Меню Рубрики

Анализ воды на содержание микроэлементов

Обеспеченность чистой водой в достаточном количестве является одним из условий социально-экономического благополучия общества. Но в настоящее время из-за пагубного влияния деятельности человека на природу, стремительного развития промышленности и в связи с нехваткой средств и ресурсов на решение экологических проблем, происходит необратимый процесс загрязнения окружающей среды, уже практически не остается идеально чистой воды. Поэтому при использовании воды из индивидуальных источников водоснабжения, водозаборных скважин необходимо проводить ионометрию.

Ионометрия — современное прогрессивное направление в развитии потенциометрического метода анализа и исследования.

К ионометрии относятся давно известный метод -рН— метрия и новые методы прямой потенциометрии — катионо-метрия и анионометрия.

Ионометрия находит широкое применение в науке и технике: в технологии для автоматического контроля производственных процессов, при анализе и контроле чистоты водного пространства и окружающей атмосферы, в аналитической химии, биологии, геологии, почвоведении, медицине, океанологии и т.

Ионометрия основана на применении ионоселективных мембранных электродов, функционирующих по механизму переноса ионов, т.

По способу выполнения различают методы: а) прямые (ионометрия, прямая кулонометрия, полярография, вольтамперометрия и др.

Химический анализ воды – это наиболее достоверный и надежный способ оценки пригодности воды для водопользования. Он позволяет выявить содержание и массовую концентрацию химических элементов в воде. При нахождении нового источника необходимо использовать химический анализ воды, результаты которого сравниваются с государственными требованиями, и делается вывод о пригодности/непригодности воды для питья и хозяйственных нужд.

Анализ проводится в испытательной лаборатории, аккредитованной в соответствии с ГОСТ Р ИСО/МЭК 17025-2006. Лаборатория ООО «Спецгеологоразведка» соответствует данному требованию: имеет паспорт аккредитации, все приборы поверены и готовы к проведению исследований.

Высококвалифицированные специалисты лаборатории ООО «Спецгеологоразведка» выполняют анализы питьевой воды по 22 показателям: обобщенным, неорганическим и органическим химическим веществам из вновь пробуренных и уже эксплуатируемых скважин, систем водоснабжения населенных пунктов. Определяется катионно-анионный состав, цветность, мутность, окисляемость, содержание диоксида углерода, ph. Современное аналитическое оборудование испытательной лаборатории позволяет реализовывать различные методы химического анализа поверхностных и подземных вод:

Специалисты лаборатории оценивают заданные характеристики и их соотношение, проводя качественный и количественный химический анализ воды в соответствии с ГОСТами. Точность и качество анализа достигаются избирательностью применяемых методов — возможностью определить нужные компоненты без помех со стороны других, присутствующих в водных пробах веществ. Высокой избирательностью характеризуются ионометрия, с помощью которой определяется водородный показатель (ph). Особенно ценно иметь возможность устанавливать многие компоненты из одной пробы, чему способствует спектрофотометрия. Она так же позволяет определить концентрацию тяжелых металлов, одних из приоритетных загрязнителей подземных вод. Избирательность и универсальность метода не противоречат друг другу. В результате общий анализ воды на содержание разных элементов становится экспрессным, быстрым и менее трудозатратным. По итогам проведенных исследований составляется протокол с интерпретацией полученных данных о составе и структуре воды.

Лабораторный анализ воды дает ответ на значимый вопрос: насколько вода, которую вы пьете каждый день или используете в приготовлении пищи, отличается от идеальной по своему составу. Вода проверяется на соответствие СанПин по содержанию химических веществ и по бактериологическому составу. В результате вы проинформированы, каково содержание примесей, вредных веществ и микроорганизмов в воде, которая ежедневно к вам поступает на стол.

  • Выявить вредные и опасные для здоровья примеси и вещества в воде. Определить их количество.
  • Выявить недостающие полезные микроэлементы в воде.
  • Сделать грамотный подбор оборудования по очистке воды для дачи, коттеджа или для загородного дома.
  • Запроектировать оборудование водоподготовки и очистки сточных вод производственного предприятия.

источник

Нормы качества питьевой воды СанПиН 2.1.4.1074-01. Питьевая вода. (ВОЗ, ЕС, USEPA).питьевой воды, расфасованной в емкости (по СанПиН 2.1.4.1116 – 02), показателей водок (по ПТР 10-12292-99 с изменениями 1,2,3), воды для производства пива и безалкогольной продукции, сетевой и подпиточной воды водогрейных котлов ( по РД 24.031.120-91), питательной воды для котлов (по ГОСТ 20995-75), дистиллированной воды (по ГОСТ 6709-96), воды для электронной техники (по ОСТ 11.029.003-80, ASTM D-5127-90), для гальванических производств ( по ГОСТ 9.314-90), для гемодиализа (по ГОСТ 52556-2006), воды очищенной (по ФС 42-2619-97 и EP IV 2002), воды для инъекций (по ФС 42-2620-97 и EP IV 2002), воды для полива тепличных культур.

В данном разделе приведены основные показатели нормативов качества воды для различных производств.
Вполне достоверные данные отличной и уважаемой компании в области водоочистки и водоподготовки «Альтир» из Владимира

1. Нормы качества питьевой воды СанПиН 2.1.4.1074-01. Питьевая вода. (ВОЗ, ЕС, USEPA).

Показатели СанПиН2.1.4.1074-01 ВОЗ USEPA ЕС Ед. измерения Нормативы ПДК, не более Показатель вредности Класс опасности Водородный показатель ед. рН в пределах 6-9 — — — 6,5-8,5 6,5-8,5 Общая минерализация(сухой остаток) мг/л 1000 (1500) — — 1000 500 1500 Жесткость общая мг-экв/л 7,0 (10) — — — — 1,2 Окисляемость перманганатная мг О2/л 5,0 — — — — 5,0 Нефтепродукты, суммарно мг/л 0,1 — — — — — Поверхностно-активныевещества (ПАВ),анионоактивные мг/л 0,5 — — — — — Фенольный индекс мг/л 0,25 — — — — — Щелочность мг НСО3-/л 0,25 — — — — 30 Неорганические вещества Алюминий (Al 3+ ) мг/л 0,5 с.-т. 2 0,2 0,2 0,2 Азот аммонийный мг/л 2,0 с.-т. 3 1,5 — 0,5 Асбест милл.во-локон/л — — — — 7,0 — Барий (Ва 2+ ) мг/л 0,1 с.-т. 2 0,7 2,0 0,1 Берилий(Ве 2+ ) мг/л 0,0002 с.-т. 1 — 0,004 — Бор (В, суммарно) мг/л 0,5 с.-т. 2 0,3 — 1,0 Ванадий (V) мг/л 0,1 с.-т. 3 0,1 — — Висмут (Bi) мг/л 0,1 с.-т. 2 0,1 — — Железо (Fe,суммарно) мг/л 0,3 (1,0) орг. 3 0,3 0,3 0,2 Кадмий (Cd,суммарно) мг/л 0,001 с.-т. 2 0,003 0,005 0,005 Калий (К+) мг/л — — — — — 12,0 Кальций (Са 2+ ) мг/л — — — — — 100,0 Кобальт (Со) мг/л 0,1 с.-т. 2 — — — Кремний (Si) мг/л 10,0 с.-т. 2 — — — Магний (Mg 2+ ) мг/л — с.-т. — — — 50,0 Марганец (Mn,суммарно) мг/л 0,1 (0,5) орг. 3 0,5 (0,1) 0,05 0,05 Медь (Сu, суммарно) мг/л 1,0 орг. 3 2,0 (1,0) 1,0-1,3 2,0 Молибден (Мо,суммарно) мг/л 0,25 с.-т. 2 0,07 — — Мышьяк (As,суммарно) мг/л 0,05 с.-т. 2 0,01 0,05 0,01 Никель (Ni,суммарно) мг/л 0,01 с.-т. 3 — — — Нитраты (поNO 3- ) мг/л 45 с.-т. 3 50,0 44,0 50,0 Нитриты (поNO 2- ) мг/л 3,0 — 2 3,0 3,5 0,5 Ртуть (Hg, суммарно) мг/л 0,0005 с.-т. 1 0,001 0,002 0,001 Свинец (Pb,суммарно) мг/л 0,03 с.-т. 2 0,01 0,015 0,01 Селен (Se, суммарно) мг/л 0,01 с.-т. 2 0,01 0,05 0,01 Серебро (Ag+) мг/л 0,05 — 2 — 0,1 0,01 Сероводород (H2S) мг/л 0,03 орг. 4 0,05 — — Стронций (Sr 2+ ) мг/л 7,0 орг. 2 — — — Сульфаты (SO4 2- ) мг/л 500 орг. 4 250,0 250,0 250,0 Фториды (F) для климатическихрайонов I и II мг/л 1,51,2 с.-т 22 1,5 2,0-4,0 1,5 Хлориды (Cl-) мг/л 350 орг. 4 250,0 250,0 250,0 Хром (Cr 3+ ) мг/л 0,5 с.-т. 3 — 0,1 (всего) — Хром (Cr 6+ ) мг/л 0,05 с.-т. 3 0,05 0,05 Цианиды (CN-) мг/л 0,035 с.-т. 2 0,07 0,2 0,05 Цинк (Zn 2+ ) мг/л 5,0 орг. 3 3,0 5,0 5,0

с.-т. – санитарно-токсикологический
орг. – органолептический
Величина, указанная в скобках, во всех таблицах может быть установлена по указанию Главного государственного санитарного врача.

Требования по микробиологическим и паразитологическим показателям воды

Показатели Единицы измерения Нормативы Термотолерантные колиформные бактерии Число бактерий в 100 мл Отсутствие Общие колиформные бактерии Число бактерий в 100 мл Отсутствие Общее микробное число Число образующих колонии бактерий в 1 мл Не более 50 Колифаги Число бляшкообразующих единиц (БОЕ) в 100 мл Отсутствие Споры сульфоредуцирующих клостридий Число спор в 20 мл Отсутствие Цисты лямблий Число цист в 50 мл Отсутствие

Требования к органолептическим свойствам воды

Показатели Единицы измерения Нормативы Запах баллы 2 Привкус баллы 2 Цветность градусы 20 (35) Мутность ЕМФ (ед. мутности пофармазину)или мг/л (по каолину) 2,6 (3,5)1,5 (2,0)

Требования по радиационной безопасности питьевой воды

Показатели Ед.измерения Нормативы Показатель вредности Общая α-радиоактивность Бк/л 0,1 радиац. Общая β-радиоактивность Бк/л 1,0 радиац.

2. Нормы качества питьевой воды, расфасованной в емкости (по СанПиН 2.1.4.1116 – 02).

СанПиН 2.1.4.1116 — 02 Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества. Показатель Ед. изм. высшая категория Первая категория Запах при 20 град. С балл отсутствие отсутствие Запах при 60 град. С балл 1,0 Цветность градус 5,0 5,0 Мутность мг/л
Читайте также:  Звонят в дверь анализ воды

3.1. Оптимальные значения физико-химических и микроэлементных показателей водок

Нормируемые показатели Для технологической воды с жесткостью, моль/м 3 (максимально допустимая величина) 0-0,02 0,21-0,40 0,41-0,60 0,61-0,80 0,81-1,00 Щелочность, объем соляной кислоты концентрации с (HCl) =0,1 моль/дм 3 , израсходованной на титрование 100 см 3 воды, см 3
Водородный показатель (рН) 2,5

7,5

Массовая концентрация, мг/дм 3
— кальция
— магния
— железа
— сульфатов
— хлоридов
— кремния
— гидрокарбонатов
— натрия+калия
— марганца
— алюминия
— меди
— фосфатов
— нитратов 1,6
0,5
0,15
18,0
18,0
3,0
75
60
0,06
0,10
0,10
0,10
2,5 4,0
1,0
0,12
15,0
15,0
2,5
60
50
0,06
0,06
0,06
0,10
2,5 5,0
1,5
0,10
12,0
12,0
2,0
40
50
0,06
0,06
0,06
0,10
2,5 4,0
1,2
0,04
15,0
9,0
1,2
25
25
0,06
0,06
0,06
0,10
2,5 5,0
1,5
0,02
6,0
6,0
0,6
15
12
0,06
0,06
0,06
0,10
2,5

3.2. Нижние пределы содержания микроэлементов в технологической воде для приготовления водок

Нормируемые показатели Минимально-допустимая величина Жесткость, моль/м 3 0,01 Щелочность, объем соляной кислоты концентрации с (HCl) =0,1 моль/дм 3 , израсходованной на титрование 100 см 3 воды, см 3 Окисляемость, О2/дм 3 0,2 Водородный показатель (рН) 5,5 Массовая концентрация, мг/дм 3 — кальция 0,12 — магния 0,04 — железа 0,01 — сульфатов 2,0 — хлоридов 2,0 — кремния 0,2 — гидрокарбонатов

4. Нормы качества питьевой воды для производства пива и безалкогольной продукции.

Наименование Требования по ТИ 10-5031536-73-10 к воде для производства: пива безалкогольных напитков pH 6-6,5 3-6 Cl-, мг/л 100-150 100-150 SO4 2- , мг/л 100-150 100-150 Mg 2+ , мг/л следы Ca 2+ , мг/л 40-80 K ++ Na + , мг/л Щелочность, мг-экв/л 0,5-1,5 1,0 Сухой остаток, мг/л 500 500 Нитриты, мг/л следы Нитраты, мг/л 10 10 Фосфаты, мг/л Алюминий, мг/л 0,5 0,1 Медь, мг/л 0,5 1,0 Силикаты, мг/л 2,0 2,0 Железо, мг/л 0,1 0,2 Марганец, мг/л 0,1 0,1 Окисляемость,мг O2/л 2,0 Жесткость, мг-экв/л

5. Нормы качества сетевой и подпиточной воды водогрейных котлов ( по РД 24.031.120-91).

Система теплоснабжения Показатель открытая закрытая Температура сетевой воды, ° С 115 150 200 115 150 200 Прозрачность по шрифту, см, не менее 40 40 40 30 30 30 Карбонатная жесткость, мкг-экв/кг: при рН не более 8,5 800/700 750/600 375/300 800/700 750/600 375/300 при рН более 8,5 Не допускается Содержание растворенного кислорода, мкг/кг 50 30 20 50 30 20 Содержание соединений железа (в пересчете на Fe), мкг/кг 300 300/250 250/200 600/500 500/400 375/300 Значение рН при 25 ° С От 7,0 до 8,5 От 7,0 до 11,0 Свободная углекислота, мг/кг Должна отсутствовать или находиться в пределах, обеспечивающих поддержание рН не менее 7,0 Содержание нефтепродуктов, мг/кг 1,0
  1. В числителе указаны значения для котлов на твердом топливе, в знаменателе — на жидком и газообразном.
  2. Для тепловых сетей, в которых водогрейные котлы работают параллельно с бойлерами, имеющими латунные трубки, верхний предел рН сетевой воды не должен превышать 9,5.
  3. Содержание растворенного кислорода указано для сетевой воды; для подпиточной воды оно не должно превышать 50 мкг/кг.

6. Нормы качества питательной воды для котлов (по ГОСТ 20995-75).

Наименование показателя Норма для котлов абсолютным давлением, МПа (кгс/см 2 ) до 1,4 (14) включительно 2,4 (24) 3,9 (40) Общая жесткость, мкмоль/дм 3 (мкг-экв/дм 3 ) 15 * /20(15 * /20) 10 * /15(10 * /15) 5 * /10(5 * /10) Содержание соединений железа (в пересчете на Fe), мкг/дм 3 ) 300 Не нормируется 100 * /200 50 * /100 Содержание соединений меди (в пересчете на Сu), мкг/дм 3 Не нормируется 10 * Не нормируется Содержание растворенного кислорода, мкг/дм 3 30 * /50 20 * /50 20 * /30 Значение рН (при t = 25 ° С) 8,5-9,5 ** Содержание нитритов (в пересчете на NO2 — ), мкг/дм 3 Не нормируется 20 Содержание нефтепродуктов, мг/дм 3 3 3 0,5

* В числителе указаны значения для котлов, работающих на жидком топливе при локальном тепловом потоке более 350 кВт/м 2 [3*10 5 ккал/(м 2 *ч)], а в знаменателе — для котлов, работающих на других видах топлива при локальном тепловом потоке до 350 кВт/м 2 [3*10 5 ккал/(м 2 *ч)] включительно.
** При наличии в системе подготовки добавочной воды промышленных и отопительных котельных фазы предварительного известкования или содоизвесткования, а также при значениях карбонатной жесткости исходной воды более 3,5 мг-экв/дм 3 и при наличии одной из фаз водоподготовки (натрий—катионирования или аммоний—натрий—катионирования) допускается повышение верхнего предела значения рН до 10,5.
При эксплуатации вакуумных деаэраторов допускается снижение нижнего предела значения рН до 7,0.

7. Нормы качества дистиллированной воды (по ГОСТ 6709-96).

Наименование показателя Норма Массовая концентрация остатка после выпаривания, мг/дм 3 , не более 5 Массовая концентрация аммиака и аммонийных солей (NH4 ), мг/дм 3 , не более 0,02 Массовая концентрация нитратов (NО3 ), мг/дм 3 , не более 0,2 Массовая концентрация сульфатов (SO4 ), мг/дм 3 , не более 0,5 Массовая концентрация хлоридов (Сl), мг/дм 3 , не более 0,02 Массовая концентрация алюминия (Аl), мг/дм 3 , не более 0,05 Массовая концентрация железа (Fe), мг/дм 3 , не более 0,05 Массовая концентрация кальция (Сa), мг/дм 3 , не более 0,8 Массовая концентрация меди (Сu), мг/дм 3 , не более 0,02 Массовая концентрация свинца (Рb), %, не более 0,05 Массовая концентрация цинка (Zn), мг/дм 3 , не более 0,2 Массовая концентрация веществ, восстанавливающих КМnО4 (O), мг/дм 3 , не более 0,08 pH воды 5,4 — 6,6 Удельная электрическая проводимость при 20 ° С, Cименс/м, не более 5*10 -4

8. Нормы качества воды для электронной техники (по ОСТ 11.029.003-80, ASTM D-5127-90).

Параметры воды Марка воды по ОСТ 11.029.003-80 Марка воды по нормам ASTM D-5127-90 А Б В Е-1 Е-2 Е-3 Е-4 Удельное сопротивление при температуре 20 0 С, МОм/см 18 10 1 18 17,5 12 0,5 Содержание органических веществ (окисляемость), мг О2/л, не более 1,0 1,0 1,5 Общий органический углерод, мкг/л, не более 25 50 300 1000 Содержание кремниевой кислоты (в пересчете на SiO3 -2 ), мг/л, не более 0,01 0,05 0,2 0,005 0,01 0,05 1,0 Содержание железа, мг/л, не более 0,015 0,02 0,03 Содержание меди, мг/л, не более 0,005 0,005 0,005 0,001 0,001 0,002 0,5 Содержание микрочастиц с размером 1-5 мкм, шт/л, не более 20 50 Не рег-ламент Содержание микроорганизмов, колоний/мл, не более 2 8 Не рег-ламент 0,001 0,01 10 100 Хлориды, мкг/л, не более 1,0 1,0 1,0 100 Никель, мкг/л, не более 0,1 1,0 2 500 Нитраты, мг/л, не более 1 1 10 1000 Фосфаты, мг/л, не более 1 1 5 500 Сульфат, мг/л, не более 1 1 5 500 Калий, мкг/л, не более 2 2 5 500 Натрий, мкг/л, не более 0,5 1 5 500 Цинк, мкг/л, не более 0,5 1 5 500

9.Нормы качества воды для гальванических производств ( по ГОСТ 9.314-90)

Наименование показателя Норма для категории 1 2 3 Водородный показатель рН 6,0 — 9,0 6,5 — 8,5 5,4 — 6,6 Сухой остаток, мг/дм 3 , не более 1000 400 5,0 * Жесткость общая, мг-экв/дм 3 , не более 7,0 6,0 0,35 * Мутность по стандартной шкале, мг/дм 3 , не более 2,0 1,5 — Сульфаты (SO4 2- ), мг/дм 3 , не более 500 50 0,5 * Хлориды (Сl — ), мг/дм 3 , не более 350 35 0,02 * Нитраты (NO3 — ), мг/дм 3 , не более 45 15 0,2 * Фосфаты (РO4 3- ), мг/дм 3 , не более 30 3,5 1,0 Аммиак, мг/дм 3 , не более 10 5,0 0,02 * Нефтепродукты, мг/дм 3 , не более 0,5 0,3 — Химическая потребность в кислороде, мг/дм 3 , не более 150 60 — Остаточный хлор, мг/дм 3 , не более 1,7 1,7 — Поверхностно-активные вещества (сумма анионных и неионогенных), мг/дм 3 , не более 5,0 1,0 — Ионы тяжелых металлов, мг/дм 3 , не более 15 5,0 0,4 Железо 0,3 0,1 0,05 Медь 1,0 0,3 0,02 никель 5,0 1,0 — цинк 5,0 1,5 0,2 * хром трехвалентный 5,0 0,5 — 15. Удельная электрическая проводимость при 20 ° С, См/м, не более 2х10 -3 1х10 -3 5х10 -4

* Нормы ингредиентов для воды 3-й категории определяются по ГОСТ 6709.

Примечание. В системах многократного использования воды допускается содержание вредных ингредиентов в очищенной воде выше, чем в табл.1 но не выше допустимых значений в промывной ванне после операции промывки (табл.2).

Читайте также:  Звонят предлагают провести анализ воды
Наименование компонента или иона электролита Наименование операции, перед которой проводится промывка Наименование электролита, перед которым проводится промывка Допустимая концентрация основного компонента в воде после операции промывки сд, мг/дм 3 Общая щелочность в пересчете на едкий натр — Щелочной
Кислый или цианистый 800
100 Анодное окисление алюминия и его сплавов — 50 Красители (для окрашивания покрытий Ан. Окс) Межоперационная промывка, сушка — 5 Кислота в пересчете на серную — Щелочной
Кислый
Цианистый 100
50
10 Наполнение и пропитка покрытий, сушка — 10 CN — общ, Sn 2+ , Sn 4+ , Zn 2+ , Cr 6+ , Pb 2+ Межоперационная промывка, сушка — 10 CNS — , Cd 2+ Межоперационная промывка, сушка — 15 Cu 2+ , Cu + Никелирование
Сушка — 2
10 Ni 2+ Меднение
Хромирование, сушка — 20
10 Fe 2+ Сушка — 30 Соли драгоценных металлов в пересчете на металл Сушка — 1
  1. За основной компонент (ион) данного раствора или электролита принимают тот, для которого критерий промывки является наибольшим.
  2. При промывке изделий, к которым предъявляются особо высокие требования, допустимые концентрации основного компонента могут устанавливаться опытным путем.

Концентрации основных ингредиентов в воде на выходе из гальванического производства приведены в табл.3

Наименование ингредиента Концентрация основных вредных ингредиентов в воде на выходе из гальванического цеха, мг/дм 3 , не более Хром шестивалентный 1000 Медь 30 Никель 50 Цинк 50 Кадмий 15 Свинец 10 Олово 10 Хлориды (Cl — ) 500 Сульфаты (SO4 2- ) 1000 Цианиды (CN) 30 Нитраты (NО3 — ) 60 Аммиак 15

1.3. В гальваническом производстве следует применять системы многократного использования воды, обеспечивающие

10. Нормы качества воды для гемодиализа (по ГОСТ 52556-2006).

Наименование показателя Значение показателя Массовая концентрация алюминия, мг/куб. дм, не более 0,0100 Массовая концентрация сурьмы, мг/куб. дм, не более 0,0060 Массовая концентрация мышьяка, мг/куб. дм, не более 0,0050 Массовая концентрация бария, мг/куб. дм, не более 0,1000 Массовая концентрация бериллия, мг/куб. дм, не более 0,0004 Массовая концентрация кадмия, мг/куб. дм, не более 0,0010 Массовая концентрация кальция, мг/куб. дм, не более 2,0 Массовая концентрация хлорамина, мг/куб. дм, не более 0,1000 Массовая концентрация хрома, мг/куб. дм, не более 0,0140 Массовая концентрация меди, мг/куб. дм, не более 0,1000 Массовая концентрация цианидов, мг/куб. дм, не более 0,0200 Массовая концентрация фторидов, мг/куб. дм, не более 0,2000 Массовая концентрация свободного остаточного хлора, мг/куб. дм, не более 0,5000 Массовая концентрация свинца, мг/куб. дм, не более 0,0050 Массовая концентрация магния, мг/куб. дм, не более 2,0 Массовая концентрация ртути, мг/куб. дм, не более 0,0002 Массовая концентрация нитратов, мг/куб. дм, не более 2,000 Массовая концентрация калия, мг/куб. дм, не более 2,0 Массовая концентрация селена, мг/куб. дм, не более 0,0050 Массовая концентрация натрия, мг/куб. дм, не более 50 Массовая концентрация сульфатов, мг/куб. дм, не более 100 Массовая концентрация олова, мг/куб. дм, не более 0,1000 Массовая концентрация цинка, мг/куб. дм, не более 0,1000 Удельная электрическая проводимость, мкСм/м, не более 5,0

11. Нормы качества «Вода очищенная» (по ФС 42-2619-97 и EP IV 2002).

Показатели ФС 42-2619-97 EP IV изд. 2002 Методы получения Дистилляция, ионный обмен, обратный осмос или другие подходящие методы Дистилляция, ионный обмен или другие подходящие методы Описание Бесцветная прозрачная жидкость без запаха и вкуса Бесцветная прозрачная жидкость без запаха и вкуса Качество исходной воды — Вода, соотв. требованиям на воду питьевую Европейского Союза рН 5.0-7.0 — Сухой остаток ≤0.001% — Восстанавливающие вещества Отсутствие Альтернативный ООУ ≤0.1мл 0.02 KMnO4 / 100 мл Диоксид углерода Отсутствие — Нитраты, нитриты Отсутствие ≤0.2 мг/л (нитраты) Аммиак ≤0.00002% — Хлориды Отсутствие — Сульфаты Отсутствие — Кальций Отсутствие — Тяжелые металлы Отсутствие ≤0.1 мг/л Кислотность/щелочность — — Алюминий — ≤10мкг/л (для гемодиализа) Общий органический углерод (ООУ) — ≤0,5 мг/л Удельная электропроводность (УЭ) — ≤4.3 мкСм/см (20 о С) Микробиологическая чистота ≤100 м.о./мл при отсутствии сем Enterobacteriaceae Staphylococcus aureus , Pseudomonas aeruginosa ≤100 м.о./ мл Бактериальные эндотоксины (БЭ) — ≤0.25 ЕЭ/мл для гемодиализа Маркировка На этикетке указывается, что вода может использоваться для приготовления диализных растворов

12.Нормы качества «Вода для инъекций» (по ФС 42-2620-97 и EP IV 2002).

Показатели ФС 42-2620-97 EP IV изд. 2002 Методы получения Дистилляция, обратный осмос Дистилляция Качество исходной воды — Вода, соотв. требованиям на воду питьевую Европейского Союза Микробиологическая чистота ≤100 м.о./мл при отсутствии сем Enterobacteriaceae Staphylococcus aureus , Pseudomonas aeruginosa ≤10КОЕ/ 100мл Пирогенность Апирогенна (биологический метод) — Бактериальные эндотоксины (БЭ) ≤0.25ЕЭ/мл (изменение №1), ≤ 0.25 ЕЭ/мл Удельная электропроводность — ≤1.1 мкСм/см (20 о С) ООУ — ≤0.5 мг/л Использование и хранение Используют свежеприготовленной или хранят при температуре от 5 о С до 10 о С или от 80 о С до 95 о С в закрытых емкостях из материалов, не изменяющих свойств воды, защищающих воду от попадания механических включений и микробиологических загрязнений, но не более 24 часов Хранится и распределяется в условиях, предотвращающих рост микроорганизмов и попадание других видов загрязнений. Маркировка На этикетке емкостей сбора и хранения воды для инъекций должно быть обозначено «не простерилизовано» —

13. Рекомендуемое качество воды для полива тепличных культур.

источник

Проблема качества воды занимает особое, определяющее место в системе охраны природы и здоровья населения. Количество пресной воды на Земле ограничено, а ее качество постоянно подвергается угрозам. Сохранение надлежащего качества пресной воды важно для обеспечения запасов питьевой воды, производства пищевых продуктов и рекреационного водоиспользования. Качеству воды могут угрожать инфекционные агенты, токсические химические вещества и радиологические опасности.

Безопасная и доступная вода — важный фактор здоровья людей, независимо от того, используется ли она для питья, бытовых нужд, приготовления пищи или рекреационных целей. Улучшенная система водоснабжения и санитарии и более эффективное водопользование могут способствовать экономическому росту в странах и вносить существенный вклад в сокращение масштабов нищеты.

Вопрос охраны водных экосистем и рационального использования их ресурсов – это вопрос жизни на Земле. Принятие решений в этой области должно быть основано на достоверной информации о состоянии водных объектов и тенденциях его изменения. В 2010 году Генеральная Ассамблея ООН четко признала право человека на воду и санитарию. Каждый имеет право на достаточное, непрерывное, безопасное, физически доступное и приемлемое по цене водоснабжение для личных и бытовых нужд.

Во всех развитых странах качество воды является предметом особого внимания государственных органов, общественных движений, средств массовой информации и широких слоев населения. Сегодня в мире нормированию качества воды уделяется повышенное внимание. Это обусловлено постоянным обнаружением в источниках водоснабжения все новых токсичных веществ, а также получением от медиков новых фактов о связи заболеваний человека с присутствием в воде различных соединений, нормативы допустимого содержания которых еще не определены. Основными международными документами, рекомендации или требования которых принимаются в качестве базовых при разработке национальных документов в большинстве стран мира, являются «Руководство по контролю качества питьевой воды», разработанное Всемирной организацией здравоохранения (Руководство ВОЗ) и Директива по питьевой воде Европейского Сообщества (Директива ЕС «Директива по Питьевой Воде» (Drinking Water Directive)). Кроме того, ряд стран использует в качестве базовых требований нормативы Агентства по охране окружающей среды США (U.S/ Environmental Protection Agency-EPA).

Согласно общепринятым нормам, питьевая вода должна быть безвредна по химическому составу, иметь хорошие органолептические показатели, быть безопасна в эпидемическом и радиационном отношении. Присутствие нетоксичных солей, органических, биологических и неорганических загрязнений в количествах, превышающих нормативные, вызывает появление различных заболеваний.

В Российской Федерации качество питьевой воды должно удовлетворять определенным требованиям, установленным СанПиН 2.1.4.10749-01 «Питьевая вода».

10 октября 2014 года на территории Таможенного союза завершилось публичное обсуждение проекта технического регламента Таможенного союза «О безопасности питьевой воды, расфасованной в емкости». Регламент будет контролировать безопасность упакованной питьевой воды, в частности, минеральной воды. 20 марта 2015 проект документа был направлен на обсуждение правительственного уровня, по завершению которого будет установлена дата, после которой начнется официальное применение документа.

Техрегламент ТС на воду питьевую устанавливает достаточно строгие требования к упакованной воде. Практически все ее виды, согласно нормам документа, будут подвергаться после вступления в силу регламента, обязательному декларированию. Исключение составит питьевая продукция, которая будет подлежать госрегистрации по требованию регламента:

Читайте также:  Звук воды чтобы ребенок пописал сдать анализ

— упакованная питьевая вода, которая предназначена для применения детьми (детское питание);

— упакованная вода лечебно-столовая;

— упакованная вода минеральная природная лечебная.

Получение декларации по новому Техрегламенту ТС будет осуществляться в несколько этапов. Вода будет проходить практическую проверку в лаборатории, а документация будет анализироваться в аккредитованных сертификационных органах.

Правовые основы государственной политики в России в области охраны окружающей среды и обеспечения экологической безопасности определяет Федеральный закон «Об охране окружающей среды». Федеральным законом от 21.07.2014 г., вступившим в силу с 01.01.2015, внесены изменения в Федеральный закон «Об охране окружающей среды» и отдельные законодательные акты Российской Федерации. В новой редакции изложены понятия нормативов допустимых сбросов в водные объекты. Загрязняющие вещества, в отношении которых применяются меры государственного регулирования в области охраны окружающей среды, определяются:

с учетом уровня токсичности, канцерогенных и (или) мутагенных свойств химических и иных веществ, в том числе имеющих тенденцию к накоплению в окружающей среде, а также их способности к преобразованию в окружающей среде в соединения, обладающие большей токсичностью;

  • с учетом данных государственного экологического мониторинга и социально-гигиенического мониторинга;
  • при наличии методик (методов) измерения загрязняющих веществ.

Перечень загрязняющих веществ, в отношении которых применяются меры государственного регулирования в области охраны окружающей среды, устанавливается Правительством Российской Федерации. В настоящее время подготовлен проект перечня веществ, загрязняющих водоемы, в отношении которых применяются меры государственного регулирования. В перечень включены загрязняющие вещества, летучие органические соединения, радиоактивные изотопы, парниковые и озоноразрушающие вещества, стойкие органические загрязнители, радионуклиды, а также физико-химические и микробиологические показатели:

  • по которым наблюдаются превышения гигиенических нормативов качества атмосферного воздуха в городах России;
  • количество или концентрация которых в водных объектах РФ превышает установленные нормативы;
  • выброс которых составляет более 90 процентов в суммарном выбросе РФ;
  • управление которыми входит в международные обязательства РФ.

Утверждение данного перечня позволит природоохранным органам при нормировании сбросов указывать предприятиям, какие из загрязняющих веществ в их сбросах являются наиболее значимыми и подлежат приоритетному снижению.

В настоящее время существуют две основные группы аналитических методов для определения микроэлементного состава вод: вольтамперометрические и спектрометрические методы. Среди спектрометрических методов определения тяжелых металлов наиболее часто применяют атомно-абсорбционную спектрометрию с электротермической атомизацией в графической кювете. К спектрометрическим методам, позволяющим проводить определение нескольких элементов одновременно, относятся атомно-эмиссионная спектроскопия с индуктивно связанной плазмой (ИСП-АЭС) и масс-спектрометрия с индуктивно связанной плазмой (ИСП-МС). Несмотря на неоспоримые достоинства спектрометрических методов, в России они применяются реже, чем вольтамперометрические (инверсионная вольтамперометрия) из-за значительно более высоких стоимости оборудования и себестоимости анализа.

Одним из наиболее чувствительных электрохимических методов анализа, позволяющим определять содержание элементов на уровне 0,00001-1 мг/л, является метод инверсионной вольтамперометрии (ИВ). В его основе лежит процесс электролиза, состоящий в концентрировании на электродах определяемого вещества из раствора. Аналитическим сигналом в методе ИВ служит максимальный ток электрорастворения концентрата. Регистрацию аналитического сигнала условно можно разделить на четыре стадии: 1) подготовка электродов и раствора к регистрации вольтамперограмм; 2) концентрирование (накопление) определяемого вещества на поверхности рабочего электрода при заданном потенциале; 3) регистрация тока растворения концентрата при изменении потенциала рабочего электрода; 4) расшифровка полученной зависимости тока от потенциала — вольтамперограммы. Ток, вызванный электрорастворением концентрата определяемого вещества с поверхности электрода, на вольтамперограмме регистрируется в виде пика. Положение пика на оси потенциалов, т.е. потенциал пика, характеризует природу определяемого вещества, а высота и площадь зависят от его концентрации в растворе. Таким образом, вольтамперограмма позволяет одновременно получить качественную и количественную информацию о веществах, присутствующих в анализируемом растворе. Вольтамперограмма содержит один пик, если на рабочем электроде концентрируют один элемент. Если подобраны условия одновременного накопления на рабочем электроде не-скольких элементов, то вольтамперограмма может содержать два, три, четыре пика, соответ-ствующие последовательному электрорастворению концентратов определяемых элементов. Это позволяет проводить одновременное определение нескольких элементов (например, кадмия и свинца или цинка, кадмия, свинца и меди).

Метод инверсионной вольтамперометрии легко поддается автоматизации, требует применения легкодоступных реак-тивов в небольшом количестве (от 0,5 до 10 мл на одну пробу) и относительно прост в реализации. По чувствительности метод сравним с атомно-абсорбционной спектроскопией. И хотя точность метода ИВ и уступает точности атомно-абсорбционной спектроскопии, показатели качества большинства вольтамперометрических методик не превышают установленных норм. К преимуществам инверсионной вольтамперометрии следует отнести относительно низкую стоимость оборудования, одновременное определение до четырех элементов и возможность определения форм элементов. Например, при анализе воды на содержание мышьяка можно установить содержание As(III) и As(V), на содержание йода — иодид-ионов, иодат-ионов и йодорганических соединений. Метод ИВ наряду с неорганическими показателями позволяет определять и органические вещества. Однако это требует более высокой квалификации химика-аналитика и/или использования специальных модифицированных электродов.

Процедура подготовки проб воды при определении токсичных микроэлеменов сводится к частичной или полной минерализации пробы и/или переводу определяемых элементов в электрохимически активное состояние. Пробоподготовка нетрудоемка, занимает не более 2,5 часов (в некоторых методиках – 2-10 мин.) и легко реализуется. При подготовке проб вод к измерениям применяют плиты нагревательные, муфели.

При подготовке проб воды к измерениям большое значение имеет температурный режим. Применение плит нагревательных, позволяющих устанавливать температуру нагревательной поверхности, уменьшает погрешность, связанную с пробоподготовкой. Применение программируемых устройств значительно упрощает процедуру подготовки проб.

Приборы для проведения анализа вольтамперометрическими методами называются вольтамперометрическими (ВА) анализаторами. Иногда вольтамперометрические анализаторы по сложившейся традиции, хотя и не совсем верно по сути, называют полярографами.

На российском рынке аналитического оборудования представлено более десяти модификаций вольтамперометрических анализаторов как российских производителей, так и зарубежных. Большинство российских вольтамперометрических анализаторов по техническим характеристикам не уступают импортным, предназначенным для рутинного анализа. Импортные анализаторы редко применяются в России из-за значительно более высокой стоимости. Все вольтамперометрические анализаторы, кроме специализированных для определения одного элемента, работают под управлением компьютера (персонального или ноутбука) и поставляются с электродами, программным и методическим обеспечением. Схема вольтамперометрического анализатора достаточно проста, однако, требования к чувствительности измерения, необходимость компенсации помех, автоматизация и компьютеризация анализа значительно усложняют прибор. Это же приводит к отличительным особенностям анализаторов, выпускаемым различными предприятиями-изготовителями: количество электрохимических ячеек — одна или три; способ перемешивания раствора: вращение рабочего электрода, вибрация электрода (или электродов), магнитная мешалка; наличие возможности подачи инертного газа в ячейку для деарации раствора; наличие дополнительных устройств, позволяющих проводить обработку анализируемой пробы непосредственно в ячейке анализатора — УФ-облучение, подача озона; особенности конструкции, увеличивающие безопасность и удобство работы; типы используемых электродов и способы модифицирования их поверхности. Перечисленные особенности ограничивают универсальность вольтамперометрических методик анализа. Как правило, каждый из вольтамперометрических анализаторов имеет свое методическое обеспечение, разработанное для данного типа прибора. В ПНД Ф внесено более 25 вольтамперометрических методик определения цинка, кадмия, свинца, меди, мышьяка, ртути, марганца, сурьмы, висмута, селена, железа, кобальта, никеля, молибдена, серебра, йода в различных типах вод . Ряд аттестованных методик наряду с высокой чувствительностью и удовлетворительной точностью имеет привлекательные для рутинного анализа особенности: одновременное определение цинка, кадмия, свинца и меди; экспресс-определение цинка, кадмия, свинца, меди, марганца, йода, ртути без предварительной подготовки проб вне анализатора. В 2005 г. введен в действие ГОСТ Р 52180-2003, в котором разработчики объединили наиболее распространенные варианты вольтамперометрических методик определения цинка, кадмия, свинца, меди, мышьяка, ртути, марганца, сурьмы и висмута в питьевой воде (действовал до 15.02.2015). На основе данного документа подготовлен и с 01.01.2014 введен в действие межгосударственный стандарт ГОСТ 31866-2012. Вода питьевая. Определение содержания элементов методом инверсионной вольтамперометрии.

Анализатор ТА-Lab, выпускаемый НПП «Томьаналит», имеет три электрохимических ячейки и относится к наиболее современным модификациям вольтамперометрических анализаторов. С его помощью проводят определение Zn, Cd, Pb, Cu, Mn, Hg, As, Se, Ni, Co, I, Ag, Sb, Bi, Cr на уровне 1/10 ПДК и ниже методом инверсионной вольтамперометрии. Определение Zn, Cd, Pb, Cu, Mn, Hg, йода в природной, питьевой и очищенной сточной водах проводится без предварительной подготовки проб к анализу. При определении других элементов и при анализе сточных вод с высоким содержанием органических веществ подготовка проб к анализу не превия, свинца и меди проводят одновременно из одного раствора пробы.

источник