Меню Рубрики

Анализ воды очищенной на аммоний

Нормативная документация, устанавливающая требования и методики анализа воды очищенной и воды для инъекций

Анализ воды очищенной и воды для инъекция проводится в соответствии с требованиями и методиками, приведенными в фармакопейных статьях ФС.2.2.0019.18 «Вода для инъекций» и ФС.2.2.0020.18 «Вода очищенная».

Фармакопейная статья ФС.2.2.0020-18 «Вода для инъекций» распространяется на нефасованную воду для инъекций, получаемую из воды питьевой методами дистилляции, ионного обмена, обратного осмоса, комбинацией этих методов или другим способом, или из воды, очищенной методом дистилляции, и предназначенную для производства или изготовления парентеральных и других лекарственных средств.

При использовании воды для инъекций в технологии парентеральных и других лекарственных средств, получаемых непосредственно перед применением, в условиях, исключающих последующую стерилизацию лекарственных препаратов, вода для инъекций должна быть стерильной.

Вода для инъекций должна быть апирогенной и не должна содержать антимикробных консервантов или других добавок.

В воде для инъекций по ФС.2.2.00-19-18 контролируются следующие показатели:

Показатели и стоимость анализа воды очищенной
Показатели Цена анализа воды, руб.
Удельная электропроводность (УЭП) 150,00
Водородный показатели (pH)* 100,00
Аммоний 200,00
Алюминий 500,00
Тяжелые металлы 200,00
Кислотность или щелочность 200,00
Сухой остаток 300,00
Восстанавливающие вещества 200,00
Углерода диоксид 200,00
Нитраты и нитриты 200,00
Хлориды 200,00
Сульфаты 200,00
Кальций и магний 200,00

* измеряется, если УЭП при 20 ° C > 1,1 мкСм/см

Фармакопейная статья ФС.2.2.0020-18 «Вода очищенная» распространяется на нефасованную воду очищенную, получаемую из воды питьевой методами дистилляции, ионного обмена, обратного осмоса, комбинацией этих методов или другим способом, и предназначенную для производства или изготовления лекарственных средств, получения воды для инъекций, а также для проведения испытаний лекарственных средств.

Для приготовления лекарственных средств, изготовляемых в асептических условиях, воду очищенную необходимо подвергать стерилизации.

Вода очищенная не должна содержать антимикробных консервантов или других добавок.

В воде очищенной по ФС.2.2.0020-18 контролируются следующие показатели:

Показатели и стоимость анализа воды очищенной
Показатели Цена анализа воды, руб.
Удельная электропроводность (УЭП) 150,00
Аммоний 200,00
Алюминий 500,00
Тяжелые металлы 200,00
Кислотность или щелочность** 200,00
Сухой остаток ** 300,00
Восстанавливающие вещества ** 200,00
Углерода диоксид ** 200,00
Нитраты и нитриты ** 200,00
Хлориды ** 200,00
Сульфаты ** 200,00
Кальций и магний ** 200,00

** показатели не входят в область аккредитации лаборатории

источник

AQUA PURIFICATA

К 10 мл воды прибавляют 0,5 мл разведенной азотной кислоты, 0,5 мл 2% раствора нитрата серебра. Через 5 минут вода должна оставаться прозрачной.В присутствии примесей хлоридов выпадает белый творожистый осадок (или белая опалесценция), не растворимый в азотной кислоте и растворимый в растворе гидрооксида аммония.

AgCl↓ + 2NH4OH -= [Ag(NH3)2]Cl + 2H20 хлорид диаммин серебра

К 10 мл воды прибаатяют 0,5 мл разведенной хлористоводородной кислоты, 1 мл 5 % раствора бария хлорида. Через 10 минут вода должна оставаться прозрачной.

В присутствии примесей сульфатов наблюдают выделение белого кристаллического осадка, который не растворим в растворах минеральных кислот и щелочей.

К 10 мл воды добавляют 1 мл раствора оксалата аммония. Через 10 минут вода должна оставаться прозрачной.

В присутствии солей кальция наблюдают белый осадок, растворимый r азотной и соляной кислотах, но не растворимый в уксусной кислоте и растворе гидроксида аммония.

АЛГОРИТМ ВНУТРИАПТЕЧНОГО КОНТРОЛЯ ВОДЫ ОЧИЩЕННОЙ

1. Работа с рецептом не проводится

Проверка записей в «Журнале регистрации результатов контроля «Воды очищенной», «Воды для инъекций».

1. Органолептический контроль

Бесцветная прозрачная жидкость без запаха и механических включений.

По приказу М3 РФ № 214 от 16.10.97 проводится качественный химический контроль на отсутствие примесей хлоридов, сульфатов, солей кальция.

1. Оформление результатов контроля

Сделать записи в «Журнале регистрации результатов контроля «Воды очищенной», «Воды для инъекций» (наличие и отсутствие ионов отмечается знаком + или —).

Состоит в проверке правильности оформления баллонов для ассистентской:

Aqua purificata Дата получения.

• поставить номер анализа и подпись.

ВНУТРИАПТЕЧНЫЙ КОНТРОЛЬ ВОДЫ ДЛЯ ИНЪЕКЦИЙ. AQUA PRO INJECTIONIBUS

Определение примесей хлоридов, сульфатов и солей кальция см. выше.

1. Восстанавливающие вещества

100 мл воды доводят до кипения, прибавляют 2 мл разведенной серной кислоты, 1 мл 0,01 моль/л раствора перманганата калия и кипятят 10 минут. Розовая окраска должна сохраниться. В присутствии примесей восстанавливающих веществ происходит обесцвечивание раствора.

К 10 мл воды (в пробирке) прибавляют 3 капли реактива Несслера. Через 5 минут вода должна оставаться бесцветной или допускается едва заметное, слегка желтоватое окрашивание.

При взбалтывании воды очищенной с равным объемом известковой воды в наполненном доверху и хорошо закрытом сосуде не должно быть помутнения в течение 1 часа.

В присутствие примесей диоксида углерода наблюдают появление белой мути.

Алгоритм внутриаптечного контроля воды для инъекций составьте | самостоятельно, аналогично приведенному выше.

АНАЛИЗ РАСТВОРА ПЕРЕКИСИ ВОДОРОДА 3 % — 50 МЛ № 20 ВНУТРИАПТЕЧНАЯ ЗАГОТОВКА

1. Освоить внутриаптечный контроль внутриаптечной заготовки раствора перекиси водорода.

2. Научиться делать обзор возможных методов химического анализа и выбирать наиболее рациональный.

3. Совершенствовать навыки титриметрического определения с использованием окрашенного титранта.

4. Научиться делать заключение и оформлять результаты анализа.

Вопросы для самоподготовки

I. Перечислите требования ГФ по изготовлению и отпуску растворов перекиси водорода.

1. Приказ М3 РФ № 751 о химическом контроле внутриаптечной заготовки. Особенности внутриаптечного контроля данного вида продукции. Составьте алгоритм внутриаптечного контроля.

2. Приведите реакции подлинности раствора перекиси водорода.

3. Приведите обзор возможных методов количественного определения лекарственной формы и выберите наиболее рациональный и экономически выгодный.

4. Укажите различия внутриаптечного контроля раствора перекиси водорода и его фармакопейного анализа.

Материальное обеспечение

Титрованные растворы и индикаторы:

• 0,1 моль/л раствор перманганата калия.

Посуда, приборы, оборудование:

• мерные пипетки 2 мл и 5 мл;

Общие указания

Изготовление и отпуск растворов перекиси водорода следует производить в соответствии с указаниями ГФ, приведенными в соответствующих статьях.

В ГФ X включена статья Solutio Hydrogenii peroxydi diluia (2,73,3%).

Perhydrolum, т.е. концентрированный раствор перекиси водорода (27,5 — 31 %), рассматривается в ГФ X в разделе «Реактивы».

1. Если в рецепте прописано «Solutio Hydrogenii peroxydi» и не указана концентрация, то следует отпустить «Solutio Hydrogenii peroxydi 3 %».

2. Если в рецепте прописан раствор перекиси водорода другой концентрации, чем 3 %, то его изготовляют разведением пергидроля или раствора перекиси водорода водой, исходя из фактического содержания перекиси водорода в исходном препарате.

Перекись водорода проявляет как окислительные, так и восстановительные свойства. Она устойчива в чистом состоянии и в водных растворах (при обычной температуре), однако присутствие солей тяжелых металлов, диоксида марганца, следов щелочей, окислителей и восстановителей, даже попадание пылинок и соприкосновение с шероховатой поверхностью стек-ла резко ускоряет процесс разложения перекиси водорода.

Разложению перекиси водорода способствуют и ферменты — катала-
за, пероксидаза, содержащиеся в крови, слюне и других биологических жид-
костях. Однако существует ряд ингибиторов этой реакции, которые исполь-
зуют для предотвращения разложения не только концентрированных, но и
разбавленных растворов перекиси водорода. Так, при изготовлении внутри-
аптечной заготовки добавляют 0,05 % бензоата натрия.

Хранят 3 % раствор перекиси водорода в склянках с притертыми стек-
лянными пробками в прохладном, защищенном от света месте. Препарат весь-
ма не стоек и разрушается даже от щелочности стекла.

По приказу М3 РФ № 214 от 26.10.15 внутриаптечные заготовки под-
лежит полному химическому контролю обязательно (каждая серия).

В письменном контроле проверяются записи в книге учета лабора-
торных и фасовочных работ (на русском языке). Каждая серия внутриаптеч-
ной заготовки и фасовки подвергается физическому контролю, проверяют
не менее 3-х упаковок (флаконов).

Rp: Solutionis Hydrogenii peroxydi 50 ml
D.S. Наружное

№ 20 Внутриаптечная заготовка

Бесцветная прозрачная жидкость без запаха или со слабым своеоб-
разным запахом, кислой реакции среды.

Подлинность

К 0,5 мл препарата прибавляют 2—3 капли разведенной серной кисло-
ты, 1-2 мл эфира, 3-4 капли раствора калия дихромата и взбалтывают. Эфир-

ный слой окрашивается в синий цвет.

Количественное определение

Помещают 2 мл препарата в мерную колбу емкостью 50 мл и объем доводят водой до метки, перемешивают.

1. Метод перманганатометрии

К 5 мл полученного раствора прибавляют 3 мл разведенной серной кислоты и титруют 0,1 моль/л раствором калия перманганата до слабо-розового окрашивания.

1 мл 0,1 моль/л раствора калия перманганата соответствует 0,001701 г перекиси водорода, которой в препарате должно быть 2,7- 3,3 %.

АЛГОРИТМ ВНУТРИАПТЕЧНОГО КОНТРОЛЯ ВНУТРИАПТЕЧНОЙ ЗАГОТОВКИ РАСТВОРА ПЕРЕКИСИ ВОДОРОДА 3 % — 50 МЛ № 20

Проверяется запись в книге учета лабораторных и фасовочных работ: Воды очищенной 900 мл

№ анализа Подпись провизора-аналитика

1. Органолептический контроль

Бесцветная прозрачная жидкость без запаха или со слабым запахом без механических включений.

Проверяется не менее 3-х флаконов от данной серии внутриаптечной заготовки.

Проверяется герметичность укупорки.

По приказу М3 РФ № 751 проводится полный химический контроль обязательно.

Качественный химический контроль:

Количественный химический контроль:

Содержание Н22 в пределах [2,7 — 3,3 %] (раствор стандартный, поэтому содержание указывается в процентах, как в ГФ ).

1. Оформление результатов анализа:

• заполнить «Журнал регистрации органолептического, физически/ го и химического контроля внутриаптечной заготовки, лекарственных форм, изготовленных по индивидуальным рецептам (требованиям ЛУ), концентратов, полуфабрикатов, тритураций, спирта этилового и фасовки»;

• в книге учета лабораторных и фасовочных работ поставить № анализа и подпись провизора-аналитика

• основная этикетка «Наружное», дополнительная «Хранить в прохладном, защищенном от света месте»;

• указаны номер и место нахождения аптеки, состав на русском языке, номер серии, срок годности (2 года), дата изготовления, цена.

Дата добавления: 2018-08-06 ; просмотров: 1401 ; ЗАКАЗАТЬ РАБОТУ

источник

К 10 мл воды прибавляют 0,5 мл разведенной азотной кислоты, 0,5 мл 2% раствора нитрата серебра. Через 5 минут вода должна оставаться прозрачной.

В присутствии примесей хлоридов выпадает белый творожистый осадок (или белая опалесценция), не растворимый в азотной кислоте и растворимый в растворе гидрооксида аммония.

К 10 мл воды прибавляют 0,5 мл разведенной хлористоводородной кислоты, 1 мл 5 % раствора бария хлорида. Через 1 0 минут вода должна оставаться прозрачной.

В присутствии примесей сульфатов наблюдают выделение белого кристаллического осадка, который не растворим в растворах минеральных кислот и щелочей.

К 10 мл воды добавляют 1 мл раствора оксалата аммония. Через 10 минут вода должна оставаться прозрачной.

В присутствии солей кальция наблюдают белый осадок, растворимый в азотной и соляной кислотах, но не растворимый в уксусной кислоте и растворе гидроксида аммония.

АЛГОРИТМ ВНУТРИАПТЕЧНОГО КОНТРОЛЯ ВОДЫ ОЧИЩЕННОЙ

1. Работа с рецептом не проводится

Проверка записей в «Журнале регистрации результатов контроля «Воды очищенной», «Воды для инъекций».

3. Органолептический контроль

Бесцветная прозрачная жидкость без запаха и механических включений.

4.Физический контроль—Не проводится.

По приказу МЗ РФ № 214 от 16.10.97 проводится качественный химический контроль на отсутствие примесей хлоридов, сульфатов, солей кальция.

6.Оформление результатов контроля

Сделать записи в «Журнале регистрации результатов контроля «Воды очищенной», «Воды для инъекций» (наличие и отсутствие ионов отмечается знаком + или -).

Состоит в проверке правильности оформления баллонов для ассистентской:

проверить этикетку: Aguae purificatae, Дата получения.

— поставить номер анализа и подпись.

ВНУТРИАПТЕЧНЫЙ КОНТРОЛЬ ВОДЫ ДЛЯ ИНЪЕКЦИЙ. AQUA PRO INJECTIONIBUS.

Определение примесей хлоридов, сульфатов и солей кальция см. выше.

4. Восстанавливающие вещества.

100 мл воды доводят до кипения, прибавляют 2 мл разведённой серной к-ты, 1 мл 0,01 моль/л р-ра перманганата калия и кипятят 10 минут. Розовая окраска должна сохраниться. В присутствии примесей восстанавливающих веществ происходит обесцвечивание р-ра.

К 10 мл воды (в пробирке) прибавляют 3 капли реактива Несслера. Через 5 минут вода должна оставаться бесцветной или допускается едва заметное, слегка желтоватое окрашивание.

При взбалтывании воды очищенной с равным объемом известковой воды в наполненном доверху и хорошо закрытом сосуде не должно быть помутнения в течение 1 часа.

В присутствие примесей диоксида углерода наблюдают появление белой мути.

Алгоритм внутриаптечного контроля воды для инъекций составьте самостоятельно, аналогично приведенному выше.

АНАЛИЗ РАСТВОРА ПЕРЕКИСИ ВОДОРОДА 3 % — 50 МЛ № 20 ВНУТРИАПТЕЧНАЯ ЗАГОТОВКА

Яр: Solutio Hydrogenii peroxydi 50 ml

№ 20 Внугриаптсчная заготовка

Бесцветная прозрачная жидкость без запаха или со слабым своеобразным запахом, кислой реакции среды.

К 0,5 мл препарата прибавляют 2—3 капли разведенной серной кислоты, 1 2 мл эфира, 3-4 капли раствора калия дихромата и взбалтывают. Эфирный слой окрашивается в синий цвет.

При стоянии синяя окраска переходит в зеленую, вследствие восстановления Cr(VI) в Cr(III).

Помещают 2 мл препарата в мерную колбу емкостью 50 мл и объем доводят водой до метки, перемешивают.

1. Метод перманганатометрии

К 5 мл полученного раствора прибавляют 3 мл разведенной серной кислоты и титруют 0,1 моль/л раствором калия перманганата до слабо-розового окрашивания.

T=Cf •f •M/1000=0,1 •1/2 •34,01/1000=0,001701 г/мл

5 мл полученного раствора помещают в склянку с притертой пробкой, прибавляют 2 мл раствора калия иодида, 3 мл разведенной серной кислоты и оставляют в темном месте на 10 минут. Выделившийся иод титруют 0,1 моль/ л раствором натрия тиосульфата до обесцвечивания (индикатор — крахмал).

11мл 0,1 моль/л раствора калия перманганата или натрия тиосульфата соответствует 0,001701 г перекиси водорода, которой в препарате должно быть 2,7 — 3,3 %.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

источник

Цель работы: Освоить способы анализа воды очищенной.
Объект исследования: Вода очищенная (Aqua purificata)

Оборудование:
— Потенциометр;
— Электроплитка (нагревательный элемент);
— Аналитические весы.
Посуда: градуированные пипетки на 1,00 и 10,00 мл; градуированные мерные стаканы объёмом 50,0 и 500,0 мл; бюретка; часовое стекло; мерный цилиндр объёмом 50 мл; пробирки бесцветного стекла; мерные колбы на 1 л.

Реактивы:
— Ацетон
— Дифениламин
— Исследуемая вода очищенная
— Калия гидроксид
— Калия иодид
— Калия хлорид
— Кислота азотная
— Кислота серная концентрированная
— Кислота серная разведённая
— Кислота хлористоводородная разведённая
— 0,01 М раствор калия перманганата
— Раствор серебра нитрата
— Раствор бария хлорида
— Раствор аммония хлорида
— Раствор аммиака
— Раствор аммония оксалата
— Ртути дихлорид (сулема)
— Спирт 95%

Ход работы:
1. Анализ по показателю рН:
Было приготовлено около 5 мл насыщенного раствора калия хлорида, и 0,3 мл этого раствора было добавлено к 100 мл воды очищенной. Для полученного раствора с помощью потенциометра было определено значение рН. Значение рН составило 6,00, что удовлетворяет требованию ФС 42-2619-97 («рН полученного раствора должно составлять от 5 до 7»).

2. Анализ на восстанавливающие вещества:
В соответствии с НД (ФС 42-2619-97) в воде очищенной не должно содержаться восстанавливающих веществ. В ходе анализа до кипения было доведено 100 мл воды и добавлено к ней 1 мл 0,01 М раствора калия перманганата и 2 мл кислоты серной разведённой. После 10-минутного кипячения полученного раствора исчезновения розовой окраски не произошло, что свидетельствовало об отсутствии в образце воды очищенной восстанавливающих веществ и соответствии его требованиям ФС 42-2619-97.

3. Анализ на нитраты и нитриты:
В соответствии с НД (ФС 42-2619-97) в воде очищенной не должно выявляться примесей нитрат- и нитрит-ионов. Для проведения анализа был приготовлен раствор дифениламина (по ГФ XI, вып. 2, ОС «Реактивы»): 0,05 г дифениламина растворили в смеси 10 мл кислоты серной концентрированной и 2 мл воды. В 2 одинаковые пробирки было помещено по 5 мл воды очищенной, и в одну из них добавили 1 мл свежеприготовленного раствора дифениламина. Пробирки сравнивались на белом фоне, и между ними не было обнаружено различия по окраске, то есть было показано отсутствие примесей нитрат- и нитрит-ионов. То есть исследуемая вода очищенная соответствует требованию ФС 42-2619-97 по показателю отсутствия примесей нитратов и нитритов.

Читайте также:  Анализ на кристаллы околоплодных вод

4. Анализ на аммиак и соли аммония:
В соответствии с НД (ФС 42-2619-97) примесь аммиака и ионов аммония в воде очищенной не должна превышать 0,2 мкг в 1 мл.
Для проведения испытания был приготовлен реактив Несслера (K2[HgI4]) в соответствии с методикой предложенной ГФ XI (вып.2, ОС «Реактивы»): для этого 10 г калия иодида (KI) было растворено в 10 мл воды; к полученному раствору добавлялся из бюретки по каплям насыщенный раствор ртути дихлорида (HgCl2), приготовленный по навеске ртути дихлорида массой 5,16 г, до появления красно-оранжевого осадка. К полученной смеси было добавлено 30,00 г калия гидроксида (КОН), и объём раствора был доведён до 200 мл. Таким образом, было получено 200,0 мл реактива Несслера (калия тетраиодмеркурата (II) щелочного раствора).
Кроме того, был приготовлен эталонный раствор аммоний-иона в соответствии с ГФ XI (вып.1, ОС «Испытания на чистоту и допустимые пределы примесей»): 0,628 г высушенного хлорида аммония растворили в воде в мерной колбе на 1 л и довели объём до метки (раствор А). 10 мл раствора А растворили в мерной колбе на 1 л в воде и довели объём до метки (раствор Б, содержит 0,002 мг иона аммония в 1 мл).
К 10 мл исследуемой воды очищенной было добавлено 0,15 мл реактива Несслера, и смесь была перемешана. Аналогичная операция была проделана с раствором, содержащим 1 мл эталонного раствора Б и 9 мл воды. Через 5 минут было проведено сравнение полученных растворов на белом фоне. Окраска испытуемого раствора не превысила окраску эталона, то есть содержание аммиака и иона аммония в исследуемой воде очищенной отвечает требованию ФС 42-2619-97.

5. Анализ на хлориды:
В соответствии с НД (ФС 42-2619-97) в воде очищенной не должно обнаруживаться примеси хлорид-ионов. Для проведения испытания к 5 мл испытуемой воды очищенной было добавлено 5 мл спирта 95% и 0,5 мл кислоты азотной. 5,25 мл полученного раствора было перенесено в пробирку, аналогичную пробирке с оставшейся частью раствора. К одной из пробирок было добавлено 0,5 мл раствора серебра нитрата, после чего было произведено сравнение её с пробиркой, в которую не был внесён основной реактив, открывающий примесь хлорид-ионов, на тёмном фоне. В растворе, к которому был добавлен раствор серебра нитрата, наблюдалась стойкая опалесценция, свидетельствовавшая о присутствии в анализируемом веществе примеси хлорид-ионов и о несоответствии его требованию ФС 42-2619-97 по этому показателю.
Наличие опалесценции обусловлено образованием хлорида серебра, нерастворимого в присутствии азотной кислоты:
Cl − + Ag + → AgCl↓
(белый, нерастворим в HNO3)
6. Анализ на сульфаты:
В соответствии с НД (ФС 42-2619-97) в воде очищенной не должно обнаруживаться примеси сульфат-ионов. Для проведения испытания к 5 мл испытуемой воды очищенной было добавлено 5 мл ацетона и 0,5 мл кислоты хлористоводородной разведённой. 5,25 мл полученного раствора было перенесено в пробирку, аналогичную пробирке с оставшейся частью раствора. К одной из пробирок было добавлено 1,0 мл раствора бария хлорида, после чего было произведено сравнение её с пробиркой, в которую не был внесён основной реактив, открывающий примесь сульфат-ионов, на тёмном фоне. В растворе, к которому был добавлен раствор бария хлорида, наблюдалась стойкая опалесценция, свидетельствовавшая о присутствии в анализируемом веществе примеси сульфат-ионов и о несоответствии его требованию ФС 42-2619-97 по этому показателю.
Наличие опалесценции обусловлено образованием сульфата бария, нерастворимого в растворах сильных кислот:
SO4 2- + Ba 2+ → BaSO4↓
(белый, нерастворим в сильных кислотах)

7. Анализ на кальций-ионы:
В соответствии с НД (ФС 42-2619-97) в воде очищенной не должно обнаруживаться примеси кальций-ионов. В пробирку, содержащую 20 мл исследуемой воды очищенной, было добавлено 2 мл раствора аммония хлорида и 2 мл раствора аммиака. Половина содержимого пробирки была перенесена в другую, такую же, пробирку, и к ней был добавлен 1 мл раствора аммония оксалата. После сравнения двух пробирок на тёмном фоне между ними не было установлено различия, что свидетельствовало об отсутствии в исследуемом веществе примеси ионов Ca2+ и о соответствии его требованиям ФС 42-2619-97 по этому показателю.

Вывод: В ходе проделанной работы был проведён анализ воды очищенной на наличие в ней примесей, ограничения по наличию или требования по отсутствию которых оговорены в ФС 42-2619-97. Кроме того, при выполнении работы были приобретены навыки приготовления реактивов (индикатор дифениламин и реактив Несслера) в соответствии с указаниями ОС «Реактивы» ГФ XI (вып.2). В ходе анализа было установлено несоответствие представленной воды очищенной требованиям НД по показателям присутствия в ней примесей сульфат- и хлорид-ионов.

Протокол испытания

Наименование образца: Вода очищенная, полученная методом дистилляции (Aqua purificata)

Нормативный документ: ГФ Х ФС 42-2619-97

источник

Проводится согласно требованиям ФС 42-2619-97. Согласно приказу
№ 214 от 16 июля 1997 года «. вода очищенная ежедневно на каждом рабочем месте проверяется на отсутствие хлоридов, сульфатов и солей кальция. Вода, предназначенная для изготовления растворов для инъекций, для новорожденных и глазных капель, кроме указанных выше испытаний, должна быть проверена дополнительно на отсутствие восстанавливающих веществ, аммиака и углекислоты в соответствии с требованиями Государственной фармакопеи. Ежеквартально вода направляется в контрольно-аналитическую лабораторию для полного химического анализа».

Анализ воды очищенной

Определяемая примесь Методика Результат анализа
1. Хлориды (недопустимая примесь) I пробирка: 10 мл воды + 0,5 мл разведенной азотной кислоты, делят на 2 равные части; II пробирка: ко 2 части + 0,25 мл AgNO3 (HNO3) Cl – + AgNO3 ¾® AgCl¯ + NO3 Через 5 мин содержимое пробирок сравнивают.
2. Сульфаты (недопустимая примесь) I пробирка: 10 мл воды + 0,5 мл разведенной HCl, делят на 2 равные части; II пробирка: ко 2 части + 0,5 мл BaCl2 (HCl) SO4 2– + BaCl2 ¾® BaSO4¯ + 2Cl – Через 10 мин содержимое пробирок сравнивают.
3. Соли кальция (недопустимая примесь) I пробирка: 10 мл воды + 1 мл NH4Cl + 1 мл раствора NH3, делят на 2 равные части; II пробирка: ко 2 части +0,5 мл (NH4)2C2O4 (NH4Cl, NH4OH) Ca 2+ +(NH4)2C2O4¾¾¾¾®CaC2O4¯+2NH4 + Через 10 мин содержимое пробирок сравнивают.

Анализ воды для инъекций

Определяемая примесь Методика Результат анализа
1. Хлориды см. выше
2. Сульфаты см. выше
3. Соли кальция см. выше
4. Аммиак (не более 0,00002%) I пробирка: 10 мл воды + 0,15 мл реактива Несслера; II пробирка: к 1 мл эталонного раствора аммиака + 9 мл воды, не содержащей NH3 + 0,15 мл реактива Несслера. NH3 + 2K2[HgI4] + 3KOH ® ® [O á ñ NH2] I – + 7KI + 2H2O Через 5 мин обе пробирки сравнивают. Окраска, появившаяся в испытуемой воде, не должна превышать окраски в эталоне.
5. Восстанавли- вающие вещества 100 мл воды нагревают до кипения, добавляют 1 мл раствора KmnO4 (0,01 моль/л), УЧ (1/5 KmnO4) 2 мл разведенной серной кислоты и кипятят 10 мин. 5Na2SO3 + 2KmnO4 + 3H2SO4 ® ® 2MnSO4 + K2SO4 + 5Na2SO4 + 3H2O Розовое окрашивание должно сохраниться.
6. Углекислота К 5 мл воды добавляют 5 мл известковой воды, закрывают пробкой, взбалтывают. CO2 + Ca(OH)2 ® CaCO3 ¯ + H2O Через 1 час не должно появиться мути.

Недопустимые примеси определяют по следующей схеме: К 10 мл испытуемого раствора прибавляют применяемые для каждой реакции реактивы, кроме основного реактива. Затем раствор делят на 2 равные части: к одной из них прибавляют основной реактив и оба раствора сравнивают между собой, между ними не должно быть заметной разницы.

Вопросы для подготовки студентов к лабораторным занятиям № 1-2 и контроля усвоения темы

1. Назовите внешние факторы, которые могут неблагоприятно влиять на лекарственные вещества при их хранении.

2. Назовите источники и причины примесей в лекарственных веществах.

3. Напишите уравнения химических реакций взаимодействия калия перманганата с соединениями, которые могут изменить его окраску.

4. Какая реакция применяется для обнаружения примеси солей кальция? Можно ли провести эту реакцию при рН раствора 2-3?

5. С каким реактивом определяют примесь солей аммония в сравнении с эталоном? На чем основана реакция?

6. Из какого вещества готовят эталонный раствор аммоний-иона?

7. Какие условия необходимо соблюдать при определении примесей с помощью эталонных растворов?

8. Какие жидкости считаются бесцветными?

9. Из какого вещества готовят эталонный раствор цинк-иона? Особенности приготовления раствора. Приведите уравнение фармакопейной реакции на цинк-ион.

10. Как проводят испытание на чистоту, если в ФС указано, что в данной концентрации раствора не должно обнаруживаться той или иной примеси?

11. Из какого вещества готовят эталонный раствор железо (III)-иона? Чем стабилизируют раствор? С каким реактивом и в какой среде определяют примесь солей железа?

12. Какой раствор, согласно требованиям ГФ Х1, считают прозрачным? Из каких веществ готовят эталоны мутности?

13. Из какого вещества готовят эталонный раствор для определения примеси тяжелых металлов? С какими реактивами проводят испытания?

14. Из каких веществ готовят эталонные растворы хлор-иона и сульфат-иона? С какими реактивами и в какой среде проводят определение этих примесей?

15. Какими методами, согласно ГФ Х1, проводится испытание на мышьяк в лекарственных веществах?

16. Какие требования предъявляются к реакциям, применяемым для определения примесей в лекарственных веществах?

17. Перечислите способы выражения растворимости, принятые ГФ Х1 для характеристики лекарственных веществ.

18. Какие факторы могут влиять на изменение растворимости лекарственных веществ?

19. Каким образом ГФ Х1 регламентирует допустимые примеси, обусловливающие: а) изменение цвета лекарственных веществ; б) изменение растворимости?

20. Приведите принцип расчета навески для приготовления эталонных растворов.

21. Решите задачи 1-8 из «Сборника ситуационных задач по фармацевтической химии» (для студентов 3 курса) – Пермь, 2001, с.3 [9].

22. Какие требования предъявляют ФС к воде очищенной и воде для инъекций?

23. Какие примеси в воде очищенной и воде для инъекций ФС допускают в определенных пределах и каких примесей не должно быть? Различия в проведении методик анализа. Уравнения реакций.

24. Как необходимо хранить воду очищенную и воду для инъекций? Какие факторы внешней среды могут влиять на их качество?

25. На каких свойствах нитратов и нитритов основана реакция их обнаружения с дифениламином? Напишите уравнения реакций, назовите продукты.

26. Как проводится определение восстанавливающих веществ в воде очищенной? Как проявляется внешний эффект данной реакции при наличии в воде очищенной восстанавливающих веществ?

27. Сроки хранения в аптеках воды очищенной и воды для инъекций.

28. Как часто и где должен проводиться полный химический анализ воды очищенной и воды для инъекций?

29. Какому обязательному качественному анализу должна подвергаться вода очищенная при внутриаптечном контроле?

30. Каким дополнительным испытаниям должна подвергаться вода, предназначенная для изготовления стерильных растворов, в условиях аптеки?

Тема: Титрованные растворы в ГФ Х1 издания. Приготовление.

4. Установка преподавателя о порядке проведения занятия.

5. Самостоятельная работа студентов.

5.1. Расчет навески для приготовления определенного объема титрованного раствора.

5.2. Установка поправочного коэффициента к молярной концентрации титрованных растворов (К) по методикам ГФ Х1.

5.3. Укрепление и разбавление титрованного раствора (теоретический расчет).

3. Оформление протоколов и отчет преподавателю.

источник

Содержимое (Table of Contents)

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФАРМАКОПЕЙНАЯ СТАТЬЯ

Вода очищенная ФС.2.2.0020.15

Вода очищенная Взамен ГФ Х, ст. 73;

Aqua purificata взамен ФС 42-2619-97

Настоящая фармакопейная статья распространяется на нефасованную воду очищенную, получаемую из воды питьевой методами дистилляции, ионного обмена, обратного осмоса, комбинацией этих методов или другим способом, и предназначенную для производства или изготовления лекарственных средств, получения воды для инъекций, а также для проведения испытаний лекарственных средств.

Для приготовления лекарственных средств, изготовляемых в асептических условиях, воду очищенную необходимо подвергать стерилизации.

Вода очищенная не должна содержать антимикробных консервантов или других добавок.

Бесцветная прозрачная жидкость без запаха.

От 5,0 до 7,0 (ОФС «Ионометрия», метод 3). К 100 мл воды очищенной прибавляют 0,3 мл насыщенного раствора калия хлорида.

К 20 мл воды очищенной прибавляют 0,05 мл 0,1 % раствора фенолового красного. При появлении желтого окрашивания оно должно измениться на красное при прибавлении не более 0,1 мл 0,01 М раствора натрия гидроксида. При появлении красного окрашивания оно должно измениться на желтое при прибавлении не более 0,15 мл 0,01 М раствора хлористоводородной кислоты.

Определение проводят в соответствии с требованиями ОФС «Электропроводность» с помощью оборудования – кондуктометров, внесенных в Государственный реестр средств измерений.

Оборудование

электроды из подходящего материала, такого как нержавеющая сталь;

константа ячейки обычно устанавливается поставщиком и впоследствии проверяется через соответствующие интервалы времени с использованием сертифицированного стандартного раствора с электропроводностью менее 1500 мкСм/см или путем сравнения с ячейкой, имеющей аттестованную константу ячейки. Константа ячейки считается подтвержденной, если найденное значение находится в пределах 2 % от значения, указанного в сертификате; в противном случае должна быть проведена повторная калибровка.

Кондуктометр. Точность измерения должна быть не менее 0,1 мкСм/см в низшем диапазоне.

Калибровка системы (ячейки электропроводности и кондуктометра). Калибровка должна проводиться с использованием одного или более соответствующих стандартных растворов (ОФС «Электропроводность»). Допустимое отклонение должно составлять не более 3 % от измеренного значения электропроводности.

Калибровка кондуктометра. Калибровку кондуктометра проводят с использованием сопротивлений высокой точности или эквивалентным прибором после отсоединения ячейки электропроводности для всех интервалов, использующихся для измерения электропроводности и калибровки ячейки, с погрешностью не более 0,1 % от сертифицированной величины.

В случае невозможности отсоединения ячейки электропроводности, вмонтированной в производственную линию, калибровка может быть проведена относительно предварительно калиброванной ячейки электропроводности, помещенной в поток воды рядом с калибруемой ячейкой.

Измеряют электропроводность без температурной компенсации с одновременной регистрацией температуры. Измерение электропроводности с помощью кондуктометров с температурной компенсацией возможно только после соответствующей валидации.

В табл. 1 находят ближайшее значение температуры, меньше измеренного. Соответствующая величина электропроводности является предельно допустимой.

Вода очищенная соответствует требованиям, если измеренное значение электропроводности не превышает найденного по табл.1 предельно допустимого значения.

Таблица 1 – Предельно допустимые значения электропроводности воды очищенной в зависимости от температуры

мкСм/см

2,4 60 8,1 10 3,6 70 9,1 20 4,3 75 9,7 25 5,1 80 9,7 30 5,4 90 9,7 40 6,5 100 10,2 50 7,1

Для значений температур, не представленных в табл. 1, рассчитывают предельно допустимое значение электропроводности путем интерполяции ближайших к полученному верхнему и нижнему значениям, приведенным в табл. 1.

Не более 0,001 %. 100 мл воды очищенной выпаривают досуха и сушат при температуре от 100 до 105 ºС до постоянной массы.

100 мл воды очищенной доводят до кипения, прибавляют 0,1 мл 0,02 М раствора калия перманганата и 2 мл серной кислоты разведенной 16 %, кипятят 10 мин; розовое окрашивание должно сохраниться.

При взбалтывании воды очищенной с равным объемом раствора кальция гидроксида (известковой воды) в наполненном доверху и хорошо закрытом сосуде не должно быть помутнения в течение 1 ч.

К 5 мл воды очищенной осторожно прибавляют 1 мл свежеприготовленного раствора дифениламина; не должно появляться голубое окрашивание.

Не более 0,00002 % (ОФС «Аммоний»). Определение проводят с использованием эталонного раствора, содержащего 1 мл стандартного раствора аммоний-иона (2 мкг/мл) и 9 мл воды, свободной от аммиака. Для определения отбирают 10 мл испытуемой пробы.

Примечание. Стандартный раствор аммоний-иона (2 мкг/мл) готовят разбавлением стандартного раствора аммоний-иона (200 мкг/мл) водой, свободной от аммиака.

К 10 мл воды очищенной прибавляют 0,5 мл азотной кислоты, 0,5 мл 2 % раствора серебра нитрата, перемешивают и оставляют на 5 мин. Не должно быть опалесценции.

К 10 мл воды очищенной прибавляют 0,5 мл хлористоводородной кислоты разведенной 8,3 % и 1 мл 5 % раствора бария хлорида, перемешивают и оставляют на 10 мин. Не должно быть помутнения.

Читайте также:  Анализ на кислород в воде

К 100 мл воды очищенной прибавляют 2 мл буферного раствора аммония хлорида, рН 10,0 50 мг индикаторной смеси протравного черного 11 и 0,5 мл 0,01 М раствора натрия эдетата; должно наблюдаться чисто синее окрашивание раствора (без фиолетового оттенка).

Не более 0,000001 % (ОФС «Алюминий», метод 1). Испытание проводят для воды очищенной, предназначенной для использования в производстве растворов для диализа.

Испытуемый раствор. К 400 мл воды очищенной прибавляют 10 мл ацетатного буферного раствора, рН 6,0 и 100 мл воды дистиллированной, перемешивают.

Эталонный раствор. К 2 мл стандартного раствора алюминий-иона
(2 мкг/мл) прибавляют 10 мл ацетатного буферного раствора, рН 6,0 и 98 мл воды дистиллированной, перемешивают.

Контрольный раствор. К 10 мл ацетатного буферного раствора, рН 6,0 прибавляют 100 мл воды дистиллированной и перемешивают.

Определение проводят одним из приведенных методов.

Метод 1. В пробирку диаметром около 1,5 см помещают 10 мл испытуемой воды очищенной, прибавляют 1 мл уксусной кислоты разведенной 30 %, 2 капли 2 % раствора натрия сульфида и перемешивают. Через 1 мин производят наблюдение за изменением окраски раствора по оси пробирки, помещенной на белую поверхность. Не должно быть окрашивания.

Метод 2. 120 мл воды очищенной упаривают до объёма 20 мл. Оставшеаяся после упаривания вода в объеме 10 мл должна выдерживать испытание на тяжёлые металлы (ОФС «Тяжелые металлы») с использованием эталонного раствора, содержащего 1 мл стандартного раствора свинец-иона (5мкг/мл) и 9 мл испытуемой воды очищенной.

Примечание. Стандартный раствор свинец-иона (5мкг/мл) готовят разбавлением стандартного раствора свинец-иона (100мкг/мл) испытуемой водой очищенной.

Общее число аэробных микроорганизмов (бактерий и грибов) не более 100 КОЕ в 1 мл. Не допускается наличие Еscherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa в 100 мл.

Для анализа микробиологической чистоты воды очищенной отбирают образец в объеме не менее 1000 мл.

Исследование проводят методом мембранной фильтрации в асептических условиях в соответствии с методами ОФС «Микробиологическая чистота», п.12.

Испытание проводят для воды очищенной, предназначенной для использования в производстве растворов для диализа.

Вода очищенная хранится и распределяется в условиях, предотвращающих рост микроорганизмов и исключающих возможность любой другой контаминации.

Хранение воды очищенной осуществляют в специальных сборниках, оно не должно превышать 3 сут.

источник

Воду очищенную получают дистилляцией, ионным обменом, обратным осмосом, комбинацией этих методов или другим способом.

Применяется вода очищенная в качестве растворителя для приготовления неинъекционных лекарственных средств.

Фармакопейный анализ воды очищенной заключается в определении соответствия описанию, рН, чистоты (примесей) и проведении микробиологического контроля в соответствии с требованиями ФС.

Описание. Бесцветная прозрачная жидкость без запаха и вкуса.

рН. Потенциометрический метод (от 5,0 до 7,0).

Для определения сухого остатка (представляет собой нелетучие примеси) выпаривают 100 мл воды на водяной бане, затем высушивают при 100-105 0 С до постоянной массы и взвешивают. Остаток не должен превышать 0,001%.

Восстанавливающие вещества (недопустимая примесь) обнаруживают реакцией с раствором калия перманганата и кислотой серной разведенной, которые прибавляют к воде, доведенной до кипения. При последующем кипячении в течение 10 минут розовая окраска должна сохраниться. Присутствие в воде восстанавливающих веществ приводит к восстановлению окрашенных перманганат-ионов до бесцветных ионов Mn 2+ .

Для обнаружения диоксида углерода (недопустимая примесь) взбалтывают равные объемы анализируемой воды и известковой воды (раствор кальция гидроксида) в заполненном доверху и хорошо закрытом сосуде. В течение часа не должно быть помутнения. В случае присутствия в воде диоксида углерода образуется малорастворимый кальция карбонат:

Нитраты и нитриты (недопустимая примесь) определяют реакцией со свежеприготовленным раствором дифениламина в кислоте серной концентрированной. Не должно появляться голубого окрашивания. В присутствии нитратов и нитритов дифениламин окисляется до окрашенного дифенилдифенохинондиимина гидросульфата:

Примесь аммиака в воде очищенной допускается в количестве не более 0,00002% . Для определения этой примеси проводят реакцию с реактивом Несслера, основанную на образовании комплексного соединения желтого цвета:

Через 5 мин после добавления реактива Несслера окраска исследуемой воды не должна превышать окраску эталона, состоящего из 1 мл эталонного раствора Б иона аммония, 9 мл воды (свободной от аммиака) и такого же количества реактива Несслера.

Хлориды (недопустимая примесь) обнаруживают реакцией с раствором серебра нитрата в присутствии кислоты азотной разведенной:

Не должно быть опалесценции.

Сульфаты (недопустимая примесь) обнаруживают реакцией с раствором бария хлорида в присутствии кислоты хлороводородной разведенной:

Не должно быть помутнения.

Примесь солей кальция (недопустимая примесь) обнаруживают реакцией с раствором аммония оксалата в присутствии растворов аммония хлорида и аммония гидроксида:

Не должно быть помутнения.

Для обнаружения солей тяжелых металлов (недопустимая примесь) проводят реакцию с раствором натрия сульфида в присутствии кислоты уксусной разведенной:

Не должно быть бурого окрашивания. Наблюдение окраски проводят по оси пробирок диаметром около 1,5 см, помещенных на белую поверхность.

Определение недопустимых общих примесей (хлориды, сульфаты, соли кальция, соли тяжелых металлов) проводят следующим образом:
к 10 мл исследуемой воды прибавляют вспомогательные реактивы, перемешивают, затем содержимое пробирки делят на две равные части и к одной из них прибавляют основной реактив, открывающий примесь. При сравнении между пробирками не должно быть различий.

По микробиологической чистоте вода очищенная должна соответствовать требованиям на питьевую воду (не более 100 микроорганизмов в 1мл) при отсутствии бактерий сем. Enterobacteriaceae, Staphylococcus aureus, Pseudomonas aeruqinosa. Испытания проводят в соответствии со статьей ГФ ХI «Испытание на микробиологическую чистоту».

Воду очищенную используют свежеприготовленной или хранят в закрытых емкостях, изготовленных из материалов, не изменяющих свойств воды и защищающих ее от инородных частиц и микробиологических загрязнений.

Дата добавления: 2016-03-20 ; просмотров: 7526 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Согласно приказу № 214 вода очищенная ежедневно из каждого баллона или на каждом рабочем месте подвергается качественному контролю на отсутствие хлоридов, сульфатов,кальция.

Вода очищенная для приготовления растворов для инъекций, глазных капель и лекарственных форм для новорожденных, кроме этих примесей проверяются на отсутствие восстанавливающих веществ, аммиака и углекислоты.

ВОССТАНАВЛИВАЮЩИЕ ВЕЩЕСТВА. 100 мл. воды доводят до кипения, прибавляют 1 мл. 0,01 Н раствора калия перманганата и 2 мл. разведенной серной кислоты, кипятят 10 минут, розовая окраска должна сохранится.

ДИОКСИД УГЛЕРОДА. При взбалтывании с равным количеством известковой воды в наполненном доверху и хорошо закрытом сосуде не должно быть помутнения в течение часа.

АММИАК. К 10 мл. воды прибавляют 0,15 мл. реактива Несслера, перемешивают и через 5 минут сравнивают с эталоном, состоящим из 0,0002% раствора аммиака и такого же количества реактива. Окраска используемого образцане должна превышать эталон.

ХЛОРИДЫ. К 10 мл. воды прибавляют 0,5 мл. раствора азотной кислоты, прибавляют 0,5 мл. раствора серебра нитрата. В растворе не должно быть изменений.

СУЛЬФАТЫ. К 10 мл воды прибавляют 0,5 мл. разведенной хлористоводородной кислоты, прибавляют 1 мл. раствора хлорида бария. В растворе не должно быть изменений.

СОЛИ КАЛЬЦИЯ. К 10 мл воды прибавляют 1 мл раствора хлорида аммония и 1 мл. раствора аммиака. Раствор делят на две равные части, к одной из них прибавляют 1 мл раствора оксалата аммония. Между растворами не должно быть заметных различий

Полный химический анализ воды очищенной и воды для инъекций по ВФС производятся ежеквартально в центре по контролю качества лекарственных средств.

Кроме химического анализа, вода очищенная и вода для инъекций подвергается бактериологическому контролю (не реже 2-х раз в квартал) и контролю на отсутствие пирогенных веществ (ежеквартально).

Капли глазные — лекарственная форма, предназначенная для инстилляции в глаз.

Глазные капли представляют собой водные или масляные растворы или тончайшие суспензии лекарственных веществ.

К глазным каплям предъявляются следующие требования: стерильность, стабильность, изотоничность, изогидричность, отсутствие видимых невооруженным глазом механических загрязнений.

Глазные капли и концентрированные растворы лекарственных веществ для их приготовления, должны изготавливаться в асептических условиях .

Осмотическое давление глазных капель должно соответствовать осмотическому давлению раствора натрия хлорида 0.9+0.2%. Для изотонирования можно использовать хлорид натрия, сульфат натрия, нитрит натрия в необходимом количестве, с учетом совместимости с лекарственными веществами.

Капли глазные должны быть изотоничны со слезной жидкостью. В отдельных случаях допускается применение гипертонических или гипотонических растворов, о чем должно быть указано в частных статьях.

Для приготовления капель глазных применяют растворители и вспомогательные вещества, разрешенные к медицинскому применению и указанные в частных статьях.

Для приготовления капель глазных используют стерильные растворители: воду дистиллированную, изотонические буферные растворы, масла и др.

В качестве стабилизаторов, консервантов, пролонгаторов и других вспомогательных веществ используют: натрия хлорид, натрия сульфат, натрия нитрат, натрия метабисульфит, натрия тиосульфат, натрия фосфорнокислые соли одно- и двузамещенные, кислоту борную, кислоту сорбиновую, нипагин, производные целлюлозы и др.

Капли глазные должны приготавливаться в асептических условиях и быть стерильными.

Стерилизацию капель глазных осуществляют методами, указанными в частных статьях в соответствии со статьей «Стерилизация».

Проверку капель глазных на стерильность проводят в соответствии со статьей «Испытание на стерильность» (с. 187).

Капли глазные должны выдерживать испытания на механические включения.

Испытания на механические включения проводят в соответствии с инструкцией, утвержденной Министерством здравоохранения СССР. Настоящая Инструкция устанавливает порядок визуального контроля глазных капель, изготовленных в аптеках, на отсутствие механических включений. Под механическими включениями подразумеваются посторонние подвижные нерастворимые вещества, кроме пузырьков газа, случайно присутствующие в растворах. В процессе изготовления растворы подвергаются первичному и вторичному контролю.

Первичный контроль осуществляется после фильтрования и фасовки раствора. При этом просматривается каждая флакон с раствором. При обнаружении механических включений раствор повторно фильтруют, вновь просматривают, укупоривают, маркируют и стерилизуют. Растворы, изготовленные асептически, просматривают один раз после розлива или стерилизующего фильтрования.

Вторичному контролю подлежат также 100% флаконов с растворами, прошедших стадию стерилизации перед их оформлением и упаковкой.

Контроль растворов на отсутствие механических включений осуществляется провизором — технологом с соблюдением условий и техники контроля.

Упаковка. Упаковка должна обеспечивать стабильность и стерильность препарата при хранении и транспортировании и иметь, как правило, устройство для закапывания.

Хранение. В прохладном, защищенном от света месте, если нет других указаний в частных статьях.

Отклонения, допустимые в общем объеме жидких лекарственных форм при изготовлении массо-объемным способом*(2.5.)

1. Отклонения, допустимые в массе навески отдельных лекарственных веществ в жидких лекарственных формах при изготовлении способом по массе или массо-объемным способом, а также в мазях, определяются не на концентрацию в процентах, а на массу навески каждого вещества, входящего в эти лекарственные формы (приложение 2, пп. 2.7 и 2.9.).

Например, при изготовлении 10 мл 2% раствора пилокарпина гидрохлорида берут массу навески 0,2 г, для которой допускается отклонение +- 10 %. При анализе достаточно установить, что было взято не менее 0,18 г и не более 0,22 г пилокарпина гидрохлорида.

Возьми: Раствора пилокарпина гидрохлорида 1% — 10 мл

По 2 капли 3 раза в день в оба глаза.

Rp.: Sol. Pilocarpini hydrochloridi 1% — 10 ml

Da. Signa. По 2 капли З раза в день в оба глаза.

Pilocarpini hydrochloridum — бесцветные кристаллы или белый кристаллический порошок без запаха. Гигроскопичен. Очень легко растворим в воде. Список А.

В прописи выписано одно лекарственное вещество, поэтому заключение о совместимости ингредиентов нецелесообразно.

Характеристика лекарственной формы.

Выписана жидкая лекарственная форма — глазные капли, представляющие собой раствор легкорастворимого вещества

Проверка доз веществ списка А и Б и норм одноразового отпуска.

В глазных каплях проверка доз не проводится.

Паспорт письменного контроля.

Лицевая сторона Оборотная сторона

Выдал: Pilocarpini hydrochloridi 0,1 Пилокарпина гидрохлорида 0,1

Дата. Подпись. Натрия хлорида 0,09 — (0,1 х 0,22)=

Получил: Pilocarpini hydrochlor >

Дата. Подпись. эквивалент пилокарпина гидро-

Дата. № рецепта хлорида по натрия хлориду.

Aquae pro injectionibus 10 ml Воды очищенной 10 мл

Pilocarpini hydrochloridi 0,1

Рассчитаем осмолярность раствора:

Rp.: Solutionis Natrii chloridi 0,9 %

В настоящее время для выражения осмотической активности оф- тальмологических, инъекционных и инфузионных растворов используют понятия «осмоляльность» и «осмолярность». Молярная концентрация — количество вещества в молях, содержащееся в 1 л раствора. Моляльная концентрация — это количество вещества в молях, содержащееся в 1 кг раствора. Осмоляльность или осмолярность указывает на содержание в моляльном или молярном растворе активных частиц (молекул, ионов), создающих определенное осмотическое давление. Офтальмологические и инъекционные растворы изготавливают в массо-объемной концентрации, поэтому более удобной в использовании является характеристика осмолярности.

Если количество осмотически активных частиц в осмолярном растворе таково, что создаваемое ими давление соответствует физиологическому, такие растворы называют изоосмолярными. Единицей измерения осмолярности является миллиосмоль (тысячная доля осмолярной концентрации). Теоретическую осмолярность рассчитывают по формуле

где С — миллиосмолярность раствора, мосмоль/л;

m — масса вещества в растворе, г/л;

n — число оомотически активных частиц в растворе, образовавшихся в результате диссоциации при растворении (n = 1, если вещество в растворе не диссоциирует; n = 2, если вещество при диссоциации образует два иона; n — 3, если — три и т.д.); М — молекулярная масса вещества, находящегося в растворе. В нашем примере.

Известно, что 0,9 % раствор натрия хлорида является изотоничным слезной жидкости и плазме крови, следовательно, концентрация 308 мОсм является изоосмолярной.

источник

РД 52.24.486-95 Методические указания. Методика выполнения измерений массовой концентрации аммиака и ионов аммония в водах фотометрическим методом с реактивом Несслера

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. МЕТОДИКА
ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВОЙ КОНЦЕНТРАЦИИ
АММИАКА И ИОНОВ АММОНИЯ В ВОДАХ
ФОТОМЕТРИЧЕСКИМ МЕТОДОМ С РЕАКТИВОМ НЕССЛЕРА

1 РАЗРАБОТАН Гидрохимическим институтом, Малым научно-производственным предприятием «Акватест»

2 РАЗРАБОТЧИКИ Л.В. Боева, канд. хим. наук (руководитель разработки), Т.Ф. Уфлянд, Л.Н. Каримова

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Начальником ГУЭМЗ Росгидромета Цатуровым Ю.С. 21.07.94

4 ОДОБРЕН Секцией по методам химического и радиологического мониторинга природной среды ЦКПМ Росгидромета 21.06.94, протокол № 1

5 СВИДЕТЕЛЬСТВО ОБ АТТЕСТАЦИИ МВИ Выдано Гидрохимическим институтом в 1994 г. № 141

6 ЗАРЕГИСТРИРОВАН ЦКБ ГМП в 1995 г. № 486

Аммонийный азот в водах находится, главным образом, в растворенном состоянии в виде ионов аммония и недиссоциированных молекул NH 4 OH , количественное соотношение которых имеет важное экологическое значение и определяется величиной рН и температурой воды. В то же время некоторая часть аммонийного азота может мигрировать в сорбированном состоянии на минеральных и органических взвесях, а также в виде различных комплексных соединений.

Присутствие в незагрязненных поверхностных водах ионов аммония связано, главным образом, с процессами биохимической деградации белковых веществ, дезаминирования аминокислот, разложения мочевины. Естественными источниками аммиака служат прижизненные выделения гидробионтов. Кроме того, ионы аммония могут образовываться в результате анаэробных процессов восстановления нитратов и нитритов.

Источником антропогенного загрязнения водных объектов ионами аммония являются сточные воды многих отраслей промышленности, бытовые сточные воды, стоки с сельскохозяйственных угодий.

Сезонные колебания концентрации ионов аммония характеризуются обычно понижением весной, в период интенсивной фотосинтетической деятельности фитопланктона, и повышением летом при усилении процессов бактериального разложения органического вещества в периоды отмирания водных организмов, особенно в зонах их скопления: в придонном слое водоема, в слоях повышенной плотности фито- и бактериопланктона. В осенне-зимний период повышенное содержание ионов аммония связано с продолжающейся минерализацией органических веществ в условиях слабого потребления фитопланктоном.

Повышенное содержание ионов аммония указывает на ухудшение санитарного состояния водного объекта, причем, поскольку аммиак более токсичен, чем ионы аммония, опасность аммонийного азота для гидробионтов возрастает с повышением рН воды.

Увеличение концентрации аммонийного азота обычно является показателем свежего загрязнения.

Для водных объектов рыбохозяйственного назначения предельно допустимая концентрация (ПДК) ионов аммония 0,4 мг/дм 3 , аммиака — 0,04 мг/дм 3 по азоту; для объектов хозяйственно-питьевого и культурно-бытового назначения ПДК соответственно равны 2,0 мг/дм 3 и 1,0 мг/дм 3 .

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. МЕТОДИКА ВЫПОЛНЕНИЯ
ИЗМЕРЕНИЙ МАССОВОЙ КОНЦЕНТРАЦИИ АММИАКА И
ИОНОВ АММОНИЯ В ВОДАХ ФОТОМЕТРИЧЕСКИМ
МЕТОДОМ С РЕАКТИВОМ НЕССЛЕРА

Читайте также:  Анализ на кальций в воде

Настоящий руководящий документ устанавливает фотометрическую методику выполнения измерений массовой концентрации аммиака и ионов аммония в пробах поверхностных вод суши и очищенных сточных вод в диапазоне 0,3 — 4,0 мг/дм 3 в пересчете на азот. При анализе проб воды с массовой концентрацией аммонийного азота, превышающей 4,0 мг/дм 3 , необходимо соответствующее разбавление пробы водой, не содержащей аммонийного азота.

При массовой концентрации аммонийного азота менее 0,3 мг/дм 3 или в присутствии веществ, мешающих определению, следует использовать выполнение измерений в виде индофенолового синего (РД 52.24.383-95).

В соответствии с ГОСТ 27384 норма погрешности при выполнении измерений массовой концентрации аммонийного азота в природных водах в диапазоне 0,005 — 0,1 мг/дм составляет ±50 %, свыше 0,1 — 0,5 мг/дм 3 — ±25 % и свыше 0,5 мг/дм — ±10 %. Для сточных вод норма погрешности при массовой концентрации аммонийного азота 0,1 — 1,0 мг/дм 3 составляет ±50 %, свыше 1,0 — 10 мг/дм 3 — ±25 %, свыше 10 мг/дм 3 — ±10 %.

Установленные для настоящей методики значения характеристик погрешности и ее составляющих приведены в таблицах 1, 2.

Таблица 1 — Значения характеристик погрешности и ее составляющих при выполнении измерений массовой концентрации аммонийного азота без отгонки (Р = 0,95)

Характеристики составляющих погрешности, мг/дм 3

Характеристика погрешности, мг/дм 3 , D

случайной,

систематической

Таблица 2 — Значения характеристик погрешности и ее составляющих при выполнении измерений массовой концентрации аммонийного азота с отгонкой (Р = 0,95)

Характеристики составляющих погрешности, мг/дм 3

Характеристика погрешности, мг/дм 3 , D

случайной,

систематической

При выполнении измерений в пробах с массовой концентрацией аммонийного азота свыше 4,0 мг/дм 3 после соответствующего разбавления погрешность измерения не превышает D · n, где D — погрешность измерения концентрации аммонийного азота в разбавленной пробе; n — степень разбавления.

Определение аммиака и ионов аммония основано на взаимодействии аммиака в щелочной среде с тетраиодомеркуриатом калия. В результате образуется тетраиодомеркуриат аммония, окрашивающий раствор в зависимости от количества аммонийного азота от желтого до красно-бурого цвета. Оптическая плотность образующегося соединения при измерении на фотоэлектроколориметре при длине волны 440 нм пропорциональна концентрации в анализируемой пробе аммонийного азота, которую находят по градуировочной зависимости.

Определению мешают компоненты, обусловливающие жесткость воды, железо, сульфиды, активный хлор, мутность и цветность воды, амины, хлорамины, альдегиды, спирты и некоторые другие органические соединения, реагирующие с реактивом Несслера. Мутность удаляют фильтрованием. Влияние цветности до определенного предела можно устранить измерением оптической плотности пробы, в которую не добавлен реактив Несслера. Мешающее влияние активного хлора устраняется добавлением эквивалентного количества раствора тиосульфата натрия. Влияние кальция и магния в значительной степени устраняется добавлением раствора сегнетовой соли, однако при высокой жесткости использование комплексообразователя не является достаточно эффективным.

Наиболее надежным способом устранения мешающих влияний неорганических компонентов, цветности, мутности и нелетучих органических веществ является отгонка аммиака из слабощелочного раствора, однако при этом не удается устранить влияние аминов, хлораминов, альдегидов и других, отгоняющихся с паром, соединений. В этом случае следует использовать другую методику определения аммонийного азота.

4.1.1 Фотоэлектроколориметр типа КФК-2, КФК-2мп (КФК-3) по ТУ 3.3.1766, ТУ 3.3.1860 или спектрофотометр типа СФ-46 (СФ-26).

4.1.2 Весы аналитические 2 класса точности по ГОСТ 24104.

4.1.3 Весы технические лабораторные 4 класса точности по ГОСТ 24104 с пределом взвешивания 200 г.

4.1.4 Шкаф сушильный общелабораторного назначения по ГОСТ 13474.

4.1.5 Плитка электрическая с закрытой спиралью и регулируемой мощностью нагрева по ГОСТ 14919.

4.1.6 Колбы мерные не ниже 2 класса точности по ГОСТ 1770, вместимостью:

4.1.7 Пипетки градуированные не ниже 2 класса точности по ГОСТ 29227 вместимостью:

4.1.8 Пипетки с одной отметкой не ниже 2 класса точности по ГОСТ 29169 вместимостью:

4.1.9 Цилиндры мерные по ГОСТ 1770 вместимостью:

4.1.10 Колбы конические или плоскодонные по ГОСТ 25336 вместимостью:

4.1.11 Воронка лабораторная по ГОСТ 25336 диаметром 3 — 4 см — 1

4.1.12 Установки для отгонки аммиака (колбы круглодонные термостойкие вместимостью 250 см 3 , каплеуловители с отводом, холодильники с прямой трубкой и колбы плоскодонные вместимостью 100 см 3 ) по ГОСТ 25336 — 2

4.1.13 Стаканы химические термостойкие по ГОСТ 25336 вместимостью:

4.1.14 Стаканчики для взвешивания (бюксы) по ГОСТ 25336 — 2

4.1.15 Колонка ионобменная d = 2 — 4 см и h = 50 — 60 см — 1

4.1.17 Устройство для фильтрования проб с использованием мембранных или бумажных фильтров — 1

Допускается использование других типов средств измерений, посуды и вспомогательного оборудования, в том числе импортных, с характеристиками не хуже, чем у приведенных в 4.1.

4.2.1 Хлорид аммония NH 4 Cl по ГОСТ 3773, х.ч.

4.2.2 Реактив Несслера K 2 [ HgI 4 ] · K OH или K 2 [ HgI 4 ] NaOH по ТУ 6-09-2089, ч.д.а или иодид калия KI по ГОСТ 4232, ч.д.а и иодид ртути ( II ) HgI 2 по ТУ 6-09-02-375, ч.д.а.

4.2.3 Тартрат калия-натрия, тетрагидрат (сегнетова соль) KNaC 4 H 4 O 6 · 4 H 2 O по ГОСТ 5845, ч.д.а.

4.2.4 Калия дигидрофосфат КН 2 РО 4 по ГОСТ 4198, ч.д.а.

4.2.5 Калия гидрофосфат тригидрат К 2 НРО 4 · 3Н2О по ГОСТ 2493, ч.д.а.

4.2.6 Натрия гидроксид NaOH по ГОСТ 4328, ч.д.а.

4.2.7 Серная кислота H 2 SO 4 по ГОСТ 4204, ч.д.а.

4.2.8 Соляная кислота HCl по ГОСТ 3118, ч.д.а.

4.2.9 Натрия карбонат Na 2 CO 3 по ГОСТ 84, ч.д.а.

4.2.10 Натрия тиосульфат пентагидрат Na 2 S 2 O 3 · 5H 2 O по ГОСТ 27068, ч.д.а.

4.2.11 Цинка сульфат гептагидрат ZnS O 4 · 7 H 2 O по ГОСТ 4174, ч.д.а. или цинка хлорид ZnCl 2 по ГОСТ 4529, ч.д.а.

4.2.12 Катионит сильнокислотный КРС-5п-Т40 по ТУ 6-09-10-829 или другой, равноценный по характеристикам.

4.2.13 Вода дистиллированная по ГОСТ 6709.

4.2.14 Фильтры бумажные обеззоленные «синяя лента» по ТУ 6-09-1678.

4.2.15 Фильтры мембранные «Владипор МФА- МА», 0,45 мкм, по ТУ 6-05-1903 или другого типа, равноценные по характеристикам.

4.2.16 Универсальная индикаторная бумага по ТУ 6-09-1181. Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже указанной в 4.2.

Отбор проб для определения аммиака и ионов аммония производят в соответствии с ГОСТ 17.1.5.05. Пробы помещают в стеклянную или полиэтиленовую посуду с плотно закрывающейся пробкой. Если анализ не может быть произведен в день отбора пробы, ее консервируют прибавлением 1 см 3 раствора серной кислоты 1:1 на 1 дм 3 воды и хранят в холодильнике 3 — 4 дня. Для более длительного хранения необходимо замораживание пробы.

Перед определением (консервацией) пробы фильтруют через мембранный фильтр 0,45 мкм, очищенный двух — трехкратным кипячением в дистиллированной воде. Чистые фильтры хранят в плотно закрытом бюксе.

При отсутствии мембранных допустимо использовать бумажные фильтры «синяя лента», промытые безаммиачной водой. При фильтровании через любой фильтр первые порции фильтрата следует отбросить. Фильтрование под вакуумом недопустимо вследствие потерь аммиака за счет улетучивания, поэтому его следует проводить только путем продавливания пробы через фильтр.

В помещении, где выполняют измерения аммиака и ионов аммония, не следует проводить работы, связанные с применением аммиака и щелочных растворов солей аммония.

7.1 Приготовление растворов и реактивов

7.1.1 Реактив Несслера (щелочной раствор тетраиодмеркуриата калия)

Раствор готовят в том случае, когда отсутствует готовый реактив. 40 г KI и 57,5 г HgI 2 растворяют в 250 см 3 дистиллированной воды, перемешивают, приливают 250 см 3 раствора NaOH 6 моль/дм 3 и отстаивают в течение нескольких дней в темноте. Затем декантируют прозрачный раствор в темную склянку. Выпадение осадка не портит реактива. Реактив устойчив длительное время.

7.1.2 Раствор тартрата калия-натрия (сегнетовой соли)

50 г KNaC 4 H 4 O 6 · 4H 2 O рас3творяют в 50 см 3 дистиллированной воды при нагревании, фильтруют, добавляют 50 см 3 10 % раствора NaOH и кипятят 30 мин для удаления следов NH 3 ; объем раствора доводят до 100 см 3 . Раствор устойчив при хранении в полиэтиленовой посуде.

7.1.3 Раствор гидроксида натрия, 10 %

10 г NaOH растворяют в 90 см 3 дистиллированной воды. Раствор хранят в полиэтиленовой посуде.

7.1.4 Раствор гидроксида натрия, 6 моль/дм 3

60 г NaOH растворяют в 250 см 3 дистиллированной воды. Раствор хранят в полиэтиленовой посуде.

7.1.5 Раствор гидроксида натрия, 1 моль/дм 3

40 г NaOH растворяют в 1 дм 3 дистиллированной воды. Раствор хранят в полиэтиленовой посуде.

7.1.6 Раствор гидроксида натрия и карбоната натрия, 1,5 %

1,5 г NaOH и 1,5 г Na 2 СО3 растворяют в 100 см 3 дистиллированной воды. Раствор хранят в полиэтиленовой посуде.

7.1.7 Буферный раствор, рН 7,4 — 7,6

7,15 г КН2РО4 и 45,05 г К2НРО4 · 3Н2О помещают в мерную колбу вместимостью 0,5 дм 3 , растворяют в дистиллированной воде, доводят объем раствора до метки и перемешивают. При отсутствии калийных солей допустима замена их на эквивалентное количество натриевых солей; при этом обязателен контроль рН по рН-метру. Раствор хранят не более месяца.

7.1.8 Раствор тиосульфата натрия 0,1 моль/дм 3 эквивалента

2,48 г Na 2 S 2 O 3 · 5H 2 O растворяют в 100 см 3 безаммиачной воды. Раствор хранят не более месяца.

7.1.9 ZnSO 4 · 7H 2 O или 10 г ZnCl 2 растворяют в 90 см 3 безаммиачной воды. Раствор устойчив при хранении в герметично закрытой посуде.

7.1.10 Раствор серной кислоты 0,05 моль/дм 3

0,55 см 3 концентрированной серной кислоты приливают к 200 см 3 безаммиачной воды и перемешивают. Раствор устойчив при хранении в герметично закрытой посуде.

7.1.11 Раствор соляной кислоты 1 моль/дм 3

84 см 3 концентрированной соляной кислоты растворяют в 916 см 3 дистиллированной воды. Раствор устойчив.

7.1.12 Получение безаммиачной воды

Способ 1 . Дистиллированную воду пропускают через колонку, заполненную катионитом, со скоростью 1 — 2 капли в секунду. Первые 100 — 150 см 3 воды, прошедшей через колонку, отбрасывают. Хранят безаммиачную воду в плотно закрытой стеклянной посуде не более недели.

Способ 2 . К 1 дм 3 дистиллированной воды добавляют 1 см 3 1,5 % раствора гидроксида натрия и карбоната натрия. Кипятят в открытой колбе или стакане до уменьшения объема вдвое. Хранят в плотно закрытой полиэтиленовой посуде.

7.1.19 Подготовка колонки с катионитом

50 — 60 г сухого катионита замачивают на сутки в дистиллированной воде. После этого переносят катионит в колонку, так, чтобы не образовалось воздушных пузырьков. Пропускают через колонку с катионитом последовательно по 100 см 3 раствора соляной кислоты 1 моль/дм 3 , дистиллированной воды и раствора гидроксида натрия 1 моль/дм 3 со скоростью 1 — 2 капли в секунду, повторяя процедуру 8 — 10 раз. Заканчивают обработку смолы пропусканием 100 см 3 раствора соляной кислоты. Промывают колонку дистиллированной водой до рН 6 по универсальной индикаторной бумаге, пропуская воду с максимально возможной скоростью. Колонка с катионитом пригодна к работе длительное время. При ухудшении качества безаммиачной воды колонку регенерируют, пропуская 100 см 3 раствора соляной кислоты 1 моль/дм 3 и промывая дистиллированной водой. Хранят колонку заполненной водой.

7.2 Приготовление градуировочных растворов

Градуировочные растворы, аттестованные по процедуре приготовления, готовят из хлорида аммония в соответствии с 7.2.1 — 7.2.3.

Для всех градуировочных растворов погрешности, обусловленные процедурой приготовления, не превышают 0,7 % относительно приписанного значения массовой концентрации аммонийного азота.

0,9547 г NH 4 Cl , предварительно высушенного в сушильном шкафу при 105 — 110 °С, помещают в мерную колбу вместимостью 500 см 3 , растворяют в дистиллированной воде, доводят до метки и перемешивают.

Раствор хранят не более 3 мес. в темной склянке при комнатной температуре и до 6 мес в холодильнике.

7.2.2. Раствор хлорида аммония с массовой концентрацией аммонийного азота 25 мг/дм 3

Пипеткой с одной отметкой отбирают 5 см 3 раствора с массовой концентрацией аммонийного азота 500 мг/дм 3 , помещают его в мерную колбу вместимостью 100 см 3 и доводят до метки безаммиачной водой.

Раствор хранят не более 5 дней.

7.3 Установление градуировочной зависимости

В мерные колбы вместимостью 50 см 3 с помощью градуированных пипеток вместимостью 5 и 10 см 3 приливают 0; 1,0; 2,0; 3,0; 4,0; 6,0; 8,0 см 3 раствора с концентрацией аммонийного азота 25 мг/дм 3 и доводят безаммиачной водой до метки. Полученные растворы соответствуют массовым концентрациям аммонийного азота 0; 0,5; 1,0; 1,5; 2,0; 3,0; 4,0 мг/дм 3 . Растворы полностью переносят в сухие конические колбы вместимостью 100 см 3 . Далее определение проводят в соответствии с разделом «Выполнение измерений». Градуировочную зависимость устанавливают в координатах: массовая концентрация аммонийного азота в мг/дм 3 — оптическая плотность графически или рассчитывают методом наименьших квадратов.

Проверку градуировочной зависимости осуществляют при замене реактива Несслера или измерительного прибора, но не реже одного раза в квартал.

8.1 Выполнение измерений аммонийного азота без отгонки

Отмеряют цилиндром 50 см 3 отфильтрованной анализируемой воды, помещают ее в сухую колбу вместимостью 100 см 3 , приливают 1 см 3 раствора сегнетовой соли, перемешивают, затем добавляют 1 см 3 реактива Несслера и опять хорошо перемешивают. Через 10 мин измеряют оптическую плотность проб на фотоэлектроколориметре с синим светофильтром или спектрофотометре ( l = 440 нм) в кюветах с длиной поглощающего слоя 2 см против дистиллированной воды.

Одновременно с серией проб анализируемой воды проводят определение в холостой пробе, в качестве которой берут 50 см 3 безаммиачной воды. Оптическую плотность холостой пробы вычитают из оптической плотности анализируемых проб.

Если массовая концентрация аммонийного азота в анализируемой, воде превышает 4,0 мг/дм 3 , то для определения берут аликвоту меньшего объема и доводят объем до 50 см 3 безаммиачной водой.

Если анализируемая вода была законсервирована серной кислотой, после добавления раствора сегнетовой соли следует добавить 2 капли раствора NaOH 6 моль/дм 3 .

В присутствии активного хлора к пробе до прибавления реактивов приливают эквивалентное хлору количество раствора тиосульфата натрия. Содержание активного хлора должно быть определено заранее.

При анализе окрашенных вод вводят поправку на цветность. Для этого к другой порции анализируемой воды добавляют все реактивы кроме реактива Несслера, вместо которого приливают 1 см 3 10 % раствора NaOH . Оптическую плотность полученного раствора вычитают из оптической плотности пробы. Если значение оптической плотности, обусловленное окраской пробы, превышает 0,3, следует использовать определение аммонийного азота после отгонки.

8.2 Выполнение измерений аммонийного азота с отгонкой

100 см 3 анализируемой воды помещают в перегонную колбу, добавляют 40 см 3 буферного раствора с рН 7,4 — 7,6 и отгоняют пробу в плоскодонную колбу вместимостью 100 см 3 , содержащую 10 см 3 раствора серной кислоты 0,05 моль/дм 3 , до объема примерно 90 см 3 (на колбе должна быть сделана соответствующая метка). Если проба была законсервирована серной кислотой, ее следует предварительно нейтрализовать с помощью раствора NaOH 6 моль/дм 3 до рН 7 — 8 по универсальной индикаторной бумаге. При отгонке выходной отросток холодильника должен быть погружен в раствор серной кислоты. При необходимости его можно удлинить с помощью стеклянной трубки, пристыкованной к холодильнику с помощью резиновой трубки.

Для устранения влияния активного хлора, в колбу до отгонки следует добавить эквивалентное количество раствора тиосульфата натрия.

В присутствии сульфидов к пробе до отгонки добавляют 1 см 3 раствора соли цинка.

После отгонки пробу из колбы-приемника переносят в мерную колбу вместимостью 100 см 3 , промывают трубку холодильника и колбу-приемник небольшим количеством безаммиачной воды и присоединяют промывную воду к пробе. Доводят раствор в колбе до метки безаммиачной водой и перемешивают. Далее отбирают 50 см 3 отгона в коническую колбу и проводят определение аммонийного азота, как описано выше.

Холостой опыт выполняют аналогично, используя 100 см 3 безаммиачной воды.

Массовую концентрацию аммонийного азота в анализируемой пробе воды С х находят по градуировочной зависимости с учетом разбавления.

Результат измерения в документах, предусматривающих ег о использование, представляют в виде:

где D — характеристика погрешности измерения для данной массовой концентрации аммонийного азота (таблицы 1, 2).

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.

Концентрацию свободного аммиака находят, исходя из суммарного содержания аммонийного азота, температуры и рН воды по таблице 3.

Таблица 3 — Относительное содержание азота аммиака в воде (в процентах от общего содержания аммонийного азота)

источник