Меню Рубрики

Анализ воды на содержание меди

Медь и ее соединения – это неотъемлемый компонент окружающей среды. Содержится этот элемент и в жидкости, которая течет из наших водопроводных кранов. Отметим, что в природных водоемах уровень содержания медных веществ не должен быть больше десяти долей миллиграмм на один литр. В водопроводной воде этот предел может быть значительно больше. Это объясняется тем, что данный компонент вымывается из арматуры и стенок труб.

Если уровень содержания меди сильно превышен, то вкус воды становится вяжущим и очень неприятным. Такая вода негативно влияет на здоровье человека. Согласно санитарным нормам концентрация этого элемента должна держаться на уровне один миллиграмм на литр. При превышении этой нормы необходимо принимать серьезные меры, направленные на очищение питьевой воды.

В воду элементы меди попадают в основном из сточных вод. Особенно, когда вблизи водоемов находятся химпредприятия и другие большие организации, занимающиеся металлургической деятельностью. Загрязнять воду могут и альдегидные реагенты. Их используют для ликвидации лишних водорослей в водоемах.

Чтобы понять, сколько медных веществ присутствует в воде, необходимо учитывать такие нюансы:

  1. Вкус воды становится очень неприятным, вяжущим.
  2. Цвет воды становится голубоватым.
  3. Если постоянно мыть голову водой, в которой много медных веществ, то волосы могут приобрести зеленоватый оттенок. Особенно это заметно на светлых волосах.
  4. Детали водопровода, которые изготовлены и нержавейки, при постоянном контакте с такой водой покрываются темным налетом. Смыть его, как правило, невозможно.

Также свидетельством того, что в жидкости содержится много меди, является наличие коррозии на деталях водопровода, которые сделаны из меди. Однако это не так заметно, как в случаях с предыдущими признаками. Для более точного анализа воду нужно отнести на пробу в лабораторию.

Нужно отметить, что медь негативно влияет не только на сантехнику. Повышенное ее содержание крайне отрицательно влияет на здоровье человека. Эксперты относят данный элемент к веществам третьего класса опасности. Об этом свидетельствует предельно допустимая концентрация, которая равна одному миллиграмму на литр воды.

Чтобы предотвратить отравления пищевого вида, медную посуду покрывают особым слоем для защиты. Он будет препятствовать тому, чтобы медные компоненты растворялись в воде в процессе ее подогрева. Хроническая интоксикация данным элементом способна сильно навредить организму человека. Она крайне негативно действует на работу нервной системы, печени и почек. Скажем даже больше. Такая вода может стать причиной аллергодерматоза.

Все, что было перечислено выше, дает право утверждать, что водопроводную воду необходимо очищать, если в ней содержится слишком много меди. Для этого нужно использовать специальное оборудование. Отметим, что известно два наиболее популярных способа, которые применяют для очистки. На каком способе остановиться зависит от того, насколько сильно превышена санитарная норма.

В большинстве случаев эксперты советуют применять технологию обратного осмоса. В этом случае необходим специальный блок химической промывки. Также нужен фильтр тонкой очистки, блок разнообразных модулей для фильтрации. Понадобится еще система для реагентной подготовки. Данный способ очистки пользуется большой популярностью из-за высокой эффективности. Еще он очень экономичен. Добавим, что обратноосмотические фильтрационные установки бытового типа имеют небольшие габариты. Устанавливать их довольно просто, как и использовать.

Также очистить воду от повышенного содержания элементов меди можно, применив ионный способ очистки. Но он довольно затратный, так как требует применения большого количества реагентов. Именно из-за этого и увеличиваются расходы на его эксплуатацию. По этой причине данный способ используется реже, чем предыдущий.

Автор: Гумерова Л.
Дата публикации – 09.11.2016.
Перепечатка без согласия редакции запрещена.

источник

ПНД Ф 14.1;2.48-96 Количественный химический анализ вод. Методика выполнения измерений массовой концентрации ионов меди в природных и сточных водах

МИНИСТЕРСТВО ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ И ПРИРОДНЫХ
РЕСУРСОВ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
МАССОВОЙ КОНЦЕНТРАЦИИ
ИОНОВ МЕДИ В ПРИРОДНЫХ И СТОЧНЫХ
ВОДАХ ФОТОМЕТРИЧЕСКИМ
МЕТОДОМ С ДИЭТИЛДИТИОКАРБАМАТОМ СВИНЦА

Методика допущена для целей государственного экологического контроля

Методика рассмотрена и одобрена Главным управлением аналитического контроля и метрологического обеспечения природоохранной деятельности (ГУАК) и Главным метрологом Минприроды РФ.

В соответствии с требованиями ГОСТ Р ИСО 5725-1-2002 ? ГОСТ Р ИСО 5725-6-2002 и на основании свидетельства о метрологической аттестации № 224.01.03.023/2004 в МВИ внесены изменения (Протокол № 1 заседания НГС ФГУ «ФЦАМ» МПР России от 03.03.2004).

Настоящий документ устанавливает методику количественного химического анализа проб природных и сточных вод для определения в них ионов меди при массовой концентрации от 0,002 до 0,06 мг/дм 3 фотометрическим методом с диэтилдитиокарбаматом свинца без разбавления и концентрирования пробы.

Если массовая концентрация ионов меди в анализируемой пробе превышает верхнюю границу, то допускается разбавление пробы таким образом, чтобы концентрация ионов меди соответствовала регламентированному диапазону.

Мешающие влияния, обусловленные присутствием комплексных цианидов, органических веществ и висмута в концентрации, превышающей 0,03 мг/дм 3 , устраняются специальной подготовкой пробы к анализу (п. 9).

Фотометрический метод определения массовой концентрации ионов меди основан на взаимодействии диэтилдитиокарбамата свинца в хлороформе с ионами меди в кислой среде (рН = 1,0 — 1,5) с образованием диэтилдитиокарбамата меди, окрашенного в желто-коричневый цвет, с максимумом светопоглощения при ? = 430 нм.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1.

Значения показателей точности, повторяемости и воспроизводимости методики

Диапазон измерений, мг/дм 3

Показатель точности (границы относительной погрешности при вероятности Р = 0,95), ±d, %

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости) sг, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), sR, %

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Спектрофотометр или фотоколориметр, позволяющий измерять оптическую плотность при длине волны l = 430 нм.

Кюветы с толщиной поглощающего слоя 5 мм.

Весы лабораторные, 2 класса точности, ГОСТ 24104.

Плитка электрическая по ГОСТ 14919.

Изделия с пористыми пластинами для фильтрования растворов и очистки газов по ГОСТ 9775:

пластинки пористые фильтрующие ПОР;

Сушильный шкаф электрический ОСТ 16.0.801.397.

ГСО меди с аттестованным содержанием, погреш. не более 1 %.

Колбы мерные 2-100 (500, 1000)-2 ГОСТ 1770

Колбы конические Кн-1-250-14/23 ТС ГОСТ 25336

Пипетки с делениями 0,1 см 4(5)-2-1(2);

Пипетки без делений с 1 отметкой 100, 50 см 3 ГОСТ 29169 ( * )

ПНД Ф 14.1:2.48-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Стаканы Н-1-150 ТСХ, ГОСТ 25336

Воронки делительные вместимостью 200, 500 см 3 , ГОСТ 25336

Цилиндры вместимостью 10, 20, 30, 1000 см 3 , ГОСТ 1770

Бутыли из стекла или полиэтилена с притертыми или винтовыми пробками вместимостью 500 см 3 для отбора и хранения проб.

Вода бидистиллированная по ГОСТ 6509-2502

Аммиак водный по ГОСТ 3760

Натрия N, N — диэтилдитиокарбамат по ГОСТ 8864

Медь сернокислая по ГОСТ 4165

Кислота серная по ГОСТ 4204

Кислота соляная по ГОСТ 3118

Кислота азотная по ГОСТ 4461

Углерод четыреххлористый по ГОСТ 20288

Свинец уксуснокислый по ГОСТ 1027

Известь хлорная или гипохлорит кальция или гипохлорит натрия

Все реактивы, должны быть квалификации ч.д.а. или х.ч.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

4.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019.

4.3. Организация обучения работающих безопасности труда по ГОСТ 12 0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой экстракционно-фотометрического анализа и изучивший инструкцию по эксплуатации спектрофотометра или фотоколориметра.

Измерения проводятся в следующих условиях:

температура окружающего воздуха (20 ± 5) °С;

атмосферное давление (84,0 — 106,7) кПа (630 — 800 мм. рт. ст);

относительная влажность (80 ± 5) %;

напряжение сети (220 ± 10) В;

частота переменного тока (50 ± 1) Гц.

Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб». ( * )

ПНД Ф 14.1:2.48-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

7.1. Всю посуду, применяемую в процессе анализа и для отбора проб, необходимо мыть разбавленной 1:1 азотной кислотой.

7.2. Пробы воды отбирают в стеклянные или полиэтиленовые бутыли, предварительно ополоснутые отбираемой водой Объем отбираемой пробы должен быть не менее 500 см 3 .

7.3. Пробы анализируют в день отбора или консервируют следующим образом: к пробе добавляют 5 см 3 концентрированной азотной кислоты на 1 дм 3 пробы или 5 см 3 соляной кислоты (1:1) на 1 дм 3 . Пробы, содержащие цианиды, не следует консервировать.

7.4. При отборе проб составляется сопроводительный документ по утвержденной форме, в которой указывается:

цель анализа, предполагаемые загрязнители;

должность, фамилия отбирающего пробу, дата.

Подготовку спектрофотометра или фотоколориметра к работе проводят в соответствии с рабочей инструкцией по эксплуатации прибора (l = 430 нм, кюветы с толщиной поглощающего слоя 5 мм.)

8.2.1. Приготовление раствора серной кислоты (1:1).

Смешивают равные объемы концентрированной серной кислоты и бидистиллированной воды.

8.2.2. Приготовление раствора серной кислоты (1:3).

1 объём концентрированной серной кислоты добавляют при перемешивании к 3 объемам бидистиллированной воды.

8.2.3. Приготовление раствора гипохлорита.

30 г хлорной извести или гипохлорита натрия растворяют в 1 дм бидистиллированной воды, 1 см 3 раствора должен содержать около 2,5 мг «активного хлора».

8.2.4. Приготовление раствора соляной кислоты.

В мерную колбу вместимостью 1 дм 3 наливают 300 см 3 бидистиллированной воды, приливают 495 см 3 концентрированной соляной кислоты, перемешивают и доводят бидистиллированной водой до метки.

8.2.5. Приготовление раствора соляной кислоты (1:1).

Смешивают равные объемы концентрированной соляной кислоты и бидистиллированной воды.

8.2.6. Приготовление раствора азотной кислоты (1:1).

Смешивают равные объемы концентрированной азотной кислоты и бидистиллированной воды.

8.2.7. Приготовление раствора диэтилдитиокарбамата свинца в тетрахлориде углерода.

В делительную воронку вместимостью 500 см 3 помещают 50 — 100 см 3 бидистиллированной воды, прибавляют 0,1 г ацетата свинца, перемешивают до его растворения и вводят раствор 0,1 г диэтилдитиокарбамата натрия, растворенного в небольшом количестве бидистиллята. Образуется белый осадок диэтилдитиокарбамата свинца.

Приливают 250 см 3 тетрахлорида углерода и взбалтывают, осадок растворяется в тетрахлориде углерода. Водный слой отбрасывают, органический слой фильтруют через сухой бумажный фильтр, собирая его в мерную колбу вместимостью 500 см 3 . Разбавив полученный раствор тетрахлоридом углерода до метки, переносят в склянку из темного стекла. В такой склянке реактив может храниться 3 месяца.

8.2.8. Приготовление основного раствора сернокислой меди.

0,200 г медной фольги или медной проволоки растворяют в 10 см 3 разбавленной (1:1) азотной кислоты. После растворения приливают 1 см 3 концентрированной серной кислоты и выпаривают до появления паров серной кислоты. Объем раствора доводят при 20 °С до 1 дм 3 .

1 см 3 раствора содержит 0,200 мг меди.

Или: 0,393 г сернокислой меди (CuSO4 ? 5Н2О) растворяют в мерной колбе, вместимостью 0,5 дм 3 в небольшом количестве воды, подкисленной 1 см 3 серной кислоты (1:5), и доводят объем раствора до метки дистиллированной водой. 1 см 3 раствора содержит 0,200 мг меди.

Раствор годен в течение 3 месяцев

8.2.9. Приготовление рабочего раствора сернокислой меди (1).

250 см 3 основного раствора разбавляют до объема 1 дм 3 . Применяют всегда свежеприготовленный раствор.

1 см 3 раствора содержит 0,05 мг меди.

8.2.10. Приготовление рабочего раствора сернокислой меди (2).

20,0 см 3 рабочего раствора (1) разбавляют до 1 дм 3 . Применяют всегда свежеприготовленный раствор.

1 см 3 раствора содержит 0,001 мг меди.

8.2.11. Приготовление основного раствора меди из ГСО с аттестованным содержанием меди.

Раствор готовят в соответствии с прилагаемой к образцу инструкцией. 1 см 3 раствора должен содержать 0,1 мг меди.

Раствор годен в течение месяца.

8.2.12. Приготовление рабочего раствора меди.

10 см 3 основного раствора, приготовленного из ГСО, помещают в мерную колбу вместимостью 1 дм 3 и разбавляют до метки дистиллированной водой. 1 см 3 раствора содержит 0,001 мг меди. Раствор готовят в день проведения анализа.

Для построения градуировочного графика необходимо приготовить образцы для градуировки определяемого компонента в концентрации 0,002 — 0,06 мг/дм 3 . Условия анализа, его проведение должны соответствовать п. 6, 10.

Состав и количество образцов для градуировки для построения градуировочного графика приведены в таблице 2.

Погрешность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,5 %.

Состав и количество образцов для градуировки

Массовая концентрация ионов меди в градуировочных растворах, мг/дм 3

Аликвотная часть рабочего раствора, с концентрацией 0,001 мг/см 3 , помещаемого в мерную колбу на 100 см 3 , (см 3 )

Анализ образцов для градуировки проводят в порядке возрастания их концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных. При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс — величину концентрации вещества в мг/дм 3 .

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал или при смене партии реактивов. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

где Х — результат контрольного измерения массовой концентрации меди в образце для градуировки;

С — аттестованное значение массовой концентрации меди в образце для градуировки;

s среднеквадратическое отклонение внутрилабораторной прецизионности, установленное при реализации методики в лаборатории.

Примечание. Допустимо среднеквадратическое отклонение внутрилабораторной прецизионности при внедрении методики в лаборатории устанавливать на основе выражения: ?= 0,84?R, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Значения sR приведены в таблице 1.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

9.1. Комплексные цианиды разрушают выпариванием пробы после добавления к ней 0,5 см 3 разбавленной (1:1) серной кислоты и 5 см 3 концентрированной азотной кислоты. К остатку после выпаривания добавляют 1 см 3 концентрированной соляной кислоты и вновь выпаривают досуха. Полученный остаток растворяют в бидистиллированной воде, подогревая смесь, если понадобится. Затем фильтруют через стеклянный фильтрующий тигель. Такая пробоподготовка служит также для исключения мешающего влияния небольших количеств органических веществ.

9.2. Пробы с высоким содержанием органических веществ, мешающих реакции, необходимо минерализовать выпариванием с азотной и серной кислотами.

К отмеренному объему пробы приливают 1 — 2 см 3 концентрированной серной кислоты, 3 — 5 см 3 концентрированной азотной кислоты, выпаривают до появления белого дыма серной кислоты. Если полученный раствор будет непрозрачным и окрашенным, прибавляют еще 5 см 3 азотной кислоты и вновь выпаривают до появления паров серной кислоты. Операцию повторяют до тех пор, пока раствор не станет прозрачным и бесцветным. Раствор выпаривают досуха. Затем поступают так, как указано в п. 9.1.

9.3. Комплексные цианиды можно также разрушить гипохлоритом. К пробе объемом 200 см 3 прибавляют 20 см 3 раствора гипохлорита (п. 8.2.3.), дают постоять 5 минут, затем прибавляют 5 см 3 разбавленной (1:3) серной кислоты, раствор кипятят 20 минут и охлаждают.

9.4. При содержании висмута выше 0,03 мг/дм 3 , полученный раствор диэтилдитиокарбамата в органическом растворителе взбалтывают в течение 0,5 минут с 25 см 3 5 — 6 н раствора соляной кислоты. Соединение висмута разрушается, висмут переходит в водный раствор, а соединение меди остается в органическом растворителе.

В делительную воронку вместимостью 200 см 3 помещают такой объем раствора, полученного после предварительной обработки пробы (см. п.п. 9.1 — 9.4), чтобы в нем содержалось от 0,2 до 6 мкг меди * .

* Если анализируемая проба сточной воды не содержит ни цианидов, ни каких-либо еще веществ, образующих с медью комплексные соединения, то предварительную обработку можно не проводить и взять для анализа пробу непосредственно в объеме, содержащем указанные количества меди.

( * ) Раствор разбавляют примерно до 100 см 3 , приливают 5 капель разбавленной 1:1 соляной кислоты и вводят из бюретки точно 4 см 3 раствора диэтилдитиокарбамата свинца в тетрахлориде углерода. Смесь энергично встряхивают 2 минуты. После разделения слоев сливают органический слой в кювету, снабженную крышкой, и возможно быстрее определяют оптическую плотность при l = 430 нм по отношению к тетрахлориду углерода.

Читайте также:  Где делают анализ почвы и воды

Таким же образом анализируют холостую пробу. Величину оптической плотности холостого опыта вычитают из оптической плотности пробы ( * ) . Толщина оптического слоя в кювете 5 мм. Содержание меди находят по градуировочному графику. При анализе проб воды выполняют не менее двух параллельных определений.

ПНД Ф 14.1:2.48-96 ( * ) Внесены дополнения и изменения согласно протокола № 23заседания НТК ФГУ «ЦЭКА» МПР России от 30 мая 2001 г.

Содержание меди (мг/дм 3 ) рассчитывают по формуле

где А — концентрация меди, найденная по градуировочному графику, мг/дм 3 ;

100 — объем, до которого была разбавлена проба, см 3 ;

V — объем, взятый для анализа, см 3 .

За результат анализа Хср принимают среднее арифметическое значение двух параллельных определений Х1 и Х2

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 3.

Значения предела повторяемости при вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4.

Значения предела воспроизводимости при вероятности Р = 0,95

Диапазон измерений, мг/дм 3

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученных в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

12.1. Результат анализа Хср в документах, предусматривающих его использование, может быть представлен в виде: Хср ± D, Р = 0,95,

где D — показатель точности методики.

Значение D рассчитывают по формуле: D = 0,01?d?Хср. Значение d приведено в таблице 1.

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде: Хср ± Dл, Р = 0,95, при условии Dл

источник

Люди всегда любили наделять предметы, камни или природные объекты магическими свойствами. В Индии ее жители верят в целительные свойства реки Ганг. А вот в Непале предпочтение отдают меди. Ее считают священным металлом и активно добавляют медные монеты в воду для питья в надежде поправить здоровье.

А теперь давайте поговорим серьезно. Ведь при анализе питьевой воды из скважин и кухонных кранов часто встречаются ионы меди. Чем это может грозить нашему организму?

Данный химический элемент представляет собой пластичный переходный металл золотисто-розового цвета. Он широко используется человеком с незапамятных времен и играет незаменимую роль для его здоровья.

  • участвует в синтезе различных белков и ферментов. Отвечает за развитие клеток и тканей костно-мышечной, кровеносной, сердечно-сосудистой, выделительной систем;
  • принимает участие в работе желез пищеварения и внутренней секреции;
  • необходим для выработки коллагена и эластина;
  • очень важен для нормального функционирования нервных волокон.

Суточная норма потребления для женщин составляет 1,5 мг, для мужчин – 2 мг. Самостоятельно организм ее синтезировать не может, поэтому берет из продуктов питания. Морепродукты, шпинат, орехи и бобы богаты этим элементом. Порой можно зафиксировать и высокое содержание меди в воде.

  • минерал вымывается из земной коры;
  • соединениями этого металла насыщены стоки из шахт, металлургических и химических предприятий;
  • добавляемые для борьбы с водорослями альдегидные реагенты богаты медными соединениями;
  • водопроводные трубы разрушаются, и медные примеси попадают в наш кран.

Cu относится к элементам, превышение которого можно обнаружить визуально или органолептически. Как это сделать?

  • Попробуем водичку на вкус. На языке малоприятный вяжущий привкус?
  • Проверяем цвет жидкости. Видим голубоватый оттенок?
  • Обращаем внимание на цвет волос. До мытья головы вы были блондином или блондинкой, а теперь ваши волосы переливаются зеленоватым оттенком?
  • Посмотрите на сантехнику. Можем зафиксировать на ней темный несмываемый налет?

Поздравляю! Вы стали не самым счастливым обладателем воды с превышенной ПДК меди.

Заглянем в нормативные документы разработанные СанПиНом. Заветной цифрой для нас будет 1 мг/дм3. Чтобы точно узнать содержание меди в воде, необходимо обратиться в химическую лабораторию для анализа. Компания «ИОН» оказывает широкий спектр услуг, включающий в себя 6 пакетов исследования жидкостей. Наши специалисты могут подобрать вам индивидуальный пакет, состоящий из списка только тех загрязнителей, которые будут вам интересны. Полученные результаты будут использованы для подбора необходимого водоочистного сооружения.

Избыток вещества превращает его в опасный для здоровья загрязнитель. Особо страдают в этом случае центральная нервная система, почки и печень. Разрушаются зубы, возникают тяжёлые дерматиты, гастрит и язвенные болезни. Негативное воздействие соединения оказывают на сантехнику и бытовые приборы.

Тяжелые металлы – это токсичные и крайне опасные вещества, способные значительно ухудшить здоровье человека и даже привести к гибели. Биогенные элементы – это исключение среди тяжелых металлов, которые необходимы всем живым организмам. Атомный вес тяжелых металлов составляет более 40.

Марганец в воде – довольно распространенное явление. Это вещество представляет из себя легкорастворимый минерал, занимающий 14 место среди общего количества. Содержание марганца в воде способно как принести организму пользу, так и причинить вред.

* Бесплатный выезд для физических лиц в пределах МКАД при заказе на сумму более 5 000 ₽. Подробнее в разделе Доставка и оплата

© 1997-2019 — Лаборатория ИОН. Все права защищены.

источник

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Water. Methods for determination of copper

ОКС 75.060.50*
ОКСТУ 0209
_______________
* Вероятно, ошибка оригинала.
Следует читать: ОКС 13.060.50. — Примечание изготовителя базы данных.

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ» (ФГУП «ВНИЦСМВ») на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4

2 ВНЕСЕН Управлением технического регулирования и стандартизации Федерального агентства по техническому регулированию и метрологии

4 Настоящий стандарт идентичен стандарту АСТМ Д 1688-02* «Стандартные методы определения меди в воде» (ASTM D 1688-02 «Standard test methods for copper in water»).
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке. — Примечание изготовителя базы данных.

Наименование настоящего стандарта изменено относительно наименования указанного стандарта для приведения в соответствие с ГОСТ Р 1.5-2004 (подраздел 3.5).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных стандартов АСТМ соответствующие им национальные стандарты Российской Федерации и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1.1 Настоящий стандарт устанавливает три атомно-абсорбционных спектрофотометрических метода определения меди в воде:

Диапазон концентраций меди

Метод А — прямой атомно-абсорбционный метод

Метод В — атомно-абсорбционный метод с использованием экстракции с хелатообразованием

Метод С — атомно-абсорбционный метод с использованием графитовой печи

1.2 Настоящими методами можно определять растворенную или общую медь. Для определения растворенной меди проводят фильтрацию через мембранный фильтр 0,45 мкм (N 325) во время отбора пробы воды. Предпочтительной является фильтрация на потоке.

1.3 Значения, установленные в единицах СИ, являются стандартными. Значения в скобках приведены для информации.

1.4 В настоящем стандарте не предусмотрено рассмотрение всех мер безопасности, связанных с его применением. Пользователь настоящего стандарта несет ответственность за разработку соответствующих правил техники безопасности и мер по охране здоровья, а также определяет целесообразность применения законодательных ограничений перед его использованием. Специальные указания по технике безопасности приведены в примечаниях 3, 5, 8 и 13.

В настоящем стандарте использованы нормативные ссылки на следующие стандарты :
_______________
Таблицу соответствия национальных стандартов международным см. по ссылке. — Примечание изготовителя базы данных.

АСТМ Д 858 Методы определения марганца в воде (ASTM D 858, Test methods for manganese in water)*

АСТМ Д 1066 Руководство по отбору проб пара (ASTM D 1066, Practice for sampling steam)*

АСТМ Д 1068 Методы определения железа в воде (ASTM D 1068, Test methods for iron in water)*

АСТМ Д 1129 Терминология, относящаяся к воде (ASTM D 1129, Terminology relating to water)*

АСТМ Д 1192 Технические условия на оборудование для отбора проб воды и пара в закрытых трубопроводах (ASTM D 1192, Specification for equipment for sampling water and steam in closed conduits)*

АСТМ Д 1193 Технические условия на реактив-воду (ASTM D 1193, Specification for reagent water)*

АСТМ Д 1687 Методы определения хрома в воде (ASTM D 1687, Test methods for chromium in water)*

АСТМ Д 1691 Методы определения цинка в воде (ASTM D 1691, Test methods for zinc in water)*

АСТМ Д 1886 Методы определения никеля в воде (ASTM D 1886, Test methods for nickel in water)*

АСТМ Д 2777 Руководство для определения прецизионности и отклонения, применяемых методов Комитета АСТМ Д-19 по воде (ASTM D 2777, Practice for determination of precision and bias of applicable methods of committee D-19 on water)*

АСТМ Д 3370 Руководство для отбора проб воды из закрытых трубопроводов (ASTM D 3370, Practices for sampling water from closed conduits)*

АСТМ Д 3557 Методы определения кадмия в воде (ASTM D 3557, Test methods for cadmium in water)*

АСТМ Д 3558 Методы определения кобальта в воде (ASTM D 3558, Test methods for cobalt in water)*

АСТМ Д 3559 Методы определения свинца в воде (ASTM D 3559, Test methods for lead in water)*

АСТМ Д 3919 Руководство для измерения следовых количеств элементов в воде методом атомно-абсорбционной спектрофотометрии с использованием графитовой печи (ASTM D 3919, Practice for measuring trace elements in water by graphite furnace atomic absorption spectrophotometry)*

АСТМ Д 4841 Руководство для оценки времени удерживания для проб воды, содержащих органические и неорганические составляющие (ASTM D 4841, Practice for estimation of holding time for water samples containing organic and inorganic constituents)*

АСТМ Д 5810 Руководство по методу добавок применительно к пробам воды (ASTM D 5810, Guide for spiking into aqueous samples)*

АСТМ Д 5847 Руководство для составления требований к управлению качеством (QC) анализа воды по стандартизованным методам (ASTM D 5847, Practice for writing quality control specifications for standard test methods for water analysis)**
________________
* Ежегодный сборник стандартов АСТМ, том 11.01 (Annual Book of ASTM Standards, Vol 11.01.).
** Ежегодный сборник стандартов АСТМ, том 11.02 (Annual Book of ASTM Standards, Vol 11.02.).

3.1 В настоящем стандарте применены термины, используемые в АСТМ Д 1129.

4.2 Медь попадает в водные источники в результате природного процесса растворения минералов; из промышленных сточных вод при переработке сульфата меди; при контроле биологического роста в некоторых резервуарах и распределительных системах; при коррозии медных сплавов водопроводных труб. Медь может содержаться в значительных концентрациях в сточных водах горнорудной промышленности, производства боеприпасов и большинства гальванических и обрабатывающих производств или отраслей промышленности. Медь может присутствовать в простой ионной форме или в виде одного из многих комплексов таких групп, как цианиды, хлориды, аммиачные или органические лиганды.

4.3 Несмотря на то, что эти соли, в частности сульфат меди, усиливают биологический рост некоторых водорослей и бактерий, медь считается неотъемлемой частью питания людей и не является токсическим химическим веществом при концентрациях, обычно обнаруживаемых в пробах воды.

5.1 Используемые реактивы должны быть класса химически чистые (х.ч.). Если нет других указаний, то это означает, что все реактивы соответствуют техническим условиям Комитета по аналитическим реактивам Американского химического общества (АСТМ), где можно получить технические условия на эти реактивы. Вещества других классов чистоты можно использовать, если первоначально установлено, что реактив достаточно чистый и не может привести к снижению точности измерения.

5.2 Под чистотой воды (если нет других указаний) подразумевается, что вода — лабораторного назначения (чистая для анализа — ч.д.а.) класса I по АСТМ Д 1193. Можно использовать воду лабораторного назначения других классов при условии, что в первую очередь установлена степень ее чистоты, которая не может привести к снижению точности (прецизионности) измерений и увеличению отклонений при измерении. При межлабораторных круговых испытаниях по приведенным методам была использована вода класса II.

6.1 Пробы отбирают в соответствии с АСТМ Д 1066, АСТМ Д 1192 и АСТМ Д 3370.

6.2 Пробы должны быть обработаны азотной кислотой (HNO ) с удельным весом 1,42 до значения рН, равного 2 или менее, сразу же после их отбора, обычно требуется около 2 мл/л азотной кислоты. Если определяют только растворенную медь, пробу перед подкислением фильтруют через мембранный фильтр 0,45 мкм (N 325). Время удерживания проб можно рассчитать в соответствии с АСТМ Д 48.

7.1 Настоящий метод определяет растворенную и общую извлекаемую медь в большинстве вод, в том числе и в сточных водах.

7.2 Настоящий метод применим в диапазоне концентраций меди от 0,05 до 5 мг/л. Диапазон может быть расширен до концентраций более 5 мг/л при разбавлении пробы.

7.3 Данные по межлабораторным испытаниям получены на лабораторной воде, речной воде, водопроводной воде, грунтовой воде, озерной воде, предварительно очищенных сточных водах нефтеперерабатывающего производства и двух необработанных сточных водах. Информация о прецизионности и отклонении при измерениях не применима к другим водам.

8.1 Медь определяют с использованием атомно-абсорбционной спектрофотометрии. Отфильтрованную пробу с растворенной медью вводят (засасывают) в прибор без предварительной обработки. Для определения общего количества извлекаемой меди в пробе пробу вводят после обработки смесью соляной и азотной кислот и фильтрации. Можно использовать такую же процедуру подготовки, которую используют для определения общего извлекаемого кадмия (метод по АСТМ Д 3557), хрома (метод по АСТМ Д 1687), кобальта (метод по АСТМ Д 3558), железа (метод по АСТМ Д 1068), свинца (метод по АСТМ Д 3559), марганца (метод по АСТМ Д 858), никеля (метод по АСТМ Д 1886) и цинка (метод по АСТМ Д 1691).

9.1 Натрий, калий, сульфаты и хлориды (8000 мг/л каждого), кальций и магний (5000 мг/л каждого), нитраты (2000 мг/л), железо (1000 мг/л), кадмий, свинец, никель, цинк, кобальт, марганец и хром (10 мг/л каждого) не мешают определению меди в воде.

9.2 Для определения малых количеств меди в некоторых водах может понадобиться корректировка фона или применение методики экстракции хелата (метод В).

Примечание 1 — Необходимо следовать инструкциям производителя прибора при использовании специальных методик корректировки.

10.1 Атомно-абсорбционный спектрофотометр, предназначенный для работы в области длины волны 324,7 нм.

Примечание 2 — Инструкции производителя должны соответствовать всем инструментальным параметрам. Длину волны, отличающуюся от значения 324,7 нм, можно использовать, если заранее было определено, что она в такой же степени пригодна.

10.1.1 Лампа с полым катодом на медь. Пригодны также лампы с полым катодом для многих элементов.

10.4 Краны для редуцирования давления. Подачу горючего и окислителя следует проводить при значениях давления несколько выше, чем рабочее давление, регулируемое в приборе соответствующими кранами.

11.1 Раствор меди, исходный (1,0 мл =1,0 мг Cu): растворяют 1,000 г электролитической меди в стакане вместимостью 250 мл в смеси — 15 мл азотной кислоты (HNO ) (удельный вес — 1,42) и 15 мл воды. Медленно добавляют 4 мл серной кислоты (H SO , удельный вес — 1,84) (1+1) и нагревают, пока не начнет выделяться серный ангидрид (SO ). Охлаждают, промывают стакан водой и разбавляют водой до 1 л. Также допускается использовать товарный исходный раствор такой же степени чисто

Читайте также:  Формула курлова химический анализ воды

11.2 Раствор меди, стандартный (1,0 мл =0,1 мг Cu): разбавляют 100,0 мл исходного раствора меди водой до 1 л.

11.3 Соляная кислота (удельный вес — 1,19). Концентрированная соляная кислота (HCI).

Примечание 3 — Если получен реактив высокой степени чистоты, то проводят перегонку HCI либо используют кислоту спектральной чистоты.

Внимание: При перегонке HCI получается азеотропная смесь (концентрация HCI примерно 6N). Поэтому каждый раз, когда для приготовления реактива или в методике указана концентрированная HCI, для перегонки используют двойной указанный объем

11.6.1 Воздух, пропущенный через соответствующий фильтр для удаления масла, воды и других инородных веществ, обычно применяют в качестве окислителя.

11.7.1 Ацетилен. Обычно используют в качестве горючего стандартный ацетилен. Присутствующий в ацетиленовых баллонах ацетон может влиять на аналитические результаты. Баллон вновь заполняют под давлением 50 p.s.i.g (345 кПа).

Примечание 6 — Предупреждение — Ацетилен класса очищенный, содержащий специальный фирменный растворитель, в большей степени, чем ацетон, нельзя использовать с трубками из поливинилхлорида, так как потеря прочности трубопроводов может привести к опасной ситуации.

12.2 При определении общей извлекаемой меди добавляют 0,5 мл HNO (удельный вес — 1,42) и продолжают испытание в соответствии с 13.2-13.4. При определении растворенной меди продолжают испытание в соответствии с 13.5.

12.4 Строят аналитическую кривую, откладывая значения абсорбции в зависимости от концентрации меди в каждом стандартном растворе. В качестве альтернативы определяют концентрацию меди непосредственно по показаниям прибора.

13.1 100,0 мл хорошо перемешанной подкисленной пробы помещают в стакан или колбу вместимостью 125 мл.

Примечание 6 — Если необходимо определять только растворенную медь, начинают процедуру с 13.5.

13.2 Добавляют 5 мл HCI (удельный вес — 1,19) в каждую пробу.

13.3 Нагревают пробы на паровой бане или электрической плитке в хорошо вентилируемом вытяжном шкафу до тех пор, пока объем не уменьшится до 15-20 мл, не доводя пробы до кипения.

Примечание 7 — Если анализируемые пробы содержат значительное количество суспендированного материала, величину уменьшения объема выбирают по усмотрению аналитика.

13.4 Охлаждают и фильтруют пробы в мерную колбу вместимостью 100 мл через соответствующий фильтр, например тонкую ткань, промытую кислотой, или беззольный фильтр. Промывают фильтровальную бумагу два или три раза водой и доводят пробы до нужного объема.

14.1 Рассчитывают концентрацию меди в каждой пробе в миллиграммах на литр, используя аналитическую кривую, или в качестве альтернативы используют показания прибора (12.4).

15.1 Межлабораторные испытания по настоящему методу проведены в десяти лабораториях, в пяти из которых работали по два оператора. Каждый из 15 операторов выполнял определения на трех уровнях в течение трех дней на пробах лабораторной воды и отобранных пробах воды при общем числе определений 270.

15.2 Данные по межлабораторным испытаниям получены на лабораторной воде, речной воде, водопроводной воде, грунтовой воде, озерной воде, предварительно очищенных сточных водах нефтеперерабатывающего завода, двух необработанных сточных водах. Для других материалов эти данные не применимы.

15.3 Прецизионность и отклонение данного метода соответствует АСТМ Д 2777-77, которое применено к данным, полученным в совместных испытаниях. В соответствии с допущением, сделанным в 1.4 АСТМ Д 2777-98, данные значения прецизионности и отклонения соответствуют существующим требованиям для межлабораторных испытаний согласно методам Комитета АСТМ Д 19.

Получаемую одним оператором и общую прецизионность настоящего метода в обозначенном диапазоне выражают следующим образом:

в лабораторной воде класса II

в речной, водопроводной, грунтовой, озерной или сточной воде

где — прецизионность результатов, получаемая одним оператором;

— определяемая концентрация меди, мг/л.

Результаты извлечения известных количеств меди приведены в таблице 1.

Таблица 1 — Определение предельных отклонений по методу А

Введенное количество Cu, мг/л

Определенное количество Cu, мг/л

Статистическая значимость, доверительный уровень 95%

источник

Медь и ее соединения – это неотъемлемый компонент окружающей среды. Содержится этот элемент и в жидкости, которая течет из наших водопроводных кранов. Отметим, что в природных водоемах уровень содержания медных веществ не должен быть больше десяти долей миллиграмм на один литр. В водопроводной воде этот предел может быть значительно больше. Это объясняется тем, что данный компонент вымывается из арматуры и стенок труб.

Если уровень содержания меди сильно превышен, то вкус воды становится вяжущим и очень неприятным. Такая вода негативно влияет на здоровье человека. Согласно санитарным нормам концентрация этого элемента должна держаться на уровне один миллиграмм на литр. При превышении этой нормы необходимо принимать серьезные меры, направленные на очищение питьевой воды.

В воду элементы меди попадают в основном из сточных вод. Особенно, когда вблизи водоемов находятся химпредприятия и другие большие организации, занимающиеся металлургической деятельностью. Загрязнять воду могут и альдегидные реагенты. Их используют для ликвидации лишних водорослей в водоемах.

Чтобы понять, сколько медных веществ присутствует в воде, необходимо учитывать такие нюансы:

  1. Вкус воды становится очень неприятным, вяжущим.
  2. Цвет воды становится голубоватым.
  3. Если постоянно мыть голову водой, в которой много медных веществ, то волосы могут приобрести зеленоватый оттенок. Особенно это заметно на светлых волосах.
  4. Детали водопровода, которые изготовлены и нержавейки, при постоянном контакте с такой водой покрываются темным налетом. Смыть его, как правило, невозможно.

Также свидетельством того, что в жидкости содержится много меди, является наличие коррозии на деталях водопровода, которые сделаны из меди. Однако это не так заметно, как в случаях с предыдущими признаками. Для более точного анализа воду нужно отнести на пробу в лабораторию.

Нужно отметить, что медь негативно влияет не только на сантехнику. Повышенное ее содержание крайне отрицательно влияет на здоровье человека. Эксперты относят данный элемент к веществам третьего класса опасности. Об этом свидетельствует предельно допустимая концентрация, которая равна одному миллиграмму на литр воды.

Чтобы предотвратить отравления пищевого вида, медную посуду покрывают особым слоем для защиты. Он будет препятствовать тому, чтобы медные компоненты растворялись в воде в процессе ее подогрева. Хроническая интоксикация данным элементом способна сильно навредить организму человека. Она крайне негативно действует на работу нервной системы, печени и почек. Скажем даже больше. Такая вода может стать причиной аллергодерматоза.

Все, что было перечислено выше, дает право утверждать, что водопроводную воду необходимо очищать, если в ней содержится слишком много меди. Для этого нужно использовать специальное оборудование. Отметим, что известно два наиболее популярных способа, которые применяют для очистки. На каком способе остановиться зависит от того, насколько сильно превышена санитарная норма.

В большинстве случаев эксперты советуют применять технологию обратного осмоса. В этом случае необходим специальный блок химической промывки. Также нужен фильтр тонкой очистки, блок разнообразных модулей для фильтрации. Понадобится еще система для реагентной подготовки. Данный способ очистки пользуется большой популярностью из-за высокой эффективности. Еще он очень экономичен. Добавим, что обратноосмотические фильтрационные установки бытового типа имеют небольшие габариты. Устанавливать их довольно просто, как и использовать.

Также очистить воду от повышенного содержания элементов меди можно, применив ионный способ очистки. Но он довольно затратный, так как требует применения большого количества реагентов. Именно из-за этого и увеличиваются расходы на его эксплуатацию. По этой причине данный способ используется реже, чем предыдущий.

Автор: Гумерова Л.
Дата публикации – 09.11.2016.
Перепечатка без согласия редакции запрещена.

источник

Медь в питьевом водоснабжении

Применение меди для трубопроводов значительно увеличилось в последнее десятилетие, благодаря ее преимуществам и экономичности. Использование меди можно выразить в процентах от 60 до 70%. В отличие от железа, которое уже в небольшом количестве влияет на вкус воды, медь, как правило, в воде почти не ощущается. Голубоватые отложения затвердевших образований воды с небольшим количеством медных соединений в умывальниках, раковинах, ваннах и т.д., из-за капающей из крана воды – единственное, что указывает на наличие меди в воде. Поскольку этот цвет, по сравнению с обычным белым или коричневым, не привычный, и воспринимается с настороженностью, возникает желание предпринять соответствующие меры по удалению меди из воды и проведению ее анализа.

Опасения из-за наличия меди в воде возникают на данном этапе из-за развития двух направлений. Первое, — сегодня уделяется большое внимание проблемам окружающей среды. Одним из важнейших вопросов является качество питьевой воды. Многочисленные публикации проявили всеобщий интерес к данному вопросу. Параллельно с этим значительно расширились возможности химических анализов. Сегодня можно обнаружить, не затрачивая большие средства, самую минимальную концентрацию (ниже 1 микро грамма на 1 литр) существенных токсичных элементов. У чувствительного человека, интересующегося результатами анализов, может легко возникнуть впечатление, что на сегодняшний день в воде по сравнению с прошлыми годами, содержится слишком много меди. Но ниже указанный пример объясняет ситуацию.

Если бы мы проанализировали идентичную пробу воды, в которой содержится меди 0,125 мг/л, то согласно технологии анализа на каждом этапе мы бы имели следующие результаты: Если бы мы проанализировали идентичную пробу воды, в которой содержится меди 0,125 мг/л, то согласно технологии анализа на каждом этапе мы бы имели следующие результаты:
1920г. – медь не обнаружена;
1940г. – медь обнаружена в очень маленьком количестве – около 0,1 мг/л;
1960г. – медь обнаружена – 0,13 мг/л;
1990г. – медь обнаружена – 0,125 мг/л.

Обратим внимание на то, что сегодня данные о содержании металла в питьевой воде указываются в µг/л – тогда бы в нашем примере с 1990г. должна стоять цифра 125 µг/л, и становится понятным, почему дилетанты, а также некоторые специалисты, не имеющие квалифицированной информации, воспринимают эти значения как относительно высокие. Уровень содержания меди в воде зависит от ее качества и свойств, от условий эксплуатации, от возраста трубопровода и вида пробы. Поэтому получается неизбежным тот факт, что содержание меди в воде может сильно колебаться, и это делает невозможным строгое определение узкого диапазона величины содержания меди в воде, как это часто хотелось бы при предоставлении краткой и четкой информации. Также и в продуктах питания наблюдаются отклонения в диапазоне уровня содержания меди.

Данные исследования о содержании меди в питьевой воде высветили довольно неоднозначную картину, но четко показали, что различия между значениями отдельных проб являются значительными, а также – что непосредственно стало очевидным – содержание меди зависит от времени пребывания воды в трубопроводе. Чем меньше время застоя воды в трубопроводе, тем ниже содержания меди в ней. Поскольку высокое содержание меди в воде возникает в результате длительного пребывания ее в трубопроводе, то все дальнейшие вопросы мы будем рассматривать,исходя только из этих значений. При этом необходимо четко понимать, что данное повышенное содержание встречается только в отдельных случаях. С момента получения первых систематических результатов анализов о содержании меди в питьевой воде осуществляется постоянное исследование соотношения лабораторных опытов и опытов, проведенных на местах, которые определяют влияние на уровень содержания меди в воде материала труб и арматуры. Уровень меди, появляющийся в воде под воздействием материала арматуры, составляет менее 0,1 мг/л.

Содержание меди возрастает в воде, которая длительно стоит в медном трубопроводе. Хорошую картину показали опыты, во время которых вода проходила по трубам, со строгим интервалом между моментом функционирования и моментом остановки системы, на которой проводились опыты. Исследовались различные пробы, в зависимости от времени функционирования и времени простоя системы.. Данные результата количественно подтвердили ранее известные результаты опытов о том, что концентрация меди в воде зависит от времени ее простоя в трубах, от возраста трубопроводов и качества воды.

Содержание меди в питьевой воде может рассматриваться с технической и гигиенической точки зрения.

1. Это уже упомянутое изменение цвета санитарно-технической керамики под воздействием капающей из-под крана воды, которое является эстетической проблемой, и которое не может оцениваться как воздействие с коррозионным повреждением. Данный недостаток можно устранить путем ремонта крана или регулярной чистки раковины.

2. Оцинкованные стальные трубы под воздействием питьевой воды с содержанием меди свыше 0,1 мг/л [45] могут быть подвержены коррозии. Данное обстоятельство учитывается техническими требованиями и, исходя из этого, было установлено, что трубопровод из оцинкованной стали ни в коем случае не должны монтироваться после медных труб.

3. Указанные в отчетах исследований данные по содержанию меди не позволяют сделать вывод о ее воздействии на трубы или арматуру, которое приводит к возникновению коррозионных повреждений, особенно появлению дыр. (Для более подробной информации о различиях между понятиями: коррозия, коррозионное явление и коррозионные повреждения необходимо обратиться к литературе.)

Подводя итог, можно установить, что содержание меди в питьевой воде обуславливается такими факторами: качеством воды, типом трубопровода и условиями эксплуатации, а также природными процессами. При квалифицированно смонтированном санитарном трубопроводе медь не представляет собой коррозионной опасности для других деталей водопровода, в том числе и медных. Но, прежде всего, появляющаяся в питьевой воде медь не является опасной для здоровья и не ухудшает вкус воды. Некоторые заболевания печени у грудных детей связывают с наличием меди в питьевой воде. Обработка данных по известным на сегодняшний день случаям, показала, что во всех случаях болезни были вызваны определенными типовыми условиями. Речь шла о воде, которая, не соответствовала законодательным требованиям к питьевой воде. Не один случай не был связан с потреблением воды из центральной системы водоснабжения.

источник

Нормы качества питьевой воды СанПиН 2.1.4.1074-01. Питьевая вода. (ВОЗ, ЕС, USEPA).питьевой воды, расфасованной в емкости (по СанПиН 2.1.4.1116 – 02), показателей водок (по ПТР 10-12292-99 с изменениями 1,2,3), воды для производства пива и безалкогольной продукции, сетевой и подпиточной воды водогрейных котлов ( по РД 24.031.120-91), питательной воды для котлов (по ГОСТ 20995-75), дистиллированной воды (по ГОСТ 6709-96), воды для электронной техники (по ОСТ 11.029.003-80, ASTM D-5127-90), для гальванических производств ( по ГОСТ 9.314-90), для гемодиализа (по ГОСТ 52556-2006), воды очищенной (по ФС 42-2619-97 и EP IV 2002), воды для инъекций (по ФС 42-2620-97 и EP IV 2002), воды для полива тепличных культур.

В данном разделе приведены основные показатели нормативов качества воды для различных производств.
Вполне достоверные данные отличной и уважаемой компании в области водоочистки и водоподготовки «Альтир» из Владимира

1. Нормы качества питьевой воды СанПиН 2.1.4.1074-01. Питьевая вода. (ВОЗ, ЕС, USEPA).

Показатели СанПиН2.1.4.1074-01 ВОЗ USEPA ЕС Ед. измерения Нормативы ПДК, не более Показатель вредности Класс опасности Водородный показатель ед. рН в пределах 6-9 — — — 6,5-8,5 6,5-8,5 Общая минерализация(сухой остаток) мг/л 1000 (1500) — — 1000 500 1500 Жесткость общая мг-экв/л 7,0 (10) — — — — 1,2 Окисляемость перманганатная мг О2/л 5,0 — — — — 5,0 Нефтепродукты, суммарно мг/л 0,1 — — — — — Поверхностно-активныевещества (ПАВ),анионоактивные мг/л 0,5 — — — — — Фенольный индекс мг/л 0,25 — — — — — Щелочность мг НСО3-/л 0,25 — — — — 30 Неорганические вещества Алюминий (Al 3+ ) мг/л 0,5 с.-т. 2 0,2 0,2 0,2 Азот аммонийный мг/л 2,0 с.-т. 3 1,5 — 0,5 Асбест милл.во-локон/л — — — — 7,0 — Барий (Ва 2+ ) мг/л 0,1 с.-т. 2 0,7 2,0 0,1 Берилий(Ве 2+ ) мг/л 0,0002 с.-т. 1 — 0,004 — Бор (В, суммарно) мг/л 0,5 с.-т. 2 0,3 — 1,0 Ванадий (V) мг/л 0,1 с.-т. 3 0,1 — — Висмут (Bi) мг/л 0,1 с.-т. 2 0,1 — — Железо (Fe,суммарно) мг/л 0,3 (1,0) орг. 3 0,3 0,3 0,2 Кадмий (Cd,суммарно) мг/л 0,001 с.-т. 2 0,003 0,005 0,005 Калий (К+) мг/л — — — — — 12,0 Кальций (Са 2+ ) мг/л — — — — — 100,0 Кобальт (Со) мг/л 0,1 с.-т. 2 — — — Кремний (Si) мг/л 10,0 с.-т. 2 — — — Магний (Mg 2+ ) мг/л — с.-т. — — — 50,0 Марганец (Mn,суммарно) мг/л 0,1 (0,5) орг. 3 0,5 (0,1) 0,05 0,05 Медь (Сu, суммарно) мг/л 1,0 орг. 3 2,0 (1,0) 1,0-1,3 2,0 Молибден (Мо,суммарно) мг/л 0,25 с.-т. 2 0,07 — — Мышьяк (As,суммарно) мг/л 0,05 с.-т. 2 0,01 0,05 0,01 Никель (Ni,суммарно) мг/л 0,01 с.-т. 3 — — — Нитраты (поNO 3- ) мг/л 45 с.-т. 3 50,0 44,0 50,0 Нитриты (поNO 2- ) мг/л 3,0 — 2 3,0 3,5 0,5 Ртуть (Hg, суммарно) мг/л 0,0005 с.-т. 1 0,001 0,002 0,001 Свинец (Pb,суммарно) мг/л 0,03 с.-т. 2 0,01 0,015 0,01 Селен (Se, суммарно) мг/л 0,01 с.-т. 2 0,01 0,05 0,01 Серебро (Ag+) мг/л 0,05 — 2 — 0,1 0,01 Сероводород (H2S) мг/л 0,03 орг. 4 0,05 — — Стронций (Sr 2+ ) мг/л 7,0 орг. 2 — — — Сульфаты (SO4 2- ) мг/л 500 орг. 4 250,0 250,0 250,0 Фториды (F) для климатическихрайонов I и II мг/л 1,51,2 с.-т 22 1,5 2,0-4,0 1,5 Хлориды (Cl-) мг/л 350 орг. 4 250,0 250,0 250,0 Хром (Cr 3+ ) мг/л 0,5 с.-т. 3 — 0,1 (всего) — Хром (Cr 6+ ) мг/л 0,05 с.-т. 3 0,05 0,05 Цианиды (CN-) мг/л 0,035 с.-т. 2 0,07 0,2 0,05 Цинк (Zn 2+ ) мг/л 5,0 орг. 3 3,0 5,0 5,0

с.-т. – санитарно-токсикологический
орг. – органолептический
Величина, указанная в скобках, во всех таблицах может быть установлена по указанию Главного государственного санитарного врача.

Читайте также:  Где берут воду на анализ

Требования по микробиологическим и паразитологическим показателям воды

Показатели Единицы измерения Нормативы Термотолерантные колиформные бактерии Число бактерий в 100 мл Отсутствие Общие колиформные бактерии Число бактерий в 100 мл Отсутствие Общее микробное число Число образующих колонии бактерий в 1 мл Не более 50 Колифаги Число бляшкообразующих единиц (БОЕ) в 100 мл Отсутствие Споры сульфоредуцирующих клостридий Число спор в 20 мл Отсутствие Цисты лямблий Число цист в 50 мл Отсутствие

Требования к органолептическим свойствам воды

Показатели Единицы измерения Нормативы Запах баллы 2 Привкус баллы 2 Цветность градусы 20 (35) Мутность ЕМФ (ед. мутности пофармазину)или мг/л (по каолину) 2,6 (3,5)1,5 (2,0)

Требования по радиационной безопасности питьевой воды

Показатели Ед.измерения Нормативы Показатель вредности Общая α-радиоактивность Бк/л 0,1 радиац. Общая β-радиоактивность Бк/л 1,0 радиац.

2. Нормы качества питьевой воды, расфасованной в емкости (по СанПиН 2.1.4.1116 – 02).

СанПиН 2.1.4.1116 — 02 Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества. Показатель Ед. изм. высшая категория Первая категория Запах при 20 град. С балл отсутствие отсутствие Запах при 60 град. С балл 1,0 Цветность градус 5,0 5,0 Мутность мг/л

3.1. Оптимальные значения физико-химических и микроэлементных показателей водок

Нормируемые показатели Для технологической воды с жесткостью, моль/м 3 (максимально допустимая величина) 0-0,02 0,21-0,40 0,41-0,60 0,61-0,80 0,81-1,00 Щелочность, объем соляной кислоты концентрации с (HCl) =0,1 моль/дм 3 , израсходованной на титрование 100 см 3 воды, см 3
Водородный показатель (рН) 2,5

7,5

Массовая концентрация, мг/дм 3
— кальция
— магния
— железа
— сульфатов
— хлоридов
— кремния
— гидрокарбонатов
— натрия+калия
— марганца
— алюминия
— меди
— фосфатов
— нитратов 1,6
0,5
0,15
18,0
18,0
3,0
75
60
0,06
0,10
0,10
0,10
2,5 4,0
1,0
0,12
15,0
15,0
2,5
60
50
0,06
0,06
0,06
0,10
2,5 5,0
1,5
0,10
12,0
12,0
2,0
40
50
0,06
0,06
0,06
0,10
2,5 4,0
1,2
0,04
15,0
9,0
1,2
25
25
0,06
0,06
0,06
0,10
2,5 5,0
1,5
0,02
6,0
6,0
0,6
15
12
0,06
0,06
0,06
0,10
2,5

3.2. Нижние пределы содержания микроэлементов в технологической воде для приготовления водок

Нормируемые показатели Минимально-допустимая величина Жесткость, моль/м 3 0,01 Щелочность, объем соляной кислоты концентрации с (HCl) =0,1 моль/дм 3 , израсходованной на титрование 100 см 3 воды, см 3 Окисляемость, О2/дм 3 0,2 Водородный показатель (рН) 5,5 Массовая концентрация, мг/дм 3 — кальция 0,12 — магния 0,04 — железа 0,01 — сульфатов 2,0 — хлоридов 2,0 — кремния 0,2 — гидрокарбонатов

4. Нормы качества питьевой воды для производства пива и безалкогольной продукции.

Наименование Требования по ТИ 10-5031536-73-10 к воде для производства: пива безалкогольных напитков pH 6-6,5 3-6 Cl-, мг/л 100-150 100-150 SO4 2- , мг/л 100-150 100-150 Mg 2+ , мг/л следы Ca 2+ , мг/л 40-80 K ++ Na + , мг/л Щелочность, мг-экв/л 0,5-1,5 1,0 Сухой остаток, мг/л 500 500 Нитриты, мг/л следы Нитраты, мг/л 10 10 Фосфаты, мг/л Алюминий, мг/л 0,5 0,1 Медь, мг/л 0,5 1,0 Силикаты, мг/л 2,0 2,0 Железо, мг/л 0,1 0,2 Марганец, мг/л 0,1 0,1 Окисляемость,мг O2/л 2,0 Жесткость, мг-экв/л

5. Нормы качества сетевой и подпиточной воды водогрейных котлов ( по РД 24.031.120-91).

Система теплоснабжения Показатель открытая закрытая Температура сетевой воды, ° С 115 150 200 115 150 200 Прозрачность по шрифту, см, не менее 40 40 40 30 30 30 Карбонатная жесткость, мкг-экв/кг: при рН не более 8,5 800/700 750/600 375/300 800/700 750/600 375/300 при рН более 8,5 Не допускается Содержание растворенного кислорода, мкг/кг 50 30 20 50 30 20 Содержание соединений железа (в пересчете на Fe), мкг/кг 300 300/250 250/200 600/500 500/400 375/300 Значение рН при 25 ° С От 7,0 до 8,5 От 7,0 до 11,0 Свободная углекислота, мг/кг Должна отсутствовать или находиться в пределах, обеспечивающих поддержание рН не менее 7,0 Содержание нефтепродуктов, мг/кг 1,0
  1. В числителе указаны значения для котлов на твердом топливе, в знаменателе — на жидком и газообразном.
  2. Для тепловых сетей, в которых водогрейные котлы работают параллельно с бойлерами, имеющими латунные трубки, верхний предел рН сетевой воды не должен превышать 9,5.
  3. Содержание растворенного кислорода указано для сетевой воды; для подпиточной воды оно не должно превышать 50 мкг/кг.

6. Нормы качества питательной воды для котлов (по ГОСТ 20995-75).

Наименование показателя Норма для котлов абсолютным давлением, МПа (кгс/см 2 ) до 1,4 (14) включительно 2,4 (24) 3,9 (40) Общая жесткость, мкмоль/дм 3 (мкг-экв/дм 3 ) 15 * /20(15 * /20) 10 * /15(10 * /15) 5 * /10(5 * /10) Содержание соединений железа (в пересчете на Fe), мкг/дм 3 ) 300 Не нормируется 100 * /200 50 * /100 Содержание соединений меди (в пересчете на Сu), мкг/дм 3 Не нормируется 10 * Не нормируется Содержание растворенного кислорода, мкг/дм 3 30 * /50 20 * /50 20 * /30 Значение рН (при t = 25 ° С) 8,5-9,5 ** Содержание нитритов (в пересчете на NO2 — ), мкг/дм 3 Не нормируется 20 Содержание нефтепродуктов, мг/дм 3 3 3 0,5

* В числителе указаны значения для котлов, работающих на жидком топливе при локальном тепловом потоке более 350 кВт/м 2 [3*10 5 ккал/(м 2 *ч)], а в знаменателе — для котлов, работающих на других видах топлива при локальном тепловом потоке до 350 кВт/м 2 [3*10 5 ккал/(м 2 *ч)] включительно.
** При наличии в системе подготовки добавочной воды промышленных и отопительных котельных фазы предварительного известкования или содоизвесткования, а также при значениях карбонатной жесткости исходной воды более 3,5 мг-экв/дм 3 и при наличии одной из фаз водоподготовки (натрий—катионирования или аммоний—натрий—катионирования) допускается повышение верхнего предела значения рН до 10,5.
При эксплуатации вакуумных деаэраторов допускается снижение нижнего предела значения рН до 7,0.

7. Нормы качества дистиллированной воды (по ГОСТ 6709-96).

Наименование показателя Норма Массовая концентрация остатка после выпаривания, мг/дм 3 , не более 5 Массовая концентрация аммиака и аммонийных солей (NH4 ), мг/дм 3 , не более 0,02 Массовая концентрация нитратов (NО3 ), мг/дм 3 , не более 0,2 Массовая концентрация сульфатов (SO4 ), мг/дм 3 , не более 0,5 Массовая концентрация хлоридов (Сl), мг/дм 3 , не более 0,02 Массовая концентрация алюминия (Аl), мг/дм 3 , не более 0,05 Массовая концентрация железа (Fe), мг/дм 3 , не более 0,05 Массовая концентрация кальция (Сa), мг/дм 3 , не более 0,8 Массовая концентрация меди (Сu), мг/дм 3 , не более 0,02 Массовая концентрация свинца (Рb), %, не более 0,05 Массовая концентрация цинка (Zn), мг/дм 3 , не более 0,2 Массовая концентрация веществ, восстанавливающих КМnО4 (O), мг/дм 3 , не более 0,08 pH воды 5,4 — 6,6 Удельная электрическая проводимость при 20 ° С, Cименс/м, не более 5*10 -4

8. Нормы качества воды для электронной техники (по ОСТ 11.029.003-80, ASTM D-5127-90).

Параметры воды Марка воды по ОСТ 11.029.003-80 Марка воды по нормам ASTM D-5127-90 А Б В Е-1 Е-2 Е-3 Е-4 Удельное сопротивление при температуре 20 0 С, МОм/см 18 10 1 18 17,5 12 0,5 Содержание органических веществ (окисляемость), мг О2/л, не более 1,0 1,0 1,5 Общий органический углерод, мкг/л, не более 25 50 300 1000 Содержание кремниевой кислоты (в пересчете на SiO3 -2 ), мг/л, не более 0,01 0,05 0,2 0,005 0,01 0,05 1,0 Содержание железа, мг/л, не более 0,015 0,02 0,03 Содержание меди, мг/л, не более 0,005 0,005 0,005 0,001 0,001 0,002 0,5 Содержание микрочастиц с размером 1-5 мкм, шт/л, не более 20 50 Не рег-ламент Содержание микроорганизмов, колоний/мл, не более 2 8 Не рег-ламент 0,001 0,01 10 100 Хлориды, мкг/л, не более 1,0 1,0 1,0 100 Никель, мкг/л, не более 0,1 1,0 2 500 Нитраты, мг/л, не более 1 1 10 1000 Фосфаты, мг/л, не более 1 1 5 500 Сульфат, мг/л, не более 1 1 5 500 Калий, мкг/л, не более 2 2 5 500 Натрий, мкг/л, не более 0,5 1 5 500 Цинк, мкг/л, не более 0,5 1 5 500

9.Нормы качества воды для гальванических производств ( по ГОСТ 9.314-90)

Наименование показателя Норма для категории 1 2 3 Водородный показатель рН 6,0 — 9,0 6,5 — 8,5 5,4 — 6,6 Сухой остаток, мг/дм 3 , не более 1000 400 5,0 * Жесткость общая, мг-экв/дм 3 , не более 7,0 6,0 0,35 * Мутность по стандартной шкале, мг/дм 3 , не более 2,0 1,5 — Сульфаты (SO4 2- ), мг/дм 3 , не более 500 50 0,5 * Хлориды (Сl — ), мг/дм 3 , не более 350 35 0,02 * Нитраты (NO3 — ), мг/дм 3 , не более 45 15 0,2 * Фосфаты (РO4 3- ), мг/дм 3 , не более 30 3,5 1,0 Аммиак, мг/дм 3 , не более 10 5,0 0,02 * Нефтепродукты, мг/дм 3 , не более 0,5 0,3 — Химическая потребность в кислороде, мг/дм 3 , не более 150 60 — Остаточный хлор, мг/дм 3 , не более 1,7 1,7 — Поверхностно-активные вещества (сумма анионных и неионогенных), мг/дм 3 , не более 5,0 1,0 — Ионы тяжелых металлов, мг/дм 3 , не более 15 5,0 0,4 Железо 0,3 0,1 0,05 Медь 1,0 0,3 0,02 никель 5,0 1,0 — цинк 5,0 1,5 0,2 * хром трехвалентный 5,0 0,5 — 15. Удельная электрическая проводимость при 20 ° С, См/м, не более 2х10 -3 1х10 -3 5х10 -4

* Нормы ингредиентов для воды 3-й категории определяются по ГОСТ 6709.

Примечание. В системах многократного использования воды допускается содержание вредных ингредиентов в очищенной воде выше, чем в табл.1 но не выше допустимых значений в промывной ванне после операции промывки (табл.2).

Наименование компонента или иона электролита Наименование операции, перед которой проводится промывка Наименование электролита, перед которым проводится промывка Допустимая концентрация основного компонента в воде после операции промывки сд, мг/дм 3 Общая щелочность в пересчете на едкий натр — Щелочной
Кислый или цианистый 800
100 Анодное окисление алюминия и его сплавов — 50 Красители (для окрашивания покрытий Ан. Окс) Межоперационная промывка, сушка — 5 Кислота в пересчете на серную — Щелочной
Кислый
Цианистый 100
50
10 Наполнение и пропитка покрытий, сушка — 10 CN — общ, Sn 2+ , Sn 4+ , Zn 2+ , Cr 6+ , Pb 2+ Межоперационная промывка, сушка — 10 CNS — , Cd 2+ Межоперационная промывка, сушка — 15 Cu 2+ , Cu + Никелирование
Сушка — 2
10 Ni 2+ Меднение
Хромирование, сушка — 20
10 Fe 2+ Сушка — 30 Соли драгоценных металлов в пересчете на металл Сушка — 1
  1. За основной компонент (ион) данного раствора или электролита принимают тот, для которого критерий промывки является наибольшим.
  2. При промывке изделий, к которым предъявляются особо высокие требования, допустимые концентрации основного компонента могут устанавливаться опытным путем.

Концентрации основных ингредиентов в воде на выходе из гальванического производства приведены в табл.3

Наименование ингредиента Концентрация основных вредных ингредиентов в воде на выходе из гальванического цеха, мг/дм 3 , не более Хром шестивалентный 1000 Медь 30 Никель 50 Цинк 50 Кадмий 15 Свинец 10 Олово 10 Хлориды (Cl — ) 500 Сульфаты (SO4 2- ) 1000 Цианиды (CN) 30 Нитраты (NО3 — ) 60 Аммиак 15

1.3. В гальваническом производстве следует применять системы многократного использования воды, обеспечивающие

10. Нормы качества воды для гемодиализа (по ГОСТ 52556-2006).

Наименование показателя Значение показателя Массовая концентрация алюминия, мг/куб. дм, не более 0,0100 Массовая концентрация сурьмы, мг/куб. дм, не более 0,0060 Массовая концентрация мышьяка, мг/куб. дм, не более 0,0050 Массовая концентрация бария, мг/куб. дм, не более 0,1000 Массовая концентрация бериллия, мг/куб. дм, не более 0,0004 Массовая концентрация кадмия, мг/куб. дм, не более 0,0010 Массовая концентрация кальция, мг/куб. дм, не более 2,0 Массовая концентрация хлорамина, мг/куб. дм, не более 0,1000 Массовая концентрация хрома, мг/куб. дм, не более 0,0140 Массовая концентрация меди, мг/куб. дм, не более 0,1000 Массовая концентрация цианидов, мг/куб. дм, не более 0,0200 Массовая концентрация фторидов, мг/куб. дм, не более 0,2000 Массовая концентрация свободного остаточного хлора, мг/куб. дм, не более 0,5000 Массовая концентрация свинца, мг/куб. дм, не более 0,0050 Массовая концентрация магния, мг/куб. дм, не более 2,0 Массовая концентрация ртути, мг/куб. дм, не более 0,0002 Массовая концентрация нитратов, мг/куб. дм, не более 2,000 Массовая концентрация калия, мг/куб. дм, не более 2,0 Массовая концентрация селена, мг/куб. дм, не более 0,0050 Массовая концентрация натрия, мг/куб. дм, не более 50 Массовая концентрация сульфатов, мг/куб. дм, не более 100 Массовая концентрация олова, мг/куб. дм, не более 0,1000 Массовая концентрация цинка, мг/куб. дм, не более 0,1000 Удельная электрическая проводимость, мкСм/м, не более 5,0

11. Нормы качества «Вода очищенная» (по ФС 42-2619-97 и EP IV 2002).

Показатели ФС 42-2619-97 EP IV изд. 2002 Методы получения Дистилляция, ионный обмен, обратный осмос или другие подходящие методы Дистилляция, ионный обмен или другие подходящие методы Описание Бесцветная прозрачная жидкость без запаха и вкуса Бесцветная прозрачная жидкость без запаха и вкуса Качество исходной воды — Вода, соотв. требованиям на воду питьевую Европейского Союза рН 5.0-7.0 — Сухой остаток ≤0.001% — Восстанавливающие вещества Отсутствие Альтернативный ООУ ≤0.1мл 0.02 KMnO4 / 100 мл Диоксид углерода Отсутствие — Нитраты, нитриты Отсутствие ≤0.2 мг/л (нитраты) Аммиак ≤0.00002% — Хлориды Отсутствие — Сульфаты Отсутствие — Кальций Отсутствие — Тяжелые металлы Отсутствие ≤0.1 мг/л Кислотность/щелочность — — Алюминий — ≤10мкг/л (для гемодиализа) Общий органический углерод (ООУ) — ≤0,5 мг/л Удельная электропроводность (УЭ) — ≤4.3 мкСм/см (20 о С) Микробиологическая чистота ≤100 м.о./мл при отсутствии сем Enterobacteriaceae Staphylococcus aureus , Pseudomonas aeruginosa ≤100 м.о./ мл Бактериальные эндотоксины (БЭ) — ≤0.25 ЕЭ/мл для гемодиализа Маркировка На этикетке указывается, что вода может использоваться для приготовления диализных растворов

12.Нормы качества «Вода для инъекций» (по ФС 42-2620-97 и EP IV 2002).

Показатели ФС 42-2620-97 EP IV изд. 2002 Методы получения Дистилляция, обратный осмос Дистилляция Качество исходной воды — Вода, соотв. требованиям на воду питьевую Европейского Союза Микробиологическая чистота ≤100 м.о./мл при отсутствии сем Enterobacteriaceae Staphylococcus aureus , Pseudomonas aeruginosa ≤10КОЕ/ 100мл Пирогенность Апирогенна (биологический метод) — Бактериальные эндотоксины (БЭ) ≤0.25ЕЭ/мл (изменение №1), ≤ 0.25 ЕЭ/мл Удельная электропроводность — ≤1.1 мкСм/см (20 о С) ООУ — ≤0.5 мг/л Использование и хранение Используют свежеприготовленной или хранят при температуре от 5 о С до 10 о С или от 80 о С до 95 о С в закрытых емкостях из материалов, не изменяющих свойств воды, защищающих воду от попадания механических включений и микробиологических загрязнений, но не более 24 часов Хранится и распределяется в условиях, предотвращающих рост микроорганизмов и попадание других видов загрязнений. Маркировка На этикетке емкостей сбора и хранения воды для инъекций должно быть обозначено «не простерилизовано» —

13. Рекомендуемое качество воды для полива тепличных культур.

источник