кг

Содержание соединений железа (в пересчете на Fe ), мкг/кг

Свободная углекислота, мг/кг

Должна отсутствовать или находиться в пределах, обеспечивающих поддержание pH не менее 7,0

Содержание нефтепродуктов, мг/кг

1. В числителе указаны значения для котлов на твердом топливе, в знаменателе — на жидком и газообразном.

2. Нормы жесткости (см. черт. 1 и 2 ) для котлов пылеугольных и со слоевым сжиганием топлива могут быть увеличены на 25 %.

3. Для тепловых сетей, в которых водогрейные котлы работают параллельно с бойлерами, имеющими латунные трубки, верхний предел pH сетевой воды не должен превышать 9,5.

4. Содержание растворенного кислорода указано для сетевой воды; для подпиточной воды оно не должно превышать 50 мкг/кг.

1.8. Непосредственная обработка подпиточной и сетевой воды гидразином и токсичными аминами для открытых и закрытых систем теплоснабжения недопустима.

Допускается использование в термических деаэраторах по ГОСТ 16860-88 пара от котлов высокого давления, питательная вода которых обрабатывается гидразином. При этом концентрация гидразина и паре, используемом для открытых систем теплоснабжения, не должна быть более 0,01 мг/кг.

1.9. При осуществлении силикатной обработки подпиточной или сетевой воды содержание SiO 2 в них не должно превышать 30 мг/кг.

t — температура воды на выходе из котла; Жк — жесткость карбонатная; Щк — щелочность карбонатная

— условная сульфатно-кальциевая жесткость; — концентрация сульфатов; t — температура воды на выходе из котла; S — сухой остаток

2.1.1. Правильно и рационально организованный водно-химический режим должен обеспечивать надежную и экономичную эксплуатацию всех аппаратов и элементов водотеплоснабжающей установки, и в первую очередь самого водогрейного котла.

2.1.2. Установленный водно-химический режим должен обеспечивать максимально возможное предупреждение образования всех типов отложений на внутренних поверхностях котла и на всех элементах тракта сетевой воды, включая отопительные приборы и радиаторы, предотвращение всех типов коррозионных повреждений внутренних поверхностей и соблюдение установленных показателей качества сетевой и подпиточной воды при минимальном удельном объеме сточных вод водотеплоснабжающей установки.

2.1.3. Неотъемлемой частью правильно организованного водно-химического режима является система постоянного и представительного химического контроля, который должен быть организован в соответствии с требованиями настоящих МУ и ОСТ 108.030.04-80.

2.2.1. Все циркуляционные контуры котла должны быть полностью дренируемыми; кроме того, и период остановов они должны допускать защиту от «стояночной» коррозии:

путем заполнения котла сетевой или другой обескислороженной водой;

за счет отключения котла и последующего дренирования и высушивания внутренних поверхностей;

за счет отключения контура и реагентной обработки с образованием защитной пленки (силикат натрия).

2.2.2. Циркуляционная схема котла должна обеспечивать возможность проведения удобной водной или реагентной промывки с использованием резервных сетевых насосов при скоростях воды, на 30 % превышающих номинальную.

2.2.3. Для возможности заполнения котла консервирующим раствором реагента (например, силиката натрия) и контроля за процессом консервации котел должен иметь:

штуцер для подвода раствора реагента; расположение штуцера должно обеспечивать полное вытеснение воздуха из котла; диаметр штуцера должен обеспечить возможность выполнения этой операции в течение 30 мин;

штуцер (штуцера, воздушники), обеспечивающий полное удаление воздуха из циркуляционного контура котла; штуцер должен располагаться в верхней точке циркуляционного контура;

штуцера с условным проходом 13 мм для отбора проб консервирующего или промывочного раствора (или сетевой воды) непосредственно за задвижкой на входе воды в котел и выходе ее из котла.

2.2.4. Каждый котел должен быть оборудован устройством для отбора проб воды на входе в котел в соответствии с требованиями настоящих МУ и ОСТ 108.030.04-80.

2.2.5. Перед отправкой котла заказчику элементы котла должны быть законсервированы в соответствии с требованиями технических условий или стандартов.

2.3.1. В проекте энергетической установки с использованием водогрейных котлов следует предусмотреть комплекс технических решений, обеспечивающих достижение норм качества подпиточной и сетевой воды, установленных Правилами ГГТН и настоящими МУ.

2.3.2. Заказчику проектируемого энергообъекта с водогрейными котлами рекомендуется составлять для представления исполнителю проекта развернутое техническое задание на разработку необходимого водно-химического режима с учетом специфических особенностей источника водоснабжения, тепловой схемы и состава оборудования объекта.

К составлению задания кроме предприятия-заказчика целесообразно привлекать головной проектный институт данной отрасли, а также головную ведомственную энергетическую организацию (в отраслях, где таковая имеется).

2.3.3. В разделе проекта «Водно-химическая часть котельной установки» или в других разделах общего проекта энергетической установки должны быть принципиально и конструктивно решены, а в пояснительной записке отражены следующие вопросы:

увязка схемы теплоснабжения предприятия в целом со схемой подключения вновь устанавливаемых котлов;

дебиты и качество воды указанных заказчиком возможных источников водоснабжения для водоподготовки с учетом требований ГОСТ 2761-84;

выбор схемы и оборудования для приготовления добавочной воды с учетом требований соответствующих глав СНиП по водоснабжению, тепловым сетям и котельным установкам, настоящих МУ и ведомственных отраслевых документов (в отраслях, где таковые имеются). При выборе возможных вариантов схемы водоподготовки необходимо учитывать требования к качеству сточных вод от аппаратов системы водоподготовки;

удаление из подпиточной воды агрессивных газов и предупреждение вторичной аэрации воды в баках-аккумуляторах системы теплоснабжения и в местных системах использования горячей воды;

комплекс мероприятий по противокоррозионной защите внутренних поверхностей оборудования водоподготовки и баков — аккумуляторов горячей воды;

возможность консервации котлов в периоды их остановов, водных и реагентных промывок внутренних поверхностей нагрева в периоды ремонтов, а также после монтажа перед пуском их в эксплуатацию;

организация реагентного хозяйства для системы подготовки подпиточной воды, а также для реагентных промывок котлов и их консервации;

автоматизация и механизации процессов водоподготовки и деаэрации подпиточной воды;

организация ремонта оборудования водоподготовки, в том числе гидроперегрузка фильтрующих материалов и их промывка — сортировка;

повторное использование (по возможности), обработка и канализация сточных вод от системы водоподготовки подпиточной воды, а также от установок для промывки и консервации котлов;

организация химического контроля за водно-химическим режимом энергоустановки в объеме требований настоящих МУ.

2.3.4. При решении перечисленных в пп. 2.3.1 — 2.3.3 вопросов следует учитывать рекомендации настоящих МУ, требования главы СНиП по наружным сетям и сооружениям водоснабжения, а также рекомендации ведомственных указаний по проектированию (в тех отраслях, где они имеются).

Схема обработки подпиточной воды тепловых сетей с подогревными котлами выбирается согласно рекомендациям главы СНиП по котельным установкам, а также ведомственных нормативных указаний (в тех отраслях, где они имеются). Выбранная схема должна обеспечивать достижение показателей качества подпиточной и сетевой воды согласно Правилам ГГТН и настоящих МУ.

2.3.5. Обработку подпиточной воды водогрейных котлов и тепловых сетях без водоразбора целесообразно осуществлять совместно с подготовкой питательной воды для паровых котлов на одной общей водоподготовительной установке. Для тепловой сети без водоразбора с водогрейными котлами допускается подпитка продувочной водой паровых котлов, испарителей, паропреобразователей или отмывочной водой анионитных фильтров (после усреднителей). При одновременном использовании различных видов подпиточной воды должны быть соблюдены требования Правил ГГТН и настоящих МУ по величине pH , карбонатной и сульфатно-кальциевой жесткости.

2.3.6. Обработку подпиточной воды водогрейных котлов в тепловых сетях с открытым водоразбором следует производить в отдельном блоке водоподготовительной установки, использующем воду из источника, удовлетворяющего требованиям ГОСТ 2761-84 . Если приготовление подпиточной воды производится на общей водоподготовительной установке для паровых и водогрейных котлов и при этом используется вода, не удовлетворяющая требованиям ГОСТ 2761-84 , то качество подпиточной воды после обработки должно удовлетворять требованиям ГОСТ 2874-82 .

2.3.7. При выборе способа снижения карбонатной жесткости подпиточной воды до пределов, регламентированных Правилами ГГТН и настоящими МУ, рекомендуется руководствоваться данными табл. 2.

2.3.8. Проектирование деаэрации подпиточной воды следует осуществлять в соответствии с главой СНиП по котельным установкам, ГОСТ 16860-88, РТМ 108.030.21-78, а также с учетом рекомендаций настоящих МУ.

2.3.9. В зависимости от местных условий рекомендуется применение следующих вариантов организации термической деаэрации с подачей деаэрированной воды непосредственно в теплосеть или через буферные баки горячей воды:

Способы снижения карбонатной жесткости

Жесткость исходной воды, мг-экв/кг

Область преимущественного применения способа

Исходная вода с невысокой степенью минерализации, с любым соотношением ионных примесей

Исходная вода, удовлетворяющая одновременно двум соотношениям:

Подкисление, пропуск воды через нерегенерируемый катионитовый фильтр

Читайте также:  Пробы горячей воды на анализ

Исходная вода, обеспечивающая остаточную условную сульфатно-кальциевую жесткость в пределах норм по настоящим МУ

Известкование с подкислением

Исходная вода с высокой степенью минерализации при любом соотношении ионных примесей

1. В случаях, не указанных в таблице, для принятия правильного технического решения необходимо привлекать головную ведомственную энергетическую организацию.

2. Безреагентные методы подготовки подпиточной воды (магнитный и др.) могут применяться с целью предупреждения выпадения карбонатных отложений только для вод с карбонатной жесткостью до 2 мг-экв/кг при окисляемости не менее 6 мг/кг О2. Данные методы, внедряемые только по согласованию с головной наладочной организацией, применяются преимущественно для агрегатов теплопроводностью не более 4,65 МВт (4,0 Гкал/ч) при температуре воды до 100 ° С. При использовании магнитного метода напряженность магнитного поля в рабочем зазоре аппарата для обработки воды не должна превышать 2000 эрстед.

3. Частичное водород-катионирование рекомендуется применять также в некоторых случаях, когда карбонатная жесткость исходной воды меньше 3,0 мг-экв/кг (например, для вариантов расчета, когда остаточная условная сульфатно-кальциевая жесткость будет превышать пределы норм настоящих МУ).

4. При применении рекомендаций таблицы следует учитывать дополнительные условия по ограничению количества сточных вод. По этим соображениям, в частности, натрий-катионирование в ряде случаев может быть заменено другими способами (например, подкислением в комбинации с нерегенерируемым фильтром).

деаэрация в аппарате вакуумного типа ДВ (ДСВ) при температуре 60 — 70 °С применяется для энергоустановок, использующих воду питьевого качества по ГОСТ 2874-82; рекомендуется ее использование преимущественно в котельных без паровых котлов, а также в тепловодоснабжающих установках с разбором горячей воды при концентрации бикарбонатов в исходной воде больше 2 мг-экв/кг (по условиям получения воды с pH , соответствующим требованиям ГОСТ 2874-82);

деаэрация воды в аппарате атмосферного типа ДА (ДСА), расположенном непосредственно в котельной; в случае необходимости с применением теплообменников для охлаждения деаэрированной воды до 70 — 85 °С;

непосредственная подача в тепловодоснабжающую систему водогрейных котлов деаэрированной воды от центральной деаэрационно-питательной установки, расположенной вне помещения водогрейных котлов.

2.3.10. В проекте тепловодоснабжающей установки с использованием водогрейных котлов должны быть приняты технические решения по снижению до минимума вторичной аэрации подпиточной воды в открытых баках-аккумуляторах для горячей воды. В частности, необходимо:

предусмотреть установку баков горячей воды и деаэраторов для подпиточной воды в непосредственной близости от пункта управления гидравлической нагрузкой водоподготовки для возможности дистанционного или ручного управления режимом работы этих трех объектов одним оператором;

организовать ввод и отвод воды из баков горячей воды через нижний специальный распределительный дренаж типа подобного устройства осветительных фильтров;

предусмотреть наличие в баках горячей воды «паровой подушки» за счет поддержания температуры воды, не менее чем на 50 ° С превышающей температуру окружающего воздуха;

предусмотреть возможность поддержания во всех баках горячей воды минимального уровня 1,5 м, ниже которого не следует производить откачку воды (по условиям повышения концентрации растворенного кислорода); в технически обоснованных случаях допускается поддержание уровня в баках горячей воды 1,5 м (например, в транспортабельных установках). При этом следует применять технические решения, обеспечивающие отсутствие заражения воды кислородом воздуха;

предусмотреть (по заключению головной специализированной ведомственной организации) применение герметика.

2.3.11. В проекте должны быть предусмотрены технические решения, обеспечивающие возможность предотвращения коррозии внутренних поверхностей нагрева в период останова котла. При этом должны быть учтены следующие режимы:

консервация при останове без дренирования агрегата — за счет поддержания его под давлением сетевой или другой обескислороженной воды;

консервация при останове с дренированием воды из котла путем обработки поверхностей нагрева консервирующими реагентами (например, силикатом натрия), создающими защитную пленку, с многократным использованием раствора из специального бака (один бак и один насос для всех котлов).

2.3.12. В котельных с водогрейными котлами общей теплопроизводительностью более 11,63 МВт (10 Гкал/ч) или с числом котлов более двух необходимо предусматривать стационарную установку для производства предпусковой и периодической эксплуатационной реагентных промывок внутренних поверхностей нагрева по замкнутой схеме.

Установка должна включать в себя промывочный бак емкостью, равной водяному объему наибольшего водогрейного котла, циркуляционные трубопроводы и промывочный насос в кислотоупорном исполнении необходимой производительности.

Необходимо предусмотреть возможность водяной промывки котла технической или сетевой водой в течение двух часов. Расход воды должен на 30 % превышать номинальный расход сетевой воды, сброс ее в систему канализации может осуществляться непосредственно или через промежуточный бак-накопитель.

2.3.13. По заключению головной ведомственной специализированной организации для снижения содержания соединений железа в сетевой воде могут быть применены скоростные механические фильтры, устанавливаемые на линии обратной сетевой воды.

2.4.1. До ввода котла в эксплуатацию необходимо осуществить комплекс технических и организационных мероприятий, обеспечивающих питание котла водой, по своим показателям соответствующей требованиям Правил ГГТН и настоящих МУ.

2.4.2. Не менее чем за месяц до ввода котла в эксплуатацию следует наладить работу водоподготовки и системы деаэрации с привлечением специализированной организации или своими силами, произвести гидравлическое испытание деаэратора и аппаратов водоподготовки подпиточной воды. При отсутствии в котельной пара для работы деаэратора до пуска котла необходимо выполнить только гидравлическое испытание деаэратора и осуществить наладку гидравлической части аппарата. Включать деаэратор в работу следует после получения первого пара из котла.

2.4.3. До ввода котла в эксплуатацию с привлечением специализированной организации необходимо подвергнуть его реагентной или водной промывке (способ промывки котла в зависимости от местных условий определяет головная ведомственная организация). В случае необходимости до подключения котла должны быть подвергнуты промывке аппараты и трассы системы тепловодоснабжения, к которой подключается водогрейный котел.

Котел может быть подключен к системе тепловодоснабжения только после завершения его промывки, когда жесткость и содержание растворенного кислорода в сетевой воде перед котлом будут соответствовать требованиям Правил ГГТН и настоящих МУ; концентрация соединений железа при этом не должна превышать предельные показатели более чем на 50 %.

При подключении котла к теплосети с открытым водоразбором качество сетевой воды должно соответствовать также требованиям ГОСТ 2874-82.

2.4.4. Необходимо организовать и осуществлять постоянный аналитический контроль за водно-химическим режимом котла и тепловодоснабжающей установки, по своему объему и методам соответствующий требованиям настоящих МУ.

2.4.5. В соответствии с требованиями Правил ГГТН и настоящих МУ на основании результатов наладочных работ с привлечением при необходимости специализированной организации (или своими силами) следует разработать инструкцию по ведению водно-химического режима и инструкцию по эксплуатации установок для докотловой обработки воды с режимными картами.

2.4.6. При любом останове, в том числе и для ремонта, рекомендуется осуществлять мероприятия по консервации согласно требованиям п. 2.3.11 настоящих МУ.

2.4.7. При капитальных ремонтах следует производить вырезку образцов наиболее теплонапряженных экранных труб (не менее двух образцов), в том числе один образец из нижнего горизонтального ряда конвективного пучка и один образец из экрана, расположенного против горелки.

Для котлов, находящихся в длительной эксплуатации, период между вырезками устанавливается головной ведомственной специализированной организацией.

Реагентную очистку поверхностей нагрева следует осуществлять при обнаружении удельной загрязненности их более 500 г/м 2 для газомазутных котлов и более 800 г/м 2 для пылеугольных котлов.

Способ реагентной очистки должен определяться головной ведомственной специализированной организацией с учетом местных особенностей.

2.4.8. Показатели качества подпиточной и сетевой воды, другие показатели водно-химического режима водогрейного котла в объеме требований, предусмотренных настоящими МУ, а также данные о работе водоподготовки и деаэрационной установки должны фиксироваться в специальной ведомости.

Форма ведомости разрабатывается в зависимости от особенностей конкретной энергетической установки в соответствии с требованиями ведомственных правил технической эксплуатации.

2.4.9. Периодически, не реже одного раза в три года, с привлечением специализированной организации (или своими силами) необходимо производить ревизию водоподготовительного оборудования и его переналадку, по результатам которых следует вносить необходимые корректировки в инструкцию по ведению водно-химического режима, в инструкцию по эксплуатации установок для докотловой обработки воды, а также в режимные карты водно-химического режима. Режимные карты при этом следует переутвердить.

3.1.1. Химический контроль за качеством сетевой и подпиточной воды в котельных должен обеспечить надежную и экономичную эксплуатацию всех аппаратов и элементов тепловой схемы энергетической установки, и в первую очередь самих котельных агрегатов.

3.1.2. Химический контроль состоит из текущего оперативного контроля за всеми стадиями подготовки подпиточной воды, включая процесс ее деаэрации, и за водно-химическим режимом тепловой сети, а также из углубленного периодического контроля за всеми типами вод с целью фиксации фактического режима энергетической установки в целом.

3.1.3. Текущий оперативный контроль должен производиться постоянно при помощи автоматических или полуавтоматических приборов и должен дополняться простыми приближенными аналитическими определениями. Наиболее важным прибором для непрерывного контроля является кислородомер, устанавливаемый на напорной линии насосов подпиточной воды теплосети.

При отсутствии приборов для непрерывной регистрации показателей качества химически обработанной сетевой и подпиточной воды рекомендуется в котельных всех типов организовать отбор представительных среднесуточных проб* этих вод для анализа в дневную смену.

* Концентрация растворенного в воде кислорода и значение pH определяются в разовых пробах в соответствии с табл. 3.

Наряду с текущим оперативным химическим контролем выполняется углубленный периодический контроль, который должен давать четкое представление о количественном составе исходной в оды и динамике изменений состава воды в тракте теплоснабжающей установки, а также в системе водоподготовки и деаэрации подпиточной воды.

3.1.4. Данные анализов, в том числе и среднесуточных проб, дают возможность определить соответствие фактических показателей качества подпиточной и сетевой воды требованиям Правил ГГТН и настоящих МУ и установить эффективность работы обескислороживающей установки и системы водоподготовки.

Эти данные необходимы также для установления основных показателей работы водоподготовительной установки подпиточной воды: удельного расхода реагентов, их дозы и качества, емкости поглощения катионитов, глубины освобождения воды от отдельных примесей и т.п.

Результаты анализов по определению содержания соединений железа, растворенного кислорода и pH в сетевой и подпиточной воде служат основанием для оценки интенсивности протекания процессов коррозии металла водогрейного котла и аппаратов теплосети. Анализы по определению карбонатной, условной сульфатнокальциевой жесткости и соединений железа помогают оценивать интенсивность накипеобразования в котлах, тепловых сетях и отопительных приборах.

3.1.5. Необходимый общий объем контроля в каждой конкретной котельной определяется особенностями общей тепловой схемы водотеплоснабжающей системы, принятым способом водоподготовки подпиточной воды, степенью оснащения приборами химического контроля и автоматизацией процессов технологической схемы водоподготовки и деаэрации. Общий объем контроля энергетической установки, в состав которой входят водогрейные котлы, устанавливает головная ведомственная или привлеченная специализированная организация с учетом рекомендаций настоящих МУ.

3.1.6. Рекомендуемый объем химического контроля водного режима энергетических установок с водогрейными котлами, работающими в условиях нормальной эксплуатации, указан в табл. 3.

В пусковой и наладочной периоды объем необходимого химического контроля устанавливает наладочная организация; этот объем не должен быть меньше объема, предусмотренного настоящими МУ.

3.1.7. В практике эксплуатации энергетических установок с водогрейными котлами нередко возникает необходимость кроме анализов сетевой и подпиточной воды и воды из различных ступеней водоподготовки выполнять анализы различного рода отложений для установления причин их образования и разработки средств предупреждения.

Объем аналитического химического контроля

Теплопроизводи тельность котла, МВт (Гкал/ч)

Анализируемый поток воды или точка отбора пробы

Щелочность общая и по фенолфталеину

Условная сульфатно-кальциевая жесткость

3.3.7. Для водной лаборатории второй категории специальное помещение не предусматривается. В этом случае аналитический стол размещается в застекленном боксе-кабине площадью 6 — 8 м 2 .

Водная лаборатория третьей категории организуется в соответствии с типом паровых котлов согласно РТМ 24.030.24-72.

Предусмотренные в табл. 3 определения показателей качества воды для котлов теплопроизводительностью менее 35 МВт (30 Гкал/ч) рекомендуется производить, используя экспресс-лабораторию анализа воды (ЭЛВК-5), а при возможности и полуавтоматический анализатор кислорода мембранного типа. Реактивы, необходимые для проведения анализов, должны быть приготовлены в центральной лаборатории предприятия или в специализированных лабораториях сторонних организаций.

К решению вопроса создания лаборатории в каждом конкретном случае рекомендуется привлекать головную ведомственную энергетическую организацию и предприятие, в котором осуществляется установка котлов.

Характеристика и место установки элементов пробоотборных устройств

Характеристика, условное обозначение по стандарту

Пробоотборный зонд для отбора сетевой воды

Зонд трубчатый 1.0 ОСТ 108.030.04-80

Трубопровод сетевой воды на входе в котел и после сетевого насоса

Наличие прямого восходящего вертикального участка трубопровода длиной не менее 10 диаметров до места установки зонда и не менее 5 диаметров после него

Пробоотборный зонд для отбора деаэрированной воды

Трубопровод подпиточной воды на выходе из деаэратора *

В соответствии с ОСТ 108.030.04-80

То же, для подпиточной воды

Трубопровод на напоре подпиточных насосов

Наличие прямого восходящего вертикального участка трубопровода длиной не менее 10 диаметров до места установки зонда и не менее 5 диаметров после него

Холодильник змеевиковый на две точки отбора

В соответствии с ОСТ 108.030.04-30

Один щит на 10 — 12 точек отбора

* В установках с вакуумным деаэратором пробоотборное устройство устанавливается в ближайшей к деаэратору точке тракта с избыточным давлением.

Рекомендуемые категории лабораторий в зависимости от типа котельных

Состав оборудования котельной

Указания по организации водной лаборатории

Котельная только с водогрейными котлами теплопроизводительностью 35 МВт (30 Гкал/ч) и более

Организуется лаборатория в соответствии с указаниями настоящих МУ

Котельная только с водогрейными котлами теплопроизводительностью менее 35 МВт (30 Гкал/ч)

Котельная с водогрейными котлами любой теплопроизводительности, в которой установлены также паровые котлы

Организуется лаборатория первой или второй категории — в зависимости от теплопроизводительности водогрейных котлов. При этом предусматривается дополнительное оборудование, соответствующее типу и производительности паровых котлов по РТМ 24.030.24-72

3.3.8. Водные лаборатории желательно располагать в непосредственной близости к общекотельному щиту. При размещении оборудования для подготовки добавочной воды в одном здании с котельной рекомендуется организация одной общей лаборатории для контроля водного режима котлов и процессов водоподготовки.

3.3.9. В лаборатории всех категорий должна быть подведена вода из хозяйственно-питьевого водопровода, установлена водопроводная раковина и предусмотрена канализация. Лаборатории всех категорий должны иметь светильники дневного света и подвод электроэнергии со стабилизированным напряжением. Сеть должна быть рассчитана на одновременную работу всех электроприборов, указанных в табл. 6.

3.3.10. Необходимый минимум лабораторного оборудования приведен в табл. 6.

3.3.11. В лаборатории первой категории должен быть организован непрерывный отбор пробы подпиточной воды в бутыль емкостью 25 л для накопления среднесуточной пробы. Бутыль устанавливают в специальном боксе, закрытом на замок. В лабораториях второй и третьей категории среднесуточная проба должна составляться путем отбора разовых проб; число разовых проб устанавливается специализированной организацией.

Стол титрованных растворов

Экспресс-лаборатория типа ЭЛВК-5

Лабораторная обессоливающая установка

Полуавтоматический анализатор кислорода мембранного типа

Лабораторные катионитные фильтры

Лабораторный pH -метр (иономер)

Шкаф для посуды и реактивов

Прибор для определения прозрачности (см. п. 3.5.1 )

Стол для аналитических весов

3.4.1. Должно быть организовано проведение анализов в объеме химического контроля и по методикам, предусмотренным настоящими МУ, с выводом среднесуточных и среднемесячных показателей. Необходимо проверять соответствие этих показателей требованиям соответствующих нормативных общесоюзных и ведомственных документов, и в частности Правил Госгортехнадзора и настоящих МУ.

3.4.2. Для выполнения представительного химического контроля за водным режимом в котельных всех типов рекомендуется производить отбор среднесуточной пробы подпиточной воды, анализ которой наиболее полно характеризует надежность водно-химического режима водогрейных котлов.

3.4.3. С учетом конкретных условий работы котельной и на основании указаний настоящего МУ должен быть установлен необходимый объем химического контроля, реализована схема отбора проб и оборудована водная лаборатория. В случае необходимости для выполнения этих мероприятий привлекается головная ведомственная энергетическая организация.

3.4.4. При монтаже трубопроводов для отбора проб сетевой и подпиточной воды должен быть выдержан уклон в сторону движения воды. Трубопроводы независимо от их длины не должны изолироваться. Для обеспечения безопасности трубопроводы для отбора проб ограждаются соответствующими устройствами.

3.4.5. При отборе воды на анализ должны быть созданы все условия для получения представительной пробы. В частности, при отборе пробы для анализа на содержание соединений, находящихся частично в грубодисперсной форме (железо), пробоотборную трассу следует периодически продувать с максимально возможной интенсивностью. По окончании продувки устанавливают необходимый расход анализируемой воды и ее температуру согласно п. 3.4.6; отборы проб следует производить не ранее, чем через 15 мин после продувки. Обязательным условием представительности отбора в этом случае является непрерывность истечения пробы воды.

При отборе и транспортировке пробы должны быть созданы условия, исключающие возможность ее загрязнения.

3.4.6. В каждой из пробоотборных точек должен поддерживаться постоянный расход воды в пределах 30 — 50 кг/ч при t = 30 ¸ 50 °С.

3.4.7. В объем химического контроля, предусмотренный настоящими МУ, входит определение прозрачности всех вод для косвенного контроля за содержанием взвешенных веществ. Этот показатель необходимо определять для предотвращения заноса грубодисперсными соединениями внутренних поверхностей нагрева водогрейных котлов и тракта теплосети. Прозрачность сетевой и подпиточной воды должна соответствовать Правилам ГГТН и табл. 1 . Определение солесодержания (которое используется для оценки соответствия качества сетевой воды в схемах с непосредственным водоразбором требованиям ГОСТ 2874-82 и при расчете условной сульфатно-кальциевой жесткости по табл. 1 ) производится по электропроводности или приближенно — по кислотности пробы после Н-катионирования. Растворенный кислород определяется аналитически или при помощи лабораторного полуавтоматического кислородомера мембранного типа. В котельных с постоянным или эпизодическим расходом добавочной подпиточной воды 100 т/ч и более целесообразна установка регистрирующего кислородомера (мембранного типа) на линии подпиточной воды. Показатель рН воды контролируется с использованием лабораторного мономера.

3.4.8. В водной лаборатории второй категории (см. табл. 6) все аналитические определения следует производить с помощью экспресс-лаборатории типа ЭЛВК-5 и полуавтоматического кислородомера мембранного типа. Все необходимые растворы для этих определений готовят в центральной заводской лаборатории, а в случае ее отсутствия — на месте из фиксаналов.

3.4.9. В водной лаборатории первой категории (см. табл. 6) выполняются все анализы и определения, предусмотренные табл. 3 для котлов теплопроизводительностью 35 МВт (30 Гкал/ч) и более. При наличии центральной заводской лаборатории операции нагревания и взвешивания на аналитических весах могут выполняться в ней.

3.4.10. Лаборатории всех категорий (см. табл. 6) должны быть оборудованы для возможности производства аналитических определений в соответствии с табл. 7.

Необходимый объем аналитических определений для всех категорий лабораторий

источник