Меню Рубрики

Анализы воды на содержание органических веществ

Анализ данных о составе сточных вод, поступающих на городские очистные сооружения, показал, что большой проблемой на сегодняшний день является недостаточная эффективность очистки от органических соединений и тяжелых металлов, в частности меди и цинка. По если органические соединения подвергаются биологическому разложению, то тяжелые металлы могут только перераспределяться в объектах окружающей среды. Поэтому вопросы, связанные с повышением эффективности очистки от ионов тяжелых металлов, в частности меди и цинка, весьма актуальны.[ . ]

Вода в природе нигде не встречается в виде химически чистого вещества. Под физико-химическим составом природных вод принято понимать весь сложный, комплекс растворенных газов, ионов, взвесей и коллоидов минерального и органического происхождения. В природных водах обнаружено около половины химических элементов, входящих в периодическую таблицу Д. И. Менделеева, а многие другие пока не найдены только из-за недостаточной чувствительности методов анализа. Еще большим качественным и количественным многообразием при месей отличаются сточные воды; состав этих примесей всецело зависит от характера производства, в котором они образуются.[ . ]

Анализ состава органических примесей природных вод, сорбированных на поверхности гидроокиси алюминия, позволяет отнести их к группе флокулянтов растительного происхождения. Преимущество флокулянтов природного происхождения заключаются в отсутствии у них токсичных свойств и полной безвредности для организма человека [2]. На это явление указывает также Т. А. Карюхина. Коллоидные гумусовые вещества сорбируются на поверхности А1 ((ЗН) ч, передавая ему свои свойства.[ . ]

Анализ сточных вод производства изопрена по отдельным органическим загрязнителям очень затруднен ввиду присутствия в сточных водах различных соединений, имеющих одинаковые функциональные группы (гидроксильные, метальные, непредельные связи, связанный формальдегид и др.). Поэтому для характеристики состава сточных вод производили обычный санитарно-химический анализ их и некоторые специфические определения, например формальдегида и изопрена.[ . ]

При анализе вод с известным качественным составом проведение указанных операций выделения и разделения органических веществ нецелесообразно; основные компоненты можно определять непосредственно в сточной воде по методикам, описанным в п. 5.3.[ . ]

При анализе природных вод, содержащих смеси органических веществ неизвестного состава, существенно усложняются задачи идентификации. Один из возможных подходов для реализации метода прямого анализа природных вод рассматривается в работах [7—9], используется принцип пиролитической хроматографии. Хроматограммы фрагментов пиролиза отдельных классов и групп соединений имеют общие и специфические пики. Описана возможность идентификации органических соединений в смесях по группам или классам в пирографических участках и расчет концентраций с помощью математической обработки [9].[ . ]

При анализе очень сложных смесей, когда идентификация компонентов только при помощи газовой хроматографии затруднена, все чаще используют комбинацию газовой хроматографии и . масс-спектрометрии — хромато-масс-спектроме-трию. Применение такой комбинации для определения состава органических примесей в природных и сточных водах описано в ряде работ, требующих специального рассмотрения.[ . ]

При водятся методы группового разделения органических веществ для случая неизвестного состава воды; идентификация компонентов выделенных групп производится методами физико-химического анализа; УФ, ИК спектрометрией, газово-жидкостной, тонкослойной хроматографией и др.[ . ]

При анализе состава сточных вод все чаще применяют «многокомпонентные» методы анализа, позволяющие определять сразу большое число веществ, например атомно-эмиссионный и рентгеновский анализ, хроматографию. Предпочтительно использование методов прямого анализа, т. е. не связанного с химической подготовкой пробы, но в случае определения типа загрязнений, такая подготовка часто необходима. Например, предварительное концентрирование исследуемого компонента позволяет определять его в меньших концентрациях, устранять трудности, связанные с негомогенным распределением компонента в пробе и отсутствием образцов сравнения. Специфическую группу методов определения органических соединений составляют методы элементного анализа. Применение газовой хроматографии позволило автоматизировать элементный анализ: для этого выпускают С-, Н-, Ы-анализаторы и другие приборы-автоматы. Анализ органических соединений по функциональным группам (например, ЫН2-группа, ОН-группа и др.) выполняют различными химическими, электрохимическими (амперометрия, полярография), спектральными (инфракрасная спектроскопия) или хроматографическими методами.[ . ]

Общий органический углерод (ТОС) — это та часть растворенного и нерастворенного органического вещества, которая присутствует в воде. Она не дает информации о природе органического вещества. Органический углерод может быть определен до анализа или определен в составе ТОС, а затем получен путем вычитания содержания неорганического углерода из общего содержания углерода.[ . ]

На основе анализа данных о взаимодействии органических веществ в воде, их устойчивости к действию окислителей и адсорбентов может быть рекомендовано небольшое число технологических схем, обеспечивающих очистку воды в широком диапазоне ее состава. Если до последнего времени такие схемы можно было создавать на основании эмпирического подбора, то наличие сведений о природе веществ и механизме протекающих при обработке воды реакций дает возможность обоснованно рекомендовать технологические схемы и реагенты и четко очертить границы их применимости.[ . ]

Трудность анализа состава сточных вод ЦБП определяется как сложностью состава основного объекта технологического процесса древесины, так и многообразием химических операций, проводимых с древесиной, затем с целлюлозой, в результате чего образуются щелока, поступающие в сточные воды. Для делигнифика-ции древесины при получении целлюлозы используют различные химические реагенты: щелочные растворы сульфида натрия или двуокиси серы. Разнообразны способы отбелки целлюлозы: хлорирование, щелочение, обработка гипохлоритом натрия, двуокисью хлора, перекисью водорода, кислородом [1, 2]. Реакции, протекающие в процессе получения целлюлозы из древесины, приводят к образованию и накоплению в сточных водах ЦБП огромного количества веществ, различных по химическому составу, строению, дисперсному состоянию. Сточные воды содержат органические и неорганические, низко- и высокомолекулярные, растворенные, эмульгированные и суспендированные вещества. Положение осложняется тем, что концентрации многих компонентов очень малы, а это накладывает серьезные ограничения на использование ряда аналитических методов для их определения. Сложность состава сточных вод и неустойчивость многих компонентов весьма затрудняют идентификацию веществ. Отметим, что в наиболее изученном сульфатном черном щелоке идентифицировано к настоящему моменту 100 соединений, но это лишь небольшая часть всех веществ, имеющихся в щелоке [3—7]. Сточные воды бумажного производства значительно проще по составу, чем целлюлозного производства, и не определяют специфику аналитического контроля сточных вод ЦБП, поэтому мы не будем их рассматривать [8].[ . ]

Метод прямого анализа водных образцов. При анализе водных растворов с помощью пламенно-ионизационного детектора возможно обнаружение присутствующих органических веществ; в концентрациях до 10-3—10-4%. Прямой анализ получил распространение при контроле сточных вод [1—3] и других систем известного состава, для которых вопросы идентификации и количественного определения могут быть решены путем сравнительного анализа искусственных смесей.[ . ]

Для определения органических примесей в водах и воздушной среде и для сигнализации о выбросах опасных веществ в лабораторных производственных и полевых условиях, в том числе на транспортных средствах в составе передвижных лабораторий. Режимы работы: обзорный анализ — определение наличия и идентификация компонентов на основе использования масс-спектров индивидуальных веществ, хранящихся в компьютеризированной базе данных; анализ на содержание определяемых компонентов; количественный анализ смесей известного состава; выполнение сервисных функций — цифровая фильтрация масс-спектра от шумов, преобразование аналоговою спектра в гистограммный, пополнение базы данных и другие.[ . ]

Вследствие сложности состава производственных и бытовых сточных вод оценка самоочищения водоема в целом представляет собой сложную комплексную задачу. Чаще дают оценку самоочищения водоема по отношению к легко окисляемому органическому веществу (определяемому по ВПК) или по общему содержанию органических веществ (определяемому по ХПК). Оценка самоочищения производится и по данным определения конкретных соединений или их групп (фенолов, углеводородов, смол), а также на основании микробиологических показателей и анализа индикаторных организмов — сапробионтов. О самоочищении водоема в целом [1,9, 10, 23] можно говорить только в том случае, когда имеются данные по всем показателям.[ . ]

Проблема исследования состава природных и сточных вод ввиду ее сложности, особенно в части органического анализа, должна решаться на основе двух основных тенденций развития современной аналитической химии: разделение веществ перед их определением и разделение суммы сигналов, получаемой при исследовании смеси веществ. В настоящем сообщении будут рассмотрены перспективы некоторых спектральных методов анализа: спектрофотометрии, ИК-спектроскопии, ЯМР, рентгено-электрон-ной спектроскопии и ЭПР. Применение масс-спектроскопии, флуо-риметрии настолько разнообразно и широко, что краткое обсуждение их вряд ли целесообразно.[ . ]

В анализируемых сточных водах должны определяться: содержание компонентов, специфичных для данного вида производства (фенолов, нефтепродуктов, поверхностно-активных, ядовитых, радиоактивных, взрывоопасных веществ); общее количество органических веществ, выражаемое БПКшш и ХПК; активная реакция; интенсивность окраски; степень минерализации; наличие биогенных элементов и др. В зависимости от технологии производственных процессов анализ состава сточных вод производится по разовым часовым, среднесменным и среднесуточным пропорциональным пробам; следует также составлять графики колебания концентраций наиболее характерных загрязнений по часам смен, суток, дням недели. Необходимо установить такие параметры, как кинетика оседания или всплывания механических примесей и их объем, возможность коагулирования сточных води др. Эти данные позволяют выбрать наиболее целесообразный и экономически обоснованный метод очистки сточных вод для определенного предприятия.[ . ]

При изучении химического состава вод определяют содержание минеральных, газовых и органических компонентов. Среди минеральных компонентов, как правило, анализируют содержание кальция, магния, натрия, калия, хлор-, сульфат-, карбонат- и бикарбонат-ионов и некоторых микрокомпонентов — стронция, бария, иода, брома, бора, азота, иногда лития и радиоактивных элементов. При этом используют обычные комплексонометриче-ские (трилонометрические) методы, пламенную фотометрию, а также классические титриметрические и гравиметрические методы анализа. Содержание основной массы неорганических веществ в подземных водах измеряется десятками и сотнями граммов, микрокомпонентов — десятками и сотнями миллиграммов на литр исследуемой воды.[ . ]

Наиболее сложным является анализ содержащихся в воде органических веществ, от состава и количества которых во многих случаях зависят санитарно-гигиенические качества воды.[ . ]

В основу хроматографического анализа окрашенных органических веществ, содержащихся в высокоцветных водах, положено различие в адсорбционной активности гумусовых веществ, отличающихся по составу и строению, а также их способность переходить в раствор при определенных значениях pH среды. При подборе деталей установки преследовалась цель обеспечить бесперебойную круглосуточную работу хроматографической колонки, что особенно важно при разделении веществ, близких по составу и свойствам.[ . ]

Из сказанного следует, что при анализе вод, имеющих в своем составе азотсодержащие органические вещества, значение ХПК, полученное при использовании метода с КгБгОв, будет выше (за счет образования нитратов), чем при использовании обычного метода с К2СГ2О7. Для отличия первую величину целесообразно обозначить символом ХПКМ0 -Она отвечает тому химическому поглощению кислорода, которое произошло бы при очистке сточных вод в биохимических сооружениях, если бы процесс доводили до полной нитрификации азотсодержащих веществ.[ . ]

Рассмотрены некоторые возможности анализа состава естественных водных сред методом дистанционной лазерной флуориметрии. Обсуждается определение концентрации нефтепродуктов в воде, определение нефтей на фоне растворенного органического вещества, приводятся конкретные схемы лидаров и лабораторного оборудования для лазерного анализа.[ . ]

Кроме показателей общего содержания органически х веществ, таких, как ХПК, ВПК, нефтепродукты, для оценки состава производственных сточных вод часто возникает необходимость определить концентрацию индивидуальных примесей, если эти примеси отрицательно влияют на процесс очистки. Задача эта очень сложна. Трудности определения индивидуальных веществ обусловлены непостоянством состава стоков, малыми концентрациями компонентов, одновременным присутствием многих разнохарактерных веществ, взаимно влияющих и затрудняющих избирательное определение. Для решения этой сложной задачи широко используются современные физико-химические методы исследования — фотоколоримстрпя, газожидкостная хроматография, осциллополярография, люминесцентный анализ в сочетании с экстракцией, отгонкой и хроматографическим разделением в тонком слое.[ . ]

При общей очистке стоков с переменным составом неэффективно использовать специфические сорбенты, обладающие селективными свойствами. Так, если очистку общих стоков химического предприятия ведут на сугубо микропористом ГАУ, обладающем хорошей емкостью по ароматическим соединениям, то в первый период работы на АУ извлекается 70—80% органических веществ, а при изменении состава сточных вод — лишь 20— 40% загрязнений. Фирмой Са оп Согр. выполнен большой статистический анализ 222 случаев сорбционной очистки на АУ промышленных стоков 68 производств 15 отраслей. Оказалось, что в 5 случаях из 8 содержание общего органического углерода (ООУ) снижалось более чем на 90%, и лишь в двух менее чем на 85%; в 6 случаях из 7 цветность снижалась более чем на 95% и лишь в одном — менее чем на 90%. В целом, в 4/9 проб исходное содержание ООУ было выше 100, но менее 1000 мг/дм3, и в стольких же выше 1000 мг/дм3.[ . ]

При исследовании смесей неизвестного состава задачи идентификации упрощаются применением специфического концентрирования, позволяющего выделять отдельные классы органических соединений. Идентификация отдельных компонентов внутри класса более легко достигается при использовании различных зависимостей, связывающих хроматографические характеристики (время, объемы удерживания) с физико-химическими свойствами веществ внутри ряда (температура кипения, молекулярный вес). Выделение отдельных классов при концентрировании часто связано с первоначальным более или менее селективным накоплением (перегонка, экстракция, вымораживание и т. д.). Поэтому разработка общих схем систематического анализа органических компонентов вод имеет существенное значение для выбора наиболее рационального пути концентрирования, с использованием элементов этих схем при решении отдельных задач [34, 35]. Дополнительные возможности для идентификации дает метод аналитической реакционной хроматографии, который использует химические превращения анализируемых веществ в хроматографической схеме [36, 37].[ . ]

Известно, что при проведении химического анализа природных вод, сформированных в естественных условиях или в условиях наложенного техногена, для установления их состава, правильного соотношения присутствующих в них компонентов, используют результаты анализа, проведенного на месте отбора или в течение первых часов после отбора пробы. Это в первую очередь касается определения неустойчивых компонентов: растворенного кислорода (Оо), гидрокарбонатов (НСО3), нитратов (МО3), аммонийных ионов (МНр, железа (FСтепень биохимического окисления многих органических соединений, загрязняющих сточные воды, невысока. Степень биохимического окисления серу- и азотсодержащих соединений весьма различна — от 0,02 до 0,95. Причем анализ реального состава сточных вод в канализационных коллекторах ряда промышленных районов указывает на высокое содержание в них консервативных загрязнений (БПКп/ХПК от 1/6 до 1/15) [78, с. 40].[ . ]

Таким образом, дикарбоновые кислоты и сточная вода поступают в слабо турбулизирующий газовый поток, где процесс горения еще не закончился и сохраняются худшие условия для перемешивания паров органических веществ с кислородом воздуха. Создаются условия для еще большего затягивания горения и активизации его в конвективном газоходе. Наблюдались случаи, когда факел достигал скрубберов, где, вследствие резкого охлаждения дымовых газов орошающей водой, происходила закалка несгоревшей части органических соединений. При этом температура газов в верхней зоне была ниже, чем перед скрубберами, и, хотя в составе топочных газов СО не обнаруживалась, анализы скрубберной воды и дымовых газов показывали наличие в них органических соединений.[ . ]

Инфракрасная спектроскопия более пригодна для анализа неорганических газов и органических компонентов в воде, чем для определения металлов. Так как для значительного числа чисто неорганических твердых веществ известны инфракрасные спектры, то этот метод можно использовать для установления состава осадков, полученных при упаривании воды.[ . ]

Для определения чрезвычайно лабильных и разнообразных по составу органических веществ природных вод весьма перспективны систематические схемы анализа, включающие фракционирование сорбционными методами и сочетающие разделение по химической природе с разделением по размерам молекул [25, 26]. Для разделения органических веществ, обладающих сродством к ионным и водородным связям, успешно применяют сорбенты с гидрофильной матрицей (ионообменные целлюлозы и сефадексы). В отличие от ионообменных смол, целлюлозы представляют собой агрегаты полисахаридных цепей, хорошо проницаемых даже для очень больших ионов. Рыхлая структура целлюлозы, высокая дисперсность, сорбция преимущественно по поверхности обусловливают быстроту процессов сорбции и десорбции. Хорошо проницаемы для крупных молекул также нейтральные и ионообменные сефадексы.[ . ]

Читайте также:  Анализы на питьевую воду из скважины

Сконцентрированные в ловушках (патроны и диски) загрязняющие воду примеси токсичных веществ обычно элюируют органическими растворителями (см. разделы 2.3.1 и 2.3.4). При этом выбор растворителя зависит от свойств сорбента, характера и природы матрицы (сточные, природные, питьевые воды и др.), состава и количества загрязнений и цели исследования (арбитражный анализ, экологическая экспертиза, рутинные анализы, определение отдельных наиболее важных приоритетных загрязнений, анализ представительной пробы, скрининг целевой и нецелевой и т.п.).[ . ]

Как в первой серии опытов (с добавкой 20% хозяйственнофекальных сточных вод), так и в данных был составлен общий баланс процесса. Анализ данных баланса показал, что в течение 28 суток через аэротенк прошло 377 л стоков с содержанием кислорода 19 г по фильтрованной пробе и 24,5 г по нефильтрованной. Таким образом, при средней нагрузке 271 г/м3 — сутки по фильтрованной и 350 г/м3- сутки по нефильтрованной пробе эффект очистки по БПК5 составил 96,2—94,8%; при этом разрушение органических веществ составило 260— 331 г/м3-сутки 02.[ . ]

В заключение можно сказать, что решение задачи определения индивидуальных органических соединений по существу сводится к разработке некоторого общего метода систематического анализа природных вод для определения органических компонентов [27]. Этот метод может иметь несколько вариантов, применяемых в зависимости от состава анализируемой воды и от допустимых потерь тех или иных веществ. При изучении состава органических веществ параллельно с компонентным анализом необходимо иметь данные о содержании неорганических микро- и макрокомпонентов и органического углерода, о цветности воды, что позволит дать оценку методам выделения и определения отдельных групп органических соединений [28].[ . ]

Применявшийся раньше метод перманганатного окисления совершенно не пригоден для анализа сточных вод (в анализе природных вод его еще используют). Перманганат — недостаточно сильный бйбслитель: окисление органических веществ проходит неполно и многие из них совсем не окисляются. Кроме того, при кипячении растворов, содержащих избыток перманганата, последний в значительной мере разлагается с образованием диоксида марганца и кислорода. Это разложение происходит как в кислой, так и в щелочной среде. Выпадающий диоксид марганца каталитически ускоряет процесс. Количество образующегося осадка различно в зависимости от условий и состава пробы. Поправка на холостой опыт здесь невозможна, так как при проведении холостого определения осадок диоксида марганца обычно совсем не выпадает.[ . ]

К сожалению, на данный момент можно констатировать малую доступность СО природных вод для аналитиков-практиков, особенно в России из-за отсутствия отечественных образцов. К тому же образцы природных вод нередко различаются по минеральному составу ввиду сезонной и временной динамики, а также в зависимости от места отбора пробы [128]. Другими словами, даже сертифицированный СО природной воды не всегда идентичен по минеральному и органическому составу анализируемой пробе. По этой причине в аналитических лабораториях широко применяют унифицированные методы анализа, основанные на применении более простых СО, например, водные растворы солей. Однако упрощение калибровки не упрощает, а скорее усложняет саму процедуру создания методики анализа. На этой стадии необходимо выявить все возможные влияния макро- и матричных компонентов, а также найти способ их устранения или учета, например, путем разделения микро- и макроэлементов с применением экстракции, сорбции и других методов или путем введения макрокомпонентов в образцы сравнения на уровне, соответствующем его содержанию в пробе.[ . ]

Содержание азотсодержащих соединений нитратов, аммонийного азота) в исследованных водах за период наблюдении определялось в концентрации, в несколько раз ниже предельно допустимой (ПДК — 45 мг/л) для питьевой воды. Анализ динамики изменения содержания азотсодержащих соединений в воде, обработанной прибором с активной водой, и в контрольной (после контакта с «плацебо») воде показал, что в течение срока наблюдений среднее отклонение опытных данных от контрольных составляло для нитратов — 1,46 мг/л, а для аммонийного азота — 0,035 мг/л, т.е. понижение концентрации нитратов и повышение количества аммонийного азота относительно их среднего содержания в воде является существенным и равно 27 и 22,4% соответственно (относительно контрольных величин). Отклонение от средних контрольных значений для показателей ВПК, органического углерода, перманганатной окисляемости составило 30,3%, 13,1% и 7% соответственно.[ . ]

Бихромат калия наиболее полно окисляет вещества, содержащиеся в промышленных сточных водах, особенно при использовании серебра в качестве катализатора. В результате анализа определяется суммарное количество кислорода, которое затрачивается на окисление углеродсо ержащих веществ до двуокиси углерода, серусодержащих — до сульфатов, фосфорсодержащих — до фосфатов. Кислород, который содержится в составе некоторых органических соединений, в величину ХПК не входит.[ . ]

Таким образом, расчет сооружений для биохимической очистки должен производиться с учетом состава производственных сточных вод при определении всей суммы органических загрязнений, выражаемой полной • биохимической потребностью в кислороде. Для этого необходимо знать величину БПКполн, а также ХПК производственных сточных вод, которая определяется по данным анализов.[ . ]

Промывка должна быть интенсивной и равномерной, осуществляться быстро и с минимальной затратой воды. После нее в песке не должно оставаться скоплений комочков грязи, плохо промытых участков, а при анализе песка не должно обнаруживаться изменения химического состава в результате обволакивания его неотмытыми органическими и минеральными отложениями. Качество промывки зависит от интенсивности и равномерности распределения промывной воды, времени промывки и условий отвода воды.[ . ]

Последние публикации подтверждают возможность получения качественно новой геологической информации, особенно на основе данных о молекулярном составе органических веществ подземных вод. Важнейшими направлениями в области анализа органических веществ вод являются инструментализация и автоматизация методов. К одной из таких задач относится создание и внедрение в практику специальных анализаторов для определения органического углерода, азота, а также анализаторов для селективного определения отдельных компонентов или групп веществ. Серьезных успехов следует ожидать от внедрения различных видов хроматографии, особенно инструментальной (газовой и жидкостной хроматографии), а в дальнейшем — хроматомасс-спектрометрии для определения молекулярного состава органических соединений.[ . ]

Опубликованы данные по убыли кислорода и снижению ХПК первичного стока четырех очистных сооружений Калифорнии. К сожалению, ничего не сообщается о составе стоков. Было найдено, что выход убыли кислорода составляет 2,8 молекул/100 эв, даже при введении катализирующих добавок, таких, как Т 03 , Ре2+ + Н202 и Н202. Снижение ХПК измерялось при различных режимах проведения облучения: в отсутствие кислорода (насыщение азотом), при предварительном насыщении воздухом или кислородом и при барботаже воздуха во время облучения. В последнем случае С(—02), рассчитанный по изменению ХПК, равняется 10 эке/100 эв. Анализы по общему углероду показали, что около половины органических соединений разлагается до С02 и воды. Цепные процессы окисления обнаружены не были.[ . ]

По сравнению с первым изданием (1958 г.) книга значительно переработана и расширена. Наибольшее число дополнений внесено в раздел, посвященный методам определения органических веществ в промышленных сточных водах (раздел увеличен примерно в три раза), но, конечно, и это далеко не может удовлетворить острой потребности в таких методах анализа. Определение малых количеств органических веществ, присутствующих в сложных комбинациях, в сложных по составу смесях, какими являются производственные сточные воды — задача, пока еще далеко не решенная, и для анализа сточных вод многих производств мы еще не располагаем надежными методами.[ . ]

Среди выявленных представителей семейства преобладают литораль-но-эпифитные водоросли (16 таксонов), обитающие в прибрежной зоне. По отношению к содержанию солей в воде основная часть состава семейства Fragilariaceae в данных водотоках приходится на индифферентные диатомеи (24 вида с разновидностями). Основной экологической группой по отношению к pH являются алкалифильные диатомовые (26 таксонов). Сапробиологический анализ показал преобладание диатомовых водорослей (13), характерных для вод с умеренным загрязнением легкоокисляе-мыми органическими веществами. Соотношение экологических групп со-ответствуетхимическому составу вод исследованных водотоков. Среди био-географических групп первое место занимают космополиты (27 видов с внутривидовыми таксонами). Выявлены редкие виды.[ . ]

Следует отметить, что ранее с использованием фотометрических методов было получено большое количество аномально высоких и, как правило, некорректных результатов по содержанию ртути в незагрязненных природных водах [168]. Следовательно, необходимо очень осторожно применять эти методы для анализа ртути, а также интерпретировать данные по ее содержанию, полученные с их использованием. Обзоры фотометрических и экстракционно-фотометрических методов определения ртути приведены в [45, 134, 140, 153, 456]. В обзоре [153], рассматривающем развитие фотометрических методов за 20 лет (1971—1991 гг.), в табличном виде приведены характеристики используемых органических реагентов, их аналитические свойства, сведения по селективности методов, мешающие компоненты. В зависимости от характеристик и состава анализируемых объектов можно выбрать наиболее подходящий метод анализа. Авторы обзора делают вывод, что большинство разработанных фотометрических методик определения ртути недостаточно избирательны вследствие неспецифичности функционально-аналитических групп применяемых реагентов и проведения комплексообразования в щелочной среде. Поэтому для фотометрического определения ртути перспективны направленный синтез органических реагентов, образующих устойчивые комплексы с ртутью в сильнокислых средах, и разработка высокочувствительных методов на их основе [153].[ . ]

Геохимическое опробование снежного покрова проводилось в течение нескольких лет (1992—1995 гг.) на территории нескольких промышленных городов области (Новый Уренгой, Сургут, Тюмень), в поселках, возникновение которых связано со строительством компрессорных станций (КС) на магистральных трубопроводах. Для сопоставления проводилось исследование состава снежного покрова в ненарушенных, т.е. фоновых условиях. Исследованиями были охвачены различные природные зоны — от типичных тундр (п-ов Ямал) до границы таежной и лесостепной зон (г. Тюмень, КС “Богандинская“). Отбор проб и подготовка к анализу проводились по методике мониторинга снежного покрова [Василенко и др., 1985]. В талой снеговой воде определялись: основные гидрохимические показатели, содержание тяжелых металлов методом атомно-адсорбционной спектрофотоме-трии, содержание ряда органических соединений, используемых в технологических процессах на КС (метанол, этиленгликоль, фенол), а также ароматические углеводороды (бензол, этилбензол, толуол и др.). Математическая обработка полученных результатов включала вычисление стандартных статистических параметров, корреляционный и факторный анализы. По материалам опробования строились картосхемы (методом изолиний), отражающие пространственное распределение загрязнителей по территории исследуемых городов и КС. При оценке уровня экологической опасности загрязнения использовались предельно допустимые концентрации для природных водоемов.[ . ]

В основном в пробах были отмечены планктонные и факультативно-планктонные формы водорослей, однако достаточно большую долю диатомовых составляют обрастатели, бентосные и эпифитные формы. В экологогеографическом отношении водоросли планктона прудов были представлены широко распространенными видами, обитающими в пресных водоемах и предпочитающими нейтральные или щелочные воды. Виды-космополиты преобладали в списке водорослей и составляли в зависимости от типа водоема 42-75 % от общего числа. По шкале сапробности число водорослей-индикаторов органического загрязнения составило в среднем 35-43 % от общего количества видов по водоему. Среди них значительное положение занимали (3-мезосапробы (20-34 % от общего количества видов в водоеме) и олиго-[3-мезосапробы (9-15 % от общего количества видов в водоеме). На основании анализа видовой структуры и летней биомассы фитопланктона, которая часто превышала пределы 4-8 мг/л (г/м3), было определено, что исследуемые водоемы являются эвгрофными. В периоды «цветения» воды трофический статус водоемов достигал гиперэвтрофного уровня.[ . ]

Водохранилища — искусственно созданные водоемы различных размеров — приобретают в настоящее время большое народнохозяйственное значение, позволяя решать важные проблемы энергетики, промышленности, транспорта, сельского хозяйства. Заселение водохранилищ ценными породами рыб (рис. Формирующийся в конкретных условиях данного водохранилища химический состав воды определяет пригодность ее использования для намеченных целей, а также условия жизни рыб, противокоррозионную устойчивость гидротехнических сооружений и многое другое. Игнорирование этого вопроса может привести к тяжелым, трудно исправимым последствиям. Процесс формирования химического состава воды в водохранилищах протекает особенно интенсивно в первоначальный период их существования. В результате затопления новых площадей суши, представляющей леса, луга, пашни, болота, происходит смыв в водохранилища большого количества растворимых органических и минеральных веществ, отмирание и разложение растительности, формирование новых грунтов дна водохранилища при интенсивном взаимодействии растворенных в воде ионов и газов с почвами. Этот период первичного формирования химического состава воды для различных водохраниг лищ протекает в различные промежутки времени (порядка нескольких лет), а затем в водохранилищах устанавливается свойственный им режим, близкий к озерному, Переход от речного режима к озерному сопровождается изменением гидрологических и биологических условий: повышается температура воды, усиливается испарение, увеличивается прозрачность, более интенсивно развиваются планктон и водная растительность. Все это может привести к существенным изменениям гидрохимического режима. Точный анализ возможных изменений представляет значительные трудности, и прогнозы гидрохимических особенностей создаваемых водохранилищ могут быть даны лишь в предварительной общей форме, на основе учета рассмотренного выше влияния физико-географических условий и водного режима на гидрохимический режим водоемов.[ . ]

источник

В воде источников водоснабжения обнаружено несколько тысяч органических веществ разных химических классов и групп. Органические соединения природного происхождения (гуминовые вещества, различные амины и другие) — способны изменять органолептические свойства воды, и по этой причине они должны быть удалены в процессе водоподготовки.

Несомненно, что органические вещества техногенного происхождения при поступлении их с питьевой водой могут неблагоприятно действовать на организм. Аналитический контроль их содержания в питьевой воде затруднен не только ввиду громадного их числа, но и вследствие того, что многие из них весьма неустойчивы и в воде происходит их непрерывная трансформация. Поэтому при аналитическом контроле невозможно идентифицировать все органические соединения, присутствующие в питьевой воде.

Однако многие органические вещества обладают выраженными органолептическими свойствами (запахом, вкусом, цветом, способностью к пенообразованию), что позволяет их выявить и ограничить их содержание в питьевой воде. Примерами таких веществ являются: синтетические поверхностно-активные вещества (СПАВ), в незначительных (нетоксических) концентрациях образующие пену; фенолы, придающие воде специфический запах; многие фосфорорганические соединения.

В природной воде водоемов всегда присутствуют органические вещества. Их концентрации могут быть иногда очень малы (например, в родниковых и талых водах). Природными источниками органических веществ являются разрушающиеся останки организмов растительного и животного происхождения, как живших в воде, так и попавших в водоем с листвы, по воздуху, с берегов. Кроме природных, существуют также техногенные источники органических веществ: транспортные предприятия (нефтепродукты), целлюлозно-бумажные и лесоперерабатывающие комбинаты (лигнины), мясокомбинаты (белковые соединения), сельскохозяйственные и фекальные стоки и т.д. Органические загрязнения попадают в водоем разными путями, главным образом со сточными водами и дождевыми поверхностными смывами с почвы.

Интегральное содержание органических веществ оценивается по показателям БПК и ХПК.

Биохимическое и химическое потребление кислорода — БПК и ХПК , принятые в гигиене, гидрохимии и экологии, интегральные показатели, характеризующие содержание в воде нестабильных (неконсервативных) органических веществ, трансформирующихся в воде путем гидролиза, окисления и других процессов. Содержание таких веществ выражается через количество кислорода, необходимое для их окисления в резко кислой среде перманганатом (БПК) или бихроматом (ХПК). К таким веществам относят алифатические кислоты, некоторые эфиры, амины, спирты.

Читайте также:  Анализы на определение подтекания околоплодных вод

В естественных условиях находящиеся в воде органические вещества разрушаются бактериями, претерпевая аэробное биохимическое окисление с образованием CO2. При этом на окисление потребляется растворенный в воде кислород (РК). В водоемах с большим содержанием органических веществ большая часть кислорода потребляется на биохимическое окисление, лишая, таким образом, кислорода другие организмы. Поэтому увеличивается количество организмов, более устойчивых к низкому содержанию кислорода, исчезают кислородолюбивые виды. Таким образом, в процессе биохимического окисления органических веществ в воде происходит уменьшение концентрации кислорода, и эта убыль косвенно является мерой содержания в воде органических веществ. Соответствующий показатель качества воды, характеризующий суммарное содержание в воде органических веществ, называется биохимическим потреблением кислорода (БПК).

БПК — это количество кислорода в (мг), требуемое для окисления находящихся в 1 литре воды органических вещества в аэробных условиях, без доступа света, при 20 °С, за определённый период в результате протекающих в воде биохимических процессов.

Определение БПК основано на измерении концентрации РК в пробе воды непосредственно после отбора, а также после инкубации пробы. Инкубацию пробы проводят без доступа воздуха в кислородной склянке (то есть в той же посуде, где определяется значение РК) в течение времени, необходимого для протекания реакции биохимического окисления. Так как скорость биохимической реакции зависит от температуры, инкубацию проводят в режиме постоянной температуры (20±1) °С, причем от точности поддержания значения температуры зависит точность выполнения анализа на БПК. Обычно определяют БПК за 5 суток инкубации (БПК5). Может определяться также БПК10 за 10 суток и БПКполн. за 20 суток (при этом окисляется около 90 % и 99 % органических веществ соответственно). Ориентировочно принимают, что БПК5 составляет около 70 % БПКполн., но может составлять от 10 % до 90 % в зависимости от окисляющегося вещества. Погрешность в определении БПК может внести также освещение пробы, влияющее на жизнедеятельность микроорганизмов и способное в некоторых случаях вызывать фотохимическое окисление. Поэтому инкубацию пробы проводят без доступа света.

В поверхностных водах величина БПК5 колеблется в пределах от 0,5 до 5,0 мг/л; она подвержена сезонным и суточным изменениям, которые, в основном, зависят от изменения температуры и от физиологической и биохимической активности микроорганизмов. Весьма значительны изменения БПК5 природных водоемов при загрязнении сточными водами.

Таблица 1. Величины БПК5 в водоемах с различной степенью загрязненности

Степень загрязнения (классы водоемов) БПК5, мг O2/дм 3
Очень чистые 0,5–1,0
Чистые 1,1–1,9
Умеренно загрязненные 2,0–2,9
Загрязненные 3,0–3,9
Грязные 4,0–10,0
Очень грязные 10,0

Норматив на БПКполн. не должен превышать: для водоемов хозяйственно-питьевого водопользования — 3 мг/л для водоемов культурно-бытового водопользования — 6 мг/л. Соответственно можно оценить предельно-допустимые значения БПК5 для тех же водоемов, равные 2 мг/л и 4 мг/л.

Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях, называется окисляемостью или ХПК. Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая.

Являясь интегральным (суммарным) показате­лем, ХПК в настоящее время считается одним из наиболее инфор­мативных показателей антропогенного загрязнения вод. Этот по­казатель, в том или ином варианте, используется повсеместно при контроле качества природных вод, исследовании сточных вод и др. Результаты определения окисляемости выражаются в милли­граммах потребленного кислорода на 1 литр воды (мгО/л).

В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает как характеристика, отражающая режим поступления сточных вод. Для природных малозагрязненных вод рекомендовано определять перманганатную окисляемость; в более загрязненных водах определяют, как правило, бихроматную окисляемость (ХПК).

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования величина ХПК не должна превышать 15 мг О/дм 3 ; в зонах рекреации в водных объектах допускается величина ХПК до 30 мг О/дм 3 .

В программах мониторинга ХПК используется в качестве меры содержания органического вещества в пробе, которое подвержено окислению сильным химическим окислителем. ХПК применяют для характеристики состояния водотоков и водоемов, поступления бытовых и промышленных сточных вод (в том числе, и степени их очистки), а также поверхностного стока.

Таблица 2. Величины ХПК в водоемах с различной степенью загрязненности

Степень загрязнения (классы водоемов) ХПК, мг О/дм 3
Очень чистые 1
Чистые 2
Умеренно загрязненные 3
Загрязненные 4
Грязные 5–15
Очень грязные >15

Однако не все органические вещества в равной степени уча­ствуют в реакции химического окисления. Так же, как и при биохи­мическом окислении, при химическом окислении можно выделить группы легко, нормально и тяжело окисляющихся органических веществ. Поэтому всегда существует разница между теоретически возможным и практически достигаемым значениями ХПК. Мешают точному определению ХПК в первую очередь, хлорид-анионы, как правило, содержащиеся в природных и, особенно, в сточных водах. Определению также мешают нитриты, часто присутствующие в водах, прошедших биохимическую очистку.

Нормативы на ХПК в воде водоемов: для питьевой воды – 5,0 мгО/л (для перманганатной окисляемости), ХПК – 15 мгО/л.

источник

Одним из основных методов решения вопросов, связанных с рациональным использованием подземных вод, является применение компьютерных информационных систем, которые позволяют оценить качество природных вод, используемых в различных целях, наличие месторождений минеральных и питьевых вод и выдать рекомендации по их рациональному использованию. Такие системы необходимы административным и планирующим организациям, предпринимателям и водопользователям, природоохранным органам, исследователям, занимающимся проблемами гидрологии, гидрогеологии, экологии, медицинской географии, рационального использования ресурсов.

Данные информационные (экспертные) системы представляют собой программы управления базами данных, которые, помимо представления информации, позволяют проводить численное прогнозное моделирование (вычислительный эксперимент) на основе введенных в компьютер данных о том или ином варианте водопользования. Однако для достоверного решения задач управления водными ресурсами на практике требуется системный подход, учитывающий все необходимые стороны изучаемого процесса. В настоящее время внедрение системного анализа на основе математического моделирования в практику принятия решений часто сдерживается не отсутствием математических методов и соответствующего компьютерного обеспечения, а недостаточной информированностью лиц, принимающих подобное решение.

Преодоление подобных трудностей и является основной задачей при внедрении экспертных компьютерных систем, позволяющих оперативно решать часто встречающиеся задачи по управлению природными водными ресурсами, такие, как:

1) извлечение (добыча) воды из водоносного горизонта;

2) естественное и искусственное пополнение запасов подземных вод;

3) химический состав и загрязнение подземных вод;

4) совместное управление запасами подземных и поверхностных вод;

5) влияние подземных вод на инженерные сооружения;

6) различные комбинации перечисленных проблем.

Таким образом, учитываются как количественная (объем водоотбора), так и качественная (распространение загрязнений) стороны водопользования.

Кроме того, информационные системы предоставляют возможность получить статистическую информацию о состоянии природных вод, эксплуатационных запасах, имеющихся загрязнениях, экологическом качестве природных вод, произвести оценку защищенности подземных вод.

Зная потребность в воде по районам и отраслям, можно дифференцировать ее потребление по качеству: на технические и производственные нужды забирать воду худшего качества, хорошую же воду использовать только для питьевого водоснабжения. Но административным указом и штрафами, как показывает опыт, потребителя не заставить регламентировать водоотбор. Одним из наиболее эффективных инструментов регулирования интенсивности антропогенного воздействия на подземные воды является экономическое стимулирование рационального водоотбора и экологически безопасного размещения производства.

Известно, что население закономерно реагирует на изменение цен на воду. Поэтому отдельной и весьма актуальной задачей является установление оптимальных размеров водопользовательских платежей. Стоимость природных вод должна способствовать внедрению оптимальной схемы водопользования в регионе. Необходимо также анализировать альтернативные пути использования ресурсов подземных вод в качестве лечебных, промышленных, мелиоративных.

Рациональное использование подземных вод не только уменьшит отрицательное воздействие на подземную гидросферу, но и даст необходимые средства для проведения различных природоохранных мероприятий.

Основными регламентирующими документами для питьевой воды в России являются ГОСТ 2874-82 «Вода питьевая. Гигиенические требования и контроль за качеством» и ГОСТ 13273-88 «Воды минеральные питьевые лечебные и лечебно-столовые».

ГОСТ 2874-82 распространяется на воду при централизованном использовании местных источников с разводящей сетью труб.

ГОСТ 13273-88 распространяется на минеральные питьевые лечебные и лечебно-столовые воды, которые имеют минерализацию не менее 1 г/л или содержат биологически активные микроэлементы в количестве не ниже бальнеологических норм. Предельно допустимые концентрации большинства элементов и соединений приводятся в ряде нормативных документов, основным из которых являются «Санитарные нормы и предельно допустимые содержания вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования (СНиП)», утвержденные Министерством здравоохранения СССР в 1988 г.

Международные нормы качества питьевой воды разрабатываются Всемирной организацией здравоохранения (ВОЗ).

ВОЗ приняты рекомендуемые величины содержания компонентов, которые обеспечивают качество воды, эстетически приемлемое и не представляющее значительной опасности для здоровья потребителя.

Данные величины служат основой при разработке национальных стандартов, которые при правильном применении должны обеспечивать безопасность питьевого водоснабжения. Во всех странах разрабатываются стандарты качества воды, наиболее близкие к рекомендуемым величинам.

Принятые в России нормы качества питьевой воды очень близки к международным.

Качество питьевой воды должно соответствовать требованиям ГОСТа 2874-82 «Вода питьевая. Гигиенические требования и контроль качества», обеспечиваться на протяжении всей водопроводной сети и не зависеть от вида источника водоснабжения и системы обработки воды.

Действующим ГОСТом 2874-82 предусмотрен контроль органолептических (запаха, привкуса, цветности, мутности), физико-химических (pH, температуры) и бактериологических показателей качества питьевой воды, содержания ряда химических веществ, встречающихся в природных водах или добавляемых к воде в процессе ее обработки, влияющих на органолептические или биологические свойства воды.

Кроме этого, стандартом в ряде случаев предусмотрен контроль содержания химических веществ, нормативные требования к которым приведены в СанПиН 4630-88 «Санитарные требования и нормативы охраны поверхностных вод от загрязнения сточными водами».

Требования ГОСТа, обеспечивающие безопасность питьевой воды в эпидемическом отношении, основываются на косвенных показателях – количестве сапрофитов в 1 мл воды ( 2+ , Mg 2+ , Na + , K + , CI — , SO4 2- и HCO3 — . Концентрации и возможность накопления в подземных водах макрокомпонентов определяются геолого-гидрогеологическими условиями данного района и во многом зависят от минерального состава водовмещающих пород. К микрокомпонентам можно отнести все другие элементы. В настоящее время в воде их обнаружено более 80. Большая часть из них содержится в воде в концентрациях менее 1 мкг/л.

В таблице 30 приведен порядок максимальных концентраций химических элементов, обнаруживаемых в пресных подземных водах.

Из приведенных данных видно, что не любая пресная подземная вода может использоваться для питьевого водоснабжения, так как содержание многих микрокомпонентов в естественных условиях может превышать установленные ПДК (предельно допустимые концентрации).

Отдельной группой среди неорганических веществ следует выделить радиоактивные элементы. Концентрации радиоактивных элементов измеряются не в весовых единицах на объем, а в количестве распадов изотопа за секунду в единице объема. Один распад в секунду в радиологии получил название «беккерель» (Бк). Таким образом, концентрации радиоактивных элементов в воде измеряются в беккерелях на литр. Наиболее распространенными естественными радиоактивными изотопами в природных водах являются изотопы калия с атомным весом 40 (K 40 ), радия (Ra 226 ), радона (Rn 222 ), урана (U 238 ). Как правило, их суммарная концентрация не превышает 10 Бк/л, однако в местах, где в геологическом разрезе встречаются радиоактивные минералы, концентрация естественных радиоэлементов в воде может достигать тысячи и более Бк/л.

Пресные подземные воды всегда содержат то или иное количество органического вещества. В естественных условиях их содержание, как правило, уменьшается с глубиной. Состав органических веществ довольно сложен и может быть представлен всеми классами органических соединений. Наиболее распространены высокомолекулярные кислоты (например, гуминовые кислоты и фульвокислоты). Они постоянно присутствуют в грунтовых водах в количестве от одного до нескольких мг/л. В последние годы в подземных водах обнаружен целый ряд аминокислот, являющихся структурными элементами белков. Кроме того, в пресных подземных водах нефтегазоносных провинций, как правило, присутствуют нафтеновые кислоты и различные углеводородные соединения.

Максимальная концентрация химических элементов в пресных подземных водах

Так как определение отдельных органических соединений в подземных водах затруднено, то, как правило, оценивается их суммарное число. Наиболее распространена суммарная оценка органических веществ с помощью величины окисляемости (мгО/л) количества органических углерода (Cорг) и азота (Nорг). Наиболее точной характеристикой общего содержания органических веществ в подземных водах является количество Cорг.

Из микроорганизмов наибольшее значение в пресных подземных водах имеют бактерии, также встречаются микроскопические водоросли, простейшие и вирусы. Различают аэробные и анаэробные бактерии. Первым для развития требуется кислород, вторые существуют при его отсутствии, восстанавливая сульфаты, нитраты и другие кислородсодержащие вещества. В пресных подземных водах зоны активного водообмена развиваются гнилостные, сапрофитные, денитрифицирующие и клетчатковые бактерии. Общее число бактерий может достигать миллиона на 1 мл воды, микроскопических водорослей – нескольких тысяч на 1 л, простейших – сотен и тысяч на 1 л. Число бактерий в воде зависит главным образом от наличия в ней питательных веществ. Болезнетворные бактерии, для развития которых нужен живой белок, сохраняются в подземных водах, как правило, не более 400 суток.

Основными газами, растворенными в пресных подземных водах, являются кислород, азот, углекислый газ и сероводород. В незначительных количествах встречаются и все остальные газы. По генетическим признакам выделяют газы воздушного происхождения (O2, N2, CO2), биохимические (CO2, H2S, N2) и газы ядерных превращений (He, Ra). Большое негативное влияние на потребительские свойства воды оказывает наличие в ней сероводорода. Это связано не только с органолептическими показателями. Сероводород вызывает интенсивную коррозию металлических обсадных труб и другого оборудования в результате образования гидротроилита (FeS x nH 2 O).

В пресных подземных водах преобладают растворенные формы химических элементов. Коллоидные формы присутствуют в основном в грунтовых водах. Главным образом – это соединения элементов с органическими веществами гумусового ряда, особенно с фульвокислотами, а также полимерные соединения кремнезема. В истинном растворе вещество может находиться в виде простых и комплексных ионов, а также нейтральных ионных пар и молекул.

Практически все пресные подземные воды по своему генезису относятся к инфильтрационным водам, т. е. образовавшимся в результате инфильтрации атмосферных осадков. В дальнейшем химический состав инфильтрационных вод формируется под действием физико-химических и биохимических процессов, приводящих к равновесию между водой, водовмещающими породами, газами и живым веществом. Среди них в первую очередь следует выделить:

1) растворение – процесс перехода вещества из твердой фазы в жидкую, сопровождающийся разрушением кристаллической структуры твердой фазы;

2) выщелачивание – избирательное извлечение какого-либо компонента из твердого вещества, сохраняющего при этом свою кристаллическую структуру;

3) кристаллизацию – процесс выделения твердой фазы из насыщенного раствора;

4) сорбцию и десорбцию – процессы избирательного поглощения или выделения газообразных и растворенных веществ твердой фазой;

5) ионный обмен – процесс эквивалентного обмена веществом между твердой и жидкой фазами;

6) биохимические процессы – процессы, связанные с окислением или восстановлением вещества под действием микроорганизмов.

Все вышеперечисленные процессы взаимосвязаны и в свою очередь определяют характер окислительно-восстановительных реакций, протекающих в самом водном растворе.

Читайте также:  Анализы на подтекание околоплодных вод

В связи с глобальным загрязнением поверхностных вод централизованное водоснабжение все в большей степени ориентируется на подземные воды. Однако в условиях растущей техногенной нагрузки на окружающую среду и подземные воды подвергаются загрязнению. Техногенные компоненты обнаруживаются уже не только в верхних, слабозащищенных, водоносных горизонтах, но и в глубоких артезианских резервуарах. Загрязнение подземных вод влечет за собой целый ряд экологических и социальных последствий. Требует серьезного внимания распространение загрязняющих компонентов из подземных вод по пищевым цепям. В этом случае токсические элементы попадают в организм человека не только с питьевой водой, но и через растительную и животную пищу. Даже если население не пьет загрязненную воду, а только использует ее для приготовления пищи, водопоя скота и полива растений, это может отразиться на здоровье не только нынешнего, но и последующих поколений. Своевременный, оперативный и качественный контроль химического состава воды, используемой для хозяйственно-бытовых целей, является одним из условий улучшения состояния здоровья населения. Проблема качества подземных вод в настоящее время превратилась в одну из самых актуальных проблем человечества.

Пресные подземные воды используются как для питьевого водоснабжения, так и в промышленности, сельском хозяйстве, на транспорте – практически во всех видах человеческой деятельности. В зависимости от целей использования воды требования к ее химическому составу могут быть различными. К воде, применяемой в различных отраслях промышленности, предъявляются требования в соответствии со спецификой данного вида производства. Например, в сахарном производстве необходимо, чтобы вода имела минимальную минерализацию, так как присутствие любых солей затрудняет варку сахара. В пивоваренном производстве требуется отсутствие в воде CaSO4, препятствующего брожению солода. В воде, применяемой для винокуренного производства, нежелательно присутствие хлористого кальция и магния, которые задерживают развитие дрожжей. В текстильной и бумажной промышленности не допускается присутствие в воде железа, марганца и кремниевой кислоты. Производство искусственного волокна требует малой окисляемости воды (менее 2 мг/л) и минимальной жесткости (до 0,64 мгэкв/л). Такие же требования по жесткости предъявляются к воде и в энергетической промышленности. К воде, используемой для хозяйственно-питьевого водоснабжения, предъявляемые требования можно свести к двум основным условиям – безвредности ее для организма и удовлетворительному качеству по вкусу, запаху, прозрачности и другим внешним свойствам.

источник

Выпускается в 7-ми различных вариантах исполнения — ручное или автоматическое управление, корпус из армированного пластика или нержавейки, есть вариант нержавеющего корпуса с нижним сливом для простоты консервации на зиму. Посмотреть все варианты исполнения фильтров

Анализ воды из скважины, колодца или водопровода сделать в лаборатории Санкт-Петербурге, стоимость экспертизы питьевой воды, где сделать, цена.

Согласно санитарным нормам питьевая вода должна быть безопасна в эпидемиологическом и радиационном отношении, безвредна по химическому составу, и иметь приятные органолептические свойства. Поэтому, целесообразно проверить качество воды из вашего источника — сделать анализ качества воды на соответствие требованиям санитарных норм и правил на питьевую воду. Для выбора системы очистки воды из скважины или колодца важно проверить воду не менее, чем по 15-ти основным показателям.

Требования (нормативы), которым должна соответствовать вода, изложены в санитарных нормах и правилах РФ (СанПиН) и международных нормативах Всемирной организации здравоохранения (ВОЗ), основные положения которых приведены в представленной ниже таблице. И так, рассмотрим основные показатели качества воды.

К органолептическим свойствам воды относят следующие характеристики: запах, привкус, цветность и мутность.

Запах и привкус воды объясняются присутствием в ней естественных или искусственных загрязнений. Природа запахов и привкусов очень различна, и может быть обусловлена как наличием в воде определенных растворенных солей, так и содержанием различных химических и органических соединений.

Кроме того, следует отметить, что запах и привкус может появиться в воде на нескольких этапах: из исходной природной воды, в процессе водоподготовки (в том числе в водонагревателе), при транспортировке по трубопроводам. Правильное определение источника запахов и привкусов — залог успешности их устранения.

Величина (интенсивность) запаха определяется по 6-ти бальной шкале. Например, запах тухлых яиц обусловлен наличием в воде сероводорода (Н2S), а также присутствием сульфатредуцирующих бактерий, вырабатывающих этот газ, а гнилостный запах обусловлен присутствием в воде природных органических соединений. Химические запахи (например, бензиновый, фенольный) указывают на антропогенный характер загрязнений.

Вкус воды обусловлен растворенными в воде природными веществами, каждое из которых придает воде определенный привкус:

  • солоноватый — хлоридом натрия;
  • горьковатый — сульфатом магния;
  • кисловатый — растворенным углекислым газом или растворенными кислотами.

Приятный или неприятный вкус воды обеспечивается как наличием, так и концентрацией находящихся в ней примесей.

Под цветностью понимается естественная окраска природной и питьевой воды. Цветность косвенно характеризует наличие в воде некоторых органических и неорганических растворенных веществ и является одним из важных показателей, позволяющих правильно выбрать систему водоочистки.

Цветность воды определяется сравнением с растворами специально приготовленной шкалы цветности (на основе определенных концентраций хромово-кобальтового раствора) и выражается в градусах цветности этой шкалы. По требованиям к питьевой воде данный показатель не должен превышать 20 градусов.

Главными «виновниками» цветности воды, являются вымываемые из почвы органические вещества (в основном гуминовые и фульвовые кислоты). Повышенная цветность воды также может свидетельствовать о возможной ее техногенной загрязненности. Наличие гуминовых кислот может приводить к определенной биологической активности воды, повышает проницаемость в кишечнике ионов металлов: железа, марганца и др.

Показатель, характеризующий наличие в воде взвешенных веществ неорганического происхождения (например, карбонаты различных металлов, гидроокиси железа), органического происхождения (коллоидное железо и т.п.), минерального происхождения (песка, глины, ила), а также микробиологического происхождения (бактерио-, фито- или зоопланктона). Мутность выражается в мг/дм3.

Мутность также может быть обусловлена наличием на поверхности и внутри взвешенных частиц различных микроорганизмов, которые защищают их как от химического, так и от ультрафиолетового обеззараживания воды. Поэтому снижение мутности в процессе очистки воды способствует также значительному снижению уровня микробиологического загрязнения.

Химические показатели характеризуют химический состав воды. К данным показателям относят водородный показатель воды рН, жесткость и щелочность, минерализацию (сухой остаток), анионный и катионный состав (неорганические вещества), содержание органических веществ.

Показатель, характеризующий интегральную загрязненность воды, т.е. содержание в воде окисляющихся органических и неорганических примесей, которые в определенных условиях способны окисляться сильным химическим окислителем. К упомянутым выше загрязнителям относятся в основном органические вещества — для воды из поверхностных источников, и неорганические ионы (Fe 2+ ,Mn 2+ , и т.п.) — для воды из артезианских скважин.

Различают несколько видов окисляемости воды: перманганатную (ПМО), бихроматную, иодатную. Как видно из названий — при этом для проведения химического анализа воды используются соответствующие окислители. Показатель окисляемости — мгО2/л. Это количество миллиграмм кислорода, эквивалентное количеству реагента (окислителя), пошедшего на окисление веществ, содержащихся в 1 л воды.

Величина бихроматной окисляемости обычно используется для определения такого важного показателя воды как ХПК — химическая потребность в кислороде. ХПК используется для характеристики загрязненных природных поверхностных вод, а также для сточных вод. Этот показатель свидетельствует о степени биогенной загрязненности воды.

Бихроматная окисляемость позволяет получить значение наиболее полно характеризующее присутствие органических загрязнителей, за исключением таких химически инертных веществ как бензин, керосин, бензол, толуол и т.п. Считается, что при определении этого показателя окисляются до 90% органических примесей.

На практике для характеристики питьевой воды обычно используется показатель перманганатная окисляемость (ПМО) или перманганатный индекс (ПМИ). Чем больше значение ПМО, тем выше концентрация загрязнителей. Отметим, что величина перманганатной окисляемости ниже, чем значение, полученное для бихроматной примерно в 3 раза.

Водородный показатель или рН представляет собой логарифм концентрации ионов водорода, взятый с обратным знаком, т.е. pH = -logH + 1. Величина рН определяется количественным соотношением в воде ионов Н + и ОН — , образующихся при диссоциации воды. Если ионы ОН — в воде преобладают, что соответствует значению рН>7, то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н + , что соответствует рН + >+ HCO3

В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и многие другие ее характеристики.

Обычно уровень рН для воды, используемой в хозяйственных и питьевых целях, нормируется в пределах интервала 6-9.

Эта величина характеризует количество растворенных неорганических и органических веществ. В первую очередь это сказывается на органолептических свойствах воды. Установлено, что до 1000 мг/л вода может быть использована для водопотребления.

Величина сухого остатка влияет на вкусовые качества питьевой воды. Человек может без риска для своего здоровья употреблять воду с сухим остатком до 1000 мг/л. При большем значении вкус воды чаще всего становится неприятным горько-соленым. Следует также отметить, что у воды с низким уровнем сухого остатка вкус может отсутствовать и употреблять ее тоже не очень приятно.

Этот показатель характеризует свойство воды, связанное с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния (так называемых «солей жёсткости»).

Вода с большим содержанием таких солей называется жёсткой, с малым содержанием — мягкой.

Численное выражение жёсткости воды — это концентрация в ней катионов кальция и магния. По ГОСТ Р 52029-2003 жесткость выражается в градусах жесткости (°Ж), что соответствует концентрации щелочноземельного элемента, численно равной 1/2 его моля, выраженной в мг/дм³ (г/м³) (1 °Ж = 1 мг-экв/л).

Различают временную (карбонатную) жёсткость, обусловленную гидрокарбонатами кальция и магния (катионов Ca 2+ и Mg 2+ и анионов HCO3).

При кипячении воды гидрокарбонатные анионы вступают в реакцию с этими катионами и образуют с ними малорастворимые карбонатные соли, которые осаждаются на нагревательных элементах в виде накипи белого цвета, называемой в простонародии известью.

Временную жесткость можно устранить кипячением — отсюда и ее название.

Постоянная (некарбонатная) жесткость воды вызвана присутствием солей, не выпадающих в осадок при кипячении. В основном, это сульфаты и хлориды кальция и магния (CaSO4, CaCl2, MgSO4, MgCl2). Следует отметить, что именно присутствие соли CaSO4, растворимость которой с повышением температуры воды понижается, приводит к образованию плотной накипи.

Вода с высокой жесткостью наносит большой вред бытовым электронагревательным приборам, образуя накипь и тем самым вызывая их перегрев и разрушение, образует неприятные матовые налеты на сантехнике; в ней плохо пенятся мыло и шампуни, а поэтому увеличивается их расход.

Жесткая вода сушит кожу и вредит волосам; отрицательно влияет на качество приготовленной пищи, полезные вещества которой могут образовывать с солями жесткости плохо усваиваемые организмом соединения.

Жесткая вода вредна и для организма человека: увеличивается риск развития мочекаменной болезни, нарушается водно-солевой обмен.

Иногда в качестве характеристики встречается показатель «полная жесткость» воды, равный сумме постоянной и переменной (карбонатной) жесткости.

Его токсичное влияние на организм человека незначительно, но все же употребление питьевой воды с повышенным содержанием железа может привести к отложению его соединений в органах и тканях человека.

В общем случае в воде железо может встречаться в свободной форме в виде двух- и трехвалентных ионов:

Fe 2+ , как правило, в артезианских скважинах при отсутствии растворенного кислорода. Вода с повышенным содержанием такого железа может быть первоначально прозрачна (Fe 2+ ), но при отстаивании или нагреве приобретает желтовато-бурую окраску. Это происходит в результате окисления растворенного железа до Fe 3+ с образованием нерастворимых солей трехвалентного железа:

Fe 3+ — содержится в поверхностных источниках водоснабжения в так называемом окисленном состоянии, и, как правило, в нерастворимом виде.

Существует еще одна форма присутствия железа в природной воде — это органическое железо. Оно встречается в воде в разных формах и в составе различных комплексных соединений трехвалентных ионов железа с растворенными неорганическими и органическими соединениями, и, главным образом, с солями гуминовых кислот — гуматами. Повышенное содержание такого железа наблюдается в болотных водах, и вода имеет бурое или коричневатое окрашивание.

Органические соединения железа, как правило, растворимы или имеют коллоидную структуру (коллоидное железо) и очень трудно поддаются удалению. Коллоидные частицы из-за своего малого размера и высокого поверхностного заряда, который не позволяет частицам сближаться и препятствует их укрупнению, предотвращая образование конгломератов, создают в воде суспензии и не осаждаются, находясь во взвешенном состоянии и, тем самым, обуславливают мутность исходной воды.

На вкус такая вода имеет характерный неприятный металлический привкус, образует ржавые подтеки. Присутствие в воде коллоидного железа способствует развитию железистых бактерий, что еще больше ухудшает вкусовые качества воды и вызывает отложение осадка на внутренней поверхности трубопроводов и санитарно-технического оборудования вплоть до их полного засорения.

Марганец входит в состав многих ферментов, гормонов и витаминов, которые влияют на процессы роста, кровообразование, формирование иммунитета. Однако, повышенное его содержание в воде может оказывать токсический и мутагенный эффект на организм человека.

Вода с повышенным содержанием марганца обладает металлическим привкусом. Его присутствие приводит к значительно более быстрому износу бытовой техники и систем отопления, поскольку он способен накапливаться в виде черного налета на внутренних поверхностях труб с последующим отслаиванием и образованием взвешенного в воде осадка черного цвета. Кроме того, повышенное содержание марганца приводит к образованию черных пятен на посуде, белом белье при стирке, окрашивает ногти и зубы в серовато-черный цвет.

Также существуют «марганцевые» бактерии, которые, как и «железистые» бактерии, могут развиваться в такой воде и становиться причиной зарастания и закупорки трубопроводов.

Показатель, чаще всего характеризующий наличие в воде органических веществ животного или промышленного происхождения. Источниками азота аммонийного являются: животноводческие фермы, хозяйственно бытовые сточные воды, сточные воды с сельскохозяйственных угодий, предприятий пищевой и химической промышленности.

Указанные соединения являются главным образом продуктами распада мочевины и белков. Лимитирующая величина показателя «аммонийный азот» — токсикологическая. По нормам СанПиН содержание в воде аммония не должно превышать 2,0 мг/л.

К микробиологическим показателям безопасности питьевой воды относят общее микробное число, содержание бактерий группы кишечной палочки (общие колиформные бактерии и колифаги), споры сульфитредуцирующих клостридий и цисты лямблий.

В зависимости от характеристик водного источника с целью безопасности воды могут проверяться и такие показатели, как паразитологические и радиологические.

Анализ качества питьевой воды производится исходя из норм показателей по требованиям нормативных документов государств.

В таблице представлены нормативы основных показателей качества по санитарным нормам СанПиН Российской Федерации, указанные в столбце 3 — СанПиН 2.1.4.1074-01 «Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения» и столбце 4 — СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».

Именно по этим показателям следует проверить качество воды из вашего источника и оценить необходимость установки дополнительного оборудования для очистки воды.

Для сравнения приведены нормативы Всемирной организации здравоохранения (ВОЗ).

источник