Меню Рубрики

Анализ воды на фосфат ионы

Фосфор относится к числу биогенных элементов, имеющих особое значение для развития жизни в водных объектах. Соединения фосфора встречаются во всех живых организмах, они регулируют энергетические процессы клеточного обмена. При отсутствии соединений фосфора в воде рост и развитие водной растительно­сти прекращается, однако избыток их также приводит к негативным последст­виям, вызывая процессы эвтрофирования водного объекта и ухудшение качества воды.

Соединения фосфора попадают в природные воды в результате процессов жиз­недеятельности и посмертного распада водных организмов, выветривания и рас­творения пород, содержащих фосфаты, обмена с донными осадками, поступления с поверхности водосбора, а также с бытовыми и промышленными сточными во­дами. Загрязнению природных вод фосфором способствуют широкое применение фосфорных удобрений, полифосфатов, содержащихся в моющих средствах, флотореагентов и др.

Фосфаты в воде могут присутствовать в виде различных ионов в зависимости от величины рН. В водах соединения фосфора, как минеральные, так и органические могут при­сутствовать в растворенном, коллоидном и взвешенном состоянии. Переход со­единений фосфора из одной формы в другую осуществляется довольно легко, что создает сложности при определении тех или иных его форм. Обычно идентификация их осуществляется по процедуре, с помощью которой проводят химический анализ сточных вод . В том случае, когда анализируют фильтрованную пробу воды, говорят о раство­ренных формах, в противном случае — о суммарном содержании. Содержание взвешенных соединений фосфора находят по разности. Определение растворен­ных фосфатов (ортофосфатов) при анализе сточных вод осуществляется по реакции с молибдатом аммония и аскорбиновой кислотой с образованием молибденовой сини в исходной водной пробе, в то время как для определения полифосфатов в сточной воде требуется предварительно перевести их в фосфаты путем кислого гидролиза.

Для получения сравнимых результатов оп­ределения соединений фосфора и однозначной их интерпретации важно строгое соблюдение условий предварительной обработки проб и процедуры анализа сточных вод , в частности при определении растворенных форм проба должна быть отфильтрова­на как можно быстрее после отбора через фильтр с размером пор 0,45 мкм.

Концентрация фосфатов в незагрязненных природных водах может составлять тысячные, редко сотые доли мг/дм 3 . Повышение их содержания свидетельствует о загрязнении водного объекта. Концентрация фосфатов в воде подвержена се­зонным колебаниям, поскольку она зависит от интенсивности процессов фото­синтеза и биохимического разложения органических веществ Минимальные концентрации соединений фосфора наблюдаются весной и летом, максимальные — осенью и зимой

Уменьшение содержания фосфатов в воде связано с потреблением его водными организмами, а также переходом в донные отложения при образовании нераство­римых фосфатов

Предельно допустимая концентрация фосфатов (в пересчете на фосфор) в во­де водных объектов рыбохозяйственного назначения составляет

— для олиготрофных водных объектов 0,05 мг/дм;

— для мезотрофных — 0,15 мг/дм;

Предельно допустимая концентрация фосфатов для водных объектов хозяйст­венно-питьевого и культурно-бытового назначения не установлена, в них норми­руется только содержание полифосфатов Предельно допустимая концентрация полифосфатов составляет 3,5 мг/дм 3 в пересчете на фосфат-ион и 1,1 мг/дм 3 в пересчете на фосфор.

В лаборатории «Экологический мониторинг» вы можете заказать комплексный анализ питьевой воды, ливневых сточных вод и промышленных, хозбытовых стоков. Заказать анализ сточных вод, можно оставив заявку на sales@chemanalytica.ru , или воспользовавшись формой обратной связи.

Если у Вас возникли вопросы, направляйте их к нам на почту по адресу sales@chemanalytica.ru или звоните по телефонам

8-800-600-62-40; 8(495)969-35-06.

источник

ПНД Ф 14.1:4.248-07. Количественный химический анализ вод. Методика выполнения измерений массовых концентраций ортофосфатов, полифосфатов и фосфора общего в питьевых, природных и сточных водах фотометрическим методом

1. Приписанные характеристики погрешности измерений и ее составляющих

3. Средства измерений, вспомогательное оборудование, реактивы и материалы

4. Условия безопасного проведения работ

5. Требования к квалификации оператора

6. Условия выполнения измерений

7. Отбор и хранение проб воды

8. Подготовка к выполнению измерений

10. Вычисление результатов измерений

11. Оформление результатов измерений

12. Оценка приемлемости результатов измерений

13. Контроль качества результатов измерений при реализации методики в лаборатории

Приложение 1. Блок схема проведения определения ортофосфатов, полифосфатов и фосфора общего фотометрическим методом

Утвержден: ФГУ Федеральный центр анализа и оценки техногенного воздействия 11.07.2007

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ЭКОЛОГИЧЕСКОМУ,
ТЕХНОЛОГИЧЕСКОМУ И АТОМНОМУ НАДЗОРУ

Директор ФГУ «Федеральный центр анализа и оценки техногенного воздействия»

_____________ К.А. Сапрыкин

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
МАССОВЫХ КОНЦЕНТРАЦИЙ ОРТОФОСФАТОВ,
полифосфатов и фосфора общего в
питьевых, ПРИРОДНЫХ И СТОЧНЫХ ВОДАХ
ФОТОМЕТРИЧЕСКИМ МЕТОДОМ

Методика допущена для целей государственного
экологического контроля

Настоящий нормативный документ устанавливает методику фотометрического определения полифосфатов, фосфора общего и растворенных ортофосфатов (фосфат-ионов) (в пересчете на РО4) в пробах питьевых, природных и сточных вод при массовых концентрациях:

Диапазон определяемых концентраций, мг/дм3

Если массовая концентрация определяемого показателя превышает верхнюю точку градуировочного графика, анализируемую пробу разбавляют.

Если массовая концентрация определяемого показателя в анализируемой пробе превышает верхнюю границу диапазона измеряемых концентраций, то допускается разбавление пробы дистиллированной водой таким образом, чтобы концентрация определяемого показателя соответствовала регламентированному диапазону.

Определению мешают сероводород и сульфиды в концентрациях, превышающих 3 мг/дм3. Мешающее влияние устраняют, прибавляя перманганат калия к 100 см3 анализируемой воды в таком количестве, чтобы при встряхивании в течение 1 — 2 минут сохранялась слабо-розовая окраска. Затем прибавляют реактивы в обратном, чем указано в методике порядке: сначала приливают раствор аскорбиновой кислоты, перемешивают и добавляют раствор смешанного молибденово-кислого реактива. В таком же порядке прибавляют реактивы в присутствии хроматов в концентрации более 2 мг/дм3.

Мешающее влияние нитритов устраняют добавлением сульфаминовой кислоты, входящей в состав смешанного молибденово-кислого реактива.

Мышьяк, ртуть, кремний мешают определению в концентрациях более 5 мг/дм3, ванадий и медь в концентрациях более 10 мг/дм3. Мешающее влияние кремния устраняется в ходе анализа за счет высокой кислотности используемого реактива, а также разбавлением пробы перед анализом. Влиянием мышьяка и металлов можно пренебречь, поскольку они, как правило, находятся в воде в концентрациях значительно ниже 10 мг/дм3.

1.1. Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведенных в таблице 2.

Значения характеристик погрешности и её составляющих при доверительной вероятности Р = 0,95

Диапазон измерений, мг/дм3 РО4

Показатель повторяемости (среднеквадратическое отклонение повторяемости), sr(d), %

Показатель воспроизводимости (среднеквадратическое отклонение воспроизводимости), sR(d), %

Показатель точности (границы, в которых находится погрешность методики), d, %

Питьевые и природные воды

1.2. Значение показателя точности методики используют при:

— оформлении результатов измерений, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

Метод основан на взаимодействии ортофосфатов с молибдатом аммония в кислой среде с образованием молибдофосфорной кислоты, её восстановлением аскорбиновой кислотой в присутствии хлорида сурьмы с последующим фотометрическим измерением окрашенной в синий цвет восстановленной формы молибдофосфорной кислоты (молибденовой сини) при длине волны 880 — 890 нм.

Определение полифосфатов и фосфора общего проводят после предварительного гидролиза и/или минерализации их до ортофосфатов. Блок-схема анализа растворенных ортофосфатов, полифосфатов и фосфора общего приведена в Приложении 1.

3.1. Средства измерений и вспомогательное оборудование

3.1.1. Весы лабораторные по ГОСТ 24104 с наибольшим пределом взвешивания 210 г и ценой деления 0,0001 г.

3.1.2. Дистиллятор или установка любого типа для получения воды дистиллированной по ГОСТ 6709 или деминерализованной степени чистоты 2 по ИСО 3696.

3.1.3. Государственный стандартный образец состава водного раствора ортофосфат-ионов (фосфат-ионов).

3.1.4. Защитный экран для реактора минерализации, изготовленный из поликарбоната, толщиной 4,5 мм и высотой 37,5 см;

3.1.5. Колбы мерные вместимостью 50, 100, 1000 см3 по ГОСТ 1770, 2 класс точности.

3.1.6. Пипетки вместимостью 1, 2, 5 и 10 см3 по ГОСТ 29227, 2 класс точности.

3.1.7. Пипетки с одной меткой вместимостью 1, 2, 5 и 10 см3 по ГОСТ 29169, 2 класс точности.

3.1.8. Реактор для проведения минерализации с ячейками под круглые кюветы, обеспечивающий температуру 120 ± 2 °С.

3.1.9. Спектрофотометр, обеспечивающий проведение измерения при длине волны 880 — 890 нм, снабженный адаптером под круглые кюветы 16´100 мм.

3.1.10. Флаконы из темного стекла вместимостью 250, 500, 1000 см3 (для хранения реактивов).

3.1.11. Холодильник бытовой любого типа, обеспечивающий хранение проб при температуре 2 — 6 °С.

3.1.12. Цилиндр мерный вместимостью 100, 250 см3 по ГОСТ 1770, 2 класс точности.

Допускается использование других средств измерения с метрологическими характеристиками не хуже, чем у вышеуказанных, и вспомогательных устройств с техническими характеристиками не хуже, чем у вышеуказанных.

Примечание: Для мытья посуды не допускается использование синтетических моющих средств.

3.2.1. Аммоний молибденовокислый (молибдат аммония), х.ч. по ГОСТ 3765 или по ТУ 6-09-5086.

3.2.2. Аммоний надсернокислый (аммоний персульфат), ч.д.а. по ГОСТ 20478;

3.2.3. Аскорбиновая кислота, ч.д.а. ГФ X ФС 42-2668.

3.2.4. Вода дистиллированная по ГОСТ 6709 или деминерализованная по ИСО 3696 (2-ой степени чистоты).

3.2.7. Натрий гидроокись (гидроксид), ч.д.а. по ГОСТ 4328.

3.2.8. Сульфаминовая кислота, ч.д.а по ТУ 6-09-2437.

3.2.9. Сурьма треххлористая (хлорид сурьмы), х.ч. по ТУ 6-09-17-252.

3.2.10. Хлороформ, х.ч. по ТУ 6-09-4263.

3.2.11. Пробирки (кюветы) 16´100 мм, круглые, с пластиковыми завинчивающимися пробками.

3.2.12. Салфетки из хлопчатобумажной ткани или бумажные салфетки.

3.2.13. Стаканы вместимостью 150, 250, 1000 см3 по ГОСТ 25336.

3.2.14. Фильтры мембранные с диаметром пор 0,45 мкм по ГОСТ 25336.

3.2.15. Фильтры обеззоленные «синяя лента» по ТУ 6-09-1678-95. Допускается использовать реактивы более высокой квалификации, материалы с техническими характеристиками не хуже, чем у выше указанных или импортные аналоги.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

4.2. При работе с оборудованием необходимо соблюдать правила электробезопасности по ГОСТ 12.1.019.

4.3. Обучение работающих безопасности труда должно быть организовано в соответствии с ГОСТ 12.0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой фотометрического анализа и изучивший правила эксплуатации используемого оборудования.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

температура воздуха 20 — 28 °С

относительная влажность воздуха не более 80 % при 25 °С

частота переменного тока (50 ± 1) Гц

напряжение в сети (220 ± 22) В.

7.1. Отбор проб осуществляют в соответствии с ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб» и ГОСТ Р 51953-2000 «Вода питьевая. Отбор проб.» Отбор проб воды осуществляют в стеклянные или полиэтиленовые флаконы. Объём отбираемой пробы не менее 250 см3.

7.2. Срок хранения проб не более 24 часов после отбора при температуре 2 — 6 °С. Если определение проводят в день отбора, то пробу не консервируют. Если проба не будет проанализирована в тот же день, то её консервируют хлороформом из расчета 2 — 3 см3 на 1 дм3 пробы. Консервированная проба хранится до пяти суток при температуре 2 — 6 °С.

7.3. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

Подготовку к работе спектрофотометра или фотоколориметра проводят в соответствии с рабочей инструкцией по эксплуатации прибора.

В мерной колбе вместимостью 100 см3 растворяют 2,0 г аскорбиновой кислоты в небольшом количестве дистиллированной воды и доводят объём раствора до метки дистиллированной водой. Раствор хранят при температуре 2 — 6 °С не более 10 дней.

В стакане растворяют 12,5 г молибдата аммония приблизительно в 200 см3 дистиллированной воды.

В стакане растворяют 0,235 г хлорида сурьмы и 0,6 г винной кислоты приблизительно в 100 см3 дистиллированной воды.

В стакане растворяют 10 г сульфаминовой кислоты приблизительно в 100 см3 дистиллированной воды.

В мерную колбу вместимостью 1000 см3 наливают 300 см3 дистиллированной воды, приливают при перемешивании 144 см3 концентрированной серной кислоты. После охлаждения полученного раствора до комнатной температуры в ту же мерную колбу при перемешивании сливают полностью все растворы, приготовленные по п.п. 8.2.2.1 — 8.2.2.3. Объём раствора в колбе доводят дистиллированной водой до метки.

Раствор хранят во флаконе из темного стекла при комнатной температуре не более двух месяцев.

28 см3 концентрированной серной кислоты (r = 1,84 г/см3) осторожно смешивают приблизительно с 500 см3 дистиллированной воды. После охлаждения объём раствора доводят до 1000 см3. Срок хранения 6 месяцев при комнатной температуре.

В термостойком стакане вместимостью 1000 см3 осторожно при перемешивании растворяют 40 г гидроокиси натрия в 500 — 600 см3 дистиллированной воды. После полного охлаждения полученный раствор переносят в мерную колбу вместимостью 1000 см3, объём раствора доводят до метки дистиллированной водой. Срок хранения раствора 6 месяцев в полиэтиленовом флаконе при комнатной температуре.

Взвешивание и растворение гидроокиси натрия проводят в защитных очках, в перчатках, под тягой!

Основной градуировочный раствор с концентрацией фосфат-ионов 100 мг/дм3 готовят из ампулы ГСО в соответствии с инструкцией по его применению. Срок хранения раствора 6 месяцев при температуре 2 — 6 °С.

В мерную колбу вместимостью 100 см3 пипеткой помещают 10,0 см3 основного раствора фосфат-ионов (100 мг/дм3). Объём раствора доводят до метки дистиллированной водой. Срок хранения раствора 3 месяца при температуре 2 — 6 °С.

В мерную колбу вместимостью 50 см3 пипеткой помещают 5,00 см3 рабочего раствора (I) фосфат-ионов. Объём раствора доводят до метки дистиллированной водой. Раствор используют свежеприготовленным.

8.3. Установление градуировочной характеристики

В пробирки с завинчивающимися пробками последовательно приливают 0,4, 1,0, 2,5, 5,0 см3 рабочего раствора (II) с концентрацией фосфатов 1 мг/дм3 и 1,0, 1,5, 2,0 см3 рабочего раствора (I) с концентрацией фосфатов 10 мг/дм3. В каждую пробирку прибавляют дистиллированную воду до объёма 9,00 см3 — т.е. 8,6, 8,0, 6,5, 4,0 и 8,0, 7,5, 7,0 см3 соответственно. Далее в пробирки прибавляют по 0,5 см3 смешанного молибденово-кислого реактива. Не ранее чем через 2 минуты прибавляют 0,5 см3 раствора аскорбиновой кислоты, закрывают пробирку завинчивающейся пробкой и перемешивают.

Через 15 — 20 минут измеряют оптическую плотность градуировочных растворов относительно холостой пробы при длине волны 880 — 890 нм:

В качестве холостой пробы используют дистиллированную воду с добавлением всех реактивов.

Концентрации ортофосфатов в растворах при установлении градуировочной характеристики равны соответственно: 0,04 — 0,10 — 0,25 — 0,50 — 1,00 — 1,50 — 2,00 мг/дм3.

По результатам измерений строят градуировочный график зависимости значения оптической плотности (ед. абс.) от концентрации ортофосфат ионов (мг/дм3) или, если позволяют возможности спектрофотометра, сохраняют данные о градуировочной характеристике в памяти прибора.

Контроль стабильности градуировочной характеристики проводят по одному градуировочному раствору перед выполнением каждой серии анализов. Градуировочную характеристику считают стабильной в случае, если полученное значение концентрации градуировочного раствора отличается от аттестованного значения не более чем на 10 %. Если условие стабильности градуировочной характеристики не выполняется для одного градуировочного раствора, необходимо выполнить повторное измерение для этого градуировочного раствора с целью исключения результата измерения, содержащего грубую погрешность. Если градуировочная зависимость нестабильна, выясняют и устраняют причины нестабильности и повторяют контроль с использованием не менее 2-х других градуировочных растворов, предусмотренных методикой. При повторном обнаружении отклонения результата строят новую градуировочную характеристику.

Градуировочную характеристику устанавливают заново при смене партии любого из реактивов, после ремонта спектрофотометра (фотоколориметра), но не реже одного раза в три месяца.

При необходимости анализируемые пробы фильтруют через фильтр «синяя лента» или мембранный фильтр.

9,0 см3 отфильтрованной пробы (или, при содержании ортофосфатов свыше 2,0 мг/дм3 РО4, меньший её объём разбавленный до 9,0 см3) наливают в пробирку с завинчивающейся пробкой, прибавляют 0,5 см3 смешанного молибденово-кислого реактива и оставляют не менее чем на 2 минуты. Далее прибавляют 0,5 см3 раствора аскорбиновой кислоты, закрывают пробирку завинчивающейся пробкой и перемешивают.

Через 15 — 20 минут проводят измерение оптической плотности (концентрации, мг/дм3) анализируемой пробы относительно холостой пробы при длине волны 880 — 890 нм.

В качестве холостой пробы используют дистиллированную воду, проведенную через весь ход анализа.

5,0 см3 отфильтрованной пробы или, при содержании полифосфатов свыше 2,0 мг/дм3 РО4, меньший её объём, разбавленный до 5,0 см3, наливают в пробирку с завинчивающейся пробкой. В пробирку прибавляют 2,0 см3 0,5 М серной кислоты, закрывают её завинчивающейся пробкой, устанавливают в предварительно нагретый до 120 ± 2 °С минерализатор и выдерживают при этой температуре в течение 30 минут.

После охлаждения в пробирку прибавляют 2,0 см3 1 М гидроокиси натрия, перемешивают раствор. Далее прибавляют 0,5 см3 смешанного молибденово-кислого реактива и оставляют не менее чем на 2 минуты. Прибавляют 0,5 см3 раствора аскорбиновой кислоты, закрывают пробирку и ещё раз перемешивают.

Измерение оптической плотности проводят так же как описано в п. 9.1.

9.3. Определение фосфора общего

5,0 см3 тщательно перемешанной анализируемой пробы (нефильтрованной!) или меньший её объём, доведенный до 5,0 см3, наливают в пробирку с завинчивающейся пробкой. Прибавляют 2,0 см3 0,5 М серной кислоты и 0,1 г персульфата аммония закрывают пробирку пробкой, устанавливают в предварительно нагретый до 120 ± 2 °С минерализатор и выдерживают при этой температуре в течение 30 минут.

После охлаждения в пробирку прибавляют 2,0 см3 1 М гидроокиси натрия, перемешивают раствор. Далее прибавляют 0,3 см3 смешанного молибденово-кислого реактива и оставляют не менее чем на 2 минуты. Прибавляют 0,3 см3 раствора аскорбиновой кислоты, закрывают пробирку и ещё раз перемешивают.

Измерение оптической плотности проводят так же как описано в п. 9.1.

10.1. Массовую концентрацию ортофосфатов (мг/дм3 РО4) в анализируемой пробе находят по градуировочному графику, учитывая предварительное разбавление пробы по формуле:

ХРО4 — массовая концентрация ортофосфатов в анализируемой пробе, мг/дм3 РО4;

Сгр. — массовая концентрация фосфатов, найденная по градуировочному графику, мг/дм3;

VпробыРО4 — объём анализируемый пробы воды, взятый для анализа, см3;

10 — общий объём раствора в пробирке, см3.

10.2. Массовую концентрацию суммы полифосфатов (мг/дм3 РО4) в анализируемой пробе находят по формуле:

Х(РО3)n — массовая концентрация полифосфатов в анализируемой пробе, мг/дм3 РО4;

Сгр. — массовая концентрация фосфатов, найденная по градуировочному графику, мг/дм3 РО4;

Vпробы(РО3)n — объём анализируемый пробы воды, взятый для минерализации с серной кислотой по п. 9.2, см3;

10 — общий объём раствора в пробирке, см3.

10.3. Массовую концентрацию фосфора общего (мг/дм3 РО4) в анализируемой пробе находят по градуировочному графику, учитывая предварительное разбавление пробы по формуле:

— массовая концентрация фосфора общего в анализируемой пробе, мг/дм3 РО4;

Сгр. — массовая концентрация фосфатов, найденная по градуировочному графику, мг/дм3 РО4;

VпробыРобщ. — объём анализируемый пробы воды, взятый для минерализации с персульфатом аммония по п. 9.3 анализа, см3;

10 — общий объём раствора в пробирке, см3.

2. При необходимости представления результата анализа в пересчете на массовую концентрацию Р (мг/дм3), её рассчитывают по формуле:

Результаты количественного анализа в протоколах анализов представляют в виде:

где D = d´0,01´С значение показателя точности (см. табл. 2).

Результаты измерений округляют с точностью до:

при содержании от 0,05 до 0,1 мг/дм3 — 0,001 мг/дм3

при содержании от 0,1 до 1 мг/дм3 — 0,01 мг/дм3

при содержании от 1 до 50 мг/дм3 — 0,1 мг/дм3

при содержании свыше 50 мг/дм3 — 1 мг/дм3

12.1. При необходимости проверку приемлемости результатов измерений, полученных в условиях повторяемости (сходимости), осуществляют в соответствии с требованиями раздела 5.2. ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений не должно превышать предела повторяемости (r). Значения r приведены в таблице 3.

12.2. При необходимости проверку приемлемости результатов измерений, полученных в условиях воспроизводимости, проводят с учетом требований раздела 5.3 ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений, полученными двумя лабораториями, не должно превышать предела воспроизводимости (R). Значения R приведены в таблице 3.

Диапазон измерений, мг/дм3 РО4

Предел повторяемости (для двух результатов измерений), r, %

Предел воспроизводимости (для двух результатов измерений), R, %

источник

Аналитический центр более 20 лет занимается химическим анализом и разработкой новых методов анализа и диагностики веществ и материалов

В нашем распряжении самый современный приборный парк благодаря научно-техническому взаимодействию с крупнейшими мировыми разработчиками аналитического оборудования

Наши сотудники — это лучшие специалисты страны в области химического анализа, кандидаты и доктора наук

Аккредитация позволяет исследовать питьевую, природную, морскую, технологическую, талую воду и воду бассейнов

Обратившись к нам, Вы получите не только точные данные о присутствующих в воде загрязнителях, но и подробные рекомендации о способах очистки воды.

* Бесплатный выезд для физических лиц в пределах МКАД при заказе на сумму более 5 000 ₽. Подробнее в разделе Доставка и оплата

На основании анализа воды БЕСПЛАТНО подберем несколько вариантов систем водоочистки!

В нашей лаборатории Вы можете проверить качество воды из любого источника: колодца, скважины, водопровода, бассейна, родника, водоема. Для каждого источника есть оптимальный набор показателей, характеризующий возможность использования воды для тех или иных нужд. Чтобы правильно подобрать набор показателей, свяжитесь с нами по номеру +7 (495)149-23-57 или напишите на почту info@ion-lab.ru

Да, Вы можете самостоятельно отобрать воду для анализа, следуя инструкции. Или же заказать выезд специалиста, который приедет в назначенное время со всей необходимой тарой, отберет воду и доставит ее в лабораторию.

Да, конечно! Пункт приема проб расположен по адресу: Москва, ул. Добролюбова, 21А, корпус А, пом. 14 (в пешей доступности от метро Фонвизинская, Бутырская, Тимирязевская)

Стоимость выезда специалиста зависит от выбранного Вами набора показателей и удаленности. Более точная информация размещена в разделе Доставка и оплата

Мы рекомендуем выбирать набор параметров в зависимости от того, какой у Вас источник водоснабжения, а также для каких целей планируете использовать воду. Для воды из городского водопровода, а также для воды, используемой в технических целях, подойдут наборы «Минимальный» или «Начальный». Для воды природных источников (скважины, колодцы, родники и т.д.) мы рекомендуем проверить воду на химический состав (наборы «Расширенный» или «Максимальный»), а также сделать анализ на микробиологию.

© 1997-2019 — Лаборатория ИОН. Все права защищены.

Для химического анализа необходимо заполнить водой чистую пластиковую тару (оптимально 1,5 л). Использовать бутылки из-под сладких, газированных или ароматизированных напитков, а также солёной или минеральной воды недопустимо.
Если выбранный Вами анализ включает определение содержания нефтепродуктов, необходимо заполнить дополнительную стеклянную тару объемом 0,2 л.
Если выбранный Вами анализ включает определение содержания сероводорода, необходимо заполнить дополнительную стеклянную тару объемом 0,5 л (необходимо использовать консервант).

При отборе воды из проточного источника, непосредственно перед отбором необходимо пролить воду сильной струёй в течение 3-5 минут. Перед отбором проб ёмкости и крышки необходимо 3 раза промыть изнутри водой, подлежащей анализу. Использование моющих средств недопустимо. Наполнять тару необходимо тонкой струёй по стенке сосуда «под горлышко». Это снижает насыщение воды кислородом и предотвращает протекание реакций.

Для микробиологического анализа необходимо использовать стерильный контейнер для биоматериалов объемом 150-200 мл.

Перед взятием пробы необходимо протереть водопроводный кран спиртовой салфеткой, уделив особое внимание месту выхода воды.
При отборе воды из водопровода, скважины или колонки необходимо пролить воду сильной струёй в течение 3–5 минут.
При отборе воды из колодца с помощью ведра необходимо обдать ведро кипятком для дезинфекции. Отбор пробы через поливочные шланги и предметы, контактирующие с почвой, не допускается.
Для отбора пробы необходимо надеть перчатки и вскрыть упаковку стерильного контейнера. Не касаясь внутренней поверхности ёмкости, отобрать образец воды (2/3 объема контейнера) и закрыть крышкой.

Рекомендуем доставлять пробу сразу после отбора.
Если сразу после отбора нет возможности доставить пробу в лабораторию, допускается хранение образцов при температуре 2–10 °C в течение 1 суток.

Съезд на ул. Руставели, на первом светофоре поворот налево на ул. Яблочкова.
Через 300 м поворот направо на ул. Гончарова, через 500 м поворот налево (напротив дома №6), через 200 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Поворот на ул. Руставели, на светофоре поворот направо на ул. Добролюбова, через 300м на светофоре поворот налево на ул. Гончарова, напротив дома №6 поворот направо, через 200 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Двигаясь по ул. Милошенкова, поворачиваем на ул. Добролюбова
Через 150 метров поворот направо, за домом 21АкБ поворот налево, через 100-120 метров вы на месте — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Ближайшее станция метро – Фонвизинская (600 м)
Последний вагон из центра. Выход в сторону улицы Фонвизина. Из стеклянный дверей направо. Перейти через пешеходный переход и идти через дворы в соответствии со схемой. Пункт назначения — ул. Добролюбова, 21А, корпус А, 3-й подъезд (серая дверь, белый козырек из поликарбоната), помещение 14.

Анализ «Минимальный» содержит минимальный и обязательный перечень загрязнителей, часто встречающихся в питьевой воде, и включает 16 показателей:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная;
  • катионы: железо, аммоний;
  • анионы: нитраты, карбонат, гидрокарбонат.

Данный набор рекомендуется для исследования воды хозяйственно-бытового назначения. Анализ «Минимальный» не обладает достаточной информативностью для подбора системы водоочистки, так как не позволяет получить полную картину о безопасности воды. Если Вы планируете использовать воду в питьевых целях, рекомендуем обратить внимание на наборы, содержащие большее число параметров.

  • Точность определения
  • Подходит для воды, применяемой в хоз-бытовом назначении
  • Срок выполнения — 3-4 рабочих дня
  • Не подходит для воды, применяемой в питьевых целях
  • Не подходит для корректного подбора/оценки работы фильтров
  • Не включает определение тяжелых металлов
  • Не включает определение органических загрязнителей

Анализ «Начальный» предназначен для выявления наиболее часто встречающихся вредных веществ в питьевой воде и включает 23 параметра:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная;
  • катионы: железо, аммоний, марганец, калий, магний, кальций;
  • анионы: фториды, хлориды, нитраты, сульфаты, карбонаты, гидрокарбонаты.

Данный анализ рекомендуется для воды централизованных систем водоснабжения. По протоколу анализа «Начальный» также можно сделать вывод о корректности работы системы водоочистки. В перечень определяемых параметров входят органолептические показатели, общие химические показатели, а также содержание катионов и анионов.

  • Точность определений
  • Подходит для водопроводной воды
  • Позволяет оценить эффективность работы системы водоочистки
  • Позволяет корректно настроить водоочистное оборудование
  • Срок выполнения — 5 рабочих дней
  • Не включает определение тяжелых металлов
  • Не включает определение органических загрязнителей
  • Не подходит для полной проверки воды из колодца или скважины

Анализ «Расширенный» содержит перечень наиболее часто встречающихся загрязнителей воды, вне зависимости от источника, и включает 31 показатель:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная;
  • катионы: железо, аммоний, марганец, калий, магний, кальций, алюминий, натрий;
  • анионы: фториды, хлориды, нитраты, сульфаты, карбонаты, гидрокарбонаты;
  • тяжелые металлы и металлоиды: медь, мышьяк, свинец, кадмий, цинк, стронций.

Данный набор рекомендуется, в первую очередь, владельцам колодцев и скважин. Помимо катионов и анионов, органолептических и общих химических параметров содержит перечень основных тяжелых металлов и метталоидов. Перед покупкой системы водоподготовки рекомендуем провести исследование воды с данным перечнем загрязнителей. Ориентируясь на полученную информацию, Вы сможете подобрать оборудование водоочистки с эффективностью до 98%, а так же корректно его настроить. Если вода из Вашего источника имеет выраженный запах сероводорода (запах тухлых яиц), рекомендуем дополнительно проверить воду на содержание сероводорода.

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для колодцев и скважин
  • Содержит перечень тяжелых металлов
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Позволяет корректно и экономично настроить водоочистное оборудование
  • Срок выполнения — 5-6 рабочих дней

Анализ «СанПиН» предназначен для исследования воды по максимальному перечню загрязнителей, вне зависимости от источника, и включает 61 параметр:

  • органолептические: мутность, цветность, запах, привкус;
  • общехимические: рН, жесткость, окисляемость перманганатная, минерализация, электропроводность, щелочность общая, щелочность свободная, сероводород, хлор общий, хлор остаточный свободный, нефтепродукты;
  • катионы: железо, аммоний, марганец, калий, магний, кальций, алюминий, натрий, литий;
  • анионы: фториды, хлориды, нитраты, нитриты, фосфаты, сульфаты, сульфиды, гидросульфиды, карбонаты, гидрокарбонаты;
  • тяжелые металлы и металлоиды: барий, бериллий, бор, ванадий, молибден, кобальт, цинк, никель, хром, стронций, кадмий, мышьяк, медь, свинец, кремний, серебро, титан, ртуть;
  • органические компаненты: АПАВ, фенол, формальдегид, бензол, толуол, о-ксилол, п-ксилол, м-ксилол, стирол.

Данное исследование рекомендуется тем, кто серьезно относится к выбору питьевой воды. Протокол анализа «Максимальный» позволяет со 100% уверенностью сделать вывод о пригодности воды для питья и приготовления пищи. Результаты исследования позволяют выбрать схему водоочиски, а также оценить эффективность уже установленного оборудования.

  • Точность определений
  • Подходит для подбора водоочистного оборудования
  • Подходит для любых источников воды
  • Позволяет оценить эффективность фильтрующей загрузки в фильтре и всей системы в целом
  • Включает полный перечень тяжелых металлов
  • Позволяет корректно и экономично настроить водоочистное оборудование
  • Содержит полный перечень опасных органических веществ
  • Срок выполнения — 5-6 рабочих дней

Помимо хичиеского анализа мы настоятельно рекомендуем провести микробиологическое исследование Вашей воды. Микробиологический анализ включает определение общего микробного числа (ОМЧ), общих колиформных и колиформных термотолерантных бактерий.

Важен правильный отбор проб и оперативная доставка образцов в лабораторию или пункт приема проб. Подробная информация здесь

Если у Вас есть точный перечень параметров, Вы можете заказать анализ по Индивидуальному перечню показателей. Минимальный чек на индивидуальный анализ — 1 500 руб! Для расчета стоимости позвоните нам по номеру +7 (495) 149-23-57 или напишите на почту info@ion-lab.ru.

Анализ «Водоем / Аквариум» включает в себя перечень параметров, превышения по которым чаще всего встречаются в водоемах. Анализ включает определение основных химических параметров.

Химические параметры:

  • общехимические : рН, нефтепродукты, аммоний, ХПК, БПК5, АПАВ, фенол;
  • анионы : нитраты, сульфаты, хлориды, нитриты, фосфаты, фториды;
  • тяжелые металлы и металлоиды : марганец, железо общее, ртуть, цинк, никель, кадмий, мышьяк, медь, свинец, хром.

Нормирование осуществляется по №552 Минсельхоза РФ от 13.12.2016 г «Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения.»

источник

Настоящий документ устанавливает методику измерений массовой концентрации фосфат-ионов в питьевых, поверхностных и сточных водах фотометрическим методом.

Диапазон измерений от 0,05 до 80 мг/дм 3 .

Если массовая концентрация фосфат-ионов в анализируемой пробе превышает 1 мг/дм 3 , то пробу необходимо разбавлять.

Мешающие влияния, обусловленные присутствием в пробе сульфидов, сероводорода, хроматов, арсенатов, нитритов и железа, устраняют специальной подготовкой пробы к анализу (п. 9.1).

Значения показателя точности измерений 1 — расширенной относительной неопределенности измерений по настоящей методике при коэффициенте охвата 2 приведены в таблице 1. Бюджет неопределенности измерений приведен в Приложении А.

1 В соответствии с ГОСТ Р 8.563-2009 (п. 3.4) в качестве показателя точности измерений использованы показатели неопределенности измерений).

Таблица 1 — Диапазон измерений, показатели неопределенности измерений

Суммарная стандартная относительная неопределенность, u, %

Расширенная относительная неопределенность 2 , U при коэффициенте охвата k = 2, %

2 Соответствует характеристике погрешности при доверительной вероятности Р = 0,95.

Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке качества проведения испытаний в лаборатории;

— оценке возможности использования настоящей методики в конкретной лаборатории.

При выполнении измерений должны быть применены следующие средства измерений, вспомогательное оборудование, посуда и реактивы.

3.1 Средства измерений, вспомогательное оборудование

Спектрофотометр или фотоэлектроколориметр, позволяющий измерять оптическую плотность при длине волны l = 690 нм.

Кюветы с толщиной поглощающего слоя 20 или 50 мм.

Весы лабораторные специального класса точности с ценой деления не более 0,1 мг, наибольшим пределом взвешивания не более 210 г по ГОСТ Р 53228-2008.

Государственные стандартные образцы (ГСО) состава раствора фосфат-ионов с массовой концентрацией 1 мг/дм 3 . Относительная погрешность аттестованных значений массовой концентрации не более 1 % при Р = 0,95.

Колбы мерные 2-50(100, 500, 1000)-2, ГОСТ 1770-74.

Колбы конические Кн-2-100-18 ТХС, ГОСТ 25336-82.

Стаканы для взвешивания СВ, ГОСТ 25336-82.

Бутыли из полимерного материала или стекла с притертыми или винтовыми пробками для отбора и хранения проб вместимостью 500 — 1000 см 3 .

1 Допускается использование других средств измерений утвержденных типов, обеспечивающих измерения с установленной точностью.

2 Допускается использование другого оборудования с метрологическими и техническими характеристиками, аналогичными указанным.

3 Средства измерений должны быть поверены в установленные сроки.

Аскорбиновая кислота, ГОСТ 4815-76.

Калий сурьмяно-виннокислый (антимонилтартрат).

Сульфаминовая кислота, ТУ 6-09-2391-77.

Фильтры обеззоленные, ТУ 6-09-1181-89.

Бумага индикаторная универсальная, ТУ 6-09-1181-76.

1 Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

2 Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных.

Фотометрический метод определения массовой концентрации фосфат-ионов основан на их взаимодействии в кислой среде с молибдатом аммония и образованием фосфорно-молибденовой гетерополикислоты, которая восстанавливается аскорбиновой кислотой в присутствии сурьмяно-виннокислого калия до фосфорно-молибденового комплекса, окрашенного в голубой цвет. Максимум светопоглощения длине волны l = 690 нм.

При выполнении измерений необходимо соблюдать следующие требования техники безопасности.

5.1 При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76.

5.2 Электробезопасность при работе с электроустановками по ГОСТ Р 12.1.019-2009.

5.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004-90.

5.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

5.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005-88.

Выполнение измерений может производить химик-аналитик, владеющий техникой фотометрического анализа, изучивший инструкцию по эксплуатации спектрофотометра или фотоэлектроколориметра и получивший удовлетворительные результаты при выполнении контроля процедуры измерений.

Измерения проводятся в следующих условиях: температура окружающего воздуха (20 ± 5) °С; атмосферное давление (84,0 — 106,7) кПа (630 — 800 мм рт.ст); относительная влажность (80 ± 5) %; напряжение сети (220 ± 22) В; частота переменного тока (50 ± 1) Гц.

При подготовке к выполнению измерений должны быть проведены следующие работы: отбор проб, подготовка прибора к работе, приготовление вспомогательных и градуировочных растворов, градуировка прибора, контроль стабильности градуировочной характеристики.

8.1 Отбор и хранение проб воды

8 .1.1 Отбор проб питьевых вод производится в соответствии с требованиями ГОСТ Р 51593-2000 «Вода питьевая. Отбор проб».

Отбор проб поверхностных и сточных вод производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб», ПНД Ф 12.15.1-08 «Методические указания по отбору проб для анализа сточных вод».

8 .1.2 Пробы воды отбирают в бутыли из полимерного материала или стекла, предварительно ополоснутые отбираемой водой. Объем отобранной пробы должен быть не менее 250 см 3 .

8 .1.3 Пробу анализируют в день отбора или консервируют добавлением 2 — 4 см 3 хлороформа на 1 дм 3 воды и хранят при 3 — 5 ° С не более 3 суток.

8 .1.4 При отборе проб составляется сопроводительный документ, в котором указывается:

цель анализа, предполагаемые загрязнители;

должность, фамилия отбирающего пробу, дата.

8.2 Подготовка прибора к работе

Подготовку спектрофотометра или фотоэлектроколориметра к работе проводят в соответствии с инструкцией по эксплуатации.

8.3 Приготовление вспомогательных растворов

3 г молибдата аммония помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу вместимостью 100 см 3 и доводят до метки дистиллированной водой. В случае появления мути раствор следует отфильтровать. Раствор хранят в полиэтиленовой бутыли.

2,16 г аскорбиновой кислоты помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу вместимостью 100 см 3 и доводят до метки дистиллированной водой.

Раствор хранят в холодильнике в течение 3-х недель.

0,34 г антимонилтартрата калия помещают в стакан, растворяют в небольшом количестве дистиллированной воды, переносят в мерную колбу вместимостью 500 см 3 и доводят до метки дистиллированной водой.

В мерную колбу вместимостью 500 см 3 наливают 400 см 3 дистиллированной воды и осторожно приливают 70 см 3 концентрированной серной кислоты. После охлаждения, раствор доводят до метки дистиллированной водой.

В колбе с притертой пробкой смешивают 125 см 3 раствора серной кислоты (п. 8.3.4), 50 см 3 раствора молибдата аммония (п. 8.3.1), 50 см 3 раствора аскорбиновой кислоты (п. 8.3.2) и 25 см 3 раствора антимонилтартрата калия (п. 8.3.3).

Смешанный реактив готовят непосредственно перед использованием.

10 г сульфаминовой кислоты растворяют в 90 см 3 дистиллированной воды.

8.4. Приготовление градуировочных растворов

Раствор готовят из ГСО в соответствии с прилагаемой к образцу инструкцией. В 1 см 3 раствора должно содержаться 0,01 мг фосфат-ионов. Раствор готовят в день проведения анализа.

Раствор готовят соответствующим разбавлением градуировочного раствора 1. В 1 см 3 раствора должно содержаться 0,001 мг фосфат-ионов. Раствор готовят в день проведения анализа.

8.5 Построение градуировочных графиков

Для построения градуировочных графиков необходимо приготовить образцы для градуировки с массовой концентрацией фосфат-ионов 0,05 — 1,0 мг/дм 3 . Условия анализа, его проведение должны соответствовать п.п. 7 и 9.

Состав и количество образцов для градуировки приведены в таблице 2. Погрешность, обусловленная процедурой приготовления образцов для градуировки, не превышает 2,5 %.

Таблица 2 — Состав и количество образцов для градуировки

Массовая концентрация фосфат-ионов в градуировочных растворах, мг/дм 3

Аликвотная часть растворов, см 3 , помещаемых в мерную колбу вместимостью 50 см 3

Раствор 1 с массовой концентрацией 0,01 мг/см 3

Раствор 2 с массовой концентрацией 0,001 мг/см 3

Раствор из мерной колбы переносят в коническую колбу и добавляют реактивы по п. 9.

Анализ образцов для градуировки проводят в порядке возрастания их массовой концентрации. Для построения градуировочного графика каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных.

При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абсцисс — величину концентрации вещества в мг/дм 3 .

8.6 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже одного раза в квартал, а также при смене партий реактивов, после поверки или ремонта прибора. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

(1)

где X — результат контрольного измерения массовой концентрации фосфат-ионов в образце для градуировки;

С — аттестованное значение массовой концентрации фосфат-ионов;

u I(TOE) — стандартное отклонение результатов измерений, полученных в условиях промежуточной прецизионности, %.

Значения u I(TOE) приведены в Приложении А.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

9 .1.1 Сильнокислые и сильнощелочные пробы предварительно нейтрализуют.

9 .1.2 Определению мешают сульфиды и сероводород в концентрациях, превышающих 3 мг/дм 3 S 2- . Их мешающее влияние можно устранить, прибавляя несколько миллиграммов калия марганцевокислого на 100 см 3 пробы и встряхивая 1 — 2 мин, раствор должен оставаться розовым. После этого прибавление реактивов проводят в обратном порядке: сначала приливают раствор аскорбиновой кислоты, перемешивают, затем прибавляют смешанный реактив.

9.1.3 Определению мешают хроматы в концентрациях, превышающих 2 мг/дм 3 Это мешающее влияние устраняется прибавлением реактивов в обратном порядке (по п. 9.1.2).

9 .1.4 Определению мешают арсенаты. Их содержание определяют отдельно и вычитают из найденного содержания фосфат-ионов.

9 .1.5 Определению мешают нитрит-ионы. Для устранения их мешающего влияния нитритов в смешанный реактив добавляют 10 см 3 10 %-го раствора сульфаминовой кислоты.

9 .1.6 Определению мешает железо (III) в концентрации, превышающей 1 мг/дм 3 . Для устранения мешающего влияния железа в пробу вводят эквивалентное количество трилона Б.

К 50 см 3 пробы, профильтрованной на месте или в тот же день в лаборатории через плотный бумажный фильтр (синяя лента), или к меньшему объему, доведенному до 50 см 3 дистиллированной водой, прибавляют 5,0 см 3 смешанного реактива и через короткое время 0,5 см 3 раствора аскорбиновой кислоты (как указано в п. 9.1.2 в присутствии некоторых мешающих веществ реактивы приливают в обратном порядке). Смесь перемешивают. Через 15 мин измеряют оптическую плотность полученного раствора при длине волны 690 нм по отношению к холостому раствору (холостой раствор готовится на дистиллированной воде с добавлением соответствующих реактивов).

Содержание фосфат-ионов в мг/дм 3 находят по градуировочному графику.

Массовую концентрацию фосфат-ионов X , (мг/дм 3 ) рассчитывают по формуле:

(2)

где С — массовая концентрация фосфат-ионов, найденная по градуировочному графику, мг/дм 3 :

50 — объем, до которого была разбавлена проба, см 3 ;

V — объем, взятый для анализа, см 3 .

Если проба была предварительно разбавлена, при расчете учитывают коэффициент разбавления.

При необходимости за результат измерений Хср принимают среднее арифметическое значение двух параллельных определений Х1 и Х2

(3)

для которых выполняется следующее условие:

где r — предел повторяемости, значения которого приведены в таблице 3.

Таблица 3 — Значения предела повторяемости при вероятности Р = 0,95

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), r, %

При невыполнении условия (4) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6-2002.

Результат измерений в документах, предусматривающих его использование, может быть представлен в виде: X ± = 0,01 × U × X, мг/дм 3 ,

где X — результат измерений массовой концентрации, установленный по п. 10, мг/дм 3 ;

U — значение показателя точности измерений (расширенная неопределенность измерений с коэффициентом охвата 2).

Значение U приведено в таблице 1.

Допускается результат измерений в документах, выдаваемых лабораторией, представлять в виде: Х ± 0,01 × U л · X , мг/дм 3 , Р = 0,95, при условии U л U , где U л — значение показателя точности измерений (расширенной неопределенности с коэффициентом охвата 2), установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов измерений.

При представлении результата измерений в документах, выдаваемых лабораторией, указывают:

— количество результатов параллельных определений, использованных для расчета результата измерений;

— способ определения результата измерений (среднее арифметическое значение или медиана результатов параллельных определений).

Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

— оперативный контроль процедуры измерений;

— контроль стабильности результатов измерений на основе контроля стабильности среднего квадратического отклонения (СКО) повторяемости, СКО промежуточной (внутрилабораторной) прецизионности и правильности.

Периодичность контроля исполнителем процедуры выполнения измерений и алгоритмы контрольных процедур, а также реализуемые процедуры контроля стабильности результатов измерений регламентируют во внутренних документах лаборатории.

Ответственность за организацию проведения контроля стабильности результатов анализа возлагают на лицо, ответственное за систему качества в лаборатории.

Разрешение противоречий между результатами двух лабораторий проводят в соответствии с 5.3.3 ГОСТ Р ИСО 5725-6-2002.

12.2 Оперативный контроль процедуры измерений с использованием метода добавок

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К.

Результат контрольной процедуры Кк рассчитывают по формуле

(5)

где — результат анализа массовой концентрации фосфат-ионов в пробе с известной добавкой — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4)

Хср — результат анализа массовой концентрации фосфат-ионов в исходной пробе — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4)

Норматив контроля К рассчитывают по формуле

(6)

где — стандартные отклонения промежуточной прецизионности, соответствующие массовой концентрации фосфат-ионов в пробе с известной добавкой и в исходной пробе соответственно, мг/дм 3 .

Процедуру измерений признают удовлетворительной, при выполнении условия:

При невыполнении условия (7) контрольную процедуру повторяют. При повторном невыполнении условия (7) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

12.3 Оперативный контроль процедуры измерений с использованием образцов для контроля

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры Кк с нормативом контроля К.

Результат контрольной процедуры Кк рассчитывают по формуле

(8)

где Сср — результат анализа массовой концентрации фосфат-ионов в образце для контроля — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (4);

С — аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле

где s I(TOE) — стандартное отклонение промежуточной прецизионности, соответствующие массовой концентрации фосфат-ионов в образце для контроля, мг/дм 3 .

Процедуру измерений признают удовлетворительной, при выполнении условия:

При невыполнении условия (10) контрольную процедуру повторяют. При повторном невыполнении условия (10) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 4.

Таблица 4 — Значения предела воспроизводимости при Р = 0,95

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6-2002.

Таблица А.1 — Бюджет неопределенности измерений

Стандартная относительная неопределенность 3 , %

Приготовление градуировочных растворов, u1, %

Степень чистоты реактивов и дистиллированной воды, и2, %

Подготовка проб к анализу, и3, %

источник

Наименование документа: ПНД Ф 14.1:4.248-07
Тип документа: ПНД Ф
Статус документа: Действует
Название: Количественный химический анализ вод. Методика выполнения измерений массовых концентраций ортофосфатов, полифосфатов и фосфора общего в питьевых, природных и сточных водах фотометрическим методом
Область применения: Устанавливает методику фотометрического определения полифосфатов, фосфора общего и растворенных ортофосфатов (фосфат-ионов) в пробах питьевых, природных и сточных вод
Краткое содержание:
Комментарий: Методика допущена для целей государственного экологического контроля
Дата добавления в базу: 01.09.2013
Дата актуализации: 01.12.2013
Дата введение: 11.07.2007
Доступно сейчас для просмотра: 100% текста. Полная версия документа.
Организации:
Читайте также:  Анализ загрязнения воды на предприятие а