Меню Рубрики

Анализ воды на кальций магний

Прежде чем прочитать эту статью, давайте вместе разберемся, насколько данная информация окажется для вас полезной. Сейчас я назову вам несколько проблем. Ваша задача поставить мысленные галочки напротив тех, с которыми вам приходится сталкиваться периодически или с которыми вы неразрывно живете. Итак, оглашаю весь список:

  • белье после стирки теряет цвет, но сохраняет пятна;
  • ваша кожа стала сухой и воспаленной;
  • волосы не промываются и с трудом расчесываются;
  • в чайнике можно найти несколько килограммов накипи;
  • домочадцы жалуются на заболевания пищеварительной системы.

Число утвердительных ответов прямо пропорционально скорости, с которой Вам нужно сделать срочный звонок.

Когда? В будни с девяти утра до шести вечера. В выходные, праздники и любое другое время – оставляйте заявку на сайте. Мы вам перезвоним и подберем удобное для всех нас время.

Зачем? Чтобы выявить уровень жесткости воды и ликвидировать все вышеперечисленные проблемы.

Если у вас сейчас в голове диссонанс – не пугайтесь. Конечно же, жидкость не может быть мягкой или жесткой. Жесткость – это свойство воды, насыщенной ионами кальция и магния. Соли этих металлов встречаются в организме человека. Ведь все мы с детства знаем, что скелет человека и его зубы состоят главным образом из кальция. Этот макроэлемент также ответственный за свертывание крови, деление клеток, синтез гормонов и сложных белков, формирование костной ткани, поддержание кислотно-щелочного баланса и красоты ногтей и волос. Получают его люди вместе с пищей, среди которой нужно отметить рыбу, яйца и, особенно, молочные продукты. Очень важно помнить, что полноценное усваивание данного элемента происходит только в совокупности с фосфором и магнием. Жизненная необходимость данного вещества не отменяет тот факт, превышение его допустимой концентрации негативно сказывается на здоровье.

Большинство регионов России отличаются повышенным содержанием кальция в скважинах и водопроводах. Это объясняется природными процессами. К ним можно отнести выветривание, размывание грунтовыми источниками горных и осадочных пород. Повышают показатели жесткости стоки промышленных предприятий и остатки удобрений с сельскохозяйственных угодий. Многие из нас используют водичку из крана и не задумываются о количестве кальция в ней.

Потребляя ежедневно примерно пятнадцать процентов суточной нормы различных элементов с водным раствором, уровень веществ в крови напрямую зависит от его состава. Большое количество кальция вызывает у людей боли в животе, тошноту, рвоту, повышенное давление, полиурию. В дальнейшем это приводит к образованию камней в почках, желчном пузыре и органах пищеварительной системы. Но жесткость сказывается и на кухонной утвари, покрывая ее при кипячении толстым слоем накипи. При мытье посуды затрудняется образование пены, а значит, расход моющих средств будет увеличиваться.

Получается избыток элемента – это плохо. Но и его дефицит приводит к деформациям и нарушениям в организме: ломкие волосы, сухость кожи, судороги, повреждение эмали, нарушение сна, развитие остеопороза. Как найти золотую середину? Искать ее не придется. Согласно нормативным документам, норма кальция в питьевой воде составляет 100 мг/л. Если в результате анализа цифра будет меньше – обратите внимание на свое питание, чтобы получать недостающий макроэлемент с едой. В случае превышения ПДК будет страдать не только ваше здоровье, но и сантехника и бытовые приборы. Поэтому единственный способ снизить негативные последствия – установить ионообменные фильтры.

Начинать необходимо с химического анализа, который покажет содержание различных элементов. Лаборатория «ИОН» отберет пробу, проведет исследование (определение количества кальция проводится методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой), отправит вам результаты с рекомендациями.

Мутность воды – это характеристика уменьшения прозрачности из-за воздействия внутренних и сторонних факторов. В мутной воде находятся твердые мелкие частицы, которые не растворяются, а оседают на дно.

источник

Жёсткость – технологическая характеристика качества воды любого происхождения, связанная с содержанием растворимых в ней соединений кальция и магния. Она определят, в основном, потребительские качества воды и потому анализ воды на жесткость имеет важное хозяйственное значение. Общая жесткость определяется как суммарное содержание всех солей кальция и магния в растворе.

В разных странах существуют свои нормы жесткости для воды. У нас в стране вода классифицируется по жесткости таким образом: вода считается мягкой, если её жёсткость (Q) меньше 4 ммоль/л, средняя – 4-8, жёсткая – 8-12, очень жёсткая – свыше 12ммоль/л.

Рекомендованная единица СИ для измерения концентрации — моль на кубический метр (моль/м³), однако, на практике для измерения жёсткости используются градусы жёсткости и миллиграммы эквивалента на литр (мг-экв/л).

— Мягкая вода с жесткостью менее 3,0 мг-экв/л,

— Средней жесткости – 3,0-6,0 мг-экв/л

— Жесткая – более 6,0 мг-экв/мл.

В разных странах использовались (иногда используются до сих пор) различные внесистемные единицы — градусы жёсткости. По величине общей жёсткости различают воду мягкую (до 2 °Ж), средней жёсткости (2-10 °Ж) и жёсткую (более 10 °Ж).

Жёсткость воды поверхностных источников существенно колеблется в течение года; она максимальна в конце зимы, минимальна — в период паводка

Химический анализ воды показал, что существует два типа жесткости: временная и постоянная. Временная (карбонатная) жёсткость обусловлена наличием гидрокарбонатов кальция и магния (Ca(HCO3)2 , Mg(HCO3)2). Устраняется кипячением.Если в воде присутствуют ионы железа, то образуется FeCO3 — неустойчивое в воде вещество. В присутствии кислорода конечным продуктом цепочки реакций оказывается Fe(OH)3, представляющий собой темно-рыжий осадок. Поэтому, чем больше в воде железа, тем сильнее окраска у накипи, которая осаждается на стенках и дне сосуда при кипячении

Постоянная (некарбонатная) жёсткость обусловлена наличием хлоридов, сульфатов, нитратов и других анионов. Кипячением не устраняется. Для её устранения используют химические и физические способы.

Химический способ основан на переводе растворимых соединений кальция и магния в нерастворимые и удалением их при фильтровании.

Физические способы основаны на применении ионообменных смол. Наиболее широко используется катионообменный способ, основанный на применении специальных реагентов – катионитов, которые загружаются в фильтры и при пропускании через них воды, заменяют катионы кальция и магния на катион натрия.

Лучшим реагентом для устранения общей жесткости воды является ортофосфат натрия Na3PO4, входящий в состав большинства препаратов бытового и промышленного назначения

Полностью очистить воду от солей жёсткости можно дистилляцией.

Анализ воды на жесткость в лаборатории производится комплексонометрическийм методом и методом нейтрализации.

Комплексонометрический метод основан на образовании устойчивых комплексонатов при взаимодействии ионов металлов с комплексоном III (метод комплексонометрии). В основе этого метода лежит титрование воды в присутствии аммонийного буферного раствора (pH=10,0) и индикатора хромогена чёрного раствором комплексона III до перехода винно-красной окраски в синюю.

Анализ проб воды на временную жесткость проводят, используя метод нейтрализации в основе, которого лежит титрование воды в присутствии индикатора метилового оранжевого раствором соляной кислоты до перехода жёлтой окраски индикатора в оранжевую. При добавлении кипячении карбонатная жесткость воды уменьшается на 57-70%.

Таким образом, можно определить общую и временную жесткость воды и частично снизить ее негативное воздействие на организм.

Лаборатория «Экологический мониторинг» занимается анализом воды на жесткость, определением содержания кальция и магния, в питьевой и сточной воде. Заказать анализ воды на жесткость можно оставив заявку на sales@chenabalytica.ru, или воспользовавшись формой обратной связи.

Для организаций и производственных предприятий мы предлагаем услуги по

источник

Химическое обозначение: Ca

Синонимы: известь, мягкий камень.

Описание: элемент 2 группы 4 периода с атомным номером 20. Мягкий металл серебристого цвета с высокой химической активностью.

Методы определения: потенциометрия, титрование, масс-спектрометрия, атомная абсорбция и эмиссия.

Методики, используемые в Испытательном центре МГУ для определения концентрации кальция в природных средах

Нормативный документ на методику Метод определения Оборудование
Вода
ЦВ 3.18.05-2005 (ФР.1.31.2005.01714) масс-спектрометрия AGILENT 7500A ICP-MS
Почва
ФР.1.31.2009.06787 масс-спектрометрия AGILENT 7500A ICP-MS
ЦВ 5.18.19.01-2005 масс-спектрометрия AGILENT 7500A ICP-MS

Распространённость: кальций в свободном виде не встречается в природе, однако распространён в составе соединений: 3,4% массы земной коры приходится на этот элемент. Кальций занимает четвёртое место по количеству образуемых минералов. Существенную часть последних составляют силикаты, алюмосиликаты, граниты, гнейсы, полевые шпаты, кальциты, ангидриты, гипсы, флюориты, апатиты и доломиты. Содержание кальция в воде обуславливает жёсткость воды.

В воде систем централизованного водоснабжения содержание кальция не нормируется напрямую: в водопроводной воде нормируется параметр жёсткости. Кальций, наряду с магнием и стронцием, вносит вклад в показатель жёсткости: если предположить, что вся жёсткость водопроводной воды будет обусловлена только кальцием, максимально допустимая его концентрация будет составлять 140,28 мг/л.

Предельно допустимая концентрация (ПДК) кальция в различных водных объектах

Нормирование ПДК, мг/л
Бутилированная вода первой категории
СанПиН 2.1.4.1116-02
0–130
Бутилированная вода высшей категории
СанПиН 2.1.4.1116-02
25–80
Вода систем централизованного водоснабжения
СанПиН 2.1.4.1074-01
Водные объекты рыбохозяйственного значения
Приказ Минсельхоза РФ № 552
0–180
Объекты рекреационного водопользования
СанПиН 2.1.5.980-00
Вода плавательных бассейнов
СанПиН 2.1.2.1188-03
Сточные воды в бытовых системах водоотведения
Постановление Правительства РФ № 644
Сточные воды в ливневых системах водоотведения
Постановление Правительства РФ № 644

В потреблении воды с повышенным содержанием кальция нуждаются грудные дети (норма потребления 1,0–1,2 г в сутки) и беременные женщины (0,4–0,7 г в сутки).

Кальций участвует в:

  • сокращении мышечных тканей;
  • регулировании способности мембран клеток пропускать вещества и элементы;
  • изменении концентрации липидов в кровяной сыворотке;
  • передаче нервных импульсов;
  • выделении гормонов гипофизом и надпочечниками;
  • клеточном иммунитете;
  • усвоении микроэлементов;
  • ферментативной активности печени.

При недостатке элемента наблюдаются:

  • неконтролируемые сокращения тканей мышц;
  • судорожные фибрилляции сердечной мышцы;
  • нарушение свёртываемости крови;
  • нарушение нормального образования и формирования костей.

При избытке кальция наблюдается:

  • формирование солевых твёрдых отложений кальция в почках и мочевыводящих путях;
  • гиперкальциемия, формирование отложений кальция на костях и стенках сосудов;
  • торможение развития скелета.

Ионный обмен. В результате использования ион-обменных смол в воде происходит замена ионов кальция на ионы натрия.

Обратный осмос. Вместе с другими веществами обратный осмос убирает из воды кальций. Нецелесообразно использовать обратный осмос только для умягчения и при жёсткости воды более 7 мг-экв/л без предварительного умягчения.

Кипячение. Во время кипячения воды соли жёсткости, в состав которых входит кальций, осаждаются на стенках сосуда, поэтому вода становится немного мягче (т.е. содержит меньше кальция, чем исходная вода).

Кальций относится к элементам, которые характеризуются как отрицательным, так и положительным влиянием на организм человека. Поэтому необходимо контролировать содержание кальция в питьевой воде и регулировать его содержание таким образом, чтобы концентрация находились в оптимальном диапазоне.

источник

Химический анализ природной и питьевой воды. Метод ионообменной хроматографии и титриметрический метод определения ионов кальция и магния. Особенности приготовления растворов. Устранение мешающего влияния катионов железа, марганца, цинка, меди и олова.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методика определения ионов кальция и магния в природных водах (определение общей жесткости воды)

2. Приготовление растворов

3.1 Титриметрический метод

3.2 Метод ионообменной хроматографии

Химический анализ природной и питьевой воды показывает, что любая вода представляет собой не чистое вещество с формулой Н2О, а смесь большого количества веществ.

Многочисленные анализы природных вод показали, что среди большого числа компонентов, растворенных в них, 90 % солесодержания составляют карбонаты, гидрокарбонаты, хлориды и сульфаты кальция, магния и натрия. О.А. Алекиным предложена классификация природных вод по результатам их химического анализа. По преобладающему аниону воды делятся на три класса: карбонатные (гидрокарбонатные), хлоридные и сульфатные. По преобладающему катиону воды делятся на три группы: кальциевые, магниевые и натриевые.

В природных водах постоянно находятся ионы кальция и магния, обеспечивающие жесткость воды. Источник их поступления в воду — растворение гипса, известняков и доломитов, входящих в состав горных пород. В санитарно-гигиеническом отношении ионы кальция и магния не представляют большой опасности, но чрезмерная жесткость воды делает ее непригодной для бытовых целей, т.к. образующаяся накипь выводит из строя нагревательные элементы электрических систем нагрева воды. Оптимальная жесткость воды — до 7 мг-экв/л.

Для определения ионов кальция и магния используются два метода:

2. метод ионообменной хроматографии

1. Наиболее точный и распространенный метод определения общей жесткости — комплексометрический, основанный на образовании ионами Са 2+ и Mg 2+ прочных внутрикомплексных соединений с трилоном Б. В качестве индикатора при определении общей жесткости используется эриохром черный. В зависимости от общей жесткости концентрация рабочего раствора трилона Б и объем пробы воды могут быть различными.

Для определения кальция в природных водах преимущественно используются трилонометрический метод с индикатором мурексидом.

Содержание магния проводят расчетным методом, зная общую жесткость и содержание кальция.

2. Приготовление растворов

Раствор трилона Б с концентрацией 0,02 моль/дм 3 эквивалента.

Навеску 3,72г. трилона Б растворяют в 1 дм 3 дистиллированной воды. Точную концентрацию устанавливают по стандартному раствору хлорида цинка. Раствор хранят в полиэтиленовой посуде, проверяют его концентрацию не реже 1 раза в месяц.

Раствор хлорида цинка с концентрацией 0,02 моль/ дм 3 эквивалента.

Отвешивают на технических весах около 0,35 г металлического цинка, смачивают его небольшим количеством концентрированной соляной кислоты и сейчас же промывают дистиллированной водой. Цинк сушат в сушильном шкафу при 105 течение 1ч, затем охлаждают и взвешивают на аналитических весах.

Навеску цинка помещают в мерную колбу вместимостью 500 см 3 , в которую предварительно вносят 10-15 см 3 дистиллированной воды и 1,5 см 3 концентрированной соляной кислоты. Цинк растворяют. После растворения цинка объём раствора доводят до метки на колбе дистиллированной водой. Рассчитывают молярную концентрацию эквивалента раствора хлорида цинка CZn(1/2 ZnCl2), моль/дм 3 , по формуле:

где m — навеска металлического цинка, г; 32,69 — молярная масса эквивалента Zn 2+ , г/моль; V — объём мерной колбы, см 3 .

Буферный раствор NH4Cl +NH4OH.

7,0 г хлорида аммония растворяют в мерной колбе вместимостью 500 см 3 в 100 см 3 дистиллированной воды и добавляют 75 см 3 концентрированного раствора аммиака. Объем раствора доводят до метки дистиллированной водой и тщательно перемешивают. Буферный раствор хранят в стеклянной или полиэтиленовой посуде не более 2 месяцев. Гидроксид натрия, 2 моль/дм 3 .

Читайте также:  Анализ на инфекции околоплодных вод

40 г гидроксида натрия растворяют в мерной колбе вместимостью 500 см 3 и раствор доводят до метки дистиллированной водой.

Индикатор эриохром черный Т.

Растереть в ступке 0,25 г эриохрома черного Т с 50 г хлорида натрия.

0,5 г мурексида растереть с 100 г хлорида натрия. Водный раствор лучше не готовить, т.к. мурексид нестоек в растворе.

Раствор сульфида натрия, 4%.

2 г сульфида натрия растворяют в 50 см 3 дистиллированной воды. Хранят в плотной закрытой полиэтиленовой посуде не более недели.

Раствор гидрохлорида гидроксиламина.

5 г гидрохлорида гидроксиламина растворяют в 100 см 3 дистиллированной воды. Хранят не более 2 месяцев.

Установление точной концентрации раствора трилона Б.

В коническую колбу вместимостью 250 см 3 вносят 10 см 3 раствора хлорида цинка, добавляют дистиллированной воды приблизительно до 100 см 3 , 5 см 3 буферного раствора и 10-15 мг индикатора эриохрома чёрного Т. Содержимое конической колбы тщательно перемешивают и титруют из бюретки раствором трилона Б до перехода окраски красной в голубую. Концентрацию раствора трилона Б рассчитывают по формуле:

3.1 Титриметрический метод

Определение ионов кальция и магния

Устранение мешающих ионов

Для устранения мешающего влияния катионов железа, цинка, меди и олова в пробу добавляют 0,5 мл раствора сульфида натрия.

Для устранения мешающего влияния марганца в пробу добавляют 0,5 мл солянокислого раствора гидроксиламина.

Перед выполнением анализа пробы воды с неизвестной величиной жёсткости проводят оценочное титрование. Для этого берут 10 см 3 воды, добавляют 0,5 см 3 буферного раствора, индикатор (эриохром чёрный Т) и титруют до перехода окраски из красной в голубую. По величине израсходованного трилона Б выбирают из таблицы 1 соответствующий объём пробы воды.

ионообменный хроматография вода магний

Таблица 1. Объём пробы воды, рекомендуемый для определения жёсткости по результатам оценочного титрования

Объём израсходованного раствора трилона Б, см 3

Рекомендуемый объём пробы, см 3

v Определение суммы кальция и магния

К пробе необходимого объёма (см. Оценочное титрование) 100 см 3 добавляют 5 см 3 буфера, индикатор (эриохром чёрный Т) на шпателе. Сразу же титруют при перемешивании до перехода окраски от винно-красной к синей.

К пробе необходимого объёма (см. Оценочное титрование) 100 см 3 добавляют 2 см 3 NaOH (2н) и индикатора (мурексид) на шпателе. Титруют до перехода окраски от красной в фиолетовую. Окраску раствора следует сравнивать с цветом перетитрованного раствора.

Содержание кальция высчитывают по формуле:

где Стр — молярная концентрация эквивалента трилона Б, моль/дм 3 ; V’ тр — объем трилона Б, пошедший на титрование с мурексидом, см 3 (см. Определение кальция); 20,04 — масса эквивалента Ca 2+ ; Vпробы — объем пробы, взятый для анализа, см 3 .

Содержание магния высчитывают по формуле:

где Стр — молярная концентрация эквивалента трилона Б, моль/дм 3 ; V тр — объем трилона Б, пошедший на титрование с эриохромом черным Т, см 3 (см. Определение суммы кальция и магния); V’тр — объем трилона Б, пошедший на титрование с мурексидом, см 3 (см. Определение кальция); 12,15- масса эквивалента Mg 2+ ; Vпробы- объем пробы, взятый для анализа, см 3 .

v Определение общей жесткости воды

Общую жесткость находят по формуле:

где Стр — молярная концентрация эквивалента трилона Б, моль/дм 3 ; Vтр — объем раствора трилона Б, пошедшего на титрование пробы, см 3 ; Vпробы — объем пробы, взятый для анализа, см 3 .

Метод добавок. Для определения данным методом в пробу вводят добавку, равную 50-150% (желательно 100%) жёсткости воды (см. Определение общей жёсткости воды) ГСО 8206-2002.

Затем высчитывают общую жесткость воды с добавкой.

a. Результаты измерений, полученных в условиях воспроизводимости для пробы 1.

Проба 1: оз. Среднее, с. Озёрное, 85 км от берега, дата: 1.10.13, время: 16.55, t = +3.

Установлена точная концентрация трилона Б: Стрилона = 0,002226 (моль/дм 3 ). При выполнении оценочного титрования объем необходимой пробы соответствует 100 (мл).

источник

Федеральное агентство по образованию

Государственное образовательное учреждение

Новгородский государственный университет им. Ярослава Мудрого

Факультет естественных наук и природных ресурсов

Массовая концентрация кальция и магния в воде.

Жесткость воды. Массовая концентрация кальция в водах: Методические указания/ Составитель — НовГУ, Великий Новгород, 2008. – 12 с.

Понятие жесткости, источники кальция в воде, влияние на живые организмы.

Методические указания предназначены для студентов специальности 020801.65 — «Экология» и всех студентов, изучающих «Общую экологию».

Жесткость — свойство воды, обусловленное присутствием в ней растворенных солей щелочно-земельных металлов (преимущественно кальция и магния). Различают жесткость кальциевую и магниевую, связанную с присутствием в воде соответственно ионов кальция и магния. Суммарное содержание ионов этих металлов в воде называется общей жесткостью.

Общая жёсткость подразделяется на карбонатную, обусловленную присутствием в воде гидрокарбонатов и карбонатов кальция и магния, и некарбонатную, обусловленную наличием кальциевых и магниевых со­лей сильных кислот.

Карбонатную жесткость также называют временной (устранимой), а некарбонатную — постоянной. Гидрокарбонаты кальция и магния при длительном кипячении воды разлагаются с выделением диоксида уг­лерода и выпадающих в осадок карбонатов кальция и магния (при дальнейшем кипячении карбонат магния гидролизуется с образованием гидроксида); жесткость воды при этом уменьшается:

Жесткость, оставшаяся после кипячения воды в течение опреде­ленного времени, достаточного для полного разложения гидрокарбона­тов и удаления диоксида углерода (обычно 1-1,5 ч), называется посто­янной жесткостью. Постоянная жесткость является важной характери­стикой качества воды, используемой для технических целей. Она пре­имущественно зависит от содержания ионов кальция и магния, кото­рые после кипячения уравновешиваются сульфатами и хлоридами. Эту часть постоянной жесткости, называемую также остаточной жестко­стью, можно найти по разности между общей жесткостью и концентра­цией гидрокарбонатов, выраженной в миллимолях на кубический де­циметр. Однако кроме остаточной жесткости в воде после кипячения остается небольшое количество ионов кальция и магния, обусловленное растворимостью карбоната кальция и гидроксида магния. Эта часть по­стоянной жесткости называется неустранимой жесткостью. Поскольку растворимость карбоната кальция и гидроксида магния в присутствии ионов кальция и магния в растворе весьма незначительна, обычно не­карбонатную (остаточную) жесткость отождествляют с постоянной же­сткостью.

Жесткость воды в настоящее время выражают в миллимолях коли­чества вещества эквивалентов (КВЭ) Са2+ и Mg2+, содержащихся в 1 дм3 воды — ммоль/дм3 КВЭ (ранее эту единицу обозначали мг·экв/л или мг·экв/дм3). Миллимоль КВЭ Са2+ и Mg2+ равны соответственно 20,04 мг/моль и 12,15 мг/ммоль.

В естественных условиях ионы кальция и магния поступают в воду в результате взаимодействия растворенного диоксида углерода с карбо­натными минералами и при других процессах растворения и химиче­ского выветривания горных пород. Источником этих ионов являются также микробиальные процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий: силикатной, металлургической, стекольной, химиче­ской промышленности, стоки с сельскохозяйственных угодий.

Общая жесткость поверхностных вод колеблется в основном от единиц до десятков миллимолей КВЭ в кубическом дециметре, при­чем карбонатная жесткость часто составляет 70-80 % от общей жест­кости. Она подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего в период паводка. Жесткость подземных вод более постоянна.

Вода с жесткостью менее 4 ммоль/дм3 КВЭ характеризуется как мягкая; от 4 до 8 ммоль/дм3 КВЭ — средней жесткости; от 8 до 12 ммоль/дм3 КВЭ — жесткая; более 12 ммоль/дм3 КВЭ — очень жесткая.

Обычно преобладает (иногда в несколько раз) жесткость, обу­словленная ионами кальция, однако в отдельных случаях, магниевая жесткость может достигать 50-60 % общей жесткости и более (часто магниевая жесткость превосходит кальциевую в морских и океаниче­ских водах, либо в поверхностных водах суши с высоким содержанием сульфат-ионов).

Высокая жесткость оказывает отрицательное влияние на свойст­ва воды используемой в промышленности и для хозяйственно-бытовых целей. Жесткие требования в отношении величины жесткости предъ­являются к воде, питающей паросиловые установки, поскольку в присутствии сульфатов и карбонатов кальций и магний образуют проч­ную накипь, уменьшающую теплопроводность металла и приводящую к перерасходу топлива и перегреву котлов. Для устранения жесткости применяют различные способы — осаждение труднорастворимых солей кальция и магния химическим или термическим путем, умягчение с по­мощью ионитов.

Высокая жесткость, особенно, обусловленная превышением солей магния, ухудшает органолептические свойства воды, придавая ей горь­коватый вкус и оказывая отрицательное воздействие на органы пище­варения. Предельно допустимая величина жесткости в питьевых водах 7 ммоль/дм3 КВЭ, но в некоторых случаях допускается использовать для питьевых целей воду с жесткостью 10 ммоль/дм КВЭ.

1.1 Метод измерения жесткости

Выполнение измерений жесткости основано на способности ио­нов кальция и магния в среде аммонийно-аммиачного буферного рас­твора (рН 9-10) образовывать с трилоном Б малодиссоциированные комплексные соединения. При титровании вначале связывается каль­ций, образующий более прочный комплекс с трилоном Б, а затем магний. Конечная точка титрования определяется по изменению ок­раски индикатора эриохрома черного Т от вишнёво-красной (окраска соединения магния с индикатором) до голубой (окраска свобод­ного индикатора).

Границы погрешности при вероятности Р=0,95 (±Δ):

от 0,060 до 2,000 ммоль/дм3 – 0,037+0,040Х

св.2,000 до 13,00 включ. – -0,05+0,073Х

Объём аликвоты пробы воды для выполнения измерений вели­чины жесткости выбирают исходя из предполагаемой величины жё­сткости или по результатам оценочного титрования.

Для оценочного титрования отбирают 10 см3 воды, добавляют 0,5 см3 буферного раствора, 7-10 мг индикатора эриохрома черного Т и титруют раствором трилона Б с до перехода окраски из вишнево-красной в голубую. По величине израсходованного на титрование объёма раствора трилона Б выбирают из таблицы 1 соответствующий объем аликвоты пробы воды для выполнения измерений величины жесткости.

Таблица 1 — Объём пробы воды, рекомендуемый для выполнения измерений жесткости

Предполагаемая жесткость воды, моль/дм3

Объем раствора трилона Б, израсходованный при оценочном титровании, см3

Рекомендуемый объем аликвоты пробы воды, см3

источник

1.1 Настоящий руководящий документ устанавливает методику выполнения измерений (далее — методика) массовой концентрации кальция в пробах природных и очищенных сточных вод титриметрическим методом в диапазоне от 1,0 до 200,0 мг/дм 3 .

При анализе проб воды с массовой концентрацией кальция, превышающей 200 мг/дм 3 , допускается выполнение измерений после соответствующего разбавления пробы дистиллированной водой.

1.2 Настоящий руководящий документ предназначен для использования в лабораториях, осуществляющих анализ природных и очищенных сточных вод.

В настоящем руководящем документе использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 17.1.5.04-81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия

ГОСТ 17.1.5.05-85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р 51592-2000 Вода. Общие требования к отбору проб

МИ 2881-2004 Рекомендация. ГСИ. Методики количественного химического анализа. Процедуры проверки приемлемости результатов анализа.

Примечание : Ссылки на остальные нормативные документы приведены в разделах 4, В.3 и В.4.

3.1 При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерения с вероятностью 0,95 не должны превышать значений, приведенных в таблице 1.

Таблица 2 — Диапазон измерений, значения характеристик погрешности и ее составляющих (Р = 0,95)

Показатель повторяемости (среднеквадратическое отклонение повторяемости) s г, мг/дм 3

Показатель воспроизводимости (среднеквадратическое отклонение воспроизводимости) s R, мг/дм 3

Показатель правильности (границы систематической погрешности при вероятности Р = 0,95) ± D с, мг/дм 3

Показатель точности (границы погрешности при вероятности Р = 0,95) ± D , мг/дм 3

При выполнении измерений в пробах с массовой концентрацией кальция свыше 200 мг/дм 3 после соответствующего разбавления погрешность измерения не превышает величины D ×h , где D — погрешность измерения концентрации кальция в разбавленной пробе; h — степень разбавления.

Предел обнаружения кальция 0,6 мг/дм 3 .

Значения показателя точности методики используют при:

— оформлении результатов измерений, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения измерений;

— оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

При выполнении измерений применяют следующие средства измерений и другие технические средства:

4.1.1 Весы лабораторные высокого (II ) класса точности по ГОСТ 24104-2001.

4.1.2 Весы лабораторные среднего (III ) класса точности по ГОСТ 24104-2001 с пределом взвешивания 200 г.

4.1.3 Государственный стандартный образец состава водного раствора кальция ГСО 8065-95 (далее — ГСО).

4.1.4 Колбы мерные 2 класса точности исполнения 2, 2а по ГОСТ 1770-74 вместимостью: 250 см 3 — 4 шт.

4.1.5 Пипетки градуированные 2 класса точности исполнения 1, 2 по ГОСТ 29227-91 вместимостью: 1 см 3 — 5 шт.

4.1.6 Пипетки с одной отметкой 2 класса точности исполнения 2 по ГОСТ 29169-91 вместимостью: 10 см 3 — 2 шт.

4.1.7 Бюретки 2 класса точности исполнения 1, 3 по ГОСТ 29251-91 вместимостью:

4.1.8 Цилиндры мерные исполнения 1, 3 по ГОСТ 1770-74 вместимостью:

4.1.9 Пробирки конические исполнения 1 по ГОСТ 1770-74 вместимостью

4.1.10 Колбы конические Кн исполнения 2, ТХС, по ГОСТ 25336-82 вместимостью

4.1.11 Стаканы В-1, ТХС по ГОСТ 25336-82 вместимостью:

4.1.12 Стакан полипропиленовый 250 см 3 — 1 шт.

4.1.13 Воронки лабораторные по ГОСТ 25336-82 диаметром:

4.1.14 Стаканчики для взвешивания (бюксы) по ГОСТ 25336-82:

4.1.15 Ступка № 3 или 4 по ГОСТ 9147-80 — 1 шт.

4.1.16 Колонка хроматографическая диаметром 1,5 — 2,0 см и

4.1.17 Стекло часовое — 1 шт.

4.1.18 Палочки стеклянные — 2 шт.

4.1.19 Склянки для хранения проб и растворов из светлого и темного стекла с завинчивающимися или притертыми пробками вместимостью 100 см 3 , 250 см 3 , 500 см 3 , 1000 см 3 .

4.1.20 Посуда полиэтиленовая (полипропиленовая) для хранения проб и растворов вместимостью 100 см 3 , 250 см 3 , 500 см 3 , 1000 см 3 .

4.1.22 Шкаф сушильный общелабораторного назначения.

4.1.23 Электроплитка с закрытой спиралью по ГОСТ 14919-83.

Читайте также:  Анализ на фосфаты в котловой воде

4.1.24 Устройство для фильтрования проб с использованием мембранных или бумажных фильтров.

Допускается использование других типов средств измерений, посуды и вспомогательного оборудования, в том числе импортных, с характеристиками не хуже, чем у приведенных в 4.1.

При выполнении измерений применяют следующие реактивы и материалы:

4.2.1 Кальций углекислый (карбонат кальция) по ГОСТ 4530-76, х.ч.

4.2.2 Соль динатриевая этилендиамин -N ,N ,N,N-тетрауксусной кислоты 2-водная (трилон Б) по ГОСТ 10652-73, ч.д.а.

4.2.3 Цинк гранулированный по ТУ 6-09-5294-86, ч.д.а.

4.2.4 Аммоний хлористый (хлорид аммония) по ГОСТ 3773-72, ч.д.а.

4.2.5 Аммиак водный по ГОСТ 3760-79, ч.д.а.

4.2.6 Натрий хлористый (хлорид натрия) по ГОСТ 4233-77, ч.д.а.

4.2.7 Натрия гидроокись (гидроксид натрия) по ГОСТ 4328-77, ч.д.а.

4.2.8 Натрий сернистый 9-водный (сульфид натрия) по ГОСТ 2053-77, ч.д.а., или натрия N ,N -диэтилдитиокарбамат 3-водный (диэтилдитиокарбамат натрия) по ГОСТ 8864-71, ч.д.а.

4.2.9 Кислота соляная по ГОСТ 3118-77, ч.д.а.

4.2.10 Пурпурат аммония (мурексид) по ТУ 6-09-1657-72, ч.д.а.

4.2.11 Нафтоловый зеленый Б.

4.2.12 Эриохром черный Т (хромоген черный ЕТ).

4.2.13 Гидроксиламина гидрохлорид по ГОСТ 5456-79, ч.д.а.

4.2.15 Квасцы алюмокалиевые по ГОСТ 4329-77, ч.д.а.

4.2.16 Барий хлорид 2-водный (хлорид бария) по ГОСТ 4108-72, ч.д.а.

4.2.17 Вода дистиллированная по ГОСТ 6709-72.

4.2.17 Универсальная индикаторная бумага (рН 1-10) по ТУ 6-09-1181-76.

4.2.18 Фильтры мембранные «Владипор МФАС-ОС-2», 0,45 мкм, по ТУ 6-55-221-1-29-89 или другого типа, равноценные, по характеристикам или фильтры бумажные обеззоленные «синяя лента» по ТУ 6-09-1678-86.

4.2.19 Фильтры бумажные обеззоленные «белая лента» по ТУ 6-09-1678-86.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже указанной в 4.2.

Выполнение измерений основано на способности ионов кальция образовывать с трилоном Б малодиссоциированное, устойчивое в щелочной среде соединение. Конечная точка титрования определяется по изменению окраски индикатора (мурексида) из розовой в красно-фиолетовую. Для увеличения четкости перехода окраски предпочтительнее использовать смешанный индикатор (мурексид + нафтоловый зелёный Б). При этом в конечной точке титрования окраска изменяется от грязно-зеленой до синей.

Магний в условиях анализа осаждается в виде гидроксида и не мешает определению.

6.1 При выполнении измерений массовой концентрации кальция в пробах природных и очищенных сточных вод соблюдают требования безопасности, установленные в национальных стандартах и соответствующих нормативных документах.

6.2 По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся ко 2, 3 классам опасности по ГОСТ 12.1.007.

6.3 Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных ПДК в соответствии с ГОСТ 12.1.005.

6.4 Дополнительных требований по экологической безопасности не предъявляется.

К выполнению измерений и обработке их результатов допускаются лица со средним профессиональным образованием или без профессионального образования, но имеющие стаж работы в лаборатории не менее года и освоившие методику.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

— температура окружающего воздуха (22 ± 5) °С;

— атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.);

— влажность воздуха не более 80 % при 25 °С;

— напряжение в сети (220 ± 10) В;

— частота переменного тока в сети питания (50 ± 1) Гц.

Отбор проб для выполнения измерений массовой концентрации кальция производится в соответствии с ГОСТ 17.1.5.05 и ГОСТ Р 51592. Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04 и ГОСТ Р 51592. Мутные пробы фильтруют через мембранный фильтр 0,45 мкм или бумажный фильтр «синяя лента». Первую порцию фильтрата следует отбросить. Пробы хранят в стеклянной или полиэтиленовой посуде не более 6 мес.

10.1 Приготовление растворов и реактивов

10.1.1 Раствор трилона Б с молярной концентрацией 0,02 моль/дм 3 количества вещества эквивалента (далее — КВЭ).

Растворяют 3,72 г трилона Б в 1 дм 3 дистиллированной воды. Точную концентрацию раствора устанавливают по раствору хлорида цинка в соответствии с 10.2 не реже 1 раза в месяц.

Раствор хранят в плотно закрытой посуде.

Отвешивают около 0,35 г металлического цинка, смачивают его небольшим количеством концентрированной соляной кислоты и сейчас же промывают дистиллированной водой. Цинк сушат в сушильном шкафу при температуре 105 °С в течение 1 ч, затем охлаждают и взвешивают на лабораторных весах с точностью до четвертого знака после запятой.

Навеску цинка количественно переносят в мерную колбу вместимостью 500 см 3 , в которую предварительно вносят 10 — 15 см 3 бидистиллированной воды и 1,5 см 3 концентрированной соляной кислоты. Цинк растворяют. После растворения объем раствора доводят до метки на колбе дистиллированной водой и перемешивают.

Рассчитывают молярную концентрацию хлорида цинка С Zn , моль/дм 3 КВЭ, в полученном растворе по формуле

(1)

где q — навеска металлического цинка, г;

32,69 — молярная масса эквивалента цинка (1/2 Zn 2+ ), г/моль;

V — вместимость мерной колбы, дм 3 .

При расчете значение С Zn округляют таким образом, чтобы оно содержало 4 значащих цифры.

10.1.3 Аммонийно-аммиачный буферный раствор

В мерной колбе вместимостью 500 см 3 растворяют в 100 см 3 дистиллированной воды 7,0 г хлорида аммония и добавляют 75 см 3 концентрированного раствора аммиака. Объем раствора доводят до метки на колбе дистиллированной водой и тщательно перемешивают. Буферный раствор хранят в полиэтиленовой посуде не более 2 мес.

10.1.4 Индикатор эриохром черный Т

В ступке с 50 г хлорида натрия тщательно растирают 0,5 г эриохрома черного Т. Хранят в склянке из темного стекла не более 6 мес.

В ступке со 100 г хлорида натрия тщательно растирают 0,2 г мурексида. Хранят в склянке из темного стекла не более 6 мес.

В ступке со 100 г хлорида натрия тщательно растирают 0,2 г мурексида и 0,4 г нафтолового зеленого Б. Хранят в склянке из темного стекла не более 6 мес.

10.1.7 Раствор нафтолового зеленого Б, 0,8 %-ный

В 50 см 3 дистиллированной воды растворяют 0,4 г нафтолового зеленого Б. Раствор хранят в темной склянке в течение 3 мес.

К 5 см 3 0,8 %-ного раствора нафтолового зеленого Б добавляют 45 см 3 дистиллированной воды и перемешивают. Раствор хранят не более 3 дней.

10.1.9 Раствор гидроксида натрия, 20 %-ный

Растворяют 20 г гидроксида натрия в 80 см 3 дистиллированной воды.

10.1.10 Раствор гидроксида натрия, 8 %-ный

Растворяют 40 г гидроксида натрия в 460 см 3 дистиллированной воды.

10.1.11 Раствор гидроксида натрия, 0,4 %-ный

Растворяют 2 г гидроксида натрия в 500 см 3 дистиллированной воды.

Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде.

10.1.12 Раствор сульфида натрия

В 50 см 3 дистиллированной воды растворяют 2 г сульфида натрия. Хранят в плотно закрытой полиэтиленовой посуде в холодильнике не более недели.

10.1.13 Раствор диэтилдитиокарбамата натрия

В 50 см 3 дистиллированной воды растворяют 5 г диэтилдитиокарбамата натрия. Хранят не более 2 недель в холодильнике.

10.1.14 Раствор гидрохлорида гидроксиламина

В 100 см 3 дистиллированной воды растворяют 5 г гидрохлорида гидроксиламина. Хранят в плотно закрытой темной склянке в холодильнике в течение месяца.

10.1.15 Раствор соляной кислоты, 1:3

Смешивают 200 см 3 концентрированной соляной кислоты с 600 см 3 дистиллированной воды.

Подготовка активного угля приведена в приложении А.

10.1.17 Суспензия гидроксида алюминия

Приготовление суспензии гидроксида алюминия приведено в приложении Б.

В коническую колбу вместимостью 250 см 3 с помощью пипетки с одной отметкой вносят 10,0 см 3 раствора хлорида цинка (10.1.2), добавляют 90 см 3 дистиллированной воды, 5 см 3 аммонийно-аммиачного буферного раствора и 70 — 100 мг индикатора эриохрома черного Т. Содержимое колбы тщательно перемешивают и титруют из бюретки вместимостью 25 см 3 раствором трилона Б до перехода окраски из фиолетово-красной в голубую (синюю).

Молярную концентрацию раствора трилона Б СТр, моль/дм 3 КВЭ, рассчитывают по формуле

(2)

где С Zn — молярная концентрация раствора хлорида цинка, моль/дм 3 КВЭ;

VZn — объем раствора хлорида цинка, см 3 .

VZn — объем раствора трилона Б, пошедший на титрование, см 3 .

11.1 Выбор условий титрования

Объём аликвоты пробы воды для выполнения измерений массовой концентрации кальция выбирают исходя из известной величины жёсткости воды или по результатам оценочного титрования.

Для оценочного титрования отбирают 10 см 3 воды, добавляют 0,2 см 3 8 %-ного раствора гидроксида натрия, 20 — 30 мг индикатора мурексида и титруют раствором трилона Б до перехода окраски из розовой в красно-фиолетовую. По величине израсходованного на титрование объёма раствора трилона Б выбирают из таблицы 2 соответствующий объем аликвоты пробы воды для выполнения измерений массовой концентрации кальция.

Таблица 2 — Объём пробы воды, рекомендуемый для выполнения измерений массовой концентрации кальция

Объем раствора трилона Б, израсходованный при оценочном титровании, см 3

Рекомендуемый объем аликвоты пробы воды, см 3

В зависимости от концентрации кальция титрование следует проводить из бюретки подходящей вместимости. Если по результатам оценочного титрования объем трилона Б менее 0,4 см 3 или величина жесткости менее 1 ммоль/дм 3 КВЭ, используют бюретку вместимостью 5 см 3 ; при объеме трилона менее 0,8 см 3 или величине жесткости от 1 до 2 ммоль/дм 3 КВЭ — бюретку вместимостью 10 см 3 ; при более высокой концентрации кальция или величины жесткости — бюретку вместимостью 25 см 3 . При отсутствии бюретки вместимостью 10 см 3 можно использовать бюретку вместимостью 25 см 3 ; допускается замена бюретки вместимостью 5 см 3 бюреткой вместимостью 10 см 3 , однако замена микробюретки вместимостью 5 см 3 бюреткой вместимостью 25 см 3 недопустима.

11.2.1 В коническую колбу вместимостью 250 см 3 отмеривают пипеткой требуемый объем аликвоты пробы, доводят, если необходимо, до 100 см 3 дистиллированной водой, добавляют 2 см 3 8 %-ного раствора гидроксида натрия, 0,2 — 0,3 г индикатора мурексида (см. 10.1.5 ) или смешанного индикатора (см. 10.1.6 ) и титруют раствором трилона Б до перехода окраски из розовой в красно-фиолетовую при использовании мурексида или из грязно-зелёной в синюю при титровании со смешанным индикатором. Повторяют титрование и, если расхождение объемов трилона Б между параллельными титрованиями не превышает приведенных в таблице 3 , за результат принимают среднее значение объёма трилона Б. В противном случае повторяют титрование до получения допустимого расхождения результатов.

11.2.2 Если в период хранения в пробе выпал осадок карбоната кальция, непосредственно перед выполнением измерений прозрачную часть пробы декантируют (или сливают посредством сифона) в чистую сухую колбу. Оставшийся в склянке осадок растворяют, добавив 0,5 — 1 см 3 концентрированной соляной кислоты. Затем прозрачную часть пробы и жидкость с растворенным осадком соединяют вместе и нейтрализуют 20 %-ным раствором гидроксида натрия, добавляя его по каплям и контролируя рН по индикаторной бумаге. Далее отбирают аликвоту полученного раствора и проводят титрование.

Таблица 3 — Допустимые расхождения между параллельными титрованиями в зависимости от объема раствора трилона Б

Допустимое расхождение объемов трилона Б, см 3

11.2.3 Для получения достаточно четкого перехода окраски при титровании со смешанным индикатором важно соотношение мурексида и нафтолового зеленого в смеси. Для разных партий индикаторов это соотношение может быть разным. Если при использовании сухого смешанного индикатора не удается получить четкий переход окраски в конечной точке титрования, следует использовать нафтоловый зеленый в виде 0,08 %-ного раствора (см. 10.1.8). Титрование проводят следующим образом. Отбирают аликвоту воды в коническую колбу, добавляют 2 см 3 8 %-ного раствора гидроксида натрия, 0,2 — 0,3 г индикатора мурексида (см. 10.1.5), перемешивают и приливают раствор нафтолового зеленого Б до тех пор, пока раствор приобретет грязно-зеленую окраску (всего идет примерно 0,9 — 1,2 см 3 раствора). После этого титруют пробу в соответствии с 11.2.1.

11.3 Устранение мешающих влияний

11.3.1 Выполнению измерений массовой концентрации кальция мешают ионы железа (больше 10 мг/дм 3 ), кобальта, никеля (больше 0,1 мг/дм 3 ), алюминия (больше 10 мг/дм 3 ), меди (> 0,05 мг/дм 3 ), вызывая нечеткое изменение окраски в точке эквивалентности, либо полностью исключая возможность индикации конечной точки титрования.

Другие катионы, например, свинец, кадмий, марганец ( II ), цинк, стронций, барий при высоких концентрациях (как правило не встречающихся в природных водах) могут частично титроваться вместе с кальцием и магнием и повышать расход трилона Б. Для устранения или уменьшения мешающего влияния катионов металлов к пробе перед титрованием прибавляют 0,5 см 3 раствора сульфида или диэтилдитиокарбамата натрия и 0,5 см 3 раствора гидрохлорида гидроксиламина.

11.3.2 Результаты титрования могут быть искажены в присутствии значительных количеств анионов (НСО3 — , СО3 — , РО4 — , SiО3 2- ). Для уменьшения их влияния пробу следует титровать сразу после добавления гидроксида натрия и индикатора.

11.3.3 Мешающее влияние взвешенных веществ устраняется фильтрованием пробы.

11.3.4 Если проба воды заметно окрашена за счёт присутствия веществ природного или антропогенного происхождения, затрудняется фиксация конечной точки титрования. В этом случае пробу перед выполнением измерений следует пропустить со скоростью 3 — 5 см 3 /мин через хроматографическую колонку, заполненную активным углем (высота слоя 15 — 20 см). Первые 25 — 30 см 3 пробы, прошедшей через колонку, отбрасывают.

Как правило, окрашенные соединения антропогенного происхождения сорбируются активным углем практически полностью, в то время как природного (гумусовые вещества) — лишь частично. При неустраняемой активным углем цветности пробы, обусловленной гумусовыми веществами, определение конечной точки титрования значительно облегчается использованием для сравнения слегка перетитрованной пробы этой же воды (пробы-свидетеля).

Осадок в стакане и фильтр промывают 2 — 3 раза небольшими порциями дистиллированной воды, собирая промывные воды в ту же колбу. После этого доводят раствор в колбе до метки, перемешивают, отбирают из колбы необходимую аликвоту и титруют ее в соответствии с 11.2.

11.3.6 При достаточно высокой концентрации кальция устранить мешающие влияния можно разбавлением пробы дистиллированной водой.

12 Вычисление и оформление результатов измерений

12.1 Массовую X, мг/дм 3 , и молярную Хм, ммоль/дм 3 КВЭ, концентрацию кальция в анализируемой пробе воды находят по формулам

(3)

где 20,04 — масса моля КВЭ кальция (1/2 Са 2+ ), г/моль;

Читайте также:  Анализ на фториды в сточных водах

С mр — молярная концентрация раствора трилона Б, моль/дм 3 КВЭ;

Vm р — объем раствора трилона Б, пошедшего на титрование пробы, см 3 ;

V — объем пробы воды, взятый для титрования, см 3 .

Если устранение цветности пробы осуществлялось с помощью суспензии гидроксида алюминия (см. 11.3.5), полученный результат умножают на 1,25.

12.2 Результат измерения в документах, предусматривающих его использование, представляют в виде:

(4)

где среднее арифметическое значение двух результатов, разность между которыми не превышает предела повторяемости r (2,77 s r ). Значения s r приведены в таблице 1;

± D — границы характеристики погрешности результатов измерений для данной массовой концентрации кальция (таблица 1).

Численные значения результата измерений должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности; последние не должны содержать более двух значащих цифр.

12.3 Допустимо представлять результат в виде

(4)

где ± D л — границы характеристик погрешности результатов измерений, установленные при реализации методики в лаборатории и обеспечиваемые контролем стабильности результатов измерений.

Примечание — Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения D л = 0,84 × D с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

12.4 Результаты измерений оформляют протоколом или записью в журнале по формам, приведенным в Руководстве по качеству лаборатории.

13.1.1 Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

— оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости, погрешности при реализации отдельно взятой контрольной процедуры);

— контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

13.1.2 Периодичность оперативного контроля и процедуры контроля стабильности результатов выполнения измерений регламентируют в Руководстве по качеству лаборатории.

13.2 Алгоритм оперативного контроля повторяемости

13.2.1 Контроль повторяемости осуществляют для каждого из результатов измерений, полученных в соответствии с методикой. Для этого отобранную пробу воды делят на две части, и выполняют измерения в соответствии с разделом 11.

13.2.2 Результат контрольной процедуры r к , мг/дм 3 , рассчитывают по формуле

где Х1, Х2 — результаты измерений массовой концентрации кальция в пробе, мг/дм 3 .

13.2.3 Предел повторяемости rn, мг/дм 3 , рассчитывают по формуле

где s r — показатель повторяемости, мг/дм 3 (таблица 1).

13.2.4 Результат контрольной процедуры должен удовлетворять условию

13.2.5 При несоблюдении условия (8) выполняют еще два измерения и сравнивают разницу между максимальным и минимальным результатами с нормативом контроля равным 3,6 ×s r . В случае повторного превышения предела повторяемости, поступают в соответствии с разделом 5 ГОСТ Р ИСО 5725-6.

13.3 Алгоритм оперативного контроля процедуры выполнения измерений с использованием метода добавок совместно с методом разбавления проб

13.3.1 Оперативный контроль процедуры выполнения измерений с использованием метода добавок совместно с методом разбавления пробы проводят, если массовая концентрация кальция в рабочей пробе составляет 10 мг/дм 3 и более. В противном случае оперативный контроль проводят с использованием метода добавок согласно 13.4. Для введения добавок используют ГСО или аттестованный раствор кальция (приложение В).

13.3.2 Оперативный контроль исполнителем процедуры выполнения измерений проводят путем сравнения результатов отдельно взятой контрольной процедуры Кк с нормативом контроля К.

13.3.3 Результат контрольной процедуры Кк, мг/дм 3 , рассчитывают по формуле

(9)

где — результат контрольного измерения массовой концентрации кальция в пробе, разбавленной в h раз, с известной добавкой, мг/дм 3 ;

— результат контрольного измерения массовой концентрации кальция в пробе, разбавленной в h раз, мг/дм 3 ;

— результат измерения массовой концентрации кальция в рабочей пробе, мг/дм 3 ;

С — концентрация добавки, мг/дм 3 .

13.3.4 Норматив контроля К, мг/дм 3 , рассчитывают по формуле

(10)

где D лх² ( D лх¢ и D лх ) — значения характеристик погрешности результатов измерений, установленные при реализации методики в лаборатории, соответствующие массовой концентрации кальция в разбавленной пробе с добавкой (разбавленной пробе, рабочей пробе), мг/дм 3 .

Примечание — Допустимо для расчета норматива контроля использовать значения характеристик погрешности, полученные расчетным путем по формулам D лх¢ = 0,84 × D х¢ и D лс = 0,84 × D х.

13.3.5 Если результат контрольной процедуры удовлетворяет условию:

процедуру анализа признают удовлетворительной.

При невыполнении условия (11) контрольную процедуру повторяют. При повторном невыполнении условия (11), выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.4.1 Контроль исполнителем процедуры выполнения измерений проводят путем сравнения результатов отдельно взятой контрольной процедуры Кк с нормативом контроля К.

13.4.2 Результат контрольной процедуры Кк, мг/дм 3 , рассчитывают по формуле

(12)

где — результат контрольного измерения массовой концентрации кальция в пробе с известной добавкой, мг/дм 3 ;

— результат измерения массовой концентрации кальция в рабочей пробе, мг/дм 3 ;

С — концентрация добавки, мг/дм 3 .

13.4.3 Норматив контроля погрешности К, мг/дм 3 , рассчитывают по формуле

(13)

где D лх¢ ( D лх ) — значения характеристики погрешности результатов измерений, установленные при реализации методики в лаборатории, соответствующие массовой концентрации кальция в пробе с добавкой (рабочей пробе), мг/дм 3 .

Примечание — Допустимо для расчета норматива контроля использовать значения характеристик погрешности, полученные расчетным путем по формулам D лх¢ = 0,84 × D х¢ и D лс = 0,84 × D х.

3.4.4 Если результат контрольной процедуры удовлетворяет условию

процедуру признают удовлетворительной.

При невыполнении условия (14) контрольную процедуру повторяют. При повторном невыполнении условия (14), выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости R . При выполнении этого условия приемлемы оба результата измерений и в качестве окончательного может быть использовано их общее среднее значение. Значение R рассчитывают по формуле

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно раздела 5 ГОСТ Р ИСО 5725-6 или МИ 2881.

Примечание — Проверка приемлемости проводится при необходимости сравнения результатов измерений, полученных двумя лабораториями.

Порцию активного угля, достаточную для заполнения колонки, помещают в термостойкую коническую колбу, добавляют 100 — 150 см 3 раствора соляной кислоты 4 моль/дм 3 и кипятят 2 — 3 ч, накрыв колбу часовым стеклом. Если раствор кислоты окрашивается, повторяют операцию до тех пор, пока он не останется бесцветным. Уголь отмывают дистиллированной водой до значения рН, соответствующего рН дистиллированной воды по универсальной индикаторной бумаге, добавляют 100 — 150 см 3 раствора гидроксида натрия 1 моль/дм 3 и выдерживают 8 — 10 ч. Если появляется окраска, операцию повторяют.

Очищенный уголь отмывают дистиллированной водой до нейтральной реакции по универсальной индикаторной бумаге. Хранят в склянке с дистиллированной водой.

После пропускания каждой пробы воды уголь в колонке регенерируют промыванием 0,4 %-ным раствором гидроксида натрия до исчезновения окраски последнего, затем дистиллированной до нейтральной реакции.

В стакан вместимостью 1 дм 3 помещают 500 см 3 дистиллированной воды и растворяют в ней 63 г алюмокалиевых квасцов (КА l (SO 4 )2 × 12Н2О). Нагревают раствор примерно до 60 °С и при постоянном перемешивании медленно прибавляют 28 см 3 аммиака водного. Дают смеси отстояться в течение 1 ч, а затем промывают несколько раз дистиллированной водой, декантируя жидкость над осадком. Последняя промывная вода не должна давать положительной реакции на сульфаты (проба с раствором хлорида бария). Для приготовления раствора хлорида бария в 80 см 3 дистиллированной воды растворяют 10 г хлорида бария, прибавляют 10 см 3 концентрированной соляной кислоты и перемешивают. Для проведения пробы на сульфаты к 5 см 3 промывной воды приливают 0,5 см 3 раствора хлорида бария. Помутнение свидетельствует о присутствии сульфатов в промывной воде.

В.1 Назначение и область применения

Настоящая методика регламентирует процедуру приготовления аттестованных растворов кальция, предназначенных для контроля точности результатов измерений массовой концентрации кальция в природных и очищенных сточных водах титриметрическим методом.

В.2 Метрологические характеристики

Метрологические характеристики аттестованных растворов приведены в таблице В.1.

Таблица В.1 — Метрологические характеристики аттестованных растворов кальция

Значение характеристики для аттестованного раствора

Аттестованное значение массовой концентрации кальция, мг/см 3

Границы погрешности установления аттестованного значения массовой концентрации кальция (Р = 0,95), мг/см 3

В.3.1 Весы лабораторные высокого (II ) класса точности по ГОСТ 24104-2001.

В.3.2 Колбы мерные 2 класса точности по ГОСТ 1770-74 вместимостью 250 см 3 — 2 шт.

В.3.3 Пипетка с одной отметкой по ГОСТ 29169-91 вместимостью 25 см 3 .

В.3.4 Цилиндр мерный по ГОСТ 1770-74 вместимостью 100 см 3 .

В.3.5 Стакан химический полипропиленовый вместимостью 250 см 3 .

В.3.6 Стакан В-1, ТХС по ГОСТ 25336-82 вместимостью 250 см 3 .

В.4.1 Кальций углекислый (карбонат кальция) по ГОСТ 4530-76, х.ч. Основной компонент — СаСО3, массовая доля которого не менее 99 %, молекулярная масса — 100,09.

В.4.2 Кислота соляная по ГОСТ 3118-77, х.ч.

В.4.3. Вода дистиллированная, ГОСТ 6709-72.

В.5 Процедура приготовления аттестованных растворов

В.5.1 Приготовление аттестованного раствора кальция АР1-Са

На весах высокого класса точности взвешивают в полипропиленовом стакане вместимостью 250 см 3 31,216 г карбоната кальция с точностью до четвертого знака после запятой. Навеску смачивают дистиллированной водой и добавляют постепенно 120 см 3 соляной кислоты (1:1) при перемешивании. Накрывают стакан чистым часовым стеклом и оставляют стоять до растворения.

После растворения осторожно, по палочке, переносят раствор через воронку в мерную колбу вместимостью 250 см 3 . Три-четыре раза ополаскивают стакан и воронку дистиллированной водой и переносят смывы в ту же колбу. Доводят раствор в колбе дистиллированной водой до метки и перемешивают.

Полученному раствору приписывают массовую концентрацию кальция 50,0 мг/см 3 .

В.5.2 Приготовление аттестованного раствора АР2-Са

В мерную колбу вместимостью 250 см 3 вносят 25,0 см 3 раствора кальция АР1-Са пипеткой с одной отметкой вместимостью 5 см 3 . Объем раствора доводят до метки на колбе дистиллированной водой и перемешивают.

Полученному раствору приписывают массовую концентрацию кальция 5,00 мг/см 3 .

В.6 Расчет метрологических характеристик аттестованных растворов

В.6.1 Расчет метрологических характеристик аттестованного раствора АР1-Са

Аттестованное значение массовой концентрации кальция С1, мг/см 3 , рассчитывают по формуле

(В.1)

где m — масса навески карбоната кальция, г;

V — вместимость мерной колбы, см 3 ;

40,08 и 100,09 — масса моля кальция и карбоната кальция, соответственно, г/моль.

Расчет предела возможных значений погрешности установления массовой концентрации кальция в растворе АР1-Са D 1 , мг/см 3 , проводится по формуле:

, (В.2)

где С1 — приписанное раствору значение массовой концентрации кальция, мг/см 3 ;

D m — предельное значение возможного отклонения массовой доли основного вещества в реактиве от приписанного значения m , %;

m массовая доля основного вещества в реактиве, приписанная реактиву квалификации х.ч., %;

D m — предельная возможная погрешность взвешивания, г;

m — масса навески карбоната кальция, г;

D V — предельное значение возможного отклонения объема мерной колбы от номинального значения, см 3 ;

V — номинальный объем используемой мерной колбы, см 3 .

Погрешность установления массовой концентрации кальция в растворе АР1-Са равна

В.6.2 Расчет метрологических характеристик аттестованного раствора АР2-Са

Аттестованное значение массовой концентрации кальция С2, мг/см 3 , рассчитывают по формуле

(В.3)

где С1 — приписанное раствору АР1-Са значение массовой концентрации кальция, мг/см 3 ;

V 1 — объем раствора АР1-Са, отбираемый пипеткой, см 3 ;

V 2 — вместимость мерной колбы, см3.

Расчет погрешности установления массовой концентрации кальция в растворе АР2-Са D 2 , мг/см 3 , проводится по формуле:

(В.4)

где С2 — приписанное раствору АР2-Са значение массовой концентрации кальция, мг/см 3 ;

D 1 — погрешность приготовления аттестованного раствора АР1-Са, мг/см 3 ;

С1 — приписанное раствору АР1-Са значение массовой концентрации кальция, мг/дм 3 ;

D V1 — предельное значение возможного отклонения объема V 1 от номинального значения, см 3 ;

V 1 — объем раствора АР1-Са, отбираемый пипеткой, см 3 ;

D V2 — предельное значение возможного отклонения вместимости мерной колбы от номинального значения, см 3 ;

V 2 — вместимость мерной колбы, см 3 .

Погрешность установления массовой концентрации кальция в растворе АР2-Са равна

В.7 Требования безопасности

Необходимо соблюдать общие требования техники безопасности при работе в химических лабораториях.

В.8 Требования к квалификации исполнителей

Аттестованные растворы может готовить инженер или лаборант со средним профессиональным образованием, прошедший специальную подготовку и имеющий стаж работы в химической лаборатории не менее 6 месяцев.

В.9 Требования к маркировке

На склянки с аттестованными растворами должны быть наклеены этикетки с указанием условного обозначения аттестованного раствора, массовой концентрации кальция в растворе, погрешности ее установления и даты приготовления.

Аттестованный раствор АР1-Са хранят в плотно закрытой склянке в течение года.

Аттестованный раствор АР2-Са хранят в плотно закрытой склянке не более 3 мес.

Федеральная служба по гидрометеорологии и мониторингу
окружающей среды

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ
«ГИДРОХИМИЧЕСКИЙ ИНСТИТУТ»

СВИДЕТЕЛЬСТВО № 55.24-2006
об аттестации МВИ

Методика выполнения измерений массовой концентрации кальция в воде титриметрическим методом с трилоном Б.

разработанная ГУ «Гидрохимический институт» (ГУ ГХИ)

и регламентированная РД 52.24.403-2007

аттестована в соответствии с ГОСТ Р 8.563-96 с изменениями 2002 г.

Аттестация осуществлена по результатам экспериментальных исследований

В результате аттестации МВИ установлено:

1. МВИ соответствует предъявляемым к ней метрологическим требованиям и обладает следующими основными метрологическими характеристиками:

Диапазон измерений, значения характеристик погрешности и ее составляющих (Р = 0,95)

Диапазон измерений массовой концентрации кальция X, мг/дм 3

Показатель повторяемости (среднеквадратическое отклонение повторяемости) s r, мг/дм 3

Показатель воспроизводимости (среднеквадратическое отклонение воспроизводимости) s R, мг/дм 3

Показатель правильности (границы систематической погрешности при вероятности Р = 0,95) ± D с, мг/дм 3

Показатель точности (границы погрешности при вероятности Р = 0,95) ± D , мг/дм 3

2. Диапазон измерений, значения пределов повторяемости и воспроизводимости при доверительной вероятности Р = 0,95

Диапазон измерений массовой концентрации кальция, X, мг/дм 3

Предел повторяемости (для двух результатов параллельных определений) r, мг/дм 3

Предел воспроизводимости (значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях, при вероятности Р = 0,95), R, мг/дм 3

3. При реализации методики в лаборатории обеспечивают:

— оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости и погрешности при реализации отдельно взятой контрольной процедуры);

— контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

Периодичность оперативного контроля и процедуры контроля стабильности результатов выполнения измерений регламентируют в Руководстве по качеству лаборатории.

источник