Меню Рубрики

Анализ воды на остаточный хлор

Йодометрический метод

Метод основан на окислении йодида активным хлором до йода, который титруют тиосульфатом натрия. Окислы, содержащиеся в воде, выделяют йод из йодистого калия, поэтому пробы воды подкисляют буферным раствором с рН 4,5.

Йодометрический метод предназначен для анализа воды с содержанием активного хлора более 0,3 мг/л. Метод может использоваться также для окрашенных и мутных вод.

Используемые реактивы и оборудование.

· Колбы конические с притертыми крышками вместимостью 250 мл.

· Калий йодистый KJ по ГОСТ 4232 х.ч., 10% водный раствор.

· Натрий серноватистокислый (тиосульфат натрия) Na2S2O3 водный по ТУ 6-09-2540, 0,005 н раствор.

· Крахмал водорастворимый по ГОСТ 10163, 0,5%-ный раствор, приготовленный по ГОСТ 4919.1.

· Вода дистиллированная по ГОСТ 6709-72.

В 3 конические колбы с притертой пробкой вместимостью 250 мл вносят:

· 100 мл анализируемой водопроводной воды

· 5 мл 10%-ного раствора йодистого калия

· 5 мл ацетатной буферной смеси.

Содержимое колбы перемешивают. Выделившийся йод титруют 0,005 н. раствором серноватистокислого натрия до светло-желтой окраски, после чего прибавляют 1 мл 0,5%-ного раствора крахмала и раствор титруют до исчезновения синей окраски.

Результаты занести в таблицу

№ пробы Начальный объем серноватистокислого натрия в бюретке Vнач Конечный объем серноватистокислого натрия в бюретке Vкон V= Vкон-Vнач
V ср=

Обработка результатов.

Концентрацию Сах в мг/л вычисляют по формуле:

Сах =

где: V – средний объем 0,005 н. раствора серноватистокислого натрия, израсходованный на титрование пробы воды, мл; N – эквивалентная концентрация рабочего раствора серноватистокислого натрия; 35,45 – эквивалентная масса хлора, Vв — объем анализируемой пробы воды, мл.

За результат анализа принимают среднее арифметическое трех параллельных определений.

Сделайте вывод о соответствии полученной концентрации остаточного хлора в воде ПДК ГОСТ 2874-82

1. Приготовление 10%-ного раствора йодистого калия: 10 г йодистого калия растворяют в 90 мл свежеприготовленной и охлажденной дистиллированной воды.

2. Приготовление раствора буферной смеси: 102 1М уксусной кислоты ( 60г уксусной кислоты в 1 л воды) и 98 1М раствора уксуснокислого натрия (136,1 г уксуснокислого натрия в 1 л воды) наливают в мерную колбу вместимостью 1 л и доводят до метки дистиллированной водой.

3. Приготовление 0,1н раствора раствора серноватистокислого натрия: 25 г тиосульфата натрия растворяют в дистиллированной воде, добавляют 0,2 г углекислого натрия ( Na2CO3)доводят объем до 1л. Приготовление 0,005н раствора раствора серноватистокислого натрия: 50 мл 0,1 н раствора тиосульфата натрия разбавляют дистиллированной водой, добавляют 0,2 г углекислого натрия ( Na2CO3). доводят объем до 1л.

Определение свободного остаточного хлора титрованием метиловым оранжевым

Метод основан на окислении свободным хлором метилового оранжевого, в отличии от хлораминов, окислительный потенциал которых недостаточен для разрушения метилового оранжевого.

Используемые реактивы и оборудование.

· Колбы конические с притертыми крышками вместимостью 250 мл.

· Кислота соляная по ГОСТ 3118-67 плотностью1,19 г/см 3 .

· Метиловый оранжевый по ГОСТ 10816-64

· Вода дистиллированная по ГОСТ 6709-72.

Приготовление 0,005-ного раствора метилового оранжевого: 50 мг метилового оранжевого растворяют в дистиллированной воде, доводят до объема 1 л. 1 мл этого раствора соответствует 0,0217 мг свободного хлора.

Приготовление 5 н раствора соляной кислоты: в мерную колбу наливают дистиллированную воду, затем медленно добавляют 400 мл соляной кислоты и доводят дистиллированной водой до 1 л.

1. Заполнить бюретку 0,005 н раствором метилового оранжевого.

2. В 3 колбы отмерить по 100 мл анализируемой воды мерным сосудом.

3. Добавить в одну из колб с анализируемой водой 2-3 капли 5 н раствора соляной кислоты, перемешать.

4. Быстро оттитровать воду раствором метилового оранжевого до появления неисчезающей розовой окраски.

5. Повторить п.п 3 и 4 для двух оставшихся колб с анализируемыми пробами.

6.Полученные данные занести в таблицу

№ пробы Начальный объем метилового оранжевого в бюретке Vнач Конечный объем метилового оранжевого в бюретке Vкон Vмо= Vкон-Vнач
Vмо ср=

Обработка результатов

Содержание свободного остаточного хлора Сах в мг/л вычисляют по формуле

гдеVмо – объем раствора метилового оранжевого, израсходованного на титрование, мл;

0,0217 – титр раствора метилового оранжевого;

0,04 – эмпирический коэффициент;

Vв – объем воды, взятый для анализа, мл

Сделайте вывод о соответствии полученной концентрации остаточного хлора в воде ПДК ГОСТ 2874-82

источник

1.1 . Пробы воды отбирают по ГОСТ 24481 * и ГОСТ 2874 **.

* На территории Российской Федерации действует ГОСТ Р 51593-2000.

** На территории Российской Федерации действует ГОСТ Р 51232-98.

1.2 . Объем пробы воды для определения содержания активного хлора не должен быть менее 500 см 3 .

1.3 . Пробы воды не консервируют. Определение следует проводить немедленно после отбора пробы.

Метод основан на окислении йодида активным хлором до йода, который титруют тиосульфатом натрия. Озон, нитриты, окись железа и другие соединения в кислом растворе выделяют йод из йодистого калия, поэтому пробы воды подкисляют буферным раствором с pH 4,5.

Йодометрический метод предназначен для анализа воды с содержанием активного хлора более 0,3 мг/дм 3 при объеме пробы 250 см 3 . Метод может быть рекомендован также для окрашенных и мутных вод.

2.2 . Аппаратура, материалы и реактивы

Посуда мерная лабораторная стеклянная по ГОСТ 1770, ГОСТ 29169 и ГОСТ 29251, вместимостью: колбы 100 и 1000 см 3 ; пипетки без делений 5, 10, 25 см 3 ; бюретка с краном 25, 50 см 3 ; микробюретка 5 см 3 .

Колбы конические с пришлифованными пробками вместимостью 250 см 3 по ГОСТ 25336.

Калий йодистый по ГОСТ 4232, х. ч. в кристаллах.

Кислота уксусная ледяная по ГОСТ 61.

Калий двухромовокислый по ГОСТ 4220.

Натрий углекислый кристаллический по ГОСТ 84.

Натрий серноватистокислый (тиосульфат натрия) по ГОСТ 27068.

Все реактивы, используемые в анализе, должны быть квалификации «чистые для анализа» (ч. д. а.).

2.3.1 . Приготовление 0,1 н раствора серноватистокислого натрия

25 г тиосульфата натрия Na 2 S 2 O 3 · 5H 2 O растворяют в свежепрокипяченной и охлажденной дистиллированной воде, добавляют 0,2 г углекислого натрия (Nа2СО3) и доводят объем до 1 дм 3 .

2.3.2 . Приготовление 0,01 н раствора серноватистокислого натрия

100 см 3 0,1 н. раствора тиосульфата натрия разбавляют свежепрокипяченной и охлажденной дистиллированной водой, добавляют 0,2 г углекислого натрия и доводят раствор до 1 дм 3 . Раствор применяют при содержании активного хлора в пробе более 1 мг/дм 3 .

2.3.3 . Приготовление 0,005 н. раствора серноватистокислого натрия

50 см 3 0,1 н. раствора тиосульфата натрия разбавляют свежепрокипяченной и охлажденной дистиллированной водой, добавляют 0,2 г углекислого натрия и доводят раствор до 1 дм 3 . Раствор применяют при содержании активного хлора в пробе менее 1 мг/дм 3 .

2.3.4 . Приготовление 0,01 н. раствора калия двухромовокислого

0,4904 г двухромовокислого калия К2Сr 2 О7, взвешенного с точностью до ± 0,0002 г, перекристаллизованного и высушенного при 180 °C до постоянной массы, растворяют в дистиллированной воде и доводят объем до 1 дм 3 .

2.3.5 . Приготовление 0,5 %-ного раствора крахмала

0,5 г растворимого крахмала смешивают с небольшим объемом дистиллированной воды, приливают к 100 мл кипящей дистиллированной воды и кипятят несколько минут. После охлаждения консервируют, добавляя хлороформ или 0,1 г салициловой кислоты.

2.3.6 . Приготовление буферного раствора pH 4,5

102 см 3 1 М уксусной кислоты (60 г ледяной уксусной кислоты в 1 дм 3 воды) и 98 см 3 1 М раствора уксуснокислого натрия (136,1 г уксуснокислого натрия СН3СОONа · 3Н2О в 1 дм 3 воды) наливают в мерную колбу вместимостью 1 дм 3 и доводят до метки дистиллированной водой (предварительно прокипяченной и охлажденной до 20 ° C , свободной от двуокиси углерода).

2.3.7 . Поправочный коэффициент 0,01 н. раствора серноватисто-кислого натрия определяют по 0,01 н раствору двухромовокислого калия следующим образом: в коническую колбу и с пришлифованной пробкой помещают 0,5 г йодистого калия, проверенного на отсутствие йода, растворяют в 2 см 3 дистиллированной воды, прибавляют 5 см 3 серной кислоты (1:4), затем 10 см 3 0,01 н. раствора двухромовокислого калия, добавляют 80 см 3 дистиллированной воды, закрывают колбу пробкой, перемешивают и ставят в темное место на 5 мин. Выделившийся йод титруют тиосульфатом натрия в присутствии 1 см 3 крахмала, прибавленного в конце титрования.

2.3.8 . Поправочный коэффициент ( K ) (0,01; 0,005 н. растворов серноватистокислого натрия) вычисляют по формуле

где v — количество серноватистокислого натрия, израсходованное на титрование, см 3 .

В коническую колбу насыпают 0,5 г йодистого калия, растворяют его в 1 — 2 см 3 дистиллированной воды, затем добавляют буферый раствор в количестве, приблизительно равном полуторной величине щелочности анализируемой воды, после чего добавляют 250 — 500 см 3 анализируемой воды. Выделившийся йод оттитровывают 0,005 н. раствором тиосульфата натрия из микробюретки до появления светло-желтой окраски, после чего прибавляют 1 см 3 0,5 %-ного раствора крахмала и раствор титруют до исчезновения синей окраски. При определении щелочности воду предварительно дехлорируют с помощью тиосульфата натрия в отдельной пробе.

При концентрации активного хлора менее 0,3 мг отбирают для титрования большие объемы воды.

Содержание суммарного остаточного хлора ( X ), мг/дм 3 вычисляют по формуле

где v — количество 0,005 н. раствора тиосульфата натрия, израсходованное на титрование, см 3 ;

K — поправочный коэффициент нормальности раствора тиосульфата натрия;

0,177 — содержание активного хлора, соответствующее 1 см 3 0,005 н. раствора тиосульфата натрия;

V — объем пробы воды, взятый для анализа, см 3 .

Метод основан на окислении свободным хлором метилового оранжевого, в отличие от хлораминов, окислительный потенциал которых недостаточен для разрушения метилового оранжевого.

3.2 . Аппаратура, материалы, реактивы

Посуда мерная лабораторная стеклянная по ГОСТ 1770 и ГОСТ 29251 вместимостью: колбы мерные 100 и 1000 см 3 ; микробюретка с краном 5 см 3 .

Чашки фарфоровые выпарительные по ГОСТ 9147.

Кислота соляная по ГОСТ 3118, плотностью 1,19 г/см 3 .

Метиловый оранжевый (пара-диметиламиноазобензолсульфокислый натрий) по ТУ 6-09-5171.

Все реактивы, применяемые для анализа, должны быть квалификации чистые для анализа (ч. д. а.).

3.3.1. Приготовление 0,005 %-ного раствора метилового оранжевого

50 мг метилового оранжевого растворяют в дистиллированной воде в мерной колбе и доводят дистиллированной водой до 1 дм 3 . 1 см 3 этого раствора соответствует 0,0217 мг свободного хлора.

3.3.2. Приготовление 5 н. раствора соляной кислоты

В мерную колбу наливают дистиллированную воду, затем медленно добавляют 400 см 3 соляной кислоты HCl и доводят дистиллированной водой до 1 дм 3 .

100 см 3 анализируемой воды помещают в фарфоровую чашку, добавляют 2 — 3 капли 5 н. раствора соляной кислоты и, помешивая, быстро титруют раствором метилового оранжевого до появления неисчезающей розовой окраски.

Содержание свободного остаточного хлора ( X 1 ), мг/дм 3 , вычисляют по формуле

где v — количество 0,005 %-ного раствора метилового оранжевого, израсходованного на титрование, см 3 ;

0,0217 — титр раствора метилового оранжевого;

0,04 — эмпирический коэффициент;

V — объем воды, взятый для анализа, см 3 .

По разности между содержанием суммарного остаточного хлора, определенного методом титрования, метилоранжевым, находят содержание хлораминового хлора (Х2):

4. МЕТОД РАЗДЕЛЬНОГО ОПРЕДЕЛЕНИЯ СВОБОДНОГО ХЛОРА,
СВЯЗАННОГО МОНОХЛОРАМИНА И ДИХЛОРАМИНА ПО МЕТОДУ ПЕЙЛИНА

Метод основан на способности разных видов хлора превращать в определенных условиях восстановленную бесцветную форму диэтилпарафенилендиамина в полуокисленную окрашенную форму, которую восстанавливают опять до бесцветной ионами двухвалентного железа. Используются серия титрований раствором соли Мора для определения свободного хлора, монохлорамина и дихлорамина в присутствии диэтилпарафенилендиамина, как индикатора. Свободный хлор образует окраску индикатора в отсутствии йодистого калия, монохлорамин дает окраску в присутствии очень маленьких количеств йодистого калия (2 — 3 мг), а дихлорамин образует окраску лишь в присутствии больших количеств KI (около 1 г) и при стоянии раствора в течение 2 мин. По количеству раствора соли Мора, израсходованному на титрование, определяют содержание того вида активного хлора, за счет которого образуется окрашенная форма индикатора.

4.2 . Аппаратура, материалы, реактивы

Посуда мерная стеклянная лабораторная по ГОСТ 1770 и ГОСТ 29251 вместимостью: колбы мерные 100 и 1000 см 3 ; цилиндры мерные 5 и 100 см 3 ; микробюретки 1 и 2 см 3 .

Колбы конические вместимостью 250 мл; склянки из темного стекла вместимостью 100 — 200 см 3 .

Двойная сернокислая соль закиси железа и аммония (соль Мора) по ГОСТ 4208.

Калий фосфорнокислый однозамещенный по ГОСТ 4198, х. ч.

Натрий фосфорнокислый двузамещенный безводный по ГОСТ 11773.

Трилон Б (комплексон III, двунатриевая соль этилендиаминтетрауксусной кислоты) по ГОСТ 10652.

Диэтилпарафенилендиамин оксалат или сульфат.

Все реактивы, применяемые для анализа, должны быть квалификации «чистые для анализа» (ч. д. а.).

4.3.1. Приготовление стандартного раствора соли Мора

1,106 г соли Мора Fe(NH 4 )2(SO 4 )2 · 6H 2 O растворяют в дистиллированной воде, подкисляют 1 см 3 25 %-ного раствора серной кислоты H 2 SO 4 и доводят свежепрокипяченной и охлажденной дистиллированной водой до 1 дм 3 . 1 см 3 раствора соответствует 0,1 мг активного хлора. Если определение проводится в 100 см 3 воды, то количество миллилитров соли Мора, израсходованное на титрование, соответствует мг/дм 3 хлора, или монохлорамина или дихлорамина. Раствор устойчив в течение месяца. Хранить его следует в темном месте.

4.3.2. Приготовление фосфатного буферного раствора

К 2,4 г фосфорнокислого натрия двузамещенного Na 2 HPO 4 и 4,6 г фосфорнокислого калия однозамещенного КН2РО4 приливают 10 см 3 0,8 %-ного раствора трилона Б и доводят дистиллированной водой до 100 см 3 .

4.3.3. Приготовление индикатора диэтилпарафенилендиамин (оксалат или сульфат) 0,1 %-ного раствора

0,1 г диэтилпарафенилендиамина оксалата (или 0,15 г соли сульфата) растворяют в 100 см 3 дистиллированной воды с добавлением 2 см 3 10 %-ного раствора серной кислоты. Раствор индикатора следует хранить в склянке из темного стекла.

4.4.1. Определение содержания свободного хлора

В коническую колбу для титрования помещают 5 см 3 фосфатного буферного раствора, 5 см 3 раствора индикатора диэтилпарафенилендиамин оксалата или сульфата и приливают 100 см 3 анализируемой воды, раствор перемешивают. В присутствии свободного хлора раствор окрашивается в розовый цвет, его быстро титруют из микробюретки стандартным раствором соли Мора до исчезновения окраски, энергично перемешивая. Расход соли Мора, пошедший на титрование (А, см 3 ), соответствует содержанию свободного хлора, мг/дм 3 .

При наличии в анализируемой воде значительных количеств свободного хлора (более 4 мг/дм 3 ) для анализа следует брать менее 100 см 3 воды, так как большие количества активного хлора могут разрушить полностью индикатор.

4.4.2. Определение содержания монохлорамина

В колбу с оттитрованным раствором добавляют кристаллик (2 — 3 мг) йодистого калия, раствор перемешивают. В присутствии монохлорамина мгновенно появляется розовая окраска, которую тотчас же оттитровывают стандартным раствором соли Мора. Количество миллилитров соли Мора, пошедших на титрование (B, см 3 ), соответствует содержанию монохлорамина, мг/дм 3 .

4.4.3. Определение содержания дихлорамина

К оттитрованному раствору после определения содержания монохлорамина вновь добавляют около 1 г йодистого калия, перемешивают до растворения соли и оставляют раствор стоять в течение 2 мин. Появление розовой окраски свидетельствует о наличии в воде дихлорамина. Раствор титруют стандартным раствором соли Мора до исчезновения окраски. Расход соли Мора (С, см 3 ) соответствует содержанию дихлорамина, мг/дм 3 .

Читайте также:  Количественный анализ марганца в воде

Содержание суммарного остаточного активного хлора ( X 3 ), мг/дм 3 , вычисляют по формуле

где А — содержание свободного хлора, мг/дм 3 ;

В — содержание монохлорамина, мг/дм 3 ;

С — содержание дихлорамина, мг/дм 3 .

1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 25.10.72 № 1967

3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

источник

1. Определение свободного активного хлора (иодометрический метод)

При введении в воду хлор гидролизуется, образуя хлорноватистую и соляную кислоты.

Cl2 + H2O HOCl + HCl

Образовавшаяся хлорноватистая кислота диссоциирует на ион гипохлорита OCl — и ион водорода Н + .

Хлор широко используется для обеззараживания сточных вод в оборотных системах водопотребления, а также перед сбросом их после очистки в канализацию или водоем. При сбросе СВ в водоем после полной биологической очистки содержание остаточного свободного активного хлора не должно превышать 2,5 мг/дм 3 .

Сущность метода. При подкислении анализируемой воды и прибавлении к ней иодида калия все перечисленные вещества выделяют йод:

НClО + 2J — + H + = J2 + Cl — + H2O

ClO — + 2H + + 2J — = J2 + Cl — + H2O

Выделившийся йод оттитровывают тиосульфатом натрия в присутствии крахмала. Содержание активного хлора выражают в мг/дм 3 в пересчете на хлор. В отношении хлорноватистой кислоты, гипохлорит-ионов, монохлорамина такое выражение результатов анализа условно, т.к. один моль этих веществ выделяет два атома йода и, следовательно, соответствует 2 молям, активного хлора, т.е. результаты оказывается завышенными.

Тиосульфат натрия, 0,01 н. раствор;

Йодид калия, уксусная кислота, 30%-ный раствор;

Ход определения. В коническую колбу, снабженную притертой стеклянной пробкой, наливают 50 . 100 мл анализируемой воды, вносят 0,5 г йодида калия и добавляют 10 мл уксусной кислоты. Через 5 мин оттитровывают выделившийся йод 0,01 н. раствором тиосульфата натрия (при содержании активного хлора выше 1 мг/дм 3 ) или 0,005 н. раствором тиосульфата натрия (при содержании активного хлора от 0,1 до 1 мг/дм 3 ). В конце титрования прибавляют 1-2 мл раствора крахмала.

Содержание активного хлора (X) в мг/дм 3 рассчитывают по формуле 1:

где а — объем раствора тиосульфата натрия, израсходованного на титрование, см 3 ;

К — поправочный коэффициент для приведения концентрации раствора тиосульфата натрия к точно 0,01 н.;

V — объем анализируемой воды, см 3 ;

0,355 — количество хлора, эквивалентное 1 мл 0,01 н. раствора тиосульфата натрия, мг.

«Свободный активный хлор» и «связанный активный хлор»

Вещества, объединенные понятия «активный хлор» — это сильные окислители Cl2; HClO и ClO — , а «связанный хлор» это относительно слабые окислители NH2Cl; NHCl2 и NCl3, образующихся при хлорировании сточных вод, имеющих в своем составе аммонийные ионы, аммиак. Последующее поведение каждого из этих веществ при смешивании хлорированной сточной воды с другими сточными водами, при прохождении ее по трубам, значительно различается, поэтому иногда возникает необходимость дальнейших разделений.

В отношении «свободного активного хлора» обычно удовлетворяются определением суммарного содержания: Cl2 + HClO + ClO — , а для нахождения содержания каждого из хлораминов, надо провести определения следующим образом.

Сущность метода. В нейтральной среде (рН=6,9) свободный активный хлор (Cl2; HClO и ClO — ) мгновенно реагируют с индикатором N, N / — диэтил-n-фенилендиамином, образуя соединения красного цвета.

Монохлорамин и дихлорамин в этих условиях в реакцию с индикатором не вступают. Свободный активный хлор оттитровывают раствором соли Мора. Затем в раствор вносят очень малое количество иодида калия, каталитическое действие которого приводит к быстрому взаимодействию монохлорамина и индикатора с образованием того же красного цвета, которое оттитровывают раствором соли Мора. Затем вводят иодид калия в избытке, при этом в реакцию вступает дихлорамин, который определяют тем же титрованием. Если в сточной воде содержится трихлорид азота NCl3, то он будет частично определен как дихлорамин NHCl2.

Первое определение надо проводить очень быстро при рН 6,9 (или чуть выше), чтобы в реакцию не вступил монохлорамин NH2Cl. Для того, чтобы он прореагировал полностью требуется 2 мин; если раствор имеет повышенную температуру – 1 мин.

N,N-диэтил-n-фенилендиамин, сернокислая соль. Растворяют 0,15 г сернокислой соли диэтил-n-фенилендиамина в дистиллированной воде, не содержащей хлора, в которую предварительно вносят 2 см 3 10% (по объему) раствора серной кислоты и 2,5 см 3 0,8%-ного раствора ЭДТА. Раствор разбавляют до 100 см 3 и хранят в склянке из железного стекла;

Фосфатный буферный раствор, рН=6,9. В дистиллированной воде растворяют 48,4 г Na2HPO4 . 2H2O и 30 г KH2PO4, прибавляют 100 см 3 0,8% раствора ЭДТА и разбавляют до 1 дм 3 ;

Стандартный раствор соли Мора Fe(NH4)2(SO4)2 . 6H2O, 1 см 3 которого соответствует 0,1 мг хлора. В дистиллированную воду предварительно вводят 1 см 3 25%-ного (по объему) серной кислоты, затем в ней растворяют 1,106 г соли Мора и разбавляют до 1 дм 3 ;

Иодид калия. Для приготовления 0,5% раствора растворяют 0,5 г KI в 100 см 3 дистиллированной воды. Для приготовления 10%-ного раствора растворяют 10 г KI в 100 см 3 дистиллированной воды.

1. Определение свободного активного хлора. В колбу для титрования, снабженную притертой пробкой, наливают сначала 5 см 3 фосфатного буферного раствора (рН=6,9) и 5 см 3 раствора сернокислой соли диэтил-n-фенилендиамина, перемешивают, вводят 100 см 3 анализируемой пробы и сразу же титруют раствором соли Мора до полного обесцвечивания.

2. Определение монохлорамина. К раствору после определения свободного активного хлора приливают 1 см 3 0,5%-ного раствора иодида калия, перемешивают и титруют раствором соли Мора до полного обесцвечивания.

3. Определение дихлорамина. После определения монохлорамина прибавляют 10 см 3 10%-ного раствора иодида калия, перемешивают, дают постоять 2 мин и титруют раствором соли Мора до обесцвечивания.

Предполагается, что общая концентрация активного хлора не превышает 4 мг/дм 3 . В противном случае берут меньший объем пробы, а дистиллированную воду для разбавления вводят до введения в подготовительную смесь анализируемой пробы.

Содержание каждого вида активного хлора (Cl2; NH2Cl; NHCl2) (Х) в мг/дм 3 вычисляют по формуле 2:

, (2)

где V1 – объем раствора соли Мора, израсходованного в первом, втором или третьем титровании, см 3 ;

V – объем пробы, взятой для анализа, см 3 ;

0,1 – количество активного хлора, отвечающие 1 см 3 раствора соли Мора, мг.

2. Определение хлороемкости

Обработка сточных вод хлором или раствором хлорной извести – один из самых распространенных в относительно дешевых способов обеззараживания и очистки сточных вод от загрязнения органическими веществами. Но так как обычно СВ содержат реагирующие с хлором вещества и вещества, взаимодействующие с ним очень медленно или неполно, и органические вещества, совсем не окисляющиеся хлором, определение окисляемости сточной воды не дает достаточных данных для выводов о том, как вода будет хлорироваться. Поэтому, прежде чем решать вопрос об очистке СВ хлорированием, ее специально исследуют. При этом необходимо определить, с какой скоростью проходят реакции между содержащимися в воде веществами и хлором (реакции окисления и замещения хлором), доходят ли они до конца, какой требуется избыток добавляемого хлора для того, чтобы реакция пошла в желаемой степени в заданный промежуток времени. На эти вопросы можно получить ответы, определив хлороемкость сточной воды так называемым диаграммным методом.

Хлором обрабатывают как фильтрованную или отстоянную воду, так и вместе с содержащимися в ней взвесями.

Ход определения. Отбирают ряд одинаковых по объему порций анализируемой сточной воды и помещают их в сосуды с притертыми пробками, в которых их обрабатывают различными количествами хлорной воды (или раствора хлорной извести), первую порцию – наименьшим количеством, вторую – в 2 — 3 раза большим и т.д. Рекомендуется проводить две серии таких опытов, изменяя продолжительность обработки. Первую серию проб СВ обрабатывают различными количествами хлора очень непродолжительное время, например, 5 мин. Результаты этих опытов показывают присутствие в СВ веществ, быстро реагирующих с хлором. Вторую серию проб обрабатывают столько времени, сколько будет проводиться процесс хлорирования, в предполагаемых очистных сооружениях (обычно 1-2 ч). По истечении намеченного времени определяют в каждом растворе количество непрореагировавшего хлора (йодометрическим методом) и строят диаграмму, нанося на оси абсцисс количество введенного в каждый раствор хлора по порядку, начиная с самого малого, а на оси ординат – соответствующее количество оставшегося хлора, и соединяют полученные точки кривой (рис.1).

Рис. 1. Кривая определения хлороемкости

Добавленный хлор, мг/дм 3

Рис. 2. Кривая йодометрического титрования активного хлора

Начальный участок ОА кривой совпадает с осью абсцисс: количество остаточного хлора равно 0. Длина этого участка показывает содержание в воде веществ, быстроокисляющихся хлором (особенно при построении кривой для первой серии опытов). В тех случаях, когда исследуемая вода содержит аммиак, аммонийные соли или некоторые органические амины, начальный отрезок кривой может получиться другой формы (рис. 2). Хлор образует с этими соединениями различные хлорамины, которые так же выделяют йод из йодида калия, как и прибавленный хлор. Дальнейшее прибавление хлора приводит к разрушению хлораминов, поэтому кривая, достигнув некоторого максимума, снова снижается, подходя к нижней точке перегиба.

Таким образом, создается неправильное представление, что первые порции прибавляемого хлора вообще не поглощаются сточной водой, а последующие — вызывают поглощение как вновь прибавленного хлора, так и ранее бывшего в СВ. Получение кривых, аналогично рис.1 возможно только при определении свободного хлора без хлораминов.

Сточные воды хлорируют сильнее, чем питьевую воду, при этом продолжают хлорирование и после перехода за точку полного разрушения хлораминов, поэтому рассматривается только нормальная форма кривой хлороемкости, которая должна получиться при определении только свободного остаточного хлора. Отрезок АК кривой (рис.1) характеризует процесс окисления и хлорирования веществ, медленно реагирующих с хлором, которые за время опыта не успевают прореагировать и остаются в растворе вместе с остаточным хлором. Отрезок KB (прямолинейный) показывает отсутствие в растворе к концу опыта веществ, реагирующих с хлором. Характеристику исследуемой воды можно получить следующим образом:

1. Измеряют отрезок ОА, длина его (а) характеризует содержание быстрореагирующих с хлором веществ.

2. Прямолинейный отрезок KB кривой продолжают до пересечения с осью абсцисс в точке С и определяют угол наклона прямой СВ к оси абсцисс (угол α). Если бы образовавшаяся в СВ хлорноватистая кислота не разлагалась,

2 Cl2 + H2O 2HClO + 2 НCl

то количество хлора, прибавляемого после достижения точка К, была бы равна количеству остаточного хлора и прямая СВ была бы наклонена к. оси абсцесс под углом 45°. В действительности угол α- всегда меньше 45 0 и степень отклонения его от этого значения характеризует каталитическое разложение хлорноватистой кислоты.

3. Из точки К перехода кривой в прямую линию опускают на ось абсцисс перпендикуляр KR и проводят прямую KS , наклоненную к оси абсцисс под углом 45°. Длина отрезка OR=d показывает, сколько надо прибавить хлора, чтобы добиться полноты реакции его с присутствующими в воде окисляющими и хлорируемыми веществами за время проведения опыта.

4. Добавление хлора в количестве, соответствующем отрезку.OR, после опыта в растворе остается хлор в количестве, выражаемом отрезком KR. Так как KR = SR , то длина отрезка OS = ОR – SR = c показывает, сколько хлора расходуется на окисление, замещение хлором и на каталитическое разложение согласно приведенным выше уравнениям.

5. Отрезок ОС = В выражает количество хлора, израсходованного на окисление органических веществ и на хлорирование, т.е. действительную хлороемкостъ воды и поэтому с — h = CS = f показывает количество хлора, прореагировавшего с водой с образованием кислорода за время проведения опыта.

6. Если бы реакции между органическими веществами, содержащимися в сточной воде, и хлором проходили быстро и полностью, то после завершения этих реакций в растворе не содержалось бы свободного хлора и на диаграмме хлороемкости вместо кривой получилась бы ломаная линия ОСВ. Чем медленнее или менее полно проходят реакции в растворе, тем сильнее кривая ОАКВ. отклоняется от ломанной ОСВ и тем больше площадь АКС = Р. Последняя характеризует (условно) замедленность и не полноту происходящих реакции.

Реактивы: Хлорная вода (или насыщенный раствор хлорной извести). Насыщают дистиллированную воду хлором. Титр хлорной воды определяют каждый раз непосредственно перед определением хлороемкости, для этого к 10 мл хлорной воды добавляют 1 г сухого йодида калия и после подкисления титруют выделившийся йод 0,05 н раствором тиосульфата натрия, прибавляя 1 — 2 мл раствора крахмала в конце титрования. Раствор хлорной извести фильтруют и устанавливают его титр таким же способом.

Ход определения. В 10 конических колб вместимостью по 250 см 3 , снабженных притертыми пробками, наливают одинаковые объемы исследуемой воды. К взятым пробам прибавляют хлорную воду: в первый сосуд — 1 см 3 , во второй – 3 см 3 , дальше — 5, 8, 12, 15, 25, 40, 70 и 100 см 3 . Колбы закрывают притертыми пробками, ставят в темное место и выдерживают 5 мин при 16 – 20 0 С (первая серия). Параллельно этим пробам ставят также другие пробы с теми же добавками хлорной воды, но дают постоять 1 или 2 часа (вторая серия).

По истечении намеченного времени в каждую колбу добавляют от 0,2 до 2 г (в зависимости от количества прибавляемой хлорной воды) сухого йодида калия, перемешивают до растворения, подкисляют 10 см 3 уксусной кислоты и выделившийся йод оттитровывают 0,01 н раствором тиосульфата натрия. В конце титрования прибавляют 1 — 2 см 3 раствора крахмала.

Содержание активного хлора (X ) в мг/дм 3 вычисляют по формуле 1:

Затем вычерчивают диаграмму (подобно показанной на рис.1), откладывая на оси абсцисс количество прибавленного хлора, а на оси ординат в том же масштабе — соответствующее им количество остаточного хлора. Полученные точки соединяют кривой. Для каждой серии опытов (с различными промежутками времени) строят отдельную диаграмму. Если перехода кривой линии в прямую на первой не получилось, то это указывает на недостаточное количества прибавленного хлора. Тогда опыты дополняют новыми с большими дозами хлорной воды.

Если, на первой диаграмме отсутствует участок ОА, это указывает на слишком большое количество хлора, введенного в первую порцию СВ. Тогда проводят еще несколько опытов с меньшими дозами хлора. Построив кривые, определяют по ним а, в, с, f , р и угол α .

1. С какой целью хлорируют сточную воду?

2. В каких случаях в сточной воде при хлорировании образуется хлорамины?

3. Как идет реакция гидролиза хлора в воде?

Читайте также:  Количественный анализ в питьевой воде

4. В чем сущность метода определения остаточного свободного хлора в сточной воде?

5. Как определяют свободный хлор в воде при наличии в ней хлораминов?

6. На какие ионы диссоциирует хлорноватистая кислота?

7. Для чего исследуют сточную воду на хлорируемость?

8. Зачем для определения хлорируемости сточных вод проводят две серии опытов?

9. В каких случаях кривая хлорируемости имеет вид как на рис.2?

10. Какой отрезок прямой на оси абсцисс указывает на расход хлора на окисление органических веществ и на хлорирование?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9948 — | 7468 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Излишки активного хлора, превышающие ПДК, удаляются дехлорированием. При небольшом избытке хлор можно уда­лить аэрированием (безнапорной аэрацией воды), а при высоких концентрациях остаточного хлора следует использовать метод дозирования в воду химических реагентов: тиосульфата (гипосульфита) натрия, сульфита натрия, аммиака, сернистого газа (оксид серы (IV)), которые свяжут активный хлор, или обработать воду на фильтрах с активным углем.
При реагентной обработке хлорированной воды следует использовать установки пропорционального дозирования растворов химических веществ на основе насосов-дозаторов с контроллерами и датчиками по активному хлору.
Метод напорной фильтрации через активный уголь имеет преимущества по сравнению с дозированием химических реагентов, т.к. в этом случае в воду не вводятся никакие посторонние ве­щества, в то же время углем поглощается не только избыточный хлор, но и мно­гие другие примеси, ухудшающие органолептические свойства воды. При этом процесс де­хлорирования протекает автоматически, и контроль за ним не сложен.

ISO 7393-1:1985 «Качество воды. Определение содержания свободного хлора и общего
хлора. Часть 1. Титриметрический метод с применением N, N-диэтил-1, 4-фенилендиамина»
Стандарт устанавливает титриметрический метод определения свободного хлора и общего хлора в воде. Метод применим для концентраций общего хлора в пересчете на хлор (Cl2) от 0,0004 до 0,07 ммоль/л (0,03 – 5 мг/л), а при более высоких концентрациях – посредством разбавления проб.
ISO 7393-2:1985 «Качество воды. Определение содержания свободного хлора и общего хлора. Часть 2. Колориметрический метод с использованием N, N-диэтил-1, 4-фенилендиамина для повседневного контроля»
Стандарт устанавливает метод определения содержания свободного хлора и общего хлора в воде, пригодный для применения в полевых условиях. Метод применяют при концентрации хлора между 0,03 и 5 мг/л.
ISO 7393-3:2000 «Качество воды. Определение содержания свободного хлора и общего хлора. Часть 3. Метод йодометрического титрования для определения содержания общего хлора»
Стандарт устанавливает метод йодометрического титрования для определения содержания общего хлора. Метод применяют при концентрации хлора между 0,71 и 15 мг/л.
МУК 4.1.965-99 «Определение концентрации остаточного свободного хлора в питьевой и пресной природной воде хемилюминесцентным методом»
Методические указания устанавливают методику хемилюминесцентного количественного химического анализа воды централизованного хозяйственно-питьевого водоснабжения для определения в ней содержания остаточного свободного хлора в диапазоне концентраций от 0,01-2,0 мг/дм 3 . Измерение концентрации активного свободного хлора основано на его способности инициировать хемилюминесценцию люминола в щелочной среде, интенсивность которой пропорциональна его концентрации в анализируемой пробе. Концентрирование активного свободного хлора из воды не осуществляют. Нижний предел измерения 0,0001 мкг.
ГОСТ 18190-72 «Вода питьевая. Методы определения содержания остаточного активного хлора»
Стандарт распространяется на питьевую воду и устанавливает методы определений содержания остаточного активного хлора: йодометрический метод, метод определения свободного остаточного хлора титрованием метиловым оранжевым, метод раздельного определения свободного монохлорамина и дихлорамина по методу Пейлина
Показатель Един. измер. Диапазон измерений
Тест-полоски Тест-боксы Фотометры
Алюминий мг/дм 3 10–250 0,01–1,00
Аммоний мг/дм 3 10–400 0,2–1,5 0,1–50,0
Железо мг/дм 3 3–500 0,1–50 0,01–5,00
Жесткость общая оЖ 1–100 1–250/500/750
Жесткость карбонатная оЖ 4–24 1–100
Калий мг/дм 3 250–1500 0,01–50,0
Кальций мг/дм 3 10–100 2–200 0,01–2,70
Кобальт мг/дм 3 10–1000
Магний мг/дм 3 100–1500 0,01–2,00
Марганец мг/дм 3 2–100 0,1–20,0
Медь мг/дм 3 10–300 0,1–10 0,01–5,00
Молибден мг/дм 3 5–250 0,2–50 0,1–40,0
Мышьяк мг/дм 3 5–500
Никель мг/дм 3 10–500 0,02–0,5 0,01–7,00
Нитрат-ион мг/дм 3 10–500 10–150 0,1–30,0
Нитрит-ион мг/дм 3 2–80 0,1–2 0,5–150
Перекись водорода мг/дм 3 0,5–25 0,2–10,0
Свинец мг/дм 3 20–500
Серебро мг/дм 3 0,5–10 0,001–1,000
Сульфат-ион мг/дм 3 0,2–1,6 0,1–150
Сульфит-ион мг/дм 3 10–400
Формальдегид мг/дм 3 10–100 0,5–1,5
Фосфат-ион мг/дм 3 10–500 1–5 0,1–30,0
Хлорид-ион мг/дм 3 0,5–3 25–2500 0,1–20,0
Хлор общий мг/дм 3 0,5–20 0,1–2,5 0,01–10,00
Хлор свободный мг/дм 3 0,5-10 0,1–2,5 0,01–5,00
Хром мг/дм 3 3–100 0,005–0,1 0,001–1,000
Цианид мг/дм 3 1–30 0–0,2 0,001–0,200
Цинк мг/дм 3 10–250 0,1–5 0,01–3,00

2,5 минуты.
Принцип действия основан на фотоколориметрическом методе измерения концентрации хлора при окрашивании раствора в результате взаимодействия общего хлора с N`N-диэтил-1,4-фенилендиамином (N`N-diethyl-1,4-phenylenediamine, DPD) в потоке воды с применением готовых реагентов, поставляемых фирмой-изготовителем. Реагентов (

по 400 мл двух видов), поставляемых с анализатором, хватает для непрерывной работы в течение 1 месяца. Реагенты можно приобрести отдельно.

источник

Для обеспечения требуемого санитарными нормами качества водопроводной воды её обеззараживают в процессе водоподготовки с целью уничтожения опасных для здоровья людей патогенных бактерий и энтеровирусов. Среди разнообразных методов обеззараживания воды до сих пор наиболее широко применяют химическое окисление, причем из сильных окислителей предпочтение отдают хлору, озону, гипохлориту натрия, хлорной извести. Впервые хлорирование введено в практику в 1896 г. Дж. Фуллером в штате Кентукки и почти сразу было использовано в Англии для остановки эпидемии брюшного тифа. При введении хлора происходит окисление веществ, входящих в состав протоплазмы клеток бактерий, что вызывает их гибель. Спорообразующих бактерий хлор не уничтожает, и это является одним из недостатков данного метода. При введении хлора в воду происходит его гидролиз в соответствии с уравнением:

Образовавшаяся хлорноватистая кислота в кислой и щелочной среде диссоциирует с выделением атомов кислорода, обладающих сильными окислительными свойствами:

В случае использования хлорной извести вначале протекает реакция:

Эффект хлорирования зависит от дозы введенного хлора и продолжительности контакта его с водой. На окисление микроорганизмов расходуется сравнительно небольшая часть введенного в воду хлора, большая же его часть идет на реакции с органическими веществами и некоторыми минеральными примесями, содержащимися в воде. В результате, при хлорировании загрязненной органическими примесями воды, в питьевую воду попадают опасные для здоровья человека органические хлоропроизводные: тригалометаны, различные хлорфенолы и др. Поэтому разрабатываются различные альтернативные методы обеззараживания питьевой воды, однако широкое внедрение их дело будущего, и хлорирование остается основным дешевым, легко контролируемым процессом дезинфицирования при водоподготовке.

На станциях водоочистки выделяют два этапа хлорирования: первичное и вторичное. Первичное хлорирование используется для удаления из речной воды болезнетворных организмов. Вторичное – проводится на завершающем все стадии этапе с целью разрушения любых организмов, оставшихся после фильтрации. Но хлор при этом добавляется в избытке, по сравнению с уровнем, при котором погибают все микроорганизмы. В результате в воде остается остаточный свободный (активный) хлор. Избыток хлора «нейтрализуют» аммиаком, и часть свободного остаточного хлора превращается в связанный хлораминный: NH42Cl, NHCl2 и др.). В связи с этим водопроводная вода контролируется на содержание остаточного активного хлора. Предельнодопустимые концентрации (ПДК) составляют для свободного остаточного хлора 0.3–0.5 мг/л, для связанного — 0.8–1.2 мг/л.

Определение содержания остаточного хлора в питьевой воде

Определение этого показателя (по ГОСТ 18190-72) основано на способности свободного и связанного активного (в отличие от хлоридного) хлора вытеснять эквивалентное количество I2 из иодида при подкислении пробы воды:

Выделившийся иод оттитровывают рабочим раствором тиосульфата натрия в присутствии крахмала:

Ход анализа. Анализ на содержание остаточного хлора производится в месте отбора пробы после спуска воды из крана в течение 15 мин. при полностью открытом кране. В коническую колбу для титрования вносят 0,5 г KI, растворяют в 1-2 мл дистиллированной воды, добавляют ацетатный буферный раствор с рН = 4,5 в количестве, равном 1,5 щелочности воды (работа №4). Затем цилиндром вносят отобранный объем V водопроводной воды (250 – 500 мл, в зависимости от содержания хлора; 250 мл – при содержании хлора  0,3 мг/л). Предварительно заполняют бюретку 0,005 М раствором тиосульфата, приготовленным путем разбавления 0.01 М рабочего раствора. Выделившийся иод оттитровывают по крахмалу до исчезновения окраски иод-крахмального комплекса, добавляя 15-20 капель индикатора в конце титрования, когда раствор приобретет соломенно-желтую окраску. Содержание остаточного активного хлора (X, мг/л) рассчитывают по формуле:

где: 0,177 — титр 0,005 М раствора Na2S2O3 по хлору, мг/мл; К — поправочный коэффициент к 0,005 М раствору Na2S2O3 (определяется по данным стандартизации рабочего раствора по дихромату в работе №11)

Определение содержания свободного остаточного хлора в питьевой воде

Под термином «свободный (активный) хлор» понимают суммарное содержание элементарного хлора, HClO и гипохлорита. Эти компоненты способны окислять метиловый оранжевый, в отличие от хлораминов, окислительно-восстановительный потенциал которых недостаточен для его окисления. При окислении реагент обесцвечивается, поэтому титрование проводят до неисчезающей розовой окраски.

Ход анализа. Отбор пробы воды проводится, как описано выше. Приготовленным 0,005 %-ным рабочим раствором метилового оранжевого (50 мг реагента растворяют в мерной колбе и доводят объем до 1 л; 1 мл такого раствора соответствует 0,0217 мг свободного хлора) заполняют микробюретку с краном, емкостью 5 мл (или бюретку на 10 мл).

100 мл анализируемой воды (V) наливают в фарфоровую чашку, добавляют 2-3 капли 5 М HCl и, помешивая стеклянной палочкой, быстро титруют рабочим раствором метилового оранжевого (м.о.) до не исчезающей розовой окраски. Расчет содержания свободного остаточного хлора (X1, мг/л) проводят по формуле:

где: 0,04 — эмпирический коэффициент; 0,0217 — содержание свободного активного хлора (мг), соответствующее 1 мл 0,005 % раствора м.о. (титр по хлору).

Определение содержания связанного остаточного хлора в питьевой воде

Определение содержания в воде связанного (активного) остаточного хлора (хлораминного), X2, проводится по разности: X2 = (X — X1).

Полученные в работе результаты сопоставляют с величинами ПДК и делают выводы о соответствии водопроводной воды нормам качества.

источник

ГОСТ Р 55683-2013 Вода питьевая. Метод определения содержания остаточного активного (общего) хлора на месте отбора проб

Текст ГОСТ Р 55683-2013 Вода питьевая. Метод определения содержания остаточного активного (общего) хлора на месте отбора проб

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Протектор» и Закрытым акцио-нерным обществом «Центр исследования и контроля воды»

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 343 «Качество воды»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 31 октября 2013 г. No 1319-ст

4 Настоящий стандарт разработан с учетом основных нормативных положений международного стандарта ИСО 7393-3:1990 «Качество воды. Определение содержания свободного и общего хлора. Часть 3. Метод йодометрического титрования для определения содержания общего хлора» (ISO 7393*3:1990 «Water quality — Determination of free chlorine and total chlorine — Part 3: lodometric titration method for the determination cf total chlorine», NEO)

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел в). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты». а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стан• дарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано е ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещают• ся также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru)

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Метод определения содержания остаточного активного (общего) хлора на месте отбора проб

Drinking water. Method for the determination of total chlonne In situ

Настоящий стандарт распространяется на питьевую воду (в том числе воду бассейнов) и устанавливает хитри метрический метод определения массовой концентрации остаточного активного (общего) хлора от 0.15 до 2.0 мг/дм э на месте отбора проб.

8 настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р ИСО 5725-6—2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р 53225—2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 61—75 Реактивы. Кислота уксусная. Технические условия ГОСТ 83—79 Реактивы. Натрий углекислый. Технические условия ГОСТ 199—78 Реактивы. Натрий уксуснокислый 3-водный. Технические условия ГОСТ 1770—74 (ИСС1042—83.ИС04788—80) Посуда мерная лабораторная стеклянная. Цилиндры. мензурки, колбы, пробирки. Общие технические условия

ГОСТ4204—77 Реактивы. Кислота серная. Технические условия ГОСТ 4220—75 Реактивы. Калий двухромовокислый. Технические условия ГОСТ4232—74 Реактивы. Калий йодистый. Технические условия ГОСТ 6709—72 Вода дистиллированная. Технические условия ГОСТ 10163—76 Реактивы. Крахмал растворимый. Технические условия ГОСТ 14919—83 Электроплиты, электроплитки и жарочные элекгрошкафы бытовые. Общие технические условия

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 27068—86 Реактивы. Натрий серноватистокислый 5-еодный. Технические условия ГОСТ 28311—89 Дозаторы медицинские лабораторные. Общие технические требования и методы испытаний

ГОСТ 29227—91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 29251—91 Посуда лабораторная стеклянная. Бюретки. Часть 1. Общие требования ГОСТ ИСО/МЭК17025—2009 Общие требования к компетентности испытательных и калибровочных лабораторий

ГОСТ 31861—2012 Вода. Общие требования к отбору проб ГОСТ 31862—2012 Вода питьевая. Отбор проб

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты*, который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты* за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта сучетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный ствндврт. на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применятьбез учета денного изменения. Если ссылочный стандарт отменен без замены, то положение. в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

Читайте также:  Количественный анализ хлоридов в воде

в настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 остаточный свободный хлор (free chlorine): Хлор, представленный в форме хлорноватистой кислоты, гипохлорит-ионов или элементарного растворенного хлора.

3.2 остаточный связанный хлор (combined chlorine): Хлор, представленный в форме хлорами-нов (монохлорамина, дихлорамика и трихлорида азота) и хлорированных органических азотсодержащих производных.

3.3 остаточный активный (общий) хлор (total chlorine, synonym — total residual chlorine): Суммарное содержание остаточного свободного и остаточного связанного хлора.

Отбор проб воды проводят по ГОСТ 31861 и ГОСТ 31862. Объем отобранной пробы должен быть не менее 500 см 3 воды.

Пробы воды для определения массовой концентрации остаточного активного хлора не консервируют. определение следует проводить как можно скорее.

Метод основан на количественном окислении иодида калия активным хлором до иода, который титруют раствором тиосульфата натрия в присутствии крахмала в кислой среде (pH 4.5—6.2).

Мешающее влияние окислителей, в частности озона, перекиси водорода, диоксида хлора, устраняют соблюдением указанного диапазона pH среды.

Весы, обеспечивающие точность взвешивания со значением среднего квадратического отклонения (СКО). не превышающим 0.3 мг. и с пределом допускаемой абсолютной погрешности не более ± 0.6 мг и весы с пределом допускаемой абсолютной погрешности не более ±10.0 мг по ГОСТ Р 53228.

pH-метр любого типа, обеспечивающий измерение pH с погрешностью не более ± 0.1 pH

Колбы мерные2-1000-2по ГОСТ 1770.

Цилиндры мерные 1-10-2.1-100-2.1-500-2.1-1000-2 или любого другого исполнения поГОСТ 1770.

Пипетки градуированные 1-1-2-5.1 -1 -2-10 или других типов и исполнений по ГОСТ 29227.

Дозаторы пилеточные переменного объема от 1 до 5 см 3 и от 2 до 10 см 3 с погрешностью дозирования не более ± 1 % по ГОСТ 28311.

Секундомер механический 2 класса точности.

Пипетка из полиэтилена высокого давления с замкнутым резервуаром (встроенной грушей) и со стандартным размером капли, длиной 150—200 мм. вместимостью до 3—5 см 3 , например пипетка Пастера или Liquipette, калиброванная по 7.3.

Бюретка 1-1-2-10-0,02 или 1-1-2-10-0.05 по ГОСТ 29251 номинальной вместимостью 10 см 3 2 класса точности.

Стандартный образец (далее — СО) массовой концентрации активного хлора или имитирующий его стандартный образец состава водного раствора йодата калия, например ГСО 7105—94. с относи* тельной погрешностью аттестованного значения не более ±3 %.

Мензурки вместимостью 500 см 2 ло ГОСТ 1770 или стаканы (кружки) мерные вместимостью 100 и 500 см из полипропилена.

Стаканы химические вместимостью 500 см ло ГОСТ 25336.

Колбы конические вместимостью 250 см и 750 см ло ГОСТ 25336.

Колбы плоскодонные вместимостью 1000 см по ГОСТ 25336.

Электроплитки одноконфорочные по ГОСТ 14919. бода дистиллированная по ГОСТ 6709.

Калий йодистый (далее — иодид калия) по ГОСТ 4232. х. ч.

Калий двухромовокислый (далее — бихромат калия) по ГОСТ4220. ч. д. а. илистандарт-титр(фик-санал) калия двухромовокислого.

Кислота серная ло ГОСТ 4204, ос. ч Кислота уксусная ледяная по ГОСТ 61. х. ч.

Крахмал растворимый по ГОСТ 10163, ч. д. а.

Натрий серноватистокислый 5*водный (далее — тиосульфат натрия) по ГОСТ27068. х. ч. или стан* дарт*титр (фиксанал) тиосульфата натрия.

Натрий уксуснокислый 3-водный (далее — тригидрат ацетат натрия) по ГОСТ 199. ч. д. а.

Кислота салициловая, со значением массовой доли (содержания) основного вещества не менее

Натрий углекислый (далее — карбонат натрия) по ГОСТ 83. х. ч.

Примечание — Допускается применять другие средства измерений, вспомогательные устройства, реактивы и материалы, в том числе импортные, с метрологическими характеристиками не хуже указанных.

При подготовке к выполнению измерений и при их проведении необходимо соблюдать условия, установленные в руководствах по эксплуатации или в паспортах средств измерений и вспомогательного оборудования.

7.1 Приготовление растворов

7.1.1 Приготовление основного раствора тиосульфата натрия молярной концентрации c(Na2S232О)0,1 моль/дм

В мерной колбе вместимостью 1000 см растворяют 25,0 г тиосульфата натрия (Na2S2320) в 200 см дистиллированной воды. добаеляют0,2 гкарбоната натрия и доводят до метки дистиллирован* кой водой. В случае применения стандарт .титра (фиксанала) раствор готовят в соответствии с инструкцией по приготовлению.

Срок хранения раствора в емкости из темного стекла в защищенном от прямых солнечных лучей месте — не более 3 мес.

7.1.2 Приготовление рабочего раствора тиосульфата натрия молярной концентрации с (Na2S20j 5НгО) 0,01 моль/дм

Раствор готовят разраблением раствора no 7.1.1. В мерную колбу вместимостью 1000 см вносят 100 см раствора тиосульфата натрия молярной концентрации 0,1 мель/дм (см. 7.1.1). добавляют 0.2 г карбоната натрия и доводят до метки дистиллированной водой.

Срок хранения раствора в емкости из темного стекла — не более 3 мес.

7.1.3 Приготовление раствора бихромата калия молярной концентрации с (1/6 KjCrjOjJO.I моль/дм

Раствор готовят из стандарт-титра (фиксанала) бихромата калия в соответствии с инструкцией по применению, разбавляя его до требуемой концентрации дистиллированной водой.

При отсутствии стандарт-титра (фиксанала) бихромата калия раствор готовят следующим способом: в мерной колбе вместимостью 1000 см растворяют 4,90гбихромата калия (К2Сг27)в 200 см дистиллированной воды и доводят до метки дистиллированной водой.

Срок хранения раствора в емкости из темного стекла — не более 6 мес.

7.1.4 Приготовление раствора бихромата калия молярной концентрации с(1/6К2Сг27)0,01 моль/дм 3

Раствор готовят разбавлением в десять раз раствора, приготовленного по 7.1.3, дистиллирован* ной водой. Например, в мерную колбу вместимостью 1000 см 3 вносят 100 см 3 раствора бихромата калия (см. 7.1.3) и доводят объем раствора в колбе до метки дистиллированной водой.

Срок хранения раствора в емкости из темного стекла — не более 3 мес.

7.1.5 Приготовление раствора иодида калия с массовой долей 25 %

250 г иодида калия, проверенного по 7.4. растворяют в 750 см 3 дистиллированной воды.

Срок хранения раствора в емкости из темного стекла — не более 3 мес.

7.1.6 Приготовление раствора иодида калия с массовой долей 10%

Раствор готовят путем растворения 10.00 г иодида калия, проверенного по 7.4. в 90 см 3 дистиллированной воды или разбавлением в2.5раза раствора по 7.1.5. Например, в мерную колбу вместимостью 1000 см 3 вносят 400 см 3 раствора иодида калия по 7.1.5 и доводят объем раствора в колбе до метки дистиллированной водой.

Срок хранения раствора в емкости из темного стекла — не более 3 мес.

7.1.7 Приготовление раствора крахмала

В стакане смешивают 5.0 г растворимого крахмала и 100 см 3 холодной дистиллированной воды.

В плоскодонную колбу вместимостью 1000 см 3 вносят 900 см 3 дистиллированной воды и доводят ее до кипения, затем вливают подготовленный растворимый крахмал и кипятят 2—3 мин. Затем содержимое колбы охлаждают до комнатной температуры и консервируют добавлением 1.0 г салициловой кислоты.

Срок хранения раствора в полиэтиленовой или стеклянной емкости при комнатной температуре — не более 5 сут, при температуре от 0 ®С до 5 в С — не более 14 сут.

7.1.8 Приготовление раствора уксусной кислоты молярной концентрации с (CHjCOOH) 1 моль/дм 3

В мерной колбе вместимостью 1000 см 3 растворяют 57 см 3 ледяной уксусной кислоты в 600—700 см 3 дистиллированной воды и доводят до метки дистиллированной водой.

Срок хранения раствора в стеклянной емкости — не более 6 мес.

7.1.9 Приготовление ацетатного буферного раствора pH (4,510,1)

В мерную колбу вместимостью 1000 см 3 вносят 102 см 3 раствора уксусной кислоты, приготовленного по 7.1.8. добавляют 13.35 гтригидрата ацетата натрия (CH3COONa — ЗН20) и доводят до метки дистиллированной водой.

Срок хранения раствора в стеклянной емкости — не более 3 мес. Рекомендуется периодически в период хранения и перед применением раствора проверять pH с использованием pH-метра. Если значение pH изменилось более чем на 0.2 единицы pH, то готовят новый буферный раствор.

7.1.10 Приготовление раствора серной кислоты, разбавленной 1:4

Прибавляют при перемешивании 1 объем концентрированной серной кислоты к4 обьамам дистиллированной воды. Например, в мерную колбу вместимостью 1000 см 3 вносят 800 см 3 дистиллированной воды и осторожно при перемешивании добавляют 200 см 3 концентрированной серкой кислоты.

Срок хранения раствора в стеклянной емкости — не более года.

7.2 Установление коэффициента поправки раствора тиосульфата натрия молярной концентрации с (Na2S2320)0,01 моль/дм 3

7.2.1 В коническую колбу вместимостью 250 см 3 , снабженную пришлифованной пробкой, градуированной пипеткой вносят 5 см 3 раствора иодида калия с массовой долей 10 % (см. 7.1.6) (или 0.5 г иодида калия и 2 см 3 дистиллированной воды), 5 см 3 раствора серной кислоты (см. 7.1.10). прибавляют градуированной пипеткой 9 см 3 раствора бихромата калия (см. 7.1.4), затем добавляют 80 см 3 дистиллированной воды. Колбу закрывают крышкой, перемешивают и ставят втемное место на 5 мин. после чего выделившийся иод титруют с использованием бюретки раствором тиосульфата натрия молярной концентрации 0.01 моль/дм 3 (см. 7.1.2) до появления бледно-соломенного окрашивания, затем прибавляют 1 см 3 раствора крахмала, приготовленного по 7.1.7, и продолжают титрование до обесцвечивания раствора. Контроль исчезновения синей окраски проводят на фоне листа белой бумаги.

7.2.2 Коэффициент поправки раствора тиосульфата натрия К рассчитывают по формуле

где V, — объем раствора бихромата калия (в данном случае равен 9 см 3 , см. 7.2.1), см 3 ;

V — объем раствора тиосульфата натрия, пошедшего на титрование бихромата калия, см 3 .

7.2.3 Титрование по процедуре 7.2.1 повторяют не менее трех раз и рассчитывают среднее арифметическое значение. При этом должно выполняться следующее условие

где Ктах. Kmin — наибольшее и наименьшее значения коэффициента поправки; гх — значение предела повторяемости, равное 7 %;

Кс? — среднее арифметическое значение коэффициента поправки.

Значение коэффициента поправки должно быть в пределах 0,97—1.03. Если значение коэффициента поправки выходит из указанных пределов, го раствор соответственно укрепляют (добавлением основного раствора тиосульфата натрия по 7.1.1) или разбавляют (добавлением дистиллированной воды). Коэффициент поправки определяют при приготовлении свежего раствора тиосульфата натрия, а также периодически в процессе его хранения — но не реже одного раза в месяц.

Примечание — После добавления в рабочий раствор тиосульфате натрия (см. 7,1.2)осноаного раствора (см. 7.1.1) или дистиллированной воды перед повторным определением коэффициенте поправки, рабочий раствор необходимо выдержать не менее суток.

7.3 Калибровка пипеток, используемых для титрования при определении остаточного активного (общего) хлора на месте отбора проб

Калибровку пипеток проводят для установления объема капли. Объем капли устанавливают для новой пипетки, а также в случае получения неудовлетворительных результатов при проведении контроля качества результатов измерений по разделу 11.

Объем капли устанавливают индивидуально для каждогооператораи для конкретной пипетки. Для этого в мерный цилиндр номинальной вместимостью 10см 3 капают 100 капель раствора тиосульфата натрия (см. 7.1.2). операцию повторяют не менее трех раз. Средний объем капли V. см 3 , рассчитывают по формуле

где VK — суммарный объем капель, см 3 ; п — количество капель.

По полученному значению среднего объема капли рассчитывают коэффициент пипетки Кп, мг. значение которого численно равно содержанию остаточного активного (общего) хлора, соответствующему одной капле раствора тиосульфата натрия (см. 7.1.2). по формуле

где V — средний объем капли, рассчитанный по формуле (3). см 3 ;

0,3545 — содержание остаточного активного (общего) хлора, соответствующее 1 см 3 раствора тиосульфата натрия (см. 7.1.2). мг/см 3 ;

К — коэффициент поправки раствора тиосульфата натрия (см. 7.1.2). установленный по 7.2.

7.4 Контроль качества иодида калия

Иодид калия проверяют по ГОСТ 4232 (подраздел 3.5) на соответствие требованиям и нормам, предъявляемым к данному реактиву.

7.5 Установление объема буферного раствора, достаточного для достижения требуемого значения pH в анализируемой пробе

Объем буферного раствора, необходимый для достижения требуемого интервала pH. устанавливают экспериментально для каждого типа источника водоснабжения. Для этого в стакан помещают 500 см 3 пробы анализируемой воды, электроды pH-метра и включают перемешивание, затем прибавляют 10 см 3 раствора иодида калия (см. 7.1.5) и градуированной пипеткой постепенно вводят буферный раствор (см. 7.1.9) до достижения значения pH от 4.5 до 6,2. Фиксируют добавленный объем буферного раствора. При последующем определении остаточного активного (общего) хлора в пробе буферный раствор добавляют вобъеме не меньше установленного значения.

В коническую колбу вместимостью не менее 750 см 3 вносят мензуркой или мерной кружкой 500 см 3 пробы анализируемой воды, пипеточным дозатором добавляют 10 см 3 раствора иодида калия (см. 7.1.5). буферный раствор (см. 7.1.9). в количестве, установленном ранее по 7.5. и перемешивают, затем вносят 1 см 3 раствора крахмала (см. 7.1.7) и титруют выделившийся иод раствором тиосульфата натрия (см. 7.1.2) с использованием откалиброванной по 7.3 пипетки до исчезновения синей окраски. Контроль исчезновения синей окраски проводят на фоне чистого листа белой бумаги. Фиксируют общее количество капель раствора тиосульфата натрия, израсходованных на титрование.

Примечание — При определении остаточного активного хлора а пробе неизвестного состава допускается контролировать соответствие pH требуемому интервалу значений (см. 7.S) с помощью индикаторной бумаги.

Массовую концентрацию остаточного активного (общего) хлора в пробе анализируемой воды на месте отбора ХМ4. мг/дм 3 . рассчитывают по формуле

где Кп — коэффициент пипетки, рассчитанный по 7.3. мг.

п — количество капель раствора тиосульфата натрия, израсходованных на титрование (см. раздел 8):

1000 — коэффициент объемного пересчета;

V — объем пробы анализируемой воды, взятый для анализа, см 3 .

За окончательный результат определения массовой концентрации остаточного активного (общего) хлора в пробе воды принимают значение, вычисленное по формуле (5).

Численное значение результата измерений должно оканчиваться цифрой того же разряда, что и абсолютное значение характеристики погрешности, вычисленное в мг/дм 3 и округленное до двух значащих цифр.

Метод обеспечивает получение результатов измерения с метрологическими характеристиками, не превышающими значений, приведенных в таблице 1 при доверительной вероятности Р — 0.95.

Таблица1 — Метрологические характеристики

Диапазон измерений массовой концентрации остаточного активного (общего) хлора. мт/ды 3

Предел повторяемости (относительное знвчение расхождения между двумя результатами параллельных определений, полученными в условиях повторяемости при Р « 0.9S) г. Ч

Предел воспроизводимости (относительное значение расхождения нежду двумя единичными результатами определений, полученными е условиях воспроизводимости при Р • 0.9S) R. %

Показатель точности (границы относительной погрешности при вероятности Р «0.95)1 5.%

источник