Меню Рубрики

Анализ взвешенных веществ в сточных водах

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ МАССОВЫХ КОНЦЕНТРАЦИЙ ВЗВЕШЕННЫХ И ПРОКАЛЕННЫХ ВЗВЕШЕННЫХ ВЕЩЕСТВ В ПРОБАХ ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОД ГРАВИМЕТРИЧЕСКИМ МЕТОДОМ

И.о. директора ФГБУ «Федеральный центр анализа и оценки техногенного воздействия» А.Г.Кудрявцев 15 декабря 2017 г.

Методика допущена для целей государственного экологического контроля

Методика измерений аттестована Центром метрологии и сертификации «СЕРТИМЕТ» Уральского отделения РАН (Аттестат аккредитации N RA.RU.310657 от 12.05.2015), рассмотрена и одобрена федеральным государственным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия» (ФГБУ «ФЦАО»).

Настоящее издание методики введено в действие взамен ПНД Ф предыдущего издания и действует со 2 июля 2018 года до выхода нового издания.

Методика зарегистрирована в Федеральном информационном фонде по обеспечению единства измерений. Информация о методике представлена на сайтах www.fundmetrology.ru в разделе «Сведения об аттестованных методиках (методах) измерений» и www.rossalab.ru в разделе «Методики анализа».

Заместитель директора ФГБУ «ФЦАО»

Разработчик:

© ЗАО «РОСА», 2009

Адрес: 119297, г.Москва, ул.Родниковая, 7, стр.35

Телефон: (495) 502-44-22, телефон/факс: (495) 439-52-13

http://www.rossalab.ru

e-mail:quality@rossalab.ru

1 ОБЩИЕ ПОЛОЖЕНИЯ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий нормативный документ устанавливает методику измерений массовых концентраций взвешенных и прокаленных взвешенных веществ гравиметрическим методом.

Взвешенные вещества — это вещества, выделенные из воды путем фильтрования или центрифугирования (ГОСТ 30813).

В настоящей методике взвешенные вещества выделяют фильтрованием после предварительной гомогенизации пробы. Для фильтрования условно чистых проб (питьевых и природных вод) рекомендуется использовать мембранный фильтр, а для фильтрования сточных вод — бумажный фильтр.

Взвешенные вещества могут содержать минеральные вещества (типично для природных и промышленных сточных вод), органические вещества (типично для сточных вод пищевой промышленности) и смесь минеральных и органических веществ (типично для бытовых сточных водах).

Если для решения технологических задач требуется знать содержание органической и/или минеральной части взвешенных веществ, определяют «взвешенные вещества прокаленные». Для этого фильтр прокаливают при температуре выше 500°С. В результате прокаливания органические вещества сгорают, а минеральные остаются. Разность между взвешенными веществами и взвешенными веществами прокаленными позволяет ориентировочно оценить содержание органических взвешенных веществ.

При прокаливании помимо органических веществ частично сгорают неорганические компоненты, удаляется кристаллизационная и гигроскопическая вода, выделяется диоксид углерода из карбонатов кальция и магния, хлороводород, образующийся при гидролизе хлорида магния, и оксиды азота, образующиеся при восстановлении нитратов.

Методика распространяется на следующие объекты анализа: воды питьевые (в том числе расфасованные в емкости), воды природные (поверхностные, в том числе морские и подземные, в том числе источники водоснабжения), воды сточные (производственные, хозяйственно-бытовые, ливневые и очищенные).

Примечание — Допускается применение методики для анализа вод бассейнов и аквапарков, талых вод, технических вод (открытых и закрытых систем технологического водоснабжения, восстановленная), льда и атмосферных осадков (дождь, снег, град).

Диапазон измерений массовых концентраций взвешенных и прокаленных взвешенных веществ в питьевых и природных водах составляет от 0,5 до 5000 мг/дм , для сточных вод — от 0,5 до 50000 мг/дм .

Продолжительность анализа одной пробы на определение взвешенных веществ 14 часов, серии из 10 проб — 15 часов.

Продолжительность анализа одной пробы на определение прокаленных взвешенных веществ 17 часов, серии из 10 проб — 18 часов.

Блок-схема проведения анализа приведена в приложении А.

Определению мешают значительные количества масел и жиров, поэтому при отборе пробы должно быть исключено попадание в нее поверхностной пленки или кусочков жира. Если все-таки в пробе, доставленной в лабораторию, на поверхности присутствуют видимые жир или масло, то перед проведением анализа их удаляют. Жир с поверхности отобранной пробы снимают ложкой или шпателем, а масло кусочком фильтровальной бумаги.

Удаляют так же загрязнения в виде единичных включений, например, мелкие палочки, траву и т.п.

Содержание прокаленных взвешенных веществ дает ориентировочное представление о минеральном составе взвеси в воде, а потери при прокаливании, т.е. разность между массой взвешенных и прокаленных взвешенных веществ — о количестве органических соединений во взвеси.

ГОСТ 12.0.004-2015 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения.

ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования.

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности.

ГОСТ 12.4.009-83 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание.

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков.

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия.

ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия.

ГОСТ 4147-74 Реактивы. Железо (III) хлорид 6-водный. Технические условия.

ГОСТ 6709-72 Вода дистиллированная. Технические условия.

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия.

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры.

ГОСТ 30813-2002 Вода и водоподготовка. Термины и определения.

ГОСТ 31861-2012 Вода. Общие требования к отбору проб.

ГОСТ Р 12.1.019-2009. Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты.

ГОСТ Р ИСО 5725-6-2002. Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике.

ГОСТ Р ИСО 7870-2-2015 Статистические методы. Контрольные карты. Часть 2. Контрольные карты Шухарта.

ГОСТ OIML R 76-1-2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р 52501-2005 Вода для лабораторного анализа. Технические условия.

ГОСТ Р 53228-2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р 56237-2014 Вода питьевая. Отбор проб на станциях водоподготовки и в трубопроводных распределительных системах.

ТУ 6-09-1678-86* Фильтры обеззоленные (белая, красная, синяя ленты).
________________
* ТУ, упомянутые здесь и далее по тексту, не приводятся. За дополнительной информацией обратитесь по ссылке. — Примечание изготовителя базы данных.

Примечание — Если ссылочный стандарт заменен (изменен), то следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

Настоящая методика обеспечивает получение результатов измерений с погрешностью, не превышающей значений, приведенных в таблице 1.

Таблица 1 — Значения показателей повторяемости, воспроизводимости и точности

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), , %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), , %

Показатель точности (границы относительной погрешности при доверительной вероятности 0,95), , %

источник

Наше время создание качественной канализационной системы – это первоочередная задача при постройке абсолютно любого дома. Причем важной ее частью являются очистительные сооружения. Ведь сейчас острой проблемой стало загрязнение окружающей среды, с которым человечество борется всеми силами. Поэтому в нашей стране слив стоков без предварительной очистки запрещен и карается законом. Главным элементом, загрязняющим канализационные воды, являются взвешенные частицы. Именно на их удаление в первую очередь нацелены очистительные системы в виде септиков.

Взвешенными частицами называют те вещества, которые при очистке остаются на мембранах и фильтрах. Обычно они не превышают размер 4 мм. Именно на них нацелена очистка воды.

Неочищенные сточные воду могут нанести вред экологии

Взвешенные вещества встречаются не только в сточных водах, они также присутствуют в жидкости из скважин и колодцев. Поэтому природная вода тоже нуждается в очистке.

Это загрязнение может иметь разные размеры. Также взвешенные частицы делятся на типы по своему составу.

Типы взвешенных веществ:

  1. Минеральные взвешенные частицы наиболее часто встречаются в колодцах и скважинах. Такое определение подразумевает под собой содержащиеся в воде природные частицы. К ним относятся глина, песок, мел, аммонийный элемент и т. д.
  2. Химические взвешенные частицы наиболее опасны. Они могут встречаться в промышленных стоках и в источниках, находящихся рядом с заводами. Именно здесь подразумевается удаление фосфатов и других опасных соединений.
  3. Биологические взвешенные частицы. Они состоят из смеси белков, углеводов, жиров и т. д. При длительном отсутствии кислорода они начинают гнить.

Если говорить о бытовых хозяйственных взвешенных частицах, то они состоят преимущественно из минеральных и органических веществ. Однако там могут присутствовать и химические соединения, например, от средств для мытья посуды. Вещество также может содержать азот и фосфор.

Взвешенные частицы – это вещества, содержащиеся в воде и оседающие на фильтре. Такое определение вы можете увидеть в любом справочнике. Однако если говорить о них более подробно, то описание не уместится в одно предложение.

Очистка взвешенных веществ наиболее проста в исполнении. Намного сложнее удалить из воды микроэлементы. Однако от сточных вод этого и не требуется.

Чтобы изучить подробнее сточные воды, нужно знать, на какие характеристики нужно обращать внимание:

  1. Плотность взвешенных частиц – их главный параметр. Неорганические соединения обычно плотнее воды, поэтому они быстро оседают. Однако органические соединения зачастую имеют меньшую плотность, поэтому они всплывают.
  2. Концентрация взвешенных веществ. Этот параметр можно определить путем взвешивания фильтра, на котором они осели, определением мутности и прозрачности воды.
  3. Форма частиц. Для этого они сравниваются со сферой.
  4. Размер частиц. Существуют мелкодисперсные и крупнодисперсные вещества. Этот параметр выясняется путем просеивания высушенного осадка через сито с отверстиями разного размера.

На каждый из этих показателей указывает свой признак. Однако если планируется просто установка канализационной системы, то все эти параметры знать незачем. Нужен лишь общий показатель состава взвешенных веществ. То есть необходимо определить процент органики, минералов и химии.

Очень важно ответственно подойти к очищению сточных вод. Ведь от этого зависит состояние экологии. Кроме того, пренебрежение этим этапом карается законом и предполагает наказание в виде штрафа.

Очистка сточных и питьевых вод осуществляется разными способами. В случае с питьевой водой удаление частиц и микроэлементов должно быть более качественным и безопасным.

Очистка сточных вод от взвеси может осуществляться разными способами:

  1. Самым простым и популярным методом для удаления крупных частиц является отстаивание. Этот способ работает на принципах силы тяжести. Частицы, которые плотнее воды, выпадают в осадок.
  2. Преаэрация – это насыщение кислородом воды в отстойнике. Этот метод помогает более эффективно пройти отстаивание.
  3. Перемешивание стоков тоже очень эффективно. Быстрое вращение заставляет осаждаться более мелкие взвеси, разрушая их структуру.
  4. Введение в резервуар коагулянта – один из самых эффективных методов очистки стоков от взвешенных частиц. Раствор склеивает взвесь. Причем попадаются и мелкие, и крупные частицы. Таким образом, осадок образуется быстрее, и в воде остается меньше веществ.
  5. Флокуляция – это современный и качественный метод очищения стоков. За счет этого все частицы превращаются в большие хлопья. Это позволяет очистить воду практически на 80%.
  6. Фильтрация стоков. Вода без осадков переливается через фильтр в следующий резервуар.
  7. Активный ил. Он представляет сбой комплекс аэробных или анаэробных бактерий. Они растворяют биологические взвешенные вещества. Продукты их жизнедеятельности вновь выпадают в осадок.
  8. На последнем этапе происходит еще одна фильтрация. При этом воды пропускаются либо через искусственный фильтр, либо через систему, созданную из мелкого песка и гравия.

Частицы из сточных вод удаляются с помощью специальных фильтров

Такие методы позволяют шаг за шагом начисто очистить сточные воды. Это позволит без зазрения совести слить их в грунт.

Также стоит выяснить характер загрязнения вод взвешенными частицами. Существует несколько вариантов:

  1. Первым видом взвешенных веществ являются частицы большой величины. У них наиболее большая плотность, поэтому они оседают на дно резервуаров первыми.
  2. Форма взвешенных частиц тоже может отличаться. Существуют элементы, которые не оседают и не всплывают. Некоторые частицы сразу оседают на дно. Другие, напротив, всплывают. В этом случае все зависит от плотности веществ.

Эти параметры очень важны. Ведь именно от них зависит, какой способ очистки подойдет лучше всего. Проверить это можно, отправив стоки в лабораторию. Также можно заглянуть в сточную яму и оценить скорость их оседания.

Взвешенные частицы – это вещества, которые содержатся в воде и имеют достаточно крупные размеры. Именно от них прежде всего избавляются при очистки сточных вод. И лучше всего для этих целей подходят многоуровневые системы.

источник

ПНД Ф 14.1:2.110-97
Количественный химический анализ вод. Методика выполнения измерений содержаний взвешенных веществ и общего содержания примесей в пробах природных и очищенных сточных вод гравиметрическим методом

Купить ПНД Ф 14.1:2.110-97 — бумажный документ с голограммой и синими печатями. подробнее

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль»

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них содержания взвешенных веществ (3 мг/дм3 и более) и общего содержания примесей (10 мг/дм3 и более) гравиметрическим методом.

3 Приписанные характеристики погрешности измерений и ее составляющих

4 Средства измерений, вспомогательные устройства, реактивы и материалы

5 Требования безопасности

6 Требования к квалификации операторов

9 Подготовка к выполнению измерений

11 Обработка результатов измерений

12 Оформление результатов анализа

13 Контроль качества результатов анализа при реализации методики в лаборатории

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ
ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

УТВЕРЖДАЮ
Заместитель Председателя
Государственного комитета РФ
по охране окружающей среды
________ А.А. Соловьянов
«21» марта 1997 г.

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ СОДЕРЖАНИЙ
ВЗВЕШЕННЫХ ВЕЩЕСТВ И ОБЩЕГО СОДЕРЖАНИЯ
ПРИМЕСЕЙ В ПРОБАХ ПРИРОДНЫХ И ОЧИЩЕННЫХ
СТОЧНЫХ ВОД ГРАВИМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного
экологического контроля

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения в них содержания взвешенных веществ (3 мг/дм 3 и более) и общего содержания примесей (10 мг/дм 3 и более) гравиметрическим методом.

Результаты определения могут быть искажены при наличии в пробе значительных количеств масел и жиров, поэтому при отборе пробы должно быть исключено попадание в нее поверхностной пленки.

Гравиметрический метод определения взвешенных веществ основан на выделении их из пробы фильтрованием воды через мембранный фильтр с диаметром пор 0,45 мкм или бумажный фильтр «синяя лента» и взвешивании осадка на фильтре после высушивания его до постоянной массы.

Определение общего содержания примесей (суммы растворенных и взвешенных веществ) осуществляют выпариванием известного объема нефильтрованной анализируемой воды на водяной бане, высушиванием остатка при 105 °С до постоянной массы и его взвешиванием.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Диапазон измерений, значения показателей точности, правильности, повторяемости, воспроизводимости

Диапазон измерений массовой концентрации взвешенных веществ и общего содержания примесей, мг/дм 3

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ± δ, %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), σr, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), σR, %

Общее содержание примесей

Весы лабораторные общего назначения с наибольшим пределом взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Плитки электрические с закрытой спиралью и регулируемой мощностью нагрева

Шкаф сушильный лабораторный с температурой нагрева до 130 °С

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Стаканчики для взвешивания (бюксы)

Тигли фарфоровые с крышками 3 (2)

Чашки биологические (Петри) ЧБН-1-100

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п.п. 4.1 и 4.2.

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм) с диаметром, соответствующим ячейке прибора вакуумного фильтрования или фильтры бумажные обеззоленные «синяя лента»

Используемая для анализа соляная кислота должна быть квалификации ч.д.а. или х.ч.

Допускается использование соляной кислоты, изготовленной по другой нормативно-технической документации, в том числе импортной, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой гравиметрического анализа и изучивший инструкцию по эксплуатации лабораторных весов.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

• температура окружающего воздуха (22 ± 6) °С;

• атмосферное давление (84 — 106) кПа;

• относительная влажность не более 80 % при температуре 25 °С;

• частота переменного тока (50 ± 1) Гц;

• напряжение в сети (220 ± 22) В.

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором соляной кислоты 1:1, а затем дистиллированной водой.

8.3. Пробы воды отбирают в стеклянную посуду. Использование полиэтиленовой посуды допускается, если анализ пробы будет выполнен в тот же день.

Объем отбираемой пробы должен быть не менее 1000 см 3 при содержании взвешенных веществ 3 и не менее 500 см 3 при содержании взвешенных веществ 50 мг/дм 3 и выше.

8.4. Пробы анализируют не позднее, чем через 6 часов после отбора или хранят в холодильнике при t 3 дистиллированной воды. Затем пинцетом вынимают фильтр из воронки, помещают в сложенном виде в маркированный бюкс и высушивают в сушильном шкафу при 105 °С в течение 1 часа. Затем охлаждают бюксы с фильтрами в эксикаторе и, закрыв их крышками, взвешивают на лабораторных весах с точностью до 0,1 мг. Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более 0,5 мг.

Фарфоровые тигли с крышками промывают раствором соляной кислоты (п. 9.4), затем дистиллированной водой, сушат, прокаливают при 600 °С в течение 2 ч, охлаждают в эксикаторе и взвешивают с точностью до 0,1 мг. Повторяют прокаливание до тех пор, пока разница между взвешиваниями будет не более 0,5 мг.

30 см 3 соляной кислоты смешивают с 170 см 3 дистиллированной воды. Раствор хранят в плотно закрытой посуде не более 1 года.

Подготовку прибора для вакуумного фильтрования осуществляют в соответствии с инструкцией по его эксплуатации.

Подготовленный и взвешенный мембранный фильтр пинцетом извлекают из бюкса, зажимают в ячейке прибора вакуумного фильтрования и пропускают отмеренный объем тщательно перемешанной анализируемой пробы воды. Этот объем зависит от содержания взвешенных веществ в воде и подбирается с таким расчетом, чтобы масса осадка взвешенных веществ на фильтре находилась в пределах 3 — 200 мг.

После пропускания нужного объема воды приставший к стенкам ячейки для фильтрования осадок смывают на фильтр порцией фильтрата. Фильтр с осадком дважды промывают дистиллированной водой порциями по 10 см 3 , извлекают пинцетом из устройства для фильтрования, помещают в тот же бюкс, в котором его взвешивали до фильтрования, подсушивают сначала на воздухе, а затем в сушильном шкафу при 105 °С в течение 1 часа, после чего взвешивают.

Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более 0,5 мг при массе осадка до 50 мг и 1 мг при массе более 50 мг.

Взвешенный бумажный фильтр помещают в воронку, смачивают небольшим количеством дистиллированной воды для хорошего прилипания и пропускают отмеренный объем тщательно перемешанной анализируемой пробы воды, подобранный с таким расчетом, чтобы масса осадка взвешенных веществ на фильтре находилась в пределах 3 — 200 мг.

По окончании фильтрования дают воде полностью стечь, затем фильтр с осадком трижды промывают дистиллированной водой порциями по 10 см 3 , осторожно вынимают пинцетом и помещают в тот же бюкс, в котором его взвешивали до фильтрования. Фильтр высушивают 2 ч при 105 °С, охлаждают в эксикаторе и, закрыв бюкс крышкой, взвешивают.

Повторяют процедуру сушки, пока разница между взвешиваниями будет не более 0,5 мг при массе осадка до 50 мг и 1 мг при массе более 50 мг.

Выпарительные чашки помещают на водяную баню, в них постепенно приливают тщательно перемешанный отмеренный объем анализируемой пробы воды, содержащий от 10 до 250 мг примесей, и упаривают до объема 5 — 10 см 3 . Упаренную пробу количественно переносят в тигель (п. 9.3), промывая чашки 2 — 3 раза дистиллированной водой порциями по 4 — 5 см 3 . Упаривают пробу в тигле досуха. После выпаривания дно тигля для удаления накипи обтирают фильтровальной бумагой, смоченной раствором соляной кислоты, и ополаскивают дистиллированной водой.

Если необходимо определить содержание только растворенных веществ (сухой остаток), для упаривания берут отфильтрованную воду.

Тигли переносят в сушильный шкаф, сушат при 105 °С в течение 2 ч, охлаждают в эксикаторе, закрывают крышками и взвешивают.

Повторяют процедуру сушки и взвешивания до тех пор, пока разница между взвешиваниями не превысит 0,5 мг при массе осадка менее 50 мг и 1 мг при массе более 50 мг.

Содержание взвешенных веществ в анализируемой пробе воды X, мг/дм 3 , рассчитывают по формуле:

где mфо — масса бюкса с мембранным или бумажным фильтром с осадком взвешенных веществ, г;

mф — масса бюкса с мембранным или бумажным фильтром без осадка, г;

V — объем профильтрованной пробы воды, дм 3 .

Общее содержание примесей в анализируемой пробе воды х, мг/дм 3 , рассчитывают по формуле:

m2 — масса тигля с высушенным остатком, г;

V — объем пробы воды, взятый для упаривания, дм 3 .

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 2.

При превышении предела воспроизводимости могут быть использованы методы проверки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

Значения предела воспроизводимости при вероятности Р = 0,95

Диапазон измерений массовой концентрации взвешенных веществ и общего содержания примесей, мг/дм 3

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

источник

ПНД Ф 14.1:2:3.110-97 Количественный химический анализ вод. Методика измерений массовой концентрации взвешенных веществ в пробах природных и сточных вод гравиметрическим методом / 14 1 2 3 110 97

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ
В СФЕРЕ ПРИРОДОПОЛЬЗОВАНИЯ

«Федеральный центр анализа и
оценки Техногенного
воздействия»

________________ В.В. Новиков

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ИЗМЕРЕНИЙ
МАССОВОЙ КОНЦЕНТРАЦИИ ВЗВЕШЕННЫХ ВЕЩЕСТВ
В ПРОБАХ ПРИРОДНЫХ И СТОЧНЫХ ВОД
ГРАВИМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного
экологического контроля

Методика измерений аттестована Центром метрологии и сертификации «СЕРТИМЕТ» Уральского отделения РАН (Аттестат аккредитации № RA.RU.310657 от 12.05.2015), рассмотрена и одобрена федеральным государственным бюджетным учреждением «Федеральный центр анализа и оценки техногенного воздействия» (ФГБУ «ФЦАО»).

Настоящее издание методики введено в действие взамен предыдущего издания ПНД Ф 14.1:2.110-97 и действует с 01 декабря 2016 года до выхода нового издания.

Сведения об аттестованной методике измерений переданы в Федеральный информационный фонд по обеспечению единства измерений.

Заместитель директора ФГБУ «ФЦАО»

Разработчик: © ООО НПП «Акватест»

Настоящий нормативный документ устанавливает методику измерений массовой концентрации взвешенных веществ в диапазоне от 3,0 до 5000 мг/дм 3 в пробах природных (поверхностных и подземных) и сточных (производственных, хозяйственно-бытовых, ливневых, очищенных) вод гравиметрическим методом.

Результаты измерений могут быть некорректными при наличии в пробе значительных количеств нефтепродуктов и жиров, поэтому при отборе пробы не допускают попадания в нее поверхностной пленки, а также плавающих частиц (кусочков бумаги, листьев, травы и т.п.).

ГОСТ 12.0.004-90 ССБТ. Организация обучения безопасности труда. Общие положения.

ГОСТ 12.1.004-91 ССБТ. Пожарная безопасность. Общие требования.

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности.

ГОСТ 12.1.009-83 ССБТ. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание.

ГОСТ Р 12.1.019-2009 ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты.

ГОСТ 17.1.5.04-81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия.

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков.

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Технические условия.

ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия.

ГОСТ 3145-84 Часы механические с сигнальным устройством. Общие технические условия

ГОСТ 3956-76 Силикагель технический. Технические условия.

ГОСТ 6709-72 Вода дистиллированная. Технические условия.

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые. Технические условия.

ГОСТ 14919-83 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия.

ГОСТ 21241-89 (СТ СЭВ 5204-85) Пинцеты медицинские. Общие технические требования и методы испытаний.

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы. Основные параметры и размеры.

ГОСТ 27384-2002 Вода. Нормы погрешности измерений показателей

ГОСТ 31861-2012 Вода. Общие требования к отбору проб.

ГОСТ Р 53228-2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ OIML R 76-1-2011 ГСИ Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике.

ТУ 6-09-1678-95 Фильтры обеззоленные (белая, красная, синяя ленты).

ТУ 6-09-4711-81 Реактивы. Кальций хлористый (обезвоженный), чистый. Технические условия.

ТУ 64-1-909-80 Шкафы сушильно-стерилизационные ШСС-80П.

ТУ 2265-011-43153636-2015 Мембрана ацетатцеллюлозная Владипор МФАС-ОС-2-37 мм (0,45 мкм).

ТУ 3616-001-32953279-97 Приборы вакуумного фильтрования ПВФ-35 и ПВФ-47.

Гравиметрический метод измерения массовой концентрации взвешенных веществ основан на выделении их из пробы фильтрованием воды через мембранный фильтр с диаметром пор 0,45 мкм или бумажный фильтр «синяя лента» и взвешивании осадка на фильтре после высушивания его при (105 ± 2) °С до постоянной массы.

4.1 Настоящая методика обеспечивает получение результатов измерений с погрешностями, не превышающими значений, приведённых в таблице 1.

Значения показателя точности методики используют при:

— оформлении результатов измерений, выдаваемых лабораторией;

Читайте также:  Определение химического анализа воды методом

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

Диапазон измерений массовой концентрации взвешенных веществ, мг/дм 3

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ±δ, %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), σ r , %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), σ R , %

Весы лабораторные общего назначения специального или высокого класса точности с наибольшим пределом взвешивания 210 г

Цилиндры мерные исполнения 1, 3 вместимостью 25, 50, 100, 250, 500 и 1000 см 3

Часы механические с сигнальным устройством

Воронки лабораторные диаметром 75, 100 и 150 мм

Стакан В-1, ТХС вместимостью 500 см 3

Стаканчики для взвешивания (бюксы) низкие СН-45/13 или СН-60/14

Чашки биологические низкие (Петри) диаметром 100 — 150 мм

Шкаф сушильный общелабораторного назначения, обеспечивающий поддержание температуры нагрева (105 ± 2)°С

Электроплитка с закрытой спиралью и регулируемой мощностью нагрева

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Склянки для хранения проб вместимостью 500, 1000 и 2000 см 3 или

Бутыли полиэтиленовые (полипропиленовые) для хранения проб вместимостью 500, 1000 и 2000 см 3

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений утвержденных типов и вспомогательных устройств с характеристиками не ниже указанных в п. 5.1.

Фильтры мембранные Владипор типа МФАС-ОС-2 (0,45 мкм) с диаметром 37 или 47 мм или

Фильтры бумажные обеззоленные «синяя лента» диаметром 90 или 110 мм

Хлорид кальция безводный (для эксикатора) или

Допускается использование реактивов и материалов, изготовленных по другой нормативно-технической документации, в том числе импортных, с характеристиками не ниже указанных в п. 5.2.

6.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

6.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ Р 12.1.019.

6.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.

6.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

6.5. Содержание вредных веществ в воздухе помещения лаборатории не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005.

К выполнению измерений и обработке их результатов допускаются лица, имеющие квалификацию техника-химика или лаборанта-химика и владеющие техникой гравиметрического анализа.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

— температура окружающего воздуха (22 ± 6) °С;

— атмосферное давление (84 — 106) кПа;

— относительная влажность не более 80 % при температуре 25 °С;

— частота переменного тока (50 ± 1) Гц;

— напряжение в сети (220 ± 22) В.

9.1. Отбор проб для выполнения измерений массовой концентрации взвешенных веществ производится в соответствии с ГОСТ 31861 и ГОСТ 17.1.5.05.

9.2. Оборудование для отбора проб должно соответствовать ГОСТ 31861, ГОСТ 17.1.5.04 и ГОСТ 17.1.5.05.

9.3. Пробы отбирают в стеклянную или пластиковую посуду, предварительно промытую раствором соляной кислоты, а затем дистиллированной водой. При отборе посуду ополаскивают отбираемой водой.

9.4. Объем отбираемой пробы должен быть не менее 1000 см 3 при массовой концентрации взвешенных веществ ниже 50 мг/дм 3 и не менее 500 см 3 при массовой концентрации взвешенных веществ выше 50 мг/дм 3 .

9.5. Пробу анализируют как можно скорее, но не позднее 24 ч после отбора.

9.6. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— место, дата и время отбора;

— должность, фамилия сотрудника, отбирающего пробу.

Фильтры кипятят в дистиллированной воде 5 — 10 мин. Кипячение проводят 3 раза, сливая после каждого раза воду и заменяя ее свежей. Затем фильтры помещают в чашки Петри, подсушивают на воздухе в течение 25 — 30 мин и сушат в сушильном шкафу при (105 ± 2) °С в течение 1 ч. Чистые фильтры хранят в закрытых чашках Петри.

Непосредственно перед использованием фильтры маркируют карандашом с мягким грифелем, с помощью пинцета помещают в маркированные бюксы, сушат при (105 ± 2) °С в течение 1 ч, охлаждают в эксикаторе и, закрыв бюксы крышками, взвешивают. Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более 0,5 мг.

Бумажные обеззоленные фильтры «синяя лента» маркируют, складывают, помещают в воронки и промывают 150 — 200 см 3 дистиллированной воды. Затем пинцетом вынимают фильтр из воронки, складывают, помещают в маркированные бюксы и высушивают в сушильном шкафу при (105 ± 2) °С в течение 2 ч. Охлаждают бюксы с фильтрами в эксикаторе и, закрыв их крышками, взвешивают. Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более 0,5 мг.

По готовности фильтра выполняют измерения в соответствии с п. 12.2. Если невозможно выполнить измерения сразу после подготовки фильтра, его хранят в закрытом бюксе в эксикаторе или в закрытой емкости, исключающей попадание пыли на поверхность бюкса.

30 см 3 соляной кислоты смешивают с 170 см 3 дистиллированной воды. Раствор хранят в плотно закрытой посуде не более 1 года.

Подготовку прибора для вакуумного фильтрования осуществляют в соответствии с инструкцией по его эксплуатации.

Подготовленный и взвешенный мембранный фильтр пинцетом извлекают из бюкса и закрепляют в ячейке прибора вакуумного фильтрования. Затем анализируемую пробу воды тщательно перемешивают энергичным взбалтыванием и переливают нужный для фильтрования объем в мерный цилиндр. Этот объем зависит от содержания взвешенных веществ в воде и подбирается с таким расчетом, чтобы масса осадка взвешенных веществ на фильтре была не менее 3 мг и не превышала 250 мг. Рекомендуемые объемы пробы для фильтрования приведены в таблице 2.

Предполагаемый диапазон массовой концентрации взвешенных веществ, мг/дм 3

Отбираемый для фильтрования объем пробы воды, см 3

После пропускания пробы воды через фильтр ополаскивают мерный цилиндр дважды 4 — 5 см 3 дистиллированной воды, переносят смывы на фильтр, а приставший к стенкам ячейки для фильтрования осадок дважды смывают фильтратом порциями по 10 см 3 на фильтр.

Фильтр с осадком извлекают пинцетом из устройства для фильтрования, помещают в тот же бюкс, в котором его взвешивали до фильтрования, подсушивают сначала 15 — 20 мин на воздухе, а затем в сушильном шкафу при (105 ± 2) °С в течение 1 ч со снятой крышкой. Крышка бюкса должна находиться возле бюкса. После этого бюкс охлаждают в эксикаторе, закрывают крышкой и взвешивают.

Повторяют процедуру сушки до тех пор, пока разница между взвешиваниями будет не более 0,5 мг при массе осадка до 50 мг и 1 мг при массе более 50 мг.

Использование бумажных фильтров допускается в случае отсутствия в лаборатории устройства для вакуумного фильтрования с мембранным фильтром. В этом случае в рабочем журнале указывается, что результат измерений получен с использованием бумажного фильтра.

Подготовленный бумажный фильтр помещают в воронку, смачивают небольшим количеством дистиллированной воды для хорошего прилипания и пропускают отмеренный объем тщательно перемешанной анализируемой пробы воды, подобранный с таким расчетом, чтобы масса осадка взвешенных веществ на фильтре находилась в пределах от 3 до 250 мг (таблица 2).

После пропускания пробы воды через фильтр ополаскивают мерный цилиндр дважды 4 — 5 см 3 дистиллированной воды, перенося смывы на фильтр. Промывают фильтр 10 см 3 дистиллированной воды, дают воде полностью стечь, пинцетом осторожно вынимают фильтр с осадком и помещают в тот же бюкс, в котором его взвешивали до фильтрования. Фильтр высушивают 2 ч при (105 ± 2) °С, охлаждают в эксикаторе и, закрыв бюкс крышкой, взвешивают.

Повторяют процедуру сушки, пока разница между взвешиваниями будет не более 0,5 мг при массе осадка до 50 мг и 1 мг при массе более 50 мг.

Массовую концентрацию взвешенных веществ в анализируемой пробе воды X, мг/дм 3 , рассчитывают по формуле:

где mфо — масса бюкса с мембранным или бумажным фильтром с осадком взвешенных веществ, г;

mф — масса бюкса с мембранным или бумажным фильтром без осадка, г;

V — объем профильтрованной пробы воды, дм 3 .

Расхождение между результатами измерений, полученными в условиях воспроизводимости, не должно превышать предела воспроизводимости (таблица 3).

Диапазон измерений массовой концентрации взвешенных веществ, мг/дм 3

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных измерений), r,%

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

источник

Озон и другие вторичные вещества

Влияние атмосферного загрязнения на здоровье

1.3.2 Изменения концентраций вредных веществ

Вещество, которое обычно называют «взвешенные вещества» (ВВ), включает много различных компонент. В него входят пыль, зола, сажа, дым, сульфаты, нитраты и другие твердые составляющие. ВВ образуются в результате сгорания всех видов топлива и при производственных процессах. В зависимости от состава выбросов они могут быть и высокотоксичными, и почти безвредными. Они могут иметь как антропогенное, так и естественное происхождение, например, образовываться в результате почвенной эрозии. В данных о выбросах все эти вещества отнесены к твердым.

Этот эффект длился четыре дня, в результате чего около 4000 смертей были выше, чем ожидалось. Фотографии ниже были взяты около полудня, верьте или нет! Слева: водитель автобуса в Лондоне должен пройти перед своим транспортным средством, чтобы вести его через загрязнение воздуха.

Буксир на реке Темзе, возле Тауэрского моста в тяжелом смоге. Тяжелое загрязнение атмосферы в Пикадилли-цирке в Лондоне. Туман на Виктории-стрит, Манчестер. Группа городских рабочих в масках против тяжелого загрязнения воздуха в Лондоне в ноябре. До сих пор атмосферный аэрозоль до конца не до конца понят. Существует еще много информации, касающейся процесса образования этих частиц, их состава и конечного назначения, кроме процессов, с которыми эти частицы проходят до их удаления из атмосферы. Однако, с некоторыми отрицательными экологическими эффектами, которые уже доказаны, лучше всего их избежать.

Взвешенные частицы варьируют в размерах, по составу и природе образования. Воздушные частицы взвешенных веществ больших и малых размеров, включая мелкие частицы, называемые РМ, представляют собой сложное соединение органических и неорганических субстанций. Мелкие частицы делятся на РМ 10 и РМ 2,5 в зависимости от их размера. Крупные частицы обычно содержат почвенные материалы, пыль от дорог и выбросы от промышленности. Мелкие частицы содержат больше кислот, а также сульфаты.

Вместо того, чтобы покупать ароаролиновые ароматизаторы, сделайте свой собственный ароматизатор. В дополнение к предотвращению этих вредных для здоровья частиц, вы гарантируете, что ваш дом имеет более чистый воздух и не содержит токсичных веществ. Другим способом избежать их является использование рулонных дезодорантов вместо этих аэрозолей или распыления. Когда аэрозольные баллоны неизбежны, следите за обновлениями! Они требуют особого ухода как в своей упаковке, так и в отношении их удаления.

Здоровье работника является обязанностью государства, но оно также должно быть предметом озабоченности организаций, то есть компании должны предлагать необходимые условия для сохранения здоровья своих сотрудников, включая предоставление оборудования и оборудования для защиты индивидуальными и тем самым предотвращать развитие определенных заболеваний.

Под влиянием метеорологических условий происходит перемешивание всех составляющих атмосферы, перенос и рассеивание примесей на большие расстояния от города, вымывание их осадками и осаждение в тумане. Атмосфера, как среда обитания различных веществ, не является химически инертной. Это особенно важно подчеркнуть. Непрерывно в ней происходят различные химические процессы, фотохимические реакции, вызванные поступлением солнечной энергии и изменениями температуры воздуха. Одни вещества соединяются с другими, создавая новые вторичные вещества, которые также разлагаются на первичные продукты выбросов или производят новые вещества. Реакций, происходящих в атмосферном воздухе, множество. В работах на эту тему перечисляются сотни реакций, но это не дает полную картину. Воздушный бассейн, как огромный реактор, непрерывно производит одни вещества и возвращает другие. Важно знать, что изучаемые в настоящее время на сети компоненты загрязнений являются лишь небольшой частицей того, что находится в атмосфере и производится в ней.

Фактически, это тип заболеваний, связанных с ингаляцией частиц, присутствующих на рабочем месте, эти частицы являются веществами, взвешенными в воздухе, которые вредны для легких, такими как бескислородная, асбест, цементная пыль, угольная пыль, минеральный тальк, фосфатная порода, оксид железа, оксид олова.

Хотя случаи бессимптомного пневмокониоза являются общими, большинство из них представляют собой симптомы, которые включают сухой кашель, одышку в сундуке, ощущение одышки, более того, в более тяжелых случаях он все еще может представлять собой крайние трудности в дыхании и кровообращении, вызывая голубоватую пигментацию в губах и гвоздях, и, наконец, в случаях еще более интенсивной тяжести возникает отек в ногах и ногах, что указывает на изменение сердца.

До настоящего времени в России измерения концентраций РМ не проводились и для них не установлены значения ПДК. Их вероятные концентрации можно оценить из соотношений между взвешенными веществами, называемыми TSP, и мелкими частицами РМ, полученными в различных странах.

В США на основании результатов наблюдений установлена совершенно четкая связь между средними и максимальными концентрациями ТSP, РМ 10 и РМ 2,5 , что позволило установить стандарты для этих веществ (таблица 1.2). Отношение стандартов всех этих веществ за год к стандарту за сутки мало различаются между собой.

Читайте также:  Опыт анализ почвы и воды

Пневмокониоз может быть не фиброгенным или фиброгенным. Чтобы понять каждый тип, необходимо знать, что такое фиброз легких, это утолщение стенки легких из-за повреждения, это утолщение приводит к тому, что легкие теряют эластичность, и дыхание становится затруднительным.

Фиброгенный пневмокониоз, в свою очередь, вызван частицами с фиброгенным потенциалом, поэтому этот тип является более тяжелым и обычно вызывает проблемы с дыханием и проблемы с циркуляцией. Пневмокониоз может иметь разные причины, но в целом он всегда вызван вдыханием вредного вещества. Поэтому особым образом причиной являются различные вдыхаемые частицы, проверьте ниже соотношение между типом пневмокониоза и его причинами.

Из этой таблицы видно, что при установлении стандартов полагалось, что РМ 10 составляют треть от взвешенных веществ, а РМ 2,5 — 20%. В работах европейских ученых называются такие значения: РМ составляет 0,6-0,7 ТSP. Более подробно об этом поговорим в главе 3.

Взвешенные частицы при проникновении в органы дыхания человека приводят к нарушению системы дыхания и кровообращения. Вдыхаемые твердые частицы влияют как непосредственно на респираторный тракт, так и на другие органы за счет токсического воздействия входящих в состав частиц различных компонентов. Люди с хроническими нарушениями в легких, с сердечно-сосудистыми заболеваниями, с астмой, частыми простудными заболеваниями, пожилые и дети особенно чувствительны к влиянию мелких взвешенных частиц диаметром менее 10 микрон (РМ 10). Особенно опасно сочетание высоких концентраций ВВ и диоксида серы.

Силикоза: пневмокониоз вызванный вдыханием свободного кристаллического кремнезема, так что каждое зерно этой частицы вызывает повреждение легких и привести к образованию рубцов и, таким образом, фиброз, асбестоз: вызванный вдыханием пыли, содержащей асбестовые волокна, волокнистой минеральной, т.е. волокна отделяться легко вызывая мелкую пыль; пневмокониоз абразивные: абразивный ключ являются оксид алюминия и карбид кремния, частицы являются общими в металлургических средах, пневмокониоз бериллий: это, в свою очередь, вызвано вдыханием паров или бериллиевой пыли, щелочноземельного металла, используемого для расплавления других металлов, но очень вредных для здоровья. Для всех типов пневмокониоза первая мера должна быть направлена ​​на то, чтобы остановить воздействие окружающей среды, где присутствуют возбудители, это означает, что работник должен быть удален из компании до тех пор, пока врач указывает на необходимость и может быть окончательным.

В документах Европейского экономического сообщества многократно указывается важность организации наблюдений за концентрациями РМ. Основанием для этого служат исследования, доказывающие их влияние на увеличение случаев смертности среди населения в связи с ростом концентраций РМ, а также свидетельства, что РМ содержат в своем составе многие вредные компоненты.

Администрация медикаментов, с другой стороны, не всегда является обязательной мерой, так как часто само удаление достаточно для того, чтобы легкие могли возобновить нормальные функции. Однако есть случаи, когда требуется использование стероидов. В случаях с респираторной недостаточностью кислородная терапия, состоящая из неинвазивного введения кислорода, указывается так, что клетки получают необходимое количество кислорода, поскольку легкие не могут продвигаться из-за болезни.

Руководители обязаны поощрять организационные меры гигиены, чтобы гарантировать здоровье работника. Каковы эти превентивные меры в отношении пневмокониоза? Увлажнение окружающей среды, мойка и чистка полов, стен и мебели, достаточная вентиляция и вытяжка, выбор лучших продуктов с учетом их токсичности, стирка одежды и тканей в рабочей среде, во избежание заражения семьи; Использование коллективной и индивидуальной защиты органов дыхания; Периодические обследования для выявления заболевания в начале. Вам понравился текст о пневмокониозе?

Измерениями РМ или измерениями взвешенных веществ нельзя уничтожить влияние этих веществ на организм человека. Можно лишь узнать уровни загрязнения атмосферы этими веществами. Достаточно четкие соотношения между РМ и взвешенными веществами позволяют рассчитать ущерб, ими создаваемый. Измерения концентраций РМ нужно в первую очередь производителям этих новых для сети приборов. Поэтому может быть достаточно изучение изменений концентрации взвешенных веществ.

Затем следуйте за ним через социальные сети. Как точно измерять мутность. Мутность характеризуется «облачностью» воды и может быть истолкована как отсутствие ясности или яркости. Это обусловлено наличием взвешенных и коллоидных веществ, таких как глина, осадок, органическое и неорганическое вещество, микроскопические организмы и водоросли. Мутность определяется количеством рассеянного света, когда оно проходит через образец.

При использовании нефелометрического турбидиметра. Образцы следует анализировать вскоре после сбора, так как мутность может измениться, если образец хранится. Грязные, поцарапанные или скошенные пробирки для образцов могут вызывать высокие результаты испытаний. Пробирки следует периодически промывать кислотой и слегка смазывать силиконом для маскировки возможных дефектов стекла. Определите трубы, чтобы они могли ориентироваться последовательно в измерительной камере измерения мутности. Чрезмерный цвет в образце может вызвать низкие показания мутности, поскольку цвет будет поглощать свет. Прежде чем приступать к чтению мутности, образец следует слегка перевернуть несколько раз, чтобы перемешать. Соблюдайте осторожность, чтобы не создавать пузырьки воздуха; они вызывают высокие показания мутности. Шприц, прикрепленный к резиновой пробке, является лучшим способом их удаления. Если есть прилипание пузырьков к боковым стенкам пробирки для проб, закройте его и осторожно сверните, чтобы удалить его. Частицы углерода вызывают небольшие результаты помутнения, поскольку они также поглощают свет. Частицы, которые вызывают мутность, часто заряжаются электрически. Поэтому электрические поля вокруг двигателей могут влиять на показания. Вибрации могут увеличить рассеивание света и, как результат, привести к высоким показателям мутности. Турбидиметр должен быть размещен на скамье твердых поверхностей. После окончания обработки и подготовки образца удалите метки пальца на пробирке с чистой сухой тканью, прежде чем вставлять их в камеру турбидиметра. Стандарты мутности имеют срок действия. Шаблоны формазинового типа действительны в течение очень ограниченного периода времени. После калибровки их следует отбросить.

  • Образцы следует собирать в чистом стеклянном или полиэтиленовом контейнере.
  • Трубы, которые сильно поцарапаны или сколы, не должны использоваться.

Следуя этим рекомендациям, пользователь будет следить за тем, чтобы показания мутности представляли точное измерение качества сточных вод.

Тенденция изменения концентрации взвешенных веществ (рисунок 1.6), полученная из многолетней информации, собранной в Ежегодниках, наглядно показывает снижение концентрации, происходящее в течение 1990-2006 гг. Можно выделить два периода. Первый продолжался до 1999 года и связан с сокращением отдельных производств и закрытием предприятий в период перестройки, что подтверждалось тенденцией снижения концентраций взвешенных веществ. Второй, после 1999 года, проявился более резким снижением концентраций взвешенных веществ до конца рассматриваемого периода.

Любопытно, этот антропоцен. Возможно, что грузовики со слишком многими определенными статьями, а не люди, мы должны сказать, не человечество, а конкретные люди, а может быть, капиталистические люди, или, возможно, антропогенная сборка промышленного и постиндустриального производства и потребления.

Независимо от того, насколько общий или конкретный мы делаем этого человека, однако, мы сталкиваемся с предложением антропогенного затруднительного положения, мирового геологического изменения, генезис которого есть Человек. Этот акцент на антропогенезе, на человеческом происхождении этого творения, кажется любопытным. Их измененный воздух: это их жизнеобеспечение.

Данные о выбросах твердых веществ от промышленных предприятий также указывают на планомерное снижение их количества, подтверждающее данные сети наблюдений о тенденции снижения средних за год концентраций примеси.

Количество городов, где средние за год концентрации взвешенных веществ превышают 1 ПДК (рисунок 1.7), снизилось за десять лет всего на 12%, а таких городов в стране сейчас 65. Количество городов, в которых максимальная концентрация этой примеси превысила ПДК в 10 раз, почти не изменилось.

Вопрос о приостановке обусловливает нашу провокацию. Этот вопрос предлагается как разбавление антропоценотической озабоченности: смещение концентрации. Подвеска обращает внимание от сил создателей на силу своего монстра: содержание и недовольство современной атмосферой. Запрос на приостановку состоит в том, чтобы задаться вопросом, что это такое, в измененные времена, находиться в этом воздухе, удерживаться и распределяться по-разному через него в виде частиц в среде, брошенных в смесь его композиций.

Сцены, в которых ощущаются качества, состав или движения воздуха, достаточно легки, чтобы найти: мобилизацию вокруг атмосферной нагрузки в воздухе частиц или песка; вопросы о том, как пятна вещества могут дрейфовать, прежде чем оседать на землю или в легкие; экспериментальные объяснения веса, диаметра, состава, токсичности или изменения климата активности потенциально и сильно переносимого в воздухе вещества. В таких сценах мы различаем растущую форму мыслей и бытия. Мы называем эту форму атмосферной, и мы считаем ее заслуживающей внимания.

Средние концентрации взвешенных веществ в городах различной численности населения различаются довольно существенно. Наибольшие концентрации отмечаются в крупных городах с населением более 250 тыс. жителей (рисунок 1.8).

Отмечается четкая связь между средней за год и максимальной концентрацией ВВ (рисунок 1.9).

Взвешенные твердые вещества, присутствующие в природных водах, состоят из частиц глины, песка, ила, суспендированных органических и неорганических веществ, планктона и различных микроорганизмов. Взвешенные вещества попадают в открытые водоемы вместе с талыми или дождевыми водами, в результате размыва русел рек, со сточными водами. В больших водоемах мутность воды увеличивается около берегов вследствие взмучивания осадка при сильном ветре. Взвешенные частицы уменьшают прозрачность воды, тем самым уменьшая проникновение в нее света, что в свою очередь снижает фотосинтез водных растений и аэрацию водной среды. Взвешенные вещества влияют на температуру и состав растворенных компонентов поверхностных вод, они способствуют заилению дна в зонах с малой скоростью течения, оказывают неблагоприятное воздействие на жизнедеятельность водных организмов. На взвешенных частицах могут сорбироваться различные загрязняющие вещества; оседая на дно, они могут стать источником вторичного загрязнения воды.

Это, пожалуй, увещевание к форме внимания, которая также является способом отношения, способом приостановления. Эта форма мысли поднимается вверх и вокруг, в плюмах, облаках и небе. Он смотрит внутрь сквозь жизненно важные интерьеры, которые делают тела каналов, контейнеров и фильтров для воздуха и вещей, которые они держат. Однако более значительным, чем направленность его взгляда, является его способ настройки потенциалов веществ, которые переходят от состояний осадки или конденсации к воздушным агитациям, снова оседать во времени или активировать реакцию в другом месте.

Концентрация взвешенных частиц связана с сезонными факторами и режимом стока, зависит от пород, слагающих русло, а также от антропогенных факторов, таких как сельское хозяйство, горные разработки и т.п.

Концентрация взвешенных веществ в поверхностных водотоках может достигать значительных величин – до 3000-10000 мг/дм 3 , обычное содержание 100-1500 мг/дм 3 .

В соответствии с требованиями к составу и свойствам воды водных объектов у пунктов хозяйственно-питьевого и культурно-бытового назначения содержание взвешенных веществ в результате спуска сточных вод не должно увеличиваться соответственно более, чем на 0,25 мг/дм 3 и 0,75 мг/дм 3 .

Метод измерения массовой концентрации растворенных веществ основан на выпаривании досуха 5-1000см 3 профильтрованной пробы воды в предварительно прокаленной и взвешенной фарфоровой чашке, высушивании сухого остатка в течение 3-х часов при температуре 105 О С и взвешивании его на аналитических весах. Масса сухого остатка должна находиться в пределах 50-500мг, в ином случае для анализа берут больший объем воды.

Масса сухого остатка или концентрация растворенных веществ характеризует суммарное содержание минеральных веществ в воде ; обычно выражается в мг/дм 3 (до 1000 мг/дм 3) и ‰ (промилле или тысячная доля при минерализации более 1000 мг/дм 3). ПДК – не более 1000 мг/дм 3 .

Вода с большим содержанием солей отрицательно влияет на растительные и животные организмы, технологию производства и качество продукции, вызывает образование накипи на стенках котлов, коррозию, засоление почв .

Жесткость воды — это совокупность свойств воды, обусловленных наличием в ней многозарядных катионов, прежде всего катионов Са 2+ и Мg 2+ . Различают общую, временную и постоянную жесткость воды.

Общая жесткость складывается из гидрокарбонатной (временной или устранимой) и некарбонатной (постоянной) жесткости воды. Первая вызвана присутствием в воде гидрокарбонатов кальция и магния, вторая — наличием водорастворимых сульфатов, хлоридов, силикатов, нитратов и гидрофосфатов этих металлов. Количественно общая жесткость воды выражается суммарным числом миллимолей эквивалентов ионов Са 2+ и Мg 2+ , содержащихся в 1 л воды (ммоль экв/дм 3). Для определения жесткости воды используют титриметрический (комплексонометрический) метод.

В естественных условиях ионы кальция, магния поступают в воду в результате взаимодействия растворенного диоксида углерода с карбонатными минералами и других процессов растворения и химического выветривания горных пород. Источником этих ионов являются также микробиологические процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий.

Гидрокарбонатная жесткость легко устраняется кипячением воды, и поэтому ее называют временной жесткостью : гидрокарбонаты кальция и магния при кипячении превращаются в карбонаты кальция и магния и оседают на стенках сосуда в виде накипи

Са(НСО 3) 2 СаСО 3  + CO 2  + Н 2 О,

MgСО 3  + CO 2  + Н 2 О

Гидрокарбонатную жесткость можно устранить, добавляя гашеную известь

Са(НСО 3) 2 + Са(OН) 2  2СаСО 3  + 2Н 2 О

Mg(НСО 3) 2 + 2Са(OН) 2  Mg(OH) 2  + 2СаСО 3  + 2Н 2 О.

Постоянную жесткость устранить кипячением не удается. В этом случае для удаления ионов Са 2+ и Мg 2+ в воду добавляют карбонат или фосфат натрия. При этом будут протекать реакции:

источник