Меню Рубрики

Анализ воды на жесткость титрованием

Данный урок — лабораторная работа разработан по предмету «Аналитическая химия» для обучающихся по профессии «Технология продукции общественного питания». В ходе лабораторной работы в основе определения общей жесткости воды используется один из методов титриметрического анализа — комплексонометрический.

Вода является универсальным растворителем на планете Земля. Как в загородных домах, так и в городе в квартирах с централизованным водопроводом существует проблема жесткой воды. Жесткость воды зависит от наличия в ней солей кальция и магния. Жесткость воды является характеристикой конкретного источника водоснабжения и не изменяется в процессе подготовки питьевой воды к централизованному водоснабжению. Как определить степень жесткости воды?

Цель: повторить основные понятия, используемые в титриметрическом анализе; научить определять общую жесткость воды комплексонометрическим методом; закрепить навыки работы с лабораторным оборудованием; развивать вычислительные навыки; воспитывать чувство ответственности и дисциплинированности при выполнении практической работы.

Оборудование: конические колбы, мерные круглодонные колбы, бюретки для титрования, реактивы: трилон Б, индикатор эриохром черный Т, водопроводная вода, аммиачно-буферная смесь; таблицы, инструкционные карты.

II. Актуализация знаний учащихся

Сегодня на уроке мы с Вами будем говорить о самом замечательном веществе на планете Земля — воде.

Вы, как будущие технологи общественного питания, будете использовать питьевую воду не только в быту, но и в своей профессиональной деятельности.

В Старом Осколе питьевая вода поступает в город из 14 водозаборов, расположенных в разных частях города и района.

1. Одинакова ли питьевая вода по своим свойствам? (нет)

2.Чем она отличается? (содержанием различных веществ — жесткостью)

Абсолютно чистой воды в природе не существует. Она всегда содержит различные примеси как в растворенном, так и во взвешенном состоянии. От концентрации и природы этих примесей зависит пригодность воды для бытовых и промышленных нужд.

3.Что такое жесткость воды?

Жесткость воды определяется содержанием в ней растворимых солей магния, кальция, гидрокарбонатов, сульфатов, хлоридов.

4. Какие виды жесткости воды Вы знаете?

Жесткость временная (карбонатная) обусловлена содержанием гидрокарбонатов кальция и магния.

Жесткость постоянной (некарбонатной) обусловленна присутствием в воде хлоридов, сульфатов и других солей магния и кальция.

Общая жесткость воды представляет сумму жесткости карбонатной и некарбонатной.

5. Почему нежелательно использовать жесткую воду в быту?

Жесткая вода образует плотные слои накипи на внутренних стенках паровых котлов и кипятильников, в ней плохо развариваются пищевые продукты, при стирке белья в жесткой воде расходуется больше мыла.

III. Изучение нового материала

Тема нашего урока «Определение общей жесткости воды комплексонометрическим методом». Запишем ее в тетради.

В ходе урока мы должны научиться практическим путем определять общую жесткость воды, используя титриметрический анализ, в частности комплексонометрический метод.

Вспомним основы комплексонометрического метода анализа.

1. В чем состоит сущность комплексонометрического метода?

Сущность комплексонометрического метода состоит в образовании комплексных соединений анализируемых катионов с органическими реагентами — комплексонами.

Титрование — постепенное добавление раствора известной концентрации до достижения точки эквивалентности.

3. Что такое точка эквивалентности?

Точка эквивалентности — момент окончания реакции, т.к. вещества реагируют между собой в эквивалентных количествах.

4. С помощью чего устанавливают точку эквивалентности? (индикатора)

Индикаторы — вещества, при помощи которых устанавливают момент эквивалентности между взаимодействующими растворами.

6. Что такое стандартный (рабочий) раствор?

Стандартный раствор — раствор с точно установленной концентрацией, используемый для титриметрических измерений.

7. Какие правила техники безопасности необходимо соблюдать при выполнении практической работы?

Правила техники безопасности при работе со стеклянной посудой; жидкостями и сыпучими, а также ядовитыми веществами.

Работу выполняем по парам. На столах имеются инструкционные карты.

IV. Выполнение практической работы

Работу выполняем по парам. На столах имеются инструкционные карты.

Цель работы: определить общую жесткость воды методом комплексонометрии.

Оборудование: бюретки, мерный цилиндр, мерные круглодонные колбы, конические колбы, цилиндры, воронки, шпатель; реактивы: раствор Трилона Б, эриохром черный Т (сухой), аммиачно-буферная смесь, водопроводная вода.

1. Мерной колбой отмерить 100 мл исследуемой Н2О и перелить ее в коническую колбу.

2. Добавить к воде 5 мл аммиачно-буферной смеси, затем 7-8 капель спиртового раствора индикатора эриохром черного Т или щепотку его смеси с NaCl или KCl (сухую).

3. Тщательно перемешать, раствор окрасится в винно-красный цвет.

4. Смесь оттитровать 0,05 Н раствором Трилона Б. К концу титрования раствор Трилона Б добавлять по каплям, встряхивая смесь в колбе после добавления каждой капли.

5.Титрование можно считать законченным если после добавления очередной капли окраска раствора приобретает синий цвет с зеленоватым оттенком и с добавлением лишней капли раствора комплексона не изменяется.

6. Определить объем трилона Б, израсходованного на титрование.

7.Титрование повторить 2-3 раза и для расчета взять среднее значение.

8. Произвести расчет общей жесткости воды.

Величину общей жесткости воды (Ж) в мг*экв/л вычисляют по формуле:

где N — нормальность раствора трилона Б, г-экв/л;

V — объем раствора трилона Б, мл;

9. Сделайте вывод о типе воды, пользуясь данными значениями жесткости воды.

Типы воды (по жесткости):

  • Очень мягкие — 0-1,5 мг-экв/л;
  • Мягкие — 1,5- 3,0 мг-экв/л;
  • Среднежесткие — 3,0- 4,5 мг-экв/л;
  • Довольно жесткие — 4,5 — 6,5 мг-экв/л;
  • Жесткие — 6,5 — 11,0 мг-экв/л;
  • Очень жесткие — свыше 11,0 мг-экв/л.

V. Подведение итогов работы

Сегодня на уроке мы практическим путем определили общую жесткость воды. Водопроводная вода, которую мы используем, является среднежесткой.

Какие способы устранения жесткости Вы знаете?

Способы устранения жесткости воды:

  • Карбонатная (временная) жесткость — кипячение; добавление известкового молока или соды.
  • Некарбонатная (постоянная) жесткость — добавление соды.

источник

дорогие аквариумисты! с 1.12.2011 сайт aquaria2.ru превращен в памятник. на нем закрыта регистрация, создание новых материалов и комментариев.

активная версия аквариумного сайта теперь доступна по адресу http://aquaria.ru. все материалы и регистрации пользователей aquaria2, созданные до 29.11.2011, блоги, темы форума, комментарии перенесены на новый сайт.

Принцип определения. По количеству трилона Б — натриевой соли этилендиаминотетрауксусной кислоты (порошок белого цвета), пошедшего на титрование пробы воды с индикатором эриохромом черным Т, рассчитывают содержание растворенных в ней солей кальция и магния. Так как индикатор меняет свою окраску не только от изменения концентрации ионов кальция и магния, но и в зависимости от рН раствора, в титруемый раствор добавляют буферную смесь (NH 4 OH + NH 4 Cl), поддерживающую рН около 10.

Раствор трилона Б, 0,05н. раствор: растворяют 9,3 г трилона Б в дистиллированной воде с последующим доведением объема до 1 л.

Буферный раствор: 20г химически чистой NH 4 Cl растворяют в дистиллированной воде, добавляют 100 мл 20%-ного раствора NH 4 OH и доводят объем дистиллированной водой до 1 л.

Раствор индикатора: 0,5г эриохрома черного Т растворяют в 10 мл буферного раствора и доводят объем 96%-ным этиловым спиртом до 100 мл.

Ход анализа. В коническую колбу емкостью 200-250 мл наливают 50 мл исследуемой воды, добавляют 5 мл буферной смеси и 10-15 капель индикатора эриохрома черного Т (до появления интенсивного вишнево-красного цвета). При непрерывном покачивании колбы пробу титруют раствором трилона Б. По мере прибавления трилона Б вишнево-красный цвет переходит в лиловый. С этого момента титрование следует проводить медленнее. Окончание титрования устанавливают по появлению синего цвета с зеленоватым оттенком.

Расчет. Содержание растворимых в воде солей кальция и магния вычисляют но формуле:
v * 0.05 * 1000
x = ——————————
v 1

где х — количество растворимых в воде солей кальция и магния, мг-экв/л;

v — количество трилона Б, пошедшее на титрование, мл;

0,05 — нормальность трилона;

1000 — пересчет на 1 л воды;

v 1 — объем исследуемой воды, мл.

Для перевода в градусы жесткости полученную цифру умножают на 2,8.

Определение общей жесткости лучше проводить по таблице 2, составленной В.П.Дацкевичем. В таблице нужно найти цифру, равную количеству трилона Б, пошедшему на титрование. В левой (вертикальной) графе указаны градусы жесткости, в верхней (горизонтальной) — десятые доли градуса. Таблица составлена для анализа, проведенного в 100 мл воды 0,1 н. раствором трилона Б или 0,05 н. раствором, но при исследовании 50 мл воды.

Чтобы приготовить воду нужной жесткости для общего, а в особенности для нерестового аквариумов, сначала следует определить жесткость водопроводной и дистиллированной воды, из которых будет составляться вода для аквариума. Химически обессоленная вода имеет нулевую жесткость. Пользуясь данными таблицы 3, водопроводную воду смешивают с химически обессоленной и получают воду нужной жесткости. Предварительно водопроводную воду подогревают до 90° в течение 30 минут и охлаждают.

Пример. Для аквариума, где будут нереститься неоновые рыбы, требуется вода жесткостью 3°, а мы располагаем водопроводной водой, жесткость которой 8°. В левой вертикальной графе указана требуемая жесткость воды, в горизонтальной графе — жесткость водопроводной воды. В-горизонтальной графе под цифрой 8 находим цифру, соответствующую 3° жесткости вертикальной графы,- 1666. Значит, для получения воды жесткостью 3° к 1 л водопроводной воды нужно добавить 1666 мл дистиллированной. Далее делаем пересчет на все количество воды нерестового аквариума.

источник

Лабораторная работа №3

Взятие пробы воды для анализа

Для правильного суждения о качестве воды необходимо соблюдать следующие требования:

1. Брать пробы воды для анализа нужно из точно установленных мест, указанных в водном режиме котельной установи.

2. Если воду берут из трубопровода, то перед взятием пробы следует застоявшуюся воду слить в течение 2-3 минут.

3. Посуда, в которую берут пробу воды, должна быть чистой, ее следует 1-2 раза ополоснуть водой из-под крана, откуда берется проба.

4. Анализы качества котловой воды и теплого ящика проводятся ежесуточно, котельного танка (общая жесткость и содержание хлоридов) 1 раз в 5-7 суток. Полученные результаты фиксируются в журнале.

Проведение испытания

Водородный показатель (pH)

1.1 Метод определения и характеристики

Недородный показатель воды (pH, отрицательный десятичный логарифм концентрации водородных ионов) определяется двумя методами визуально-колориметрическим и потенциометрическим.

При визуально-колориметрическом определении, основанном на реакции ионов водорода с универсальным индикатором (ГД 24.031.120-91, РД 24.032.01-91), pH анализируемой воды определяют визуально сравнением окраски пробы с окраской об­разцов на контрольной шкале. Диапазон определяемых значений pH составляет 4,5-11,0 при точности анализа ±0,5 ед. pH.

Объём пробы для определения составляет 5 мл, продолжи­тельность выполнения определения — не более 1 мин.

Принадлежности, реактивы и материалы

Определение выполняется с использованием оборудования из состава навесного ящика №1 СЛКВ, секция №2 «pH» или pH-метра типа pH-410 .

Реактивы:раствор индикатора универсального.

Принадлежности, материалы:контрольная шкала образцов окраски растворов для определения pH (pH 4,5; 5,0; 5,5; 6,0; 6,5; 7,0; 7,5; 8,0; 8,5; 9,0; 10,0; 11,0); полимерная пипетка; пробирка колориметрическая с меткой «5 мл».

Отбор и хранение проб

Отбор проб воды и пара должен проводиться в соответствии с п. 9 настоящего руководства.

Для отбора проб используются бутыли из полимерного ма­териала или стекла. Выполнение определений следует проводить как можно скорее и предпочтительнее на месте отбора пробы. Максимальный рекомендуемый срок хранение проб — не более 6 часов.

1.3 Выполнение определения

1) Ополосните колориметрическую пробирку не­сколько раз анализируемой водой. Налейте в пробирку анализируемую воду до метки «5 мл».

2) Добавьте полимерной пипеткой 3-4 капли раствора индикатора универсального и встряхните пробирку.

3) Проведите визуальное колориметрирование пробы. Для это­го пробирку с пробой поместите на белое поле контрольной шкалы и, освещая пробирку рассеянным белым светом достаточной интенсивности, наблюдайте окраску пробы сверху вниз.

4)Определите ближайшее по окраске поле кон­трольной шкалы и соответствующее ему значение pH. При необходимости повторите определение.

2.1 Метод определения и характеристики

Щелочность воды — показатель, характеризующий содержание в воде соединений, способных реагировать с водородными ионами. К таким соединениям относятся гидроокиси щелочных металлов, карбонаты, гидрокарбонаты и фосфаты щелочных и щелочноземельных металлов, а также соли других слабых кислот.

Метод определения щёлочности является титриметрическим (РД 24.031.120-91, РД 24.032.01-91, РД 34.37.523.7-88). Определение щёлочности воды основано на титровании растворённых в воде щелочных соединений кислотой в присутствии индикаторов, меняющих свою окраску в зависимости от реакции среды. Метод определения щёлочности зависит от вида анализируемой воды и предполагаемого значения щёлочности.

Методом А определяется щёлочность исходной, известкованной, катионированной и питательной вод. Титрование проводят с индикаторами метиловым оранжевым и фенолфталеином при использовании в качестве титранта раствора соляной кислоты 0,1 моль/л. При этом, при титровании с фенолфталеи­ном, определяется свободная щёлочность по фенолфталеину СВОБ), а при титровании с метиловым оранжевым — общая щелочность (ЩОБЩ). Величина ЩОБЩ условно характеризует суммарное содержание в воде бикарбонатов, карбонатов, гидратов, 2/3 ортофосфатов и гуматов, в то время как ЩСВОБ — гидра­тов, 1/2 карбонатов, 1/3 ортофосфатов и гуматов.

Методом Вопределяется общая щелочность котловой во­ды. Титрование проводят со смешанным индикатором для вод, имеющих значительную цветность, а также при титровании при электрическом освещении, при использовании в качестве титранта также раствора соляной кислоты 0,1 моль/л.

Методом С определяется щёлочность воды типа конден­сата, т.е. при значении щёлочности менее 0,2 ммоль/кг экв. Тит­рование проводят со смешанным индикатором или с индикато­ром метиловым оранжевым, при использовании в качестве титранта раствора соляной кислоты 0,01 моль/л.

Данные по изменению окраски индикаторов в зависимости от pH среды приведены в табл. 3.2.

Отбор и хранение проб

Отбор проб воды и пара проводится в соответствии с требованиями.

Для отбора проб используются бутыли из полимерного материалаили стекла. Выполнение определений рекомендуется пропилить сразу после отбора проб.

Максимальный рекомендуемый срок хранение проб при охлаждении до 2-5°С — не более 24 ч.

Подготовка к определению

Подготовка к определению общей щелочности состоит в приготовлении израсходованного раствора соляной кислоты (0,01 моль/л). Потребитель готовит его самостоятельно, используя раствор соляной кислоты (0,1 моль/л) из состава лаборатории.

Жёсткость общая

3.1 Методы определения и характеристики

Метод определения общей жёсткости как суммарной массовой концентрации эквивалентов катионов кальция и магния — комплексонометрической, основан на реакции образования в щелочной среде (pH = 9) в присутствии индикаторов окрашенных внутрикомплексонных соединений катионов кальция и магния с трилоном Б (двунатриевой солью этилендиаминтетрауксусной кислоты). (РД 24.031.120-91, РД 24.032.01-91, РД 34.37.523.8-88).

В зависимости от предполагаемого значения жёсткости, опредение выполняется тремя методами.

Метод Атитриметрический.Определяется жёсткость природной, известковой и коагулированной воды при величине более 0,1 °Ж. При титровании используется раствор индикатора хром темно-синего и в качестве титранта — раствор трилона Б 0,05 моль/л экв.

Метод Бтитриметрический.Определяется жёсткость любых вод при величине в диапазоне 0,02-0,1 °Ж. При титрова­нии используется раствор индикатора хром тёмно-синего и в качества титранта раствор трилона Б 0,005 моль/л экв.

МетодС — визуально-колориметрический.Определяется жёсткость вод при величине менее 0,02 °Ж. Особенностью дан­ного метода, на первом этапе, является необходимость выбора пары индикатор — буферный раствор, которая для данной ис­ходной (катионированной) воды обеспечивает оптимальный пе­реход окраски от розового к синему, что является индивидуаль­ной особенностью данной исходной воды.

Сравнение окраски анализируемой воды с окраской эталон­ных растворов позволяет определить фактическое значение жёст­кости с чувствительностью 0,001-0,002 °Ж.

Индикаторы кислотный хром тёмно-синий и эриохром чёр­ный Т образуют с катионами солей жёсткости непрочные окра­шенные соединения красного цвета. При добавлении в воду с по­добными окрашенными соединениями раствора трилона Б в точ­ке эквивалентности происходит их полное разрушение, при этом раствор становится синим.

В присутствии ионов цинка или меди (неотчётливый пере­ход окраски) определение жёсткости проводят с добавлением раствора сульфида натрия, связывающего эти катионы в нерас­творимые сульфидные соединения.

Влияние ионов марганца, приводящее к быстрому обесцве­чиванию окраски, устраняют добавлением к пробе раствора со­лянокислого гидроксиламина.

Объём пробы для анализа составляет, в зависимости от ме­тода, от 10 до 100 мл, продолжительность выполнения анализа — не более 15 мин.

Читайте также:  Вывод анализа почвы и воды

Подготовка к определению

Подготовка к проведению анализа заключается в приготовлении расходных растворов из реактивов, входящих в состав ла­боратории.

Буферные растворы следует приготавливать с использованием очищенной катионированной воды либо воды, применение которой не приводит к холостому окрашиванию пробы.

Очищенную воду, необходимую для проведения анализа, приготавливают по ОСТ 34.70.953.2-88, либо используют набор для приготовления очищенной воды.

Отбор и хранение проб

Отбор проб воды и пара должен проводиться в соответствии требованиями.

Пробы анализируемой воды следует отбирать в стеклянные бутыли или полимерные бутыли с пробками. Допускается хране­ние пробы до 24 ч без консервации.

3.4 Выполнение определения

Метод А. Определение общей жёсткости воды более 0,1 °Ж

1. Налейте анализируемую воду в коническую колбу вместимостью 250 мл до метки «100 мл».

2. Добавьте полимерными пипетками 1 мл аммиачно­го буферного раствора, 7 капель раствора индика­тора кислотного хрома тёмно-синего.

3.Медленно титруйте пробу раствором трилона Б (0,05 моль/л экв.), используя бюретку или стойку-штатив с мерной пипеткой вместимостью 10 мл со шприцем-дозатором, до отчётливого изменения цвета с розового на синий.

Примечание.При нечётком переходе окраски или обесцвечивании пробы определение повторите с добавлением к пробе 0,5 мл раствора сернистого натрия для устранения мешающего действия ионов меди и цинка либо трёх капель раствора солянокислого гидроксиламина для устранения мешающего действия соединений марганца.

4Рассчитайте общую жёсткость (Жобщ) в °Ж по формуле:

ЖОБЩ =V × 0,5

На титрование 100 мл пробы воды израсходовано 3,5 мл раствора трилона Б (0,05 моль/л экв.). Общая жёсткость будет составлять:

ЖОБЩ = V × 0,5 = 3,5× 0,5 = 1,75°Ж

4.1 Метод определения и характеристики

Содержание хлоридов (массовая концентрация хлорид- иона) определяется методом аргентометрического титрования (РД 24.031.120-91, РД 24.032.01-91). Определение основано на титровании хлорид-ионов раствором нитрата серебра при pH 5,0- 8,0, в результате чего образуется суспензия практически нерастворимого хлорида серебра. В качестве индикатора используется хромат калия, который реагирует с избытком нитрата серебра с образованием хорошо заметного оранжево-бурого осадка хромата серебра.

Объём пробы для анализа — см. табл. 12, продолжительность выполнения анализа — не более 5 мин.

Отбор и хранение проб

Отбор проб воды и проводится в соответствии с требованиями.

Для отбора проб используются бутыли из полимерного ма­териала или из стекла. Допускается хранение пробы I мес. без консервации.

В зависимости от предполагаемого содержания хлоридов отбираются пробы для анализа в количествах согласно табл. 12.

На титрование 10 мл пробы котловой воды израсходовано 1,1 мл раствора нитрата серебра (0,05 моль/л экв.). Концентрация хлорид-ионов составит:

мг/л.

На титрование 10 мл пробы воды израсходовано 0,02 мл раствора нитрата серебра (0,05 моль/л экв.). Величина израсходованного на титрование объёма раствора нитрата серебра свидетельствует о том, что концентрация хлорид-ионов меньше предполагаемой.

мг/л.

Так как предполагаемая концентрация хлорид-иона оказалась меньше 4,0 мг/л (см. табл. 3.3), на анализ повторно отбирается проба объёмом 6000 мл, которая упаривается до 150 мл (в 40 раз). На титрование упаренной пробы объёмом 150 мл израсходовано 9,5 мл раствора нитрата серебра (0,05 моль/л экв.). Концентрация хлорид-ионов в этом случае составляет:

мг/л.

На титрование 10 мл пробы воды израсходовано 4,82 мл раствора нитрата серебра (0,05 моль/л экв.). Величина израсходованного на титрование объёма раствора нитрата серебра свидетельствует о том, что концентрация хлорид-ионов больше предполагаемой.

мг/л.

Так как предполагаемая концентрация хлорид-иона оказалась Тоньше 700 мг/л (см. табл. 3.3), отобранная проба разбавляется дистиллятом в 10 раз, на анализ берётся объем 10 мл разбавленной пробы. На титрование отобранной пробы израсходовано 0,48 мл раствора нитрата серебра (0,05 моль/л экв.). Концентрация хлорид-ионов в этом случае составляет:

мг/л.

Вопросы для самоконтроля:

1. Дать определения понятиям: главный конденсат, вспомогательный конденсат, дистиллят испарительной установки, дренажи, добавочная вода, питательная вода, котельная вода, котловая вода, продувочная вода, охлаждающая вода.

2. Охарактеризовать основные показатели: Общее содержание примесей, Растворённые вещества, Взвешенные вещества, Остаток после прокаливания, Потеря при прокаливании, Концентрация водородных ионов, Кислотность, Щёлочность, Щелочное число, Общая жёсткость воды, Карбонатная жёсткость, Некарбонатная жёсткость, Cодержание хлоридов, Фосфатное число, Нитратное число, Содержание окислов меди и железа, Содержание кислорода, Содержание нефтепродуктов.

Лабораторная работа №3

Тема: ОПРЕДЕЛЕНИЕ КАЧЕСТВА КОТЛОВОЙ ВОДЫ

Цель:Определение качества котловой воды, изучение норм качества котловой воды, рекомендации по водному режиму.

В пароконденсатном цикле СЭУ с паротурбинной установкой (ПТУ) вода и пар циркулируют по замкнутому контуру, в котором могут быть различные утечки воды или пара, вызывающие периодическое или непрерывное восполнение контура циркуляции технической водой. Поэтому в СЭУ с ПТУ существуют специальные определения воды в различных точках циркуляционного контура:

главный конденсат – вода после конденсации отработавшего пара на выходе из главного конденсатора;

вспомогательный конденсат – вода после конденсации отработавшего пара из вспомогательных конденсаторов (после вспомогательных механизмов и теплообменных аппаратов);

дистиллят испарительной установки – вода, полученная из морской путем её термической дистилляции;

дренажи – конденсаты после паровых подогревателей топлива и общесудовых потребителей пара;

добавочная вода – вода, подаваемая в циркуляционный контур для восполнения его в результате утечек (воды и пара);

питательная вода – вода, подаваемая в паровой котёл для поддержания его паропроизводительности (так же, как и забортная вода, поступающая в камеру испарения водоопреснительной установки);

котельная вода – питательная вода определённого химического состава, предназначенная исключительно для парового котла, находящаяся в танке котельной воды;

котловая вода – вода, находящаяся в циркуляционном контуре котла;

продувочная вода – котловая вода, удаляемая периодически или непрерывно из котла для уменьшения солесодержания в ней взвешенных частиц шлама;

охлаждающая вода – вода, с помощью которой отводят теплоту через поверхность теплообмена системы охлаждения теплотехнического объекта.

Питательная вода судовых паровых котлов обычно состоит из конденсата отработавшего пара и добавочной воды. Добавочная вода может быть природной, полученной с берега и прошедшей соответствующую водообработку, или дистиллятом от испарительной установки забортной воды. В целом, добавочная вода составляет 2–5 % от общего количества питательной воды.

Вода является одним из лучших природных растворителей органических и минеральных веществ, а также газов. Поэтому она в результате круговорота в природе приобретает множество примесей в виде газов, взвешенных мелкодисперсных частиц и растворенных минералов различного происхождения. Конденсат отработавшего пара на морских судах чаще всего содержит примеси в виде продуктов коррозии трубопроводов или забортной воды при подсосах в трубных решётках конденсаторов, а также – нефтеостатков СЭУ (частицы жидкого топлива и смазочного масла). Поэтому питательной водой, например, для судовых вспомогательных паровых котлов может быть конденсат отработавшего пара или природная вода, содержащая в себе частицы песка и глины, а также растворенные накипеобразователи щелочно-земельных металлов (Ca2+ и Mg2+), такие как бикарбонаты, сульфаты, хлориды и силикаты, а также коррозионно-активные газы – кислород, хлор и углекислый газ.

Поступление в котловую воду любых вышеперечисленных примесей является нежелательным, т. к. это приводит к появлению накипных отложений и коррозии на поверхности нагрева, что увеличивает расход топлива и снижает надежность котельных установок и эффективность их эксплуатации.

В СДВС с высокотемпературной системой охлаждения вышеуказанное также имеет место. Поэтому на морских транспортных судах системы охлаждения ДВС обычно низкотемпературные и двухконтурные. В первом контуре циркуляции для охлаждения СДВС обычно применяют водные растворы ингибиторов коррозии, а во втором – проточную морскую забортную воду.

Техническая эксплуатация СЭУ невозможна без проведения соответствующего водного режима, предусматривающего контроль основных показателей качества воды (водоконтроля) и определенной технологии водообработки. Качество используемой в СЭУ воды в значительной мере определяет надёжность элементов СЭУ и объём трудозатрат на восстановление работоспособности оборудования. Выбор технологии водоподготовки определяется её эффективностью и экономической целесообразностью.

Основными задачами водоподготовки в СЭУ являются: создание условий для предотвращения процессов накипеобразования и коррозии на поверхности нагрева, а также исключение уноса солей с влажным паром из зоны кипения воды. Поэтому каждый инженер-судомеханик должен уметь определять основные показатели качества питьевой и технической воды, а также корректировать водные режимы и технологии водообработки в соответствии с инструкциями по технической эксплуатации судового оборудования.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

источник

Сокращенное обозначение молекулы трилона Б: Na2 Н2 Тр.

Это соединение легко образует прочные внутрикомплексные соли со многими катионами. Соли образуются, с одной стороны, за счет замещения металлом водорода карбоксильных групп, с другой – за счет образования координационных связей между ионами металла и атомами азота.

При комплексонометрическом титровании к раствору, содержащему определяемые ионы, добавляют постепенно титрованный раствор комплексона. По мере титрования определяемые ионы связываются в комплекс, и в точке эквивалентности они практически отсутствуют в растворе. Реакцию в общем виде можно записать так:

Чтобы реакция комплексообразования шла до конца, нужно связать выделяющиеся ионы водорода. Поэтому при титровании к анализируемому раствору добавляют смесь хлорида и гидроксида аммония – аммиачно-буферный раствор.

Для определения момента окончания титрования служат индикаторы – вещества, образующие окрашенные соединения с ионами кальция и магния или с одним из этих катионов. Такими индикаторами являются кислотный хром синий К, дающий переход от розовой к серо–голубой окраске при рН=10-11; магнезон и эриохром черный Т, называемый также хромом черным специальным ЕТ00, изменяющие окраску от вино–красной к синей; мурексид и др.

Индикаторы обладают различной чувствительностью, т.е. их окрашенные соединения с ионами кальция и магния возникают при различных, но определенных для данного индикатора и для выбранных условий концентрациях этих ионов (табл.1.1). Например, эриохром черный Т образует окрашенное соединение с кальцием при концентрации этого иона около 7 мкг – экв/л; по отношению к ионам магния этот индикатор более чувствителен, и окраска возникает уже при 4 – 5 мкг-экв/л.

Чувствительность индикатора при определении жесткости Трилоном Б

Индикатор Четкая окраска отмечается при концентрации, мкг-экв/л Значение рН
Са 2+ Мg 2+
Эриохром черный Т 7 4 – 5 8 – 10
Кислотный хром темно-синий 2 1 9 – 10
Кислотный хром синий К 2 1 8 – 10
Кислотный однохром синий 4 1 9 – 10
Мурексид 1 10

В таблице 1.1 приведены концентрации ионов, при которых окраска изменяется достаточно четко и при титровании визуально хорошо отмечается.

В то же время, если взять ряд растворов с различной концентрацией магния, например 0; 0,2; 0,5; 0,7; 1,0; 1,5 мкг – экв/л, то при добавлении к таким растворам индикатора хром темно–синего или хром синего К визуально можно различить разницу в оттенках получающихся окрасок.

Таким способом можно определять визуальным колориметрированием малые величины жесткости. Для повышения чувствительности следует только предварительно превратить кальциевую жесткость в магниевую. Это можно выполнить, добавляя в анализируемую жидкость раствор трилоната магния. Поскольку комплекс с кальцием имеет большую прочность (табл.1.1), то будет протекать реакция:

Са 2+ + Na2 MgТр.→ Mg 2+ + Na2 СаТр.

и ионы кальция будут заменены в анализируемой воде ионами магния в эквивалентном отношении.

Устойчивость комплекса существенно зависит от рН раствора. Поэтому комплексонометрическое титрование ведут в заданном интервале рН, используя различные буферные растворы.

Методом комплексонометрии можно определить катионы магния, кальция, цинка, алюминия, бария, свинца и многие другие – более 40 различных катионов. Этот метод широко применяется для определения жесткости воды.

1.6 Методика определения жесткости воды комплексонометрическим методом

Метод основан на образовании при рН=10±0,2 прочного бесцветного комплексного соединения трилона Б с ионами кальция и магния. В эквивалентной точке титрования все ионы кальция и магния связываются в комплексное соединение трилоном Б, в результате чего происходит изменение окраски индикатора от красной до голубой.

Чувствительность метода составляет 0,5 мг – экв/л при титровании 0,1н

Отбор проб является важной частью анализа, необходимым условием правильности получаемых результатов.

Главные принципы, которые требуется соблюдать при отборе проб воды, состоят в следующем:

1. Проба воды, взятая для анализа, должна отражать условия и место ее отбора. При отборе поверхностных вод необходимо изучить окружающую местность и брать пробы воды выше и ниже спуска сточных вод. Пробы из трубопроводов при наличии штуцера отбирают так, чтобы скорость вытекания воды из трубопровода совпадала со скоростью отбора. Соответственно цели анализа отбирают разовые и смешанные (средние) пробы за определенный период, сливая разовые, взятые из одного и того же места, через равные промежутки времени. Иногда средние пробы отбирают одновременно из разных мест исследуемого объекта и сливают вместе. Окончательный объем средней пробы должен быть пропорционален расходу воды и определяется из условия заданного перечня определений.

2.Объем пробы должен быть достаточным и соответствовать применяемой методике анализа. Для неполного анализа, при котором определяют только несколько компонентов, достаточно отобрать 1 л воды. Для более подробного анализа следует брать 2 л воды.

3. Пробы воды отбирают в стеклянные или полиэтиленовые бутыли с хорошо подобранной пробкой, а при наличии крупных примесей – в жестяные бидоны или банки с широким горлом. Посуду, используемую для отбора проб, необходимо вымыть хромовой смесью и тщательно промыть водопроводной, а затем дистиллированной водой. Перед отбором пробы посуду ополаскивают несколько раз исследуемой водой.

4. Отбор пробы, условия транспортирования и сроки хранения определяются из условий отсутствия изменений в содержании определяемых компонентов или в свойствах воды. Необходимо учесть, что ни консервация, ни фиксация не обеспечивают постоянного состава пробы на продолжительное время.

Целью этих операций является сохранение содержания соответствующего компонента без изменения на время, необходимое для доставки и обработки пробы воды. К анализу следует приступать в кратчайший срок после отбора пробы.

1.6.3 Реактивы и оборудование

· трилон Б (фиксанал 0,1н) по ТУ 6-09-2540-87;

· серно – кислый магний MgSO4 (фиксанал 0,1н) ТУ 6-09-2540-87;

· аммиачный буферный раствор;

· индикатор эриохром черный Т или кислотный хром темно – синий ч.д.а. ТУ 6-09-3870-87Е;

· сернистый натрий 9 – водный ч.д.а., Na2 S ГОСТ 2053-77.

· Трилон Б 0,05н: раствор готовят из 0,1н трилона Б, приготовленного из фиксанала, разбавлением его в 20 раз. Для этого 50 мл трилона Б 0,1н переносят в мерную колбу на 100 мл и доводят до метки обессоленной воды. При отсутствии фиксанала берут навеску 18,613 г. трилона Б и растворяют в мерной колбе на 1000 мл. Устанавливают титр трилона Б по фиксаналу 0,1н MgSO4 . Пипеткой отбирают 10 мл 0,1н MgSO4 в коническую колбу, добавляют 90 мл обессоленной воды, 5 мл аммиачно – буферного раствора, 5 – 7 капель индикатора кислотного хром темно – синего (эриохром черного, хромогена) и титруют раствором трилона Б до голубого цвета. Должно пойти 20 мл трилона Б

· Аммиачный буферный раствор: 20 г NH4 Cl растворить в 500 мл воды, добавить 80 мл концентрированного аммиака NH4 OH и довести объем до 1000 мл.

· Индикаторы кислотный хром темно – синий или эриохром черный Т: 0,5 г индикатора растворяют в 20 мл аммиачно – буферного раствора и доводят объем до 100 мл этиловым спиртом.

Отобрав определенный объем анализируемой воды (обычно 100мл) в коническую колбу, вводят в нее 5 мл аммиачной буферной смеси, несколько капель индикатора и титруют окрашенную в розовый или фиолетово – розовый цвет жидкость раствором трилона Б. Титрование ведут медленно, по каплям, так как образование трилонатных комплексов происходит не мгновенно. Прибавление титранта, т.е. раствора трилона Б, ведут до наиболее четкого изменения цвета. Здесь необходима, как говорят, «ститровка» всего коллектива данной лаборатории. Дело в том, что резкое «от одной капли» изменение окраски титруемой жидкости происходит только при работе с 0,1н и 0,01н растворами трилона Б. Применение более разбавленных растворов создает не резкое, а постепенное изменение окраски; на это требуется, например, от трех до пяти капель 0,002н раствора трилона Б. Вследствии этого необходимо выработать по возможности единое мнение о той окраски, при которой следует считать титрование законченным. Для этого в ряд конических колб вливают по 100 мл дистиллированной обессоленной воды, добавляют в каждую колбу по 2 мл раствора сернокислого магния (MgSO4 ) конц

Читайте также:  Вода анализ микробиологический методические указания

1 мг-экв/л и по 5 мл аммиачной буферной смеси. Затем в первую колбу вводят 0,95 мл 0,002н раствора трилона Б, т.е. с явным недостатком, а в каждую следующую на одну каплю больше, чем в предыдущую. Например, 0,95; 0,98; 1,01; 1,04; 1,07; 1,10 мл (если объем капли 0,03мл). Жидкость в последней колбе будет явно перетитрована, т.к. 1 мл 0,002н раствора трилона Б содержит 2 мкг – экв вещества, т.е. такое же количество, что и 2 мл магнезиального раствора. Составив все колбы в ряд, решают, где возникает наиболее четко визуально – определенная разница окрасок. До этого изменение цвета в дальнейшем и ведут титрование. Следует лишь иметь ввиду, что переход окраски отмечается несколько различно в зависимости от освещения. Наиболее четко этот переход заметен при естественном дневном освещении, менее отчетливо при обычном электрическом и хуже всего при лампах «дневного света». Из индикаторов четче всего переход окраски при работе с эриохром черным ЕТ00, но этот индикатор, к сожалению, и наименее чувствителен.

источник

Жесткость — свойство воды, обусловленное присутствием в ней растворенных солей щелочно-земельных металлов (преимущественно кальция и магния). Различают жесткость кальциевую и магниевую, связанную с присутствием в воде соответственно ионов кальция и магния. Суммарное содержание ионов этих металлов в воде называется общей жесткостью.

Общая жёсткость подразделяется на карбонатную, обусловленную присутствием в воде гидрокарбонатов и карбонатов кальция и магния, и некарбонатную, обусловленную наличием кальциевых и магниевых солей сильных кислот.

Карбонатную жёсткость также называют временной (устранимой), а некарбонатную — постоянной. Гидрокарбонаты кальция и магния при длительном кипячении воды разлагаются с выделением диоксида углерода и выпадающих в осадок карбонатов кальция и магния (при дальнейшем кипячении карбонат магния гидролизуется с образованием гидроксида); жесткость воды при этом уменьшается:

Жесткость, оставшаяся после кипячения воды в течение определенного времени, достаточного для полного разложения гидрокарбонатов и удаления диоксида углерода (обычно 1 — 1,5 ч), называется постоянной жесткостью. Постоянная жесткость является важной характеристикой качества воды, используемой для технических целей. Она преимущественно зависит от содержания ионов кальция и магния, которые после кипячения уравновешиваются сульфатами и хлоридами. Эту часть постоянной жесткости, называемую также остаточной жесткостью, можно найти по разности между общей жесткостью и концентрацией гидрокарбонатов, выраженной в миллимолях на кубический дециметр. Однако кроме остаточной жесткости в воде после кипячения остается небольшое количество ионов кальция и магния, обусловленное растворимостью карбоната кальция и гидроксида магния. Эта часть постоянной жесткости называется неустранимой жесткостью. Поскольку растворимость карбоната кальция и гидроксида магния в присутствии ионов кальция и магния в растворе весьма незначительна, обычно некарбонатную (остаточную) жесткость отождествляют с постоянной жесткостью. Способ расчета постоянной жесткости и составляющих ее остаточной и неустранимой жесткости на основе результатов определения компонентов солевого состава воды приведен в «Руководстве по химическому анализу вод суши». Л.: Гидрометеоиздат. 1973.

Жесткость воды в настоящее время выражают в миллимолях количества вещества эквивалентов (КВЭ) Са 2+ и Mg 2+ , содержащихся в 1 дм 3 воды — ммоль/дм 3 КВЭ (ранее эту единицу обозначали мг-экв/л или мг-экв/дм 3 ). Миллимоль КВЭ Са 2+ и Mg 2+ равны соответственно 20,04 мг/ммоль и 12,15 мг/ммоль.

В естественных условиях ионы кальция и магния поступают в воду в результате взаимодействия растворенного диоксида углерода с карбонатными минералами и при других процессах растворения и химического выветривания горных пород. Источником этих ионов являются также микробиальные процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий: силикатной, металлургической, стекольной, химической промышленности, стоки с сельскохозяйственных угодий.

Общая жесткость поверхностных вод колеблется в основном от единиц до десятков миллимолей КВЭ в кубическом дециметре, причем карбонатная жесткость часто составляет 70 — 80 % от общей жесткости. Она подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего в период паводка. Жесткость подземных вод более постоянна.

Вода с жесткостью менее 4 ммоль/дм 3 КВЭ характеризуется как мягкая; от 4 до 8 ммоль/дм 3 КВЭ — средней жесткости; от 8 до 12 ммоль/дм 3 КВЭ — жесткая; более 12 ммоль/дм 3 КВЭ — очень жесткая.

Обычно преобладает (иногда в несколько раз) жесткость, обусловленная ионами кальция, однако в отдельных случаях, магниевая жесткость может достигать 50 — 60 % общей жесткости и более (часто магниевая жесткость превосходит кальциевую в морских и океанических водах, либо в поверхностных водах суши с высоким содержанием сульфат-ионов).

Высокая жесткость оказывает отрицательное влияние на свойства воды используемой в промышленности и для хозяйственно-бытовых целей. Жесткие требования в отношении величины жесткости предъявляются к воде, питающей паросиловые установки, поскольку в присутствии сульфатов и карбонатов кальций и магний образуют прочную накипь, уменьшающую теплопроводность металла и приводящую к перерасходу топлива и перегреву котлов. Для устранения жесткости применяют различные способы — осаждение труднорастворимых солей кальция и магния химическим или термическим путем, умягчение с помощью ионитов.

Высокая жесткость, особенно, обусловленная превышением солей магния, ухудшает органолептические свойства воды, придавая ей горьковатый вкус и оказывая отрицательное воздействие на органы пищеварения. Предельно допустимая величина жесткости в питьевых водах 7 ммоль/дм 3 КВЭ, но в некоторых случаях допускается использовать для питьевых целей воду с жесткостью 10 ммоль/дм 3 КВЭ.

ЖЕСТКОСТЬ ВОДЫ.
МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
ТИТРИМЕТРИЧЕСКИМ МЕТОДОМ С ТРИЛОНОМ Б

1.1 Настоящий руководящий документ устанавливает методику выполнения измерений (далее — методика) общей и некарбонатной жесткости в пробах природных и очищенных сточных вод в диапазоне от 0,060 до 13,00 ммоль/дм 3 КВЭ (далее — ммоль/дм 3 ) титриметрическим методом с трилоном Б.

При анализе проб воды с величиной жесткости, превышающей 13,00 ммоль/дм 3 , допускается выполнение измерений после соответствующего разбавления пробы дистиллированной водой.

1.2 Настоящий руководящий документ предназначен для использования в лабораториях, осуществляющих анализ природных и очищенных сточных вод.

В настоящем руководящем документе использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 17.1.5.04-81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р 51592-2000 Вода. Общие требования к отбору проб

МИ 2881-2004 Рекомендация. ГСИ. Методики количественного химического анализа. Процедуры проверки приемлемости результатов анализа

РД 52.24.403-2007. Массовая концентрация кальция в водах. Методика выполнения измерений титриметрическим методом с трилоном Б

Примечание — Ссылки на остальные нормативные документы приведены в разделах 4, В.3 и В.4.

3.1 При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерения с вероятностью 0,95 не должны превышать значений, приведенных в таблице 1.

Таблица 1 — Диапазон измерений, значения характеристик погрешности и ее составляющих (Р = 0,95)

Показатель повторяемости (среднеквадратическое отклонение повторяемости) s r, ммоль/дм 3

Показатель воспроизводимости (среднеквадратическое отклонение воспроизводимости) s R, ммоль/дм 3

Показатель правильности (границы систематической погрешности при вероятности Р = 0,95) ± D с, ммоль/дм 3

Показатель точности (границы погрешности при вероятности Р = 0,95) ± D , ммоль/дм 3

источник

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

«Новгородский государственный университет имени Ярослава Мудрого»

Институт сельского хозяйства и природных ресурсов

Отделение естественных наук и природных ресурсов

Определение жесткости воды

Определение жесткости воды (титриметрический метод)

Методические указания к лабораторной работе

Великий Новгород, 2011 г.- 16 стр.

Важнейшим свойством природных вод является их жесткость. Жёсткость природных вод более всего обусловлена содержанием в них растворимых солей кальция и магния.

Если в воде находятся ионы металлов, образующие с мылом нерастворимые соли жирных кислот, то в такой воде затрудняется образование пены при стирке белья или мытье рук, вследствие чего возникает ощущение жёсткости. Отсюда и возникло понятие «жёсткой» воды.

В жёсткой воде плохо развариваются продукты питания, так как катионы Ca2+ и Мg2+ с белками пищи образуют нерастворимые соединения. В такой воде плохо завариваются чай, кофе. Постоянное употребление жёсткой воды может привести к расслаблению желудка и отложению солей в организме человека. В результате этого образуются камни в почках (мочекаменная болезнь).

Мягкая вода (дистиллированная вода), т. е. вода, с ничтожно малыми примесями инородных веществ и минеральных солей, используется в основном для медицинских или исследовательских целей в различных лечебно-оздоровительных программах и процедурах для вывода из организма шлаков.

Частое употребление мягкой воды может привести к тому, что из организма начнут вымываться и полезные микроэлементы: кальций, магний, калий. Прежде всего, это опасно для костей, крепость которых зависит от наличия кальция и микроэлементов, обеспечивающих нормальную работу нашего организма. Например, в регионах, где вода отличается мягкостью, т. е. пониженным содержанием минеральных примесей, ученые отмечают рост числа сердечно-сосудистых заболеваний. Там же где вода более жесткая, ситуация с заболеваниями сердца обстоит гораздо лучше – подобные случаи регистрируются нечасто. Кроме того, жесткость воды оказывает влияние и на уровень заболеваний кариесом – чем больше минеральных веществ, тем реже обращения к стоматологам.

Также установлено, что в связи с низким уровнем минерализации мягкая вода обладает неудовлетворительными органолептическими свойствами и оказывает неблагоприятное воздействие на водно-солевой обмен и функциональное состояние гипофиз-адреналиновой системы, регулирующей основные обменные процессы в организме.

При постоянном употреблении дистиллированной питьевой воды у пациентов отмечен также ряд изменений со стороны электролитного обмена – повышение концентрации хлоридов, калия и натрия в крови и усиленное их выведение с мочой. В связи с этим, для питьевой воды научно обоснована необходимость учета дополнительного критерия – физиологической полноценности.

В промышленности жёсткая вода, используемая для питания паросиловых установок, приносит особенно большой вред. При работе паровых котлов в жёсткой воде, содержащей Са(НСOз)2, Мg(НСO3)2 или CaS04, на внутренней поверхности стенок котла образуется слой накипи, уменьшающий их теплопроводность и тем самым понижающий коэффициент полезного действия установки. Замедленная теплопередача через стенки котла приводит к их перегреву и вследствие этого к ускоренной коррозии (окислению кислородом воздуха). В результате прочность стенок котла постепенно понижается, что может привести к его взрыву.

Образование осадка (накипи) при использовании воды, обладающей временной жёсткостью, связано с выпадением в осадок малорастворимых карбонатов — СаСO3 и MgCO3 . Если в воде присутствует сульфат кальция, то он выпадает в осадок из-за резкого понижения его растворимости при нагревании. Особенно прочная, но вместе с тем пористая, малотеплопроводная накипь образуется при одновременном содержании в воде гидрокарбонатов и сульфата кальция.

Соли магния (МqCI2 и МgSO4) и СаС12, содержащиеся в воде, не приводят к образованию в котлах накипи, так как они хорошо растворимы в воде, но вызывают коррозию стенок и металлической арматуры. Эти соли как электролиты способствуют протеканию электрохимических процессов на поверхности стали и тем самым ускоряет процесс её коррозии под действием воды и кислорода. Кроме того, MgCI2 и МgSO4 как соли слабого основания и сильных кислот гидролизуются, повышая концентрацию водородных ионов и создавая кислую среду, что также ускоряет процесс коррозии стали.

В химической промышленности использование жёсткой воды может оказаться недопустимым в тех случаях, когда соли, придающие ей жёсткость, препятствуют протеканию запланированных в данном производстве химические процессов или загрязняют получаемый продукт (например, полупроводниковое производство).

В строительной практике жёсткость воды должна учитываться, если гидротехническое сооружение или фундаментальные части зданий подвергаются действию грунтовых вод. Из солей, придающих воде жёсткость, вредное действие на бетон оказывают MgCI2, МgSO4 , СаSO4. Первая соль вызывает так называемую магнезиальную коррозию бетона, вторая — сульфатно-магнезиальную, третья ― сульфатную коррозию бетона. На стальные строительные конструкции, находящиеся в воде, вредное действие оказывают все соли, обусловливающие постоянную жёсткость. Причины ускорения коррозии стали те же, что и для паровых котлов.

Т. о. в каждом отдельном случае необходимо учитывать характер возможного воздействия природных вод. Для этого необходимо знать ее важнейшую характеристику — жёсткость.

В данных методических указаниях излагаются методики определения временной и постоянной жёсткости воды, а также способы её устранения.

Для количественного определения жёсткости воды применяют методы титриметрического анализа.

2. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

2.1 Жёсткость природных вод

Жёсткость природных вод, в основном, обусловлена содержанием в них растворимых солей кальция и магния. Разумеется, жёсткость воды могут вызывать не только ионы Ca2+ и Мg2+, но и катионы других металлов, однако в естественных водах из катионов, образующих нерастворимые мыла, в значительных количествах прucутствуют только катионы кальция и магния. Эти ионы входят в состав гидрокарбонатов Са(НСО3)2, Mg(HCO3)2, сульфатов (СаSO4 и MgSO4) и хлоридов (СаСl2 и MgCl2). Содержание других растворимых солей кальция и магния в природных водах обычно очень мало.

Жёсткость, придаваемая воде гидрокарбонатами кальция и магния, называется карбонатной или временной жесткостью. В воде содержащей ионы HCO3-, устанавливается равновесие:

— разложения угольной кислоты H2CO3 ↔ СО2 + H2O (2)

— электролитическая диссоциация НСО3- ↔ Н++СО32- (3)

Равновесия в зтих процессах связаны между собой. При нагревании воды растворимость СO2 уменьшается, часть её улетучивается и равновесие (2) смещается вправо. Вследствие этого смещается вправо равновесие (I), создаётся избыток ионов ОН-, которые взаимодействуют с ионами Н, + вызывая смещение вправо равновесия (3).

В результате зтих реакций ионы НСО3- переходят в ионы СО32- no суммарному уравнению

Таким образом, при кипячении воды жёсткость, вызванная присутствием гидрокарбонатов кальция и магния, устраняется и поэтому называется временной жёсткостью.

Жёсткость, обусловленная хлоридами и сульфатами этих металлов, называется постоянной жёсткостью, она кипячением не устраняется..

Суммарная жёсткость воды носит название общей жесткости. Жесткость воды (степень жёсткости) принято выражать в ммллиэквивалентах ионов Са2+ и Mg2+ в I л воды (мэкв/л). I мэкв/л соответствует содержанию в I л воды 20,04 мг кальция или 12,16 мг магния. В зависимости от содержания ионов Са2+ и Mg2+ природные воды делятся на следующие группы:

Величина общей жесткости (мэкв/л)

2.2 Методы устранения жёсткости воды

Из сказанного выше следует, что использование для промышленных нужд природных вод возможно в ряде случаев только после предварительной очистки, которая состоит в устранении их жесткости, опреснении воды.

Применяемые на практике методы устранения жёсткости природной воды условно можно разделить на химические и физические. В первом случае уменьшение жёсткости связано с добавлением к воде различных химических веществ (реагентные методы). Физические методы понижения жёсткости воды основаны на использовании различного рода воздействия на воду (магнитное «электрическое поле, ультразвук и др.) и потому могут считаться безреагентными.

В данном методическом пособии рассматриваются только химические методы устранения жесткости воды.

В самом общем виде химические методы устранения жёсткости воды основаны на химических реакциях, в результате которых катионы кальция и магния, придающие жёсткость воде, переводятся в нерастворимые соединения (осадок). Таких методов несколько.

Читайте также:  Вода из колодца анализ вао

Если вода обладает только временной жёсткостью, то для её устранения применяют известковый способ, т. е. обрабатывают воду известью Са(OН)2:

Са(НСО3)2 + Са(OН)2 = 2СаСO3 + H2O

Mg(HCO3)2 + Са(ОН)2 = СаСO3 + MgCO3 + 2H2O

Так как ПР(MgCO3) больше, чем ПР(Mg(ОН)2), то окончательное удаление Mg2+ происходит не в виде карбоната, а в виде гидроксида:

MgCO3 + Са(ОН)2 = СаСO3 + Mg(ОН)2

Суммируя уравнения, относящиеся к гидрокарбонату магния, получим:

Mg(HCO3)2 +2Са(ОН)2 = 2СаСO3 + Mg(ОН)2 + 2H2O

Таким образом, при взаимодействии извести с гидрокарбонатами кальция и магния образуются осадки СаСO3 и Мg(OН)2.

При этом способе недопустим избыток извести, который может привести к повышению жёсткости. Поэтому количество вводимой извести должно точно соответствовать результатам анализа воды на жёсткость.

Для устранения как временной, так и постоянной жёсткости воды нередко применяют известково-содовый способ устранения жёсткости. Известь осаждает гидрокарбонаты кальция и магния, как указано выше, а сода — хлориды и сульфаты по реакциям:

CaCI2 + Nа2CO3 = CaCO3 + 2NaCI

СаSO4 + Nа2CO3 = CaCO3 + Nа2SO4

MgCI2 + Nа2CO3 = MgCO3 + 2NaCI

MgSO4 + Nа2CO3 = MgCO3 + Nа2SO4

MgCO3 также переосаждается в виде Мg(OН)2

Кроме указанных способов, основанных на добавлении к воде растворимых реактивов, широкое распространение получили способы устранения жёсткости, основанные на прохождении (фильтрации) воды через слой специальных веществ — ионообменных смол (ионитов).

Иониты представляют собой твёрдые электролиты, у которых один ион является поливалентным и нерастворимым, а ионы противоположного знака могут обмениваться на ионы, находящиеся в водном растворе. При этом, если обмениваются катионы, иониты называются катионитами, при обмене анионов — анионитами, а сам метод носит название метода ионного обмена. Этот метод может быть использован как для умягчения воды, так и для её обессоливания (деионизации).

Ионообменные свойства смолам придают имеющиеся в них активные группы. Для катионитов такими группами являются — SO3H, — SiOOH, — COOН, — ОН; для анионитов — — NH2, — NH2OH и другие. К ионитам относятся также и некоторые сложные неорганические соединения, в частности алюмосиликаты натрия (пермутиты).

В общем случае процесс диссоциации ионообменных смол можно представить в виде:

катионит: _R — СООН = RСOO — + H+

анионит: R-NH2.HOH = R-NH3 + + ОН —

Использование ионитов позволяет практически полностью удалить из воды растворенные в ней соли, являющиеся электролитами. Вода, прошедшая через такие ионообменники, близка к дистиллированной, но обходится в несколько раз дешевле воды, полученной перегонкой.

2.3 Сущность титриметрического анализа

Титриметрический анализ заключается в измерении объема титранта (раствора с точно известной концентрацией), затраченного на реакцию с определяемым веществом.

Процесс постепенного добавления титранта к анализируемой пробе называется титрованием, а момент завершения реакции – точкой эквивалентности.

Расчет в титриметрическом анализе основан на законе эквивалентов: количества вещества эквивалентов всех участвующих в реакции веществ равны.

Условимся в дальнейшем любое анализируемое вещество обозначать «Х», а любой титрант «Т», тогда закон эквивалентов можно записать следующей формулами:

или СН(Х)∙ V(Х) = СН(Т) ∙V(Т) (1)

С(1/z Х) или СН(Х) – молярная концентрация эквивалента анализируемого вещества, моль/л или ммоль/л (часто в аналитической химии мэкв/л количество моль-эквивалентов вещества в литре раствора);

V(Х) – объем раствора анализируемого вещества, л или мл;

С(1/z Т) или СН(Т) — молярная концентрация эквивалента титранта, моль/л или ммоль/л (часто в аналитической химии мэкв/л количество моль-эквивалентов вещества в литре раствора);

V(Т) — объем раствора титранта, л или мл;

m(X) — масса анализируемого вещества, г;

M(1/zX)- молярная масса эквивалента анализируемого вещества, г/моль;

M(1/zT) — молярная масса эквивалента титранта, г/моль.

(возможны комбинации между формулами 1 и 2)

Выделим три основных задачи, которые необходимо решить для успешного проведения титриметрического анализа.

1. Необходимо знать точную концентрацию титранта (понятие «точная концентрация» здесь условно: ясно, что оперируя экспериментальными данными, имеющими приблизительный характер, мы лишь оговариваем степень точности. Точной будем называть такую концентрацию, которая в числовом выражении имеет три значащих цифры, например: 1,38; 0, 0138; 0,400).

2. Необходимо знать точные объемы растворов реагирующих веществ, т. е. титранта и анализируемого вещества.

3. Необходимо правильно выбирать реакцию для определения и надежно фиксировать точку эквивалентности.

В титриметрическом анализе могут использоваться не все химические реакции, а только те, которые отвечают определенным требованиям. Перечислим основные:

1. реакция должна быть практически необратимой;

2. реакция должна протекать в строгом соответствии с уравнением химической реакции, без побочных продуктов (это требование часто формулируется как «стехеометричность процесса»);

3. реакция должна протекать достаточно быстро;

4. должен существовать способ фиксирования точки эквивалентности.

2.3.1 Кислотно-основные индикаторы

Многие кислотно-основные реакции удовлетворяют этим требованиям, которые были перечислены выше.

Использование в качестве титрантов только сильных кислот и сильных оснований обеспечивает практическую необратимость многих реакций.

Реакции между кислотами и основаниями не сопровождаются, как правило, какими-либо внешними эффектами, поэтому для фиксирования точки эквивалентности приходится использовать специальные вещества-индикаторы.

Кислотно-основные индикаторы – это слабые кислоты или основания, степень ионизации которых определяется концентрацией Н+-ионов в растворе.

Для индикатора-кислоты НInd существует равновесие:

НInd H+ + Ind-

Чем больше будет концентрация Н+-ионов, тем меньше будет степень ионизации индикатора. Молекулярная HInd и ионная Ind- -формы индикатора имеют разные окраски. Таким образом, концентрация ионов Н+ влияет на соотоношение концентраций HInd и ионная Ind-, что, в свою очередь, определяет характер или яркость окраски. Для характеристики растворов в химии широко пользуются водородным показателем, рН.

В первом приближении: рН = — lgс(Н+) (в дальнейшем определение будет уточнено).

В кислых растворах рН 7, в нейтральных рН=7.

Все индикаторы изменяют свою окраску не скачкообразно, а плавно, т. е. в определенном интервале значений рН, называемом интервалом перехода. Поскольку индикаторы как кислоты или основания отличаются друг от друга по силе, они имеют разные интервалы перехода (см. справочник).

Значение рН раствора в процессе титрования постоянно меняется, вблизи точки эквивалентности наблюдается так называемый скачок титрования – резкое изменение рН раствора при незначительном добавлении титранта.

Для надежного фиксирования точки эквивалентности надо подобрать такой индикатор, интервал перехода окраски которого попадал бы в скачок титрования.

В аналитической практике из индикаторов чаще других применяют метилоранж (МО, интервал перехода 3,1 – 4,4) и фенолфталеин (ФФ, интервал перехода 8,0 – 9,6). При титровании сильной кислоты сильным основанием скачок титрования находится в диапазоне рН от 4 до 10 (при концентрации реагирующих веществ, равной 0,1 моль·дм-3).

В данном случае могут использоваться метилоранж и фенолфталеин.

При титровании слабой кислоты сильным основанием точка эквивалентности смещается с линии нейтральности в щелочную область вследствие гидролиза образующейся в точке эквивалентности соли (рН>7). Скачок титрования сужается и будет тем уже, чем слабее титруемая кислота. В этом случае в качестве индикатора может быть использован из двух упомянутых индикаторов только фенолфталеин.

При титровании слабого основания сильной кислотой по завершении реакции образуется соль, гидролизирующаяся по катиону; точка эквивалентности смещается в кислую область. Для фиксирования точки эквивалентности можно использовать метилоранж, нельзя – фенолфталеин.

При уменьшении концентрации реагирующих веществ скачок титрования сужается, что усложняет проблему выбора индикатора. При титровании многоосновных кислот или солей могут наблюдаться два скачка титрования.

2.3.2 Титранты, применяемые в кислотно-основном титровании

Различают ацидиметрию – титрование с помощью кислот и алкалиметрию – титрование с помощью оснований. Ацидиметрически можно определять основания и соли, вступающие в необратимое взаимодействие с сильными кислотами (например, карбонаты – вследствие выделения газообразного продукта, бораты – вследствие образования слабой борной кислоты). Алкалиметрически можно определять кислоты и гидролизующие соли.

В ацидиметрии используется в основном раствор хлорводородной кислоты (соляная кислота), с концентрациями от 0,05 до 0,2 моль·дм-3.

Раствор НСl нельзя приготовить по точной массе исходного вещества из-за его летучести, поэтому титрант готовят приблизительной концентрации разбавлением концентрированного раствора, а затем его стандартизируют. Для этого нужно иметь первичный стандарт – вещество, раствор которого можно приготовить по точной массе и которое реагирует с титрантом. Для определения точной концентрации титранта используют вспомогательное титрование, которое и называют стандартизацией титранта.

В качестве первичных стандартов для раствора HCl используют декагидрат тетрабората натрия Na2B4O7·10H2O (бура) или декагидрат карбоната натрия Na2CO3·10H2O.

В основе стандартизации лежат следующие реакции:

В алкалиметрии титрантом является раствор гидроксида натрия. Этот раствор также нельзя приготовить по точной массе, т. к. исходное вещество вследствие его взаимодействия с углекислым газом всегда загрязнено примесью карбоната натрия.

Титрант готовят приблизительной концентрации, разбавляя водой 50%-ный раствор (т. к. растворимость карбоната натрия в концентрированном растворе NaОН мала, он из этого раствора выпадает в осадок).

Стандартизацию приготовленного титранта проводят по дигидрату щавелевой кислоты Н2С2О4·2Н2О:

2.3.3 Применение кислотно-основного титрования

Кислотно-основное титрование позволяет решать многие задачи, возникающие при клиническом анализе биологических жидкостей как при постановке диагноза, так и при лечении больных. Определение кислотности желудочного сока, буферной емкости крови, спинномозговой жидкости – примеры использования кислотно-основного титрования в повседневной практике.

С помощью этого метода можно анализировать лекарственные вещества, устанавливать доброкачественность продуктов питания (например, молока).

Большое значение имеет рассматриваемый метод и при санитарно-гигиенической оценке объектов окружающей среды, в частности определение жесткости воды.

Промышленные стоки могут содержать или кислые, или щелочные продукты. Закисление или защелачивание природных водоемов и почвы приводит порой к необратимым последствиям, в связи с чем контроль кислотно-основного баланса весьма важен.

2.3.4 Посуда, применяемая для измерения объемов растворов

Мерные колбы (рис. 1) представляют собой круглые плоскодонные стеклянные сосуды с длинной узкой шейкой (горлом) с кольцевой меткой.

Мерные колбы служат для измерения объемов растворов, приготовления растворов определенной концентрации. Объем жидкости, вмещаемой колбой, выражают в миллилитрах. На колбе указывают ее емкость и температуру, при которой эта емкость измерена. Мерные колбы имеют притёртые пробки. Обычно применяются колбы на 50, 100, 250, 500 и 1000 мл.

Рис. 1. Мер — Рис. 2. Пи — Рис. 3. Бюретки

Пипетки служат для точного отмеривания определенного объема жидкости и представляют собой стеклянные цилиндричес­кие, оттянутые сверху и снизу узкие трубки (рис. 2,а). В верхней части пипетки имеется отметка, показывающая, до какого уровня нужно заполнить снизу пипетку, чтобы вылитая из нее жидкость имела объем, указанный на пипетке. Чаще всего пользуются пи­петкой емкостью 10 или 20 мл. Существуют измерительные пи­петки, имеющие вид узкой градуированной трубки (рис. 2,6).

Для наполнения пипетки на ее верхний конец надевают ( или прислоняют) резиновую грушу, а нижний опускают в сосуд с жидкостью. Сжиманием груши из пипетки осторожно вытесняют такой объем воздуха, который после разжимания груши будет замещен объемом жидкости. Жидкость набирают выше штриха желаемого объема, затем быстро снимают грушу, закрывают отверстие указательным пальцем, придерживая пипетку средним и большим пальцами.

Слегка ослабляя нажим указательного пальца на верхнее отверстие пипетки, позволяют жидкости медленно и по каплям вытекать из пипетки.

Когда нижний край мениска бесцветной жидкости опустится до нужной отметки, указательным пальцем сильно зажимают отверстие пипетки.

Вынимают пипетку из сосуда и переносят ее в колбу, куда требуется перелить жидкость. Отводят указательный палец от верхнего края пипетки и дают содержимому свободно вылиться из пипетки полностью или до нужной отметки. При выливании жидкости пипетку держат вертикально, прислоняя кончик к стенке сосуда.

Если жидкость из пипетки выливают полностью, то по окончании сливания прикасаются на мгновение нижним концом пипетки к внутренней стенке сосуда, а оставшуюся в носике пипетки жидкость оставляют в пипетке, не стряхивают и не выдувают ее (пипетка отградуирована с учетом остающейся в кончике жидкости).

Бюретки (рис. 3) предназначены для выливания из них строго определенных объемов жидкости. Они представляют собой длинные стеклянные трубки, на которые нанесена шкала c деле­ниями. Чаще всего пользуются бюретками емкостью 25 или 50 мл, гра­дуированными на десятые доли миллилитра. В нижней части бюретки имеется кран. Иногда в бюретках нет крана, тогда на конец ее наде­вают отрезок резиновой трубки со стеклянным шариком внутри и стеклянной оттянутой внизу трубкой. Оттягивая пальцами резиновую труб­ку от шарика, можно

спускать жидкость из бю­ретки. Необходимо следить за тем, чтобы оття­нутый конец трубки был нацело заполнен сливаемой жидкостью.

Бюретку аккуратно заполняют жидкостью через воронку, которую слегка приподнимают. Затем (после каждого заполнения) воронку снимают с бюретки. Важно, чтобы в нижней части бюретки не оставалось пузырьков воздуха. Для этого у бюретки с носиком (капилляр) с резиновой трубкой достаточно загнуть носик бюретки вверх и, ослабив немного зажим, вытеснить воздух с небольшим количеством жидкости в стакан.

Показания уровня жидкости в бюретке следует снимать с максимально доступной вашему глазу точностью (глаз должен находиться на одной горизонтальной линии с нижним краем мениска, если жидкость бесцветна или на одной линии с верхним краем мениска, если жидкость окрашена). Необходимо пользоваться белым бумажным экраном.

На глаз всегда можно разделить самое малое деление на 3-4 части, а это значит объем жидкости может быть измерен с точностью до 2-3 сотых мл, т. е. например, 20,25 мл.

Титрование представляет собой постепенное приливание раствора известной концентрации (титранта) к анализируемому раствору точно заданного объема.

Приливание титранта производится при помощи бюретки и заканчивается в тот момент, когда количество титранта, определяемого объемом израсходованного раствора и его концентрацией, полностью прореагирует с веществом анализируемого (титруемого) раствора. Этот момент окончания титрования называется точкой эквивалентности, так как при этом количества вещества в титранте и в анализируемом растворе становятся эквивалентными. Конец титрования устанавливается визуально по изменению цвета раствора в связи с образованием или израсходованием какого-либо окрашенного вещества или с помощью индикатора, изменяющего свой цвет в присутствии (или в отсутствие) каких-либо веществ, участвующих в титровании.

Обратите внимание: изменение окраски раствора должно произойти от одной избыточной капли титранта и удерживаться не менее 1 минуты.

3. ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ

Выполняя опыты, нужно пользоваться растворами только указанной концентрации и соблюдать рекомендуемую дозировку. Не делать дополнительных опытов без разрешения преподавателя.

В работе нужно пользоваться только незагрязненными реактивами и чистой посудой. Следует аккуратно работать с реактивами: внимательно читать этикетки, не уносить реактивы общего пользования на свои рабочие столы, во избежание загрязнения реактивов держать склянки с растворами и сухими веществами закрытыми, не путать пробки, не высыпать и не выливать обратно в склянки неиспользованные или частично использованные реактивы.

Если во время работы будет пролита кислота или щёлочь, удалять их следует быстро, так как эти реактивы портят стол и другие предметы, и осторожно, чтобы не прожечь одежду и не повредить руки.

При нагревании растворов на электроплитке будьте внимательны: избегайте термических ожогов.

4 Экспериментальная часть

Цель работа — научиться определять временную, постоянную и общую жёсткость воды.

Опыт I. Определение временной жёсткости воды

Так как вода, содержащая гидрокарбонаты кальция и магния имеет щелочную реакцию (почему?), определение карбонатной жёсткости производятся непосредственным титрованием воды соляной кислотой в присутствии индикатора метилового оранжевого.

Для анализа в коническую колбу отмерить с помощью мерного цилиндра 100 мл исследуемой воды. Добавить 2-3 капли индикатора метилового оранжевого.

В приготовленную заранее бюретку налить 0,1Н раствор соляной кислоты. Установить уровень на нулевое деление и по каплям приливать соляную кислоту в воду до изменения окраски раствора от жёлтой до оранжево-розовой. Определить объём израсходованной на титрование кислоты.

Титрование повторить ещё два раза, каждый раз доливая в бюретку кислоту до нулевого деления.

Результаты титрования записать в таблицу 1:

источник