Меню Рубрики

Анализ сточной воды на спав

Ливневые стоки образуются в результате таяния снежного покрова весной, а так же выпадения осадков в виде дождей в теплый период. Ливневая вода скапливается в почве, после чего вместе с грунтовыми водами попадает в природные водоемы. Поверхностные сточные воды приносят с собой в экосистему большое количество взвешенных веществ, нефтепродуктов, растворенных солей. Вместе с ливневыми сточными водами с сельскохозяйственных полей в водоемы попадают пестициды и гербициды. Благодаря загрязнениям, ухудшается качество воды, происходит гибель рыб, размножаются болезнетворные бактерии. Вода становится непригодной как для купания, так и использования в качестве источника пресной воды. Нефтепродукты, поступающие с автозаправочных станций и дорог, после попадания в воду на поверхности образуют тонкую пленку, в результате чего нарушается кислородный обмен в водоемах, затрудняется самоочищение водоема в результате естественных процессов. В связи с этим предельно допустимые концентрации содержания в стоках вредных веществ нормируются. Состав и свойства воды водоемов ниже точки поступления сточных вод должен быть таким же как и выше по реке. Это правило к химическому составу и физико-химическим свойствам сточных вод относятся к самим сточным водам без учета разбавления и самоочищения. В любом крупном городе вместе с ливневыми сточными водами сбрасывается много вредных веществ, в результате чего может возникать эффект их комбинированного действия. Некоторые из химических веществ могут обладать не только токсичными, но и канцерогенными свойствами, не исключена и возможность их попадания в питьевую воду. Для предотвращения вредного воздействия на природную экосистему в городах оборудована ливневая канализация, попадая в которую ливневые сточные воды транспортируются на очистные сооружения, и только затем поступают в реку. В соответствии с правилами приема ливневых сточных вод, абоненты (предприятия, автозаправочные станции, рынки) обязаны проводить периодический контроль химического состава ливневых сточных вод.

Независимая лаборатория «Экологический мониторинг» занимается анализом ливневых сточных вод с 2008года. Любое предприятие, сбрасывающее сточные воды в городской коллектор, на очистные сооружения Водоканала, обязано соблюдать правила приема ливневых сточных вод и не превышать ПДК .

Наша лаборатория проводит химический анализ ливневых сточных вод , отобранных Заказчиком, либо специалист по отбору проб выезжает самостоятельно на объект. Анализ ливневых сточных вод проводится максимум в течение 8 рабочих дней . По результатам анализа выдается протокол испытаний.Перечень показателей качества ливневой сточной воды можно посмотреть и скачать здесь.

Методика отбора пробы ливневой сточной воды на химический анализ:

  • Для отбора пробы ливневой сточной воды необходима чистая пластиковая бутылка емкостью 1.5-2 литра. Недопустимо отбирать воду в бутылки из-под фруктовой воды, пива, кваса.
  • Ополоснуть бутылку сточной водой, после чего наполнить сточной водой и плотно закрыть пробкой, так чтобы между пробкой и водой не осталось прослойки воздуха.
  • В случае невозможности доставки бутылки с водой в лабораторию в день отбора пробы, допускается ее хранение в холодильнике в течение суток.

Цена на анализ ливневой сточной воды:

На 2019 год стоимость анализа ливнестоков установлена от 6200рублей.

Стоимость может изменяться в зависимости от транспортной доступности объекта.

Проконсультироваться по вопросам стоимости анализа сточных вод можно по телефону

8-800-600-62-40 (495)969-35-06

или отправив запрос на e-mail:

источник

Начиная с 50-60-х годов прошлого века в технически развитых странах стали в массовом порядке производиться новые химические соединения — синтетические поверхностно-активные вещества (СПАВ). В настоящее время различные по составу они широко применяются в быту и промышленном производстве.

Под этот термин попадают различные по структуре и классам вещества, общее свойство которых — способность адсорбироваться на поверхности разделов фаз и уменьшать поверхностное натяжение.

Области промышленного использования — приготовление смазочных жидкостей, антикоррозийных составов, нанесение электролитических покрытий, в качестве компонентов лакокрасочных составов, в нефтедобыче, в горнорудной флотации, для получения противопожарной пены, для крашения и замасливания текстильных волокон и др. Наиболее широкая и экологически значимая область использования СПАВ — приготовление синтетических моющих и чистящих веществ (детергентов) для использования в быту.

Детергентом считается такое вещество, один конец которого растворим в воде, а другой — в углеводородах или жирах. Детергенты усиливают моющее действие воды. В отличие от природных детергентов (мыла), синтетические детергенты способны проявлять моющие свойства даже в жесткой воде.

Таким образом, СПАВ поступают в природные водоемы:

  • с хозяйственно-бытовыми стоками;
  • с промышленными стоками текстильной, нефтяной, химической промышленности;
  • со сточными водами прачечных хозяйств и автомоек;
  • со смывами от сельхозугодий, обработанных химическими реагентами с эмульгаторами (гербициды, инсектициды, фунгициды).

Специфические физико-химические свойства поверхностно-активных веществ сильно затрудняют известные методы химической и биологической очистки стоков.

В сточных водах ПАВ находятся в виде растворимых соединений или сорбатов. Часть детергентов распределяется по поверхности водной пленки. Если сорбированные СПАВ оседают и накапливаются в донных отложениях, то в анаэробных условиях они могут становиться источником вторичного загрязнения водоемов.

Наиболее высокие концентрации синтетических поверхностно-активных веществ наблюдаются в сточных водах от процессов стирки и мойки различных изделий, прачечных, красильно-отделочных производств, автомоек. Причем в состав этих сточных вод входят анионоактивные и неионогенные поверхностно-активные вещества, наиболее трудно поддающиеся естественному биохимическому разложению [4].

В зависимости от свойств синтетического поверхностно-активного вещества при растворении в воде и его характеристик, различают следующие виды СПАВ [3]:

  • анионоактивные;
  • катионоактивные;
  • амфолитные;
  • неионогенные.

Анионоактивные — в воде образуют отрицательно заряженные ионы. К ним относятся соли сернокислых эфиров и соли сульфокислот (сульфонаты). Радикал может быть алкильным, алкилакрильным, алкилнафтильным. В соединениях могут быть двойные связи и функциональные группы.

Катионоактивные — в водном растворе ионизируются с образованием положительных органических ионов. Это четвертичные аммониевые соли, обычно состоящие из углеводородного радикала с прямой цепью (количество атомов углерода — от 12 до 18); метил- , этил- , или бензильного радикала; атома брома, хлора, йода или остатка этил- или метилсульфита.

Амфолитные — проявляют разные свойства в зависимости от pH среды. В кислом растворе они проявляют катионоактивные свойства, в щелочном — анионоактивные.

Неионогенные — в водном растворе не диссоциируют на ионы.

По степени биохимической устойчивости и структуре молекул синтетические поверхностно-активные вещества подразделяют на мягкие, промежуточные и жесткие. Легче всего окисляются первичные и вторичные алкилсульфаты нормального строения. В соединениях с более разветвленной цепью скорость окисления снижается. К числу трудноразрушаемых СПАВ относят алкилбензолсульфонаты на основе тетрамеров пропилена.

C понижением температуры снижается и скорость окисления полимеров СПАВ. При температуре окружающей среды 0-5 °С окисление в природных водах происходит очень медленно. Для процессов окислительного самоочищения наиболее благоприятна нейтральная или слабощелочная среда природной воды — pH 7-9.

В природных водоемах СПАВ ухудшают кислородный режим и органолептические свойства воды, а из-за медленных процессов окисления они могут долгое время негативно влиять на экосистему. Высокое пенообразование — еще один отрицательный фактор воздействия. По данным [1] уже при повышенных концентрациях СПАВ (5-15 мг/дм³) у рыб разрушается слизистый покров, а при более высоких концентрациях наблюдается кровотечение жабр. Опытные данные показывают, что загрязнение природных водоемов синтетическими ПАВ ведет к снижению численности моллюсков за счет гибели их эмбрионов [3].

Показатель БПК для различных СПАВ находится в диапазоне от 0 до 1,6 мг/дм³. В процессе биохимического окисления эти вещества распадаются с образованием вторичных продуктов загрязнения — спиртов, альдегидов, органических кислот, а при распаде СПАВ с бензольным кольцом в структуре молекулы — фенолов.

Таким образом, синтетические поверхностно-активные вещества являются значимыми загрязнителями водных сред и оказывают негативное воздействие на организмы-гидробионты [3].

Имеются данные о негативном влиянии таких веществ на неорганическую среду: эрозию почв, коррозию металлов, ускорение процессов старения железобетонных сооружений [4].

В ходе работы прачечного хозяйства образуется большое количество сточных вод. Основные объемы стоков дает сам процесс стирки. Незначительное количество солесодержащих промывных вод получается в процессе умягчения воды.

Процесс стирки включает семь или восемь операций:

  • предварительное прополаскивание водой, содержащей умягчающие реагенты (сода и смачивающие вещества);
  • стирка горячей водой с кипячением в присутствии соды, мыла и синтетических моющих средств;
  • многократное прополаскивание горячей или холодной водой.

Длительность процесса стирки — около 1 часа. В соответствии с удельными нормативами принимается, что на каждые 100 кг белья образуется 3,75 м³ сточных вод [6].

Примерный состав загрязнителей сточных вод прачечных:

  • Анионные и неионогенные СПАВ (моющие средства, детергенты, отбеливатели).
  • Соли жесткости.
  • Взвешенные вещества (эмульгированная грязь).
  • Механические частицы, волокна ткани.
  • Красители и нефтепродукты.

По сравнению со средним составом городских канализационных сточных вод, концентрации специфических загрязнений в сточных водах прачечных выше в 2-3 раза. Сточные воды прачечной от стирки 100 кг белья эквивалентны суммарным канализационным стокам населенного пункта с 35 жителями [6].

При смешении с городскими канализационными стоками сточные воды от прачечных дают стойкое пенообразование.

СПАВ, попадающие на городские очистные сооружения, затрудняют работу отстойников, повышают нагрузку на очистные сооружения и снижают общую эффективность очистки хозяйственно-бытовых стоков.

Выпуск сточных вод от прачечных в городскую канализационную сеть, с учетом специфики из загрязнений, возможен при соблюдении температурных условий и усреднения состава, но нежелателен. В настоящее время существуют методы предварительной обработки сточных вод, а также технологические схемы оборотного водоснабжения прачечных предприятий для повторного использования части воды.

Схема очистки сточных вод и оборотного водоснабжения прачечных с применением методов флотации и нанофильтрации функционирует следующим образом (по данным [7]).

Применяемый метод очистки является многоступенчатым. На первом этапе из сточной воды удаляются взвеси и нефтепродукты методом флотации; второй этап (фильтрация) убирает из воды остаточные нерастворимые взвешенные вещества; третий этап (мембранная нанофильтрация) удаляет из воды растворимую органику.

Стоки от прачечной поступают в усреднительный резервуар. Туда же заливают вторичные оборотные воды — фильтрат из установки обезвоживания, концентрат из узла мембранной фильтрации и промывные воды фильтра.

Усредненные стоки поступают в многоступенчатый реактор коагуляции. В реактор подаются реагенты из реагентного хозяйства — флокулянты и коагулянты. Под действием реагентов в реакторе идет процесс хлопьеобразования.

Затем сточные воды вместе со взвешенными хлопьями поступают на установку флотации. Во флотаторе поддерживается постоянная аэрация смеси сточных вод и происходит удаление взвешенных хлопьев, которые отделяются от воды и подаются на установку обезвоживания осадка. Здесь хлопья обезвоживаются и направляются на дальнейшую утилизацию.

Осветленная после флотации сточная вода проходит сначала стадию грубой фильтрации, а затем поступает на узел мембранной нанофильтрации. Это основная стадия очистки, на которой происходит мембранное фильтрование и очищение воды.

Вода после стадии тонкой фильтрации (пермеат) является чистой водой высокого качества и возвращается в оборотное водоснабжение прачечного хозяйства.

Система очистки стоков и оборотного водоснабжения прачечной регулируется в автоматическом режиме и управляется с диспетчерского пульта.

Функциональные узлы и оборудование описанной схемы:

Эффективность подобного комплекса очистных сооружений по СПАВ составляет: 98% — для неионогенных, 16% — для анионных. Эффективность очистки по БПК — 99%.

Другая схема очистки сточных вод прачечной предложена на основе опытно-лабораторных разработок методов очистки воды от СПАВ [4]. Технологическая схема предусматривает очистку сточных вод крупной механизированной прачечной производительностью 4140 кг белья в сутки. Очистка сточных вод реализована по одноступенчатой схеме с применением метода электрофлотокоагуляции. Очищенные до нормативных показателей стоки сбрасываются в городскую канализационную сеть.

Сточные воды прачечной из усреднителя подаются насосами в электрофлотокоагулятор (ЭФК). Сточная вода протекает между электродами и взаимодействует с гидроксидом железа, который выделяется в камеру с анода под действием электрического тока. Дисперсные частицы укрупняются. Вода со взвешенными частицами отводится в отстойник, где хлопья с адсорбированными загрязнениями выпадают в осадок.

Одновременно в камере ЭФК происходит гидролиз воды и выделение газообразных кислорода и водорода, активирующих процесс флотации. Результатом флотации является пена, которая собирается в лоток и отводится на мешалку. Там к ней подмешивается глиняная суспензия, а образовавшийся ил поступает в иловый колодец. Суспензия ила подвергается обезвоживанию, полученный шлам отправляют на утилизацию. Фильтрат после обезвоживания возвращают в усреднитель и подмешивают к новым порциям очищаемой сточной воды.

При оптимальном режиме работы расчетная эффективность очистной установки составляет 95% по СПАВ и 72% по взвешенным веществам.

Законодательство устанавливает, что стоки, образовавшиеся на автомойке, запрещается сбрасывать без очистки в окружающую среду (в том числе на грунт), а система водоснабжения автомойки должна включать очистку и систему рециркуляции сточных вод.

Методы очистки и конкретные технологии для стоков автомоек подбираются с учетом специфики загрязняющих веществ.

Примерное содержание основных загрязняющих веществ в сточных водах автомоек от разных категорий транспорта (по данным [7]):

  • взвешенные вещества: 400-4000 мг/л;
  • нефтепродукты: 20-150 мг/л;
  • тетраэтилсвинец: 0,01-0,1 мг/л;
  • СПАВ: 100 мг/л.
Читайте также:  Сдать анализ воды на биохимию

Основные загрязнители в стоках автомоек — смывы с корпусов автомобилей, содержащие большое количество взвешенных веществ, нефтепродуктов и токсичных соединений свинца. СПАВ в стоках автомоек появляются в том случае, если в процессе мойки применяются специальные моющие составы.

Готовая схема водоочистки автомойки [8] включает в себя несколько этапов:

  • грубая механическая очистка;
  • гравитационное осаждение;
  • реагентная обработка;
  • напорная флотация;
  • фильтрация.

На предварительном этапе стоки очищаются от грубых механических примесей и взвешенных веществ в пескоуловителях и нефтеловушках. Дальнейшая очистка стоков происходит в гравитационных отстойниках. В описанной схеме очистки используются тонкослойные отстойники, в которых осаждение взвешенных примесей происходит более эффективно.

Основные методы очистки сточных вод автомоек— реагентный и метод напорной флотации.

Эти методы позволяют очистить сточные воды до показателей, допускающих их повторное использование в оборотной системе водоснабжения. Недостатки реагентных и флотационнных методов — высокие затраты на расходные материалы и реагенты.

На практике высокие рекомендации получил комплексный метод очистки стоков автомоек с использованием водооборотной системы «Скат» [8]. Установка состоит из трех блоков:

  1. Блок БПО — для удаления грубых примесей.
  2. Блок ОТБ — флотационная очистка от мелкодисперсных взвесей.
  3. Блок ДСБ— доочистка воды на угольном фильтре.

Подбор оборудования для очистной системы ведется в зависимости от объемов воды, циркулирующей в системе оборотного водоснабжения, и подпитки свежей водой (15% от объема оборотной).

Подобные системы очистки и оборотного водоснабжения автомоек не только эффективны в плане улавливания выбросов, но и выгодны, поскольку значительно сокращают водопотребление. Очищенная вода повторно используются в процессе мойки машин, а свежая вода применяется лишь для конечного ополаскивания.

Методы очистки сточных вод от СПАВ условно можно разделить на методы, подходящие для очистки сточных вод с невысоким содержанием веществ (10-100 мг/л) и на методы, подходящие для очистки стоков с высокими концентрациями поверхностных активных веществ (100-1000 мг/л).

  1. Для очистки стоков с невысоким содержанием можно применять методы адсорбции на углях; сорбционные методы с использованием ионообменных смол и полимерных адсорбентов; методы обратного осмоса; биохимические методы очистки (биоокисление и биосорбция); флокуляцию; методы электрокоагуляции; метод озонирования.
  2. Для очистки сточных вод с высоким содержанием больше подходят методы коагуляции; флокуляции; экстракции; ионного обмена; а также электрические и комбинированные методы — электрофлотация, электрокоагуляция, гальванокоагуляция, электрофлотокоагуляция.

Каждый из перечисленных методов имеет свои недостатки и ограничения по использованию. Сочетание нескольких технических приемов при очистке сточных вод позволяет получить наиболее высокую степень извлечения СПАВ [4].

  1. Адсорбция
    В установках очистки стоков от СПАВ может быть использован гранулированный активированный уголь. В отличие от порошкообразного угля, у гранулированного угля меньше потери при регенерации, а стоимость регенерации гранулированного угля ниже, чем порошкообразного. Адсорбцию углем целесообразно использовать на стадиях доочистки стоков с содержанием СПАВ не более 100-200 мг/л. При этом достигается высокая степень очистки, до 95%.
  2. Ионный обмен
    Сорбция ионитами наиболее эффективна для сточных вод с содержанием поверхностно-активных веществ не более 100 мг/л. Для удаления анионоактивных СПАВ используют среднеосновные и сильноосновные иониты. Регенерируют иониты водно-органическими растворами солей. Недостаток метода ионного обмена — необходимость установки большого количества ионитовых фильтров с коротким рабочим циклом, и их частая регенерация. Очистка воды от СПАВ методами ионного обмена может быть целесообразна лишь в случаях, когда к очищенной воде предъявляются высокие требования. Степень очистки методом ионного обмена порядка 80-90%.
  3. Коагуляция
    В качестве коагулянтов применяют сернокислый алюминий или сернокислое железо. Этот метод подходит для очистки слабоконцентрированных растворов анионных СПАВ (1-20 мг/л), и является достаточно затратным из-за высоких капитальных расходов, необходимости использования больших доз коагулянтов, переработки большого объема выпадающего осадка. Степень очистки составляет порядка 90%.
  4. Пенная флотация
    Методы пенной флотации эффективны для слабоконцентрированных растворов СПАВ, потому что при росте концентрации происходит резкое увеличение объема пены [1]. Эффективность метода очистки пенообразованием зависит от многих факторов: pH среды, размеров пузырьков газа, высоты слоя раствора, температуры, присутствия в растворе других ионов. Создание оптимальных условий для протекания процесса пенообразования — достаточно сложная задача. Зачастую метод пенной очистки требует предварительной обработки сточных вод.
  5. Электрохимические методы
    Электрохимические методы имеют много преимуществ перед классическими методами очистки сточных вод от СПАВ и имеют хорошие перспективы к практическому использованию. Методы с использованием электричества позволяют отказаться от проектирования и содержания реагентного хозяйства, так как не предусматривают использования химических реагентов. При условии, что стоимость электроэнергии не будет возрастать, можно прогнозировать широкое распространение электрохимических методов очистки.
    Метод электрокоагуляции эффективен для очистки сточных вод от алкилсульфонатов высокой концентрации при pH сточных вод 11-11,5 (по данным [1]). Для подщелачивания сточных вод применяется оксид кальция. В методе используются алюминиевый анод и медный катод, плотность тока составляет 3 А/дм², длительность обработки —20-30 минут. По данным [9] эффективность очистки от алкилсульфонатов составляет свыше 98%.
    Если концентрации СПАВ в растворе невысоки (до 100 мг/л) используют прямую электрокоагуляцию без добавления нейтрализующих агентов.
    По данным [4] наиболее эффективны для очистки сточных вод от СПАВ комбинированные методы, сочетающие в себе несколько процессов: электролиз, коагуляцию, сорбцию и флотацию. Вода подается в реакционную камеру с электродами. На поверхности электродов генерируются ионы металлов и образуются гидроксиды. Одновременно идет процесс гидролиза воды с выделением газообразных водорода (на катоде) и кислорода (на аноде). Хлопья коагулянта и пузырьки газа в стесненных условиях интенсивно подвергаются коагуляции загрязнений, что повышает эффективность флотации. Образующийся пенный продукт отводится в карман сбора пены, а очищенная вода отводится на отстаивание. Оптимальное время обработки — 20 минут, плотность тока 85 А/м².
  6. Физические методы
    Это методы очистки воды, основанные на воздействии ультразвука, электростатического, радиационного и магнитного поля. По данным [1], физические методы могут дополнять основные методы очистки воды от синтетических поверхностно-активных веществ высоких концентраций, повышая их общую эффективность.
    При воздействии на сточную воду магнитного поля ускоряется процесс флотации, осаждения и агрегации взвешенных веществ, изменяется структура осадка. Методы электромагнитной обработки стоков перспективны из-за невысокой стоимости оборудования и малой энергоемкости.
  7. Биохимические методы
    Поверхностно активные вещества (ПАВ) являются органическими веществами, способными подвергаться биохимическому окислению. В процессе очистки ПАВ частично сорбируются активным илом или удаляются из воды вместе с осаждением взвешенных веществ. При значительных концентрациях поверхностно-активных веществ в аэротенках наблюдается активное пенообразование. Также пена присутствует в очищенных стоках, выпускаемых в водоем.
    При первоначальном поступлении стоков, содержащих ПАВ, в аэротенки или биофильтры, сразу происходит интенсивная адсорбция этих веществ. Количество ПАВ, удаляемых адсорбцией, зависит от химического строения этих веществ. Если их биохимическое окисление идет недостаточно активно, они накапливаются в активном иле, что может привести к его деградации.
    Самым негативным воздействием обладают «жесткие» СПАВ, которые уже в концентрациях порядка 15 мг/л ухудшают течение биохимических процессов. При концентрации 10 мг/л наблюдается интенсивное пенообразование очищаемой воды. Активный ил начинает деградировать, микроорганизмы измельчаются. При концентрациях 20 мг/л жизнедеятельность микроорганизмов подавляется, наблюдается отмирание коловраток и свободно плавающих инфузорий [1].
    Удаление ПАВ на биофильтрах менее эффективно, чем в аэротенках. Вероятно, это связано с процессами аэрации и выноса части ПАВ в виде пены.
    Неионогенные (так называемые «мягкие» СПАВ), также оказывают отрицательное влияние на процессы биохимической очистки, но это проявляется при более высоком их содержании. При их концентрации в стоках свыше 50 мг/л они вызывают незначительное повышение БПК очищенных стоков. Если в сточных водах присутствуют СПАВ, относимые к промежуточной группе, наблюдаются процессы пенообразования в аэротенках и ухудшение эффективности очистки при концентрации этих веществ свыше 20 мг/л.
    Как видно, степень влияния ПАВ на процессы биохимического окисления сильно зависит от особенностей их строения и способности молекул к адсорбции и биохимическому распаду. Поэтому существуют рекомендуемые нормативы предельного содержания ПАВ в сточных водах, поступающих на сооружения биологической очистки. Сточные воды с высоким содержанием поверхностно-активных веществ необходимо подвергать разбавлению, либо предварительной очистке.
  8. Озонирование
    Озон — сильнейший природный окислитель, вступающий в реакцию со многими органическими и неорганическими соединениями и имеющий высокую растворимость в воде. На его свойствах основана группа окислительных методов очистки сточных вод.
    По данным [1] озонирование является перспективным методом для очистки сточных вод от СПАВ в невысоких концентрациях. В результате воздействия озона образуются нетоксичные продукты, не оказывающие негативного влияния на экосистемы. Есть предположения, что озонирование можно применять и для очистки более высоконцентрированных стоков (до 200 мг/л).
    При озонировании стоков с содержанием СПАВ 26 мг/л при щелочной реакции среды (pH=9-10), полное их разложение происходило в течение 3-5 минут. При слабокислой среде реакция идет в 5-6 раз медленнее. Степень очистки составляет порядка 90% [9].
    Кроме непосредственного озонирования, для очистки стоков перспективно использовать редокс-системы, в которых озон сочетается с другими окислителями. Это дает повышение эффективности очистки и снижение расхода реагентов. Один из перспективных методов — деструкция СПАВ совместным воздействием озона и пероксида водорода.

Повсеместная распространенность синтетических поверхностно-активных веществ остро ставит вопрос нахождения наиболее приемлемых и экономически выгодных методов очистки сточных вод от них. Физико-химические особенности СПАВ и разделение этих веществ на группы по способности к биохимическому разложению существенно затрудняют подбор наиболее оптимального метода очистки.

Выбор актуального способа очистки сточных вод должен вестись в зависимости от концентрации поверхностно-активных веществ в воде, его способности к разложению («жесткое» или «мягкое» СПАВ), наличия в сточной воде других загрязняющих примесей (нефтепродуктов, взвесей), а также требуемого качества воды на выходе.

При однородном составе сточных вод и невысоких концентрациях ПАВ возможно реализовать схему одноступенчатой очистки с использованием методов сорбции, флотации, коагуляции, биологического окисления или мембранного фильтрования.

Для многокомпонентных сточных вод, вод с высоким содержанием ПАВ или при наличии трудноразрушаемых соединений СПАВ, рекомендуется использовать многоступенчатые технологии с последовательной очисткой стоков несколькими методами или комбинированные методы очистки (электрофлотация, электрофлотокоагуляция и др.).

источник

Настоящий нормативный документ устанавливает методику фотометрического определения анионных СПАВ в пробах природных и сточных вод в диапазоне массовых концентраций от 0,10 до 100 мг/дм 3 . При массовой концентрации свыше 2,0 мг/дм 3 требуется предварительное разбавление пробы.

Определению мешают анионы и восстановители:

— хлориды в концентрации свыше 75 мг/дм 3 ,

— нитраты в концентрации свыше 10 мг/дм 3 ,

— роданиды в концентрации свыше 0,5 мг/дм 3 ,

— тиосульфата и сульфиды в концентрациях свыше 10 мг/дм 3 ,

Мешающее влияние указанных анионов устраняют в ходе проведения анализа.

Метод определения массовой концентрации анионных СПАВ основан на их взаимодействии с метиленовым синим в щелочной среде с образованием ионных ассоциатов, экстрагируемых в хлороформ. Для устранения мешающего влияния анионов, полученные хлороформные экстракты обрабатывают кислым раствором метиленового синего, после чего измеряют оптическую плотность экстракта при длине волны 650 нм. Блок-схема анализа приведена в Приложении 1.

Настоящая методика обеспечивает получение результатов анализа с погрешностями, не превышающими значений, приведенных в табл. 1.

Значения показателей точности, правильности, воспроизводимости и повторяемости

Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), s r( d ), %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости) s R( d ), %

Показатель правильности (границы относительной систематической погрешности при вероятности Р = 0,95) ± d c, %

Показатель точности (границы, в которых находится погрешность методики при Р = 0,95), ± d , %

3.1. Средства измерений и вспомогательное оборудование

— Весы лабораторные по ГОСТ 24104 с наибольшим пределом взвешивания 210 г и ценой деления 0,0001 г.

— Государственный стандартный образец (ГСО) состава раствора АСПАВ (додецилсульфат натрия кристаллический или раствор с концентрацией 1 мг/см).

— Колбы мерные вместимостью 10, 100 и 1000 см 3 по ГОСТ 1770, 2 класс точности.

— Пипетки градуированные вместимостью 1, 2, 5, 10 см 3 по ГОСТ 29227, 2 класс точности.

— Пипетки с одной меткой вместимостью 1, 2, 5, 10, 20 см 3 по ГОСТ 29169, 2 класс точности.

— Пробирки градуированные вместимостью 10 см 3 по ГОСТ 1770.

— Фотоэлектроколориметр или спектрофотометр, позволяющий проводить измерения при длине волны 650 нм и снабженный кюветами с толщиной поглощающего слоя 10 мм.

— рН-метр лабораторный с пределом допускаемых значений основной абсолютной погрешности ±0,05 ед. рН.

— Цилиндры мерные вместимостью 10, 1000 см 3 по ГОСТ 1770, 2 класс точности.

— Воронки делительные вместимостью 50 см 3 по ГОСТ 25336.

— Встряхиватель, снабженный насадкой для делительных воронок, обеспечивающий их встряхивание возвратно-поступательным движением, с регулируемой скоростью встряхивания или любое другое устройство, позволяющее проводить экстракцию в воспроизводимых условиях.

Примечание : Допускается проведение экстракции вручную.

— Дистиллятор или установка любого типа для получения воды дистиллированной по ГОСТ 6709 или деионизованной 2 степени чистоты по ГОСТ Р 52501.

Читайте также:  Сдать анализ воды из скважины

— Стаканы вместимостью 50, 1000, 2000 см 3 по ГОСТ 25336.

— Флаконы из темного стекла вместимостью 1000 см 3 (для хранения растворов реактивов).

— Флакон пластиковый вместимостью 1000 см 3 (для хранения щелочного буферного раствора).

— Холодильник бытовой любого типа, обеспечивающий хранение проб при температуре 2 — 10 °С.

— Штатив для делительных воронок

Допускается использование других средств измерения с метрологическими характеристиками не хуже, чем у вышеуказанных и вспомогательных устройств с техническими характеристиками не хуже, чем у вышеуказанных.

— Вода дистиллированная по ГОСТ 6709 или деминерализованная по ГОСТ Р 52501 (2-ой степени чистоты).

— Натрий гидроокись (натрия гидроксид, едкий натр), ч.д.а. по ГОСТ 4328.

— Калий фосфорнокислый однозамещенный, ч.д.а., по ГОСТ 4198.

— Метиленовый синий, ч., ТУ 6-09-29

— Натрий сернокислый безводный (натрия сульфат), х.ч. по ГОСТ 4166.

— Вата медицинская гигроскопическая, нестерильная по ГОСТ 5556.

Допускается использовать реактивы более высокой квалификации или импортные аналоги.

4.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

4.2. При работе с оборудованием необходимо соблюдать правила электробезопасности по ГОСТ 12.1.019.

4.3. Обучение работающих безопасности труда должно быть организовано в соответствии с ГОСТ 12.0.004.

4.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

К выполнению измерений допускают химика-аналитика, владеющего техникой экстракционно-фотометрического анализа и изучившего правила эксплуатации используемого оборудования.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

относительная влажность воздуха

7.1. Отбор проб воды осуществляют в соответствии с ГОСТ Р 51592 «Вода. Общие требования к отбору проб».

7.2. Отбор проб воды осуществляют в стеклянные герметично закупоривающиеся бутыли. Объём отбираемой пробы должен быть не менее 100 см 3 .

7.3. Пробу следует анализировать в день отбора. Если пробу нельзя проанализировать в день отбора, её консервируют хлороформом из расчета 2 — 4 см 3 на 1000 см 3 пробы. Законсервированную пробу хранят при температуре 2 — 10 °С не более 7 суток.

7.4. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

Подготовку спектрофотометра или фотоэлектроколориметра к работе проводят в соответствии с рабочей инструкцией по эксплуатации прибора.

8 .2.1. Приготовление нейтрального раствора метиленового синего

В мерную колбу вместимостью 1000 см 3 помещают 0,35 г метиленового синего, добавляют 500 см 3 дистиллированной воды и оставляют на 24 ч до полного растворения навески. Содержимое колбы перемешивают и доводят объем до метки дистиллированной водой. Реактив хранят при комнатной температуре в течение 6 мес.

В мерную колбу вместимостью 1000 см 3 помещают 0,35 г метиленового синего, растворяют в небольшом количестве дистиллированной воды, добавляют к раствору 6,5 см 3 серной кислоты и доводят объем раствора до метки дистиллированной водой. Раствор готовят за 24 часа до использования. Реактив хранят при комнатной температуре в течение 6 мес.

16,33 г калия фосфорнокислого помещают в стакан вместимостью 2000 см 3 и растворяют его в 1200 см 3 дистиллированной воды, отмеривая воду цилиндром. Навеску 5,04 г гидроокиси натрия помещают в стакан вместимостью 1000 см 3 и растворяют в 630 см 3 дистиллированной воды, отмеривая воду цилиндром. Оба раствора смешивают в стакане вместимостью 2000 см 3 и выдерживают в течение суток. Значение рН полученного буферного раствора контролируют с помощью рН-метра. При необходимости значение рН доводят до 10,0 ± 0,2 ед. рН, прибавляя несколько кристаллов фосфорнокислого калия, если рН более 10,2 ед. рН, или по каплям любой раствор гидроокиси натрия, имеющийся в лаборатории (с концентрацией 5 — 30 %), если рН менее 9,8 ед. рН. В дальнейшем рН буферного раствора проверяют не реже одного раза в месяц.

8 .2.4. Приготовление основного стандартного раствора с концентрацией АСПАВ 100 мг/дм 3

Раствор готовят из государственного стандартного образца состава АСПАВ (кристаллический додецилсульфат натрия). Содержимое ампулы ГСО количественно переносят в мерную колбу вместимостью 1000 см 3 и растворяют в небольшом количестве дистиллированной воды. Объем раствора доводят до метки дистиллированной водой и перемешивают.

В случае приготовления основного стандартного раствора АСПАВ из ГСО с концентрацией 1 мг/см 3 , раствор пипеткой 5 см 3 отбирают в мерную колбу вместимостью 50 см 3 . Объем раствора доводят до метки дистиллированной водой и перемешивают.

Срок хранения раствора 3 месяца при температуре 2 — 10 °С с добавлением хлороформа из расчета 2 — 4 см 3 на 1000 см 3 .

В мерную колбу вместимостью 100 см 3 пипеткой переносят 10 см 3 основного стандартного раствора АСПАВ с концентрацией 100 мг/см 3 , доводят объем раствора дистиллированной водой до метки и перемешивают. Раствор используют свежеприготовленным.

В мерную колбу вместимостью 100 см 3 пипеткой переносят 10 см 3 рабочего стандартного раствора (I) с концентрацией АСПАВ 10 мг/дм 3 , доводят объем раствора дистиллированной водой до метки и перемешивают. Раствор используют свежеприготовленным.

В мерные колбы (или градуированные пробирки) вместимостью 10 см 3 последовательно вносят 1,0 — 2,0 — 4,0 см 3 рабочего стандартного раствора (II) АСПАВ и 1,0 — 1,5 — 2,0 см 3 рабочего стандартного раствора (I) АСПАВ. Объём растворов доводят дистиллированной водой до метки и перемешивают. Концентрация АСПАВ в полученных растворах составляет соответственно 0,10 — 0,20 — 0,40 — 1,0 — 1,5 — 2,0 мг/дм 3 . Приготовленные градуировочные растворы переливают в делительные воронки вместимостью 50 см 3 , прибавляют 1 см 3 фосфатного буферного раствора и 1 см 3 нейтрального метиленового синего. Содержимое воронок перемешивают и в каждую добавляют по 3 см 3 хлороформа. Смесь энергично вручную или с помощью встряхивателя встряхивают в течение 1 мин, и после расслоения фаз, нижний слой сливают в другую делительную воронку, содержащую 10 см 3 дистиллированной воды и 1 см 3 кислого раствора метиленового синего. В первую делительную воронку вновь добавляют 3 см 3 хлороформа и повторяют операцию экстрагирования, хлороформный экстракт также сливают во вторую делительную воронку. Третью экстракцию проводят аналогичным способом. Затем содержимое второй воронки встряхивают в течение 1 мин и оставляют до полного расслоения. Экстракт сливают в пробирку вместимостью 10 см 3 через воронку с ватой, предварительно смоченной хлороформом, и доводят объем раствора до 10 см 3 хлороформом. Измеряют оптическую плотность полученного экстракта при длине волны 650 нм в кюветах с толщиной поглощающего слоя 10 мм относительно хлороформа.

Одновременно проводят измерения оптической плотности экстракта холостой пробы. В качестве холостой пробы используют дистиллированную воду, проведенную через весь ход анализа. Значение оптической плотности экстракта холостой пробы, не должно превышать 0,030 ед. абс.

Значения оптической плотности стандартных растворов D ст.p (ед. абс) рассчитывают по разности значений оптической плотности градуировочных растворов (D гр ) и значения оптической плотности холостой пробы (D ). Градуировочный график строят в координатах D ст.р (ед. абс) — концентрация АСПАВ (мг/дм 3 ).

Градуировочную характеристику устанавливают заново при смене партии любого из реактивов, после ремонта или юстировки фотоколориметра, но не реже 1 раза в три месяца.

Контроль стабильности градуировочной характеристики проводят по одному градуировочному раствору перед выполнением серии анализов. Градуировочную характеристику считают стабильной в случае, если полученное значение концентрации градуировочного раствора не превышает значения норматива контроля стабильности, который устанавливают в лаборатории при внедрении методики. Значение норматива контроля стабильности градуировочной характеристики не должно превышать 20 %.

Если условие стабильности градуировочной характеристики не выполняется для одного градуировочного раствора, необходимо выполнить повторное измерение для этого градуировочного раствора с целью исключения результата измерения, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют и устраняют причины нестабильности и повторяют контроль с использованием не менее 2-х других градуировочных растворов, предусмотренных методикой. При повторном обнаружении отклонения результата градуировочную характеристику устанавливают заново.

Перед проведением каждой серии измерений выполняют анализ холостой пробы. В качестве холостой пробы используют 10,0 см 3 дистиллированной воды, проведенной через весь ход анализа.

10,0 см 3 анализируемой пробы или меньший ее объем, доведенный до 10,0 см 3 дистиллированной водой, помещают в делительную воронку вместимостью 50 см 3 , прибавляют 1,0 см 3 фосфатного буферного раствора, 1,0 см 3 нейтрального метиленового синего и проводят экстракцию хлороформом так же, как при построении градуировочной характеристики (п. 8.3).

Примечание : В случаях плохого разделения фаз после последней экстракции кислым раствором метиленового синего, нижний хлороформный слой из делительной воронки сливают в стаканчики и прибавляют сульфат натрия небольшими порциями, перемешивая содержимое стеклянной палочкой до полного осушения хлороформа. Высушенный хлороформный экстракт сливают в пробирку, а сульфат натрия промывают несколькими небольшими порциями хлороформа (по 12 см 3 ), собирая их в ту же пробирку.

Оптическую плотность экстракта анализируемой пробы (D пробы , ед. абс.) рассчитывают по формуле:

где D 1 — измеренное значение оптической плотности экстракта пробы, ед. абс.

D — значение оптической плотности экстракта холостой пробы, ед. абс.

По градуировочному графику находят концентрацию АСПАВ (С, мг/дм 3 ).

Массовую концентрацию АСПАВ в пробе ( ХАспав , мг/дм 3 ) рассчитывают по формуле:

где: С — концентрация АСПАВ, найденная по градуировочному графику, мг/дм 3 ;

Кр — коэффициент предварительного разбавления пробы (при необходимости).

Результаты количественного анализа в протоколах анализов представляют в виде:

d — значение показателя точности, % (см. табл. 1).

Результаты измерений округляют с точностью:

при содержании от 0,1 до 1,0 мг/дм 3 — 0,01 мг/дм 3

при содержании от 1,0 до 10,0 мг/дм 3 — 0,1 мг/дм 3

при содержании от 10 до 100 мг/дм 3 — 1 мг/дм 3

12.1. При необходимости проверку приемлемости результатов измерений, полученных в условиях повторяемости (сходимости) осуществляют в соответствии с требованиями раздела 5.2. ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений не должно превышать предела повторяемости (r). Значения r приведены в таблице 2.

12.2. При необходимости проверку приемлемости результатов измерений, полученных в условиях воспроизводимости проводят с учетом требований раздела 5.3 ГОСТ Р ИСО 5725-6-2002. Расхождение между результатами измерений, полученными двумя лабораториями не должно превышать предела воспроизводимости (R). Значения R приведены в таблице 2.

Пределы повторяемости и воспроизводимости результатов измерений

Предел повторяемости (для двух результатов измерений), r, %

Предел воспроизводимости (для двух результатов измерений), R, %

13.1. Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

— контроль исполнителем процедуры выполнения измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

— контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости и внутрилабораторной прецизионности и погрешности).

Периодичность контроля исполнителем процедуры выполнения измерений и алгоритмы контрольных процедур (с использованием метода добавок, с использованием образцов для контроля и т.п.), а также реализуемые процедуры контроля стабильности результатов измерений регламентируют во внутренних документах лаборатории.

13.2. Контроль процедуры выполнения измерений с использованием образцов для контроля:

Анализируют образец для контроля, приготовленный с использованием ГСО. Результат контрольной процедуры Кк рассчитывают по формуле:

где X — результат анализа, мг/дм 3 ;

С — аттестованное значение АСПАВ в образце для контроля, мг/дм 3 .

Для оценки качества процедуры выполнения анализа рассчитывают норматив контроля К по формуле:

где ± D л — характеристика погрешности результатов анализа, соответствующая аттестованному значению ОК.

Примечание : На первом этапе допускается считать D л = 0,84 D , где D — показатель точности МВИ.

Если результат контрольной процедуры удовлетворяет условию:

процедуру анализа признают удовлетворительной. Претензии к качеству процесса не предъявляют.

При невыполнении условия контрольную процедуру повторяют. При повторном невыполнении условия выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

13.3. Процедуру контроля стабильности показателей качества результатов анализа (повторяемости, внутрилабораторной прецизионности и погрешности) проводят в соответствии с порядком, установленным в лаборатории.

источник

Дата публикации: 01.09.2013 2013-09-01

Статья просмотрена: 14775 раз

Кутковский К. А. Виды сточных вод и основные методы анализа загрязнителей // Молодой ученый. — 2013. — №9. — С. 119-122. — URL https://moluch.ru/archive/56/7745/ (дата обращения: 21.10.2019).

Воды и атмосферные осадки, которые поступают в естественные водоемы с территорий населенных пунктов и предприятий, принято называть сточными водами. Отвод данных вод осуществляется посредством канализации или естественным путем.

Сточные воды это в большей или меньшей степени загрязненные в результате использования бытовые, промысловые и производственные воды, содержащие отбросы или отработанное тепло, а также отличающиеся изменившимися в отрицательную сторону физическими и биологическими свойствами [1, с. 1287]. Из этого можно сделать вывод о, безусловно, антропогенном происхождении и неоднородности стоков, а также о сложности очистки или утилизации данного продукта антропогенной деятельности.

Из-за ухудшившихся биологических и физических свойств, сточные воды пагубно влияют на развитие всей биосферы. Сточные воды провоцируют и ускоряют эвтрофикацию водоемов из обильного содержания в них фосфора и азота, а также приводят к изменению естественных биоценозов и, как следствие, гибели биологических видов, загрязнению объектов водопользования, используемые человеком в качестве источника питьевой воды. Так же происходит обильное воздействие на артезианские бассейны: их биологическая чистота несопоставима с их состоянием до научно-технической революции, обусловившей эру активного антропогенного воздействия на природу.

Читайте также:  Сдать анализ воды из пруда

Вследствие научно-технической мысли, ее развитии и повсеместном внедрение, источниками сточных вод являются практически любые антропогенные объекты: жилые дома, образовательные учреждения, медицинские объекты, торговые склады и точки реализаций товаров, различные сервисные организации, АЗС, металлургическая промышленность, пищевая промышленность, фармацевтической промышленность, сельхозяйственные угодья и т. д.

Для контроля качества и объема поступления сточных вод разрабатываются законы и подзаконные акты, происходит внедрение и разработка как новых, так и уже зарекомендованных себя методов очистки. Формируется всесторонний анализ сточных вод, позволяющий разработать оптимальный алгоритм очистки (с учетом характера загрязнителей) для каждого промышленного объекта и оценить качество воды, покидающей очистные сооружения. Любые нарушения влекут за собой штрафы и санкции, прописанные как в Водном кодексе РФ, так и в Уголовном кодексе РФ.

Определим, какими характеристиками обладают сточные воды, и как загрязнители влияют на процесс очистки. Для начала определим классификацию сточных вод и особенности отдельных их типов.

Виды сточных вод

1) Хозяйственно-бытовые. Этот тип стоков в основном поступает из жилых домов, а так же объектов социального пользования(больницы, образовательные учреждения, торговые центры и т. д.). Отведение происходит посредством хозяйственно-бытовой и общесплавной канализации. Состав загрязнителей: 58 % — органика, 42 % — минеральные вещества. Особенность — высокое содержание азотсодержащих соединений и фосфатов, значительная степень фекального загрязнения.

2) Промышленные сточные воды. Основной загрязнитель — объекты промышленности и предприятия различного рода деятельности. Отведение происходит посредством промышленной канализации. Спектр загрязнителей характеризуется видом промышленной деятельности. Содержат органические и неорганические элементы. Наибольшую опасность для гидросферы и человека представляют нефтепродукты, органические красители, фенолы, поверхностно-активные вещества, сульфаты, хлориды и тяжелые металлы.

3) Поверхностные сточные воды. Основное поступление из дождевых и талых вод, формирующихся из атмосферных осадков, проникающих в почву и стекающих в водоемы посредством ливневой канализации с территории промышленных предприятий и населенных пунктов. Спектр возможных загрязнителей широк и определяется особенностями территории и видом антропогенной деятельности, преобладающей в районе стока.

Анализ сточных вод

Рассмотрим основные источники поступления сточных вод в экосистемы: промышленные и бытовые объекты, на них приходится основная доля поступающих на очистные сооружения стоков. [2, с. 59] Анализ именно этих источников позволяет понять специфику оценки качества сточных вод и спектр загрязнителей. На выходе из очистных сооружений не должно быть примесей, содержишихся в характерной для той или иной природы стоков, либо их количество должно быть минимальным (определяется нормативами).

Для анализа качества вод используются следующие параметры: температура, цветность, запах и прозрачность. Физические показатели качества воды малоинформативные и понятны на интуитивном уровне. Для всех типов сточных вод характерна повышенная температура, специфический запах и сниженная прозрачность (определяется по шрифту). Изменение цветности (измеряется в градусах платинокобальтовой шкалы) присущи промышленным сточным водам и зависят от вида производственной деятельности.

Так же важным методом анализа качества вод является химический анализ. Реакция (рН) коммунальных сточных вод, как правило, нейтральна (6,5–8), а реакция промышленных стоков подвержена изменениям от сильнокислой (рН менее 3) до сильнощелочной (рН более 11) в зависимости от источника поступления. В процессе очистки реакция сточных вод должна стать нейтральной.

Для определения доли примесей как сухих, так и растворенных, используется такой параметр как «сухой остаток», отражающий степень загрязненности воды примесями. Данный параметр берется из нефильтрованной пробы. Он указывает на количество в воде примесей, как взвешенных (руда, окалина, известняк, кокс и т. д.), так и растворенных. В зависимости от содержания примесей сточные воды принято делить на четыре категории: первая — сухой остаток менее 500 мг/л (коммунальные сточные воды), четвертая — выше 30 000 мг/л. Отметка 5000 мг/л разделяет вторую и третью категорию. [4, с. 76]

Процесс очистки сточных вод от взвешенных примесей происходит путем механических методов очистки, самым распространенным из которых является метод отстаивания. Для прогнозирования эффективности этого метода используется показатель «оседающие вещества». Проба воды помещается в цилиндр, после чего оценивается, какое количество взвешенных веществ осядет за 2 часа. Измеряется в мг/л и процентах от сухого остатка. Оседающие вещества в городских сточных водах, как правило, составляют 65–75 %.

Необходимость вычисления сухого остатка обусловлена дальнейшей обработкой промышленных и коммунальных стоков при помощи биологических методов (бактерии), и на этой стадии количество взвешенных веществ не должно превышать 10 г/л.

Следующим важным параметром сточных вод является зольность твердых примесей. Прокаливание сухого остатка проводят при температуре «красного» каления (500–600°С), в результате чего часть химических соединений сгорает и улетучиваются в виде оксидов, углерода, водорода, азота, серы и других примесей, вес пробы уменьшается. Массу остатка, называемого золой, делят на первоначальную массу образца и получают зольность, выраженную в процентах. Для городских сточных вод характерна зольность 25–35 %.

Еще одним показателем является окисляемость. Данный показатель является санитарным, сфера его актуальности распространяется также не только на сточные воды. Окисляемость указывает на степень загрязнения воды органическими и неорганическими веществами, но также он используется для оценки степени органического загрязнения. Окисляемость определяется при помощи аэробных гетеротрофных бактерий (биохимическая окисляемость) и посредством химических реакций (химическая окисляемость — бихроматная, иодатная и т. д.).

Единицами измерения окисляемости является потребление кислорода: БПК и ХПК — биохимическое и химическое потребление кислорода, выраженное в миллиграммах О2 на литр. Большое значение имеет соотношение БПК к ХПК, которое позволяет прогнозировать, какое количество загрязнителей может быть удалено при помощи биологических методов очистки. [3, с. 141]

Химическая окисляемость определяет общее содержание в воде восстановителей — органических и неорганических, реагирующих с окислителями. В сточных водах преобладают органические восстановители, поэтому, как правило, всю величину окисляемости относят к органическим примесям воды.

Важнейшими показателям для сохранности гидросферы и эффективности биологической очистки является содержание фосфора и азотистых соединений. В сточных водах определяется содержание общего, нитратного, нитритного и аммонийного азота. От количества соединений азота зависит степень эффективности биологической очистки. При малом содержание азота в производственных сточных водах на стадии биологической очистки добавляют в воду хлористый аммоний. В хозяйственных стоках концентрация соединений азота всегда высока, из-за обилия поступающих веществ, связанных с процессом человеческой жизнедеятельности.

Концентрация фосфора в сточных водах всегда превышает ПДК. Основой поступления фосфатов в сточные воды служат фосфатные компоненты синтетических моющих средств и фекальные стоки, поступающие как из хозяйственной, так и из промышленной сферы. Избыток фосфорсодержащих соединений является одной из главных причин эвтрофикации водоемов.

Следующими показателями состояния сточных вод являются сульфаты и хлориды. Концентрация сульфатов в городских сточных водах обычно находится на уровне 100- 150 мг/л, хлоридов — 150–300 мг/л. В промышленных стоках (в частности, на металлургических заводах) уровень хлоридов и сульфатов значительно выше, к тому же к ним добавляются цианиды, аммиак и роданистые соединения.

Представленные выше показатели важны для оценки загрязненности стоков, так же их следует учитывать и в процессе трактовки данных, полученных в ходе иных анализов. Концентрацию хлоридов важно знать при определении ХПК, так как хлориды окисляются бихроматом калия до молекулярного хлора. Поэтому при концентрации хлоридов более 200 мг/л требуется их предварительное осаждение или введение поправки к результату анализа ХПК. Синтетические поверхностно-активные вещества, или СПАВ, так же являются серьезными загрязнителями естественных водоемов. Воздействие СПАВ напрямую влияет на эвтрофикацию рек и озер, угнетение процессов самоочищения гидросферы, торможение биохимических процессов в водоемах, вызывая другие губительные для биоценоза процессы.

Большинство СПАВ — органические вещества, состоящие из двух частей: гидрофобной и гидрофильной. Гидрофобная часть СПАВ соединена обычно с одной гидрофильной группой. В зависимости от физико-химических свойств гидрофильной части СПАВ делятся на три основных типа: анионактивные, катионоактивные, неионогенные. Каждый тип в свою очередь делится на классы в зависимости от химического состава гидрофобной части.

Примерно 75–80 % всех СПАВ, применяемых в быту и промышленности, составляют анионактивные. Важнейшим из них являются: алкилсульфаты с общей формулой R—O—SO3Na (где R — углеводородный радикал с числом углеродных атомов от 10 до 20); алкилсульфонаты R—SO3Na (с числом углеродных атомов 12–15) и алкиларилсульфонаты R—C6Н4—SO3Na (с числом углеродных атомов в радикале 5–18).

Так же присутствие СПАВ резко отрицательно сказывается на работе очистных сооружений, во время очистки сточных вод поверхностно-активные вещества замедляют процессы осаждения твердых взвешенных частиц, провоцируют появление пены в очистных сооружениях и препятствуют биологической очистке. Для предотвращения данных процессов содержание СПАВ в стоках, поступающих на стадию биологической очистки, не должно превышать 20 мг/л. Некоторые фракции (в частности, жесткие СПАВ) предварительно должны быть полностью удалены химическими и физико-химическими методами.

Поверхностно-активные вещества присутствуют во всех сточных водах, в том числе и хозяйственно-бытовых. Источниками СПАВ в сточных водах является результат широкого применения их в быту и промышленности в качестве моющих средств, а также смачивающих, эмульгирующих, выравнивающих, дезинфицирующих препаратов.

Наиболее высокая концентрация токсических веществ определяется в промышленных сточных водах и классифицируются на две категории — неорганические и органические. К органическим токсическим веществам относятся нефтепродукты, смолы, карбоциклические соединения, пестициды, красители, кетоны, фенолы, спирты и СПАВ. Неорганические компоненты представлены солями, щелочами, кислотами и различными химическими элементами (хром, алюминий, свинец, никель, фтор, бор, железо, ванадий и т. д.).

В хозяйственно-бытовых и сельскохозяйственных сточных водах основными биологическим загрязнителями являются бактерии, вирусы, патогенные простейшие и яйца гельминтов, источником которых являются люди и животные.

Для оценки фекальной загрязненности сточных вод используются микробиологические анализы — определение общего микробного числа и количества общих колиформ (коли-тест). Основная задача данных анализов оценить степень фекального загрязнения воды, а не выявление самого факта наличия патогенных микроорганизмов. Вывод делается на основе степени загрязнения сточных вод фекалиями: чем выше уровень загрязнения, тем выше вероятность присутствия патогенных организмов в воде.

Бактериологический анализ сточных вод необходим для оценки эффективности работы очистных сооружений и дает представление о необходимых корректировках процесса очистки сточных вод. Дезинфекция проводится хлором, который оказывает негативное воздействие на качество воды.

Последним показателем является растворенный кислород. Содержание растворенного кислорода (РК) в воде характеризует кислородный режим водоема и имеет важнейшее значение для оценки его экологического и санитарного состояния. Он также необходим для самоочищения водоемов, т. к. участвует в процессах окисления органических и других примесей, разложения отмерших организмов. Снижение концентрации РК свидетельствует об изменении биологических процессов в водоеме, о загрязнении водоема биохимически интенсивно окисляющимися веществами (в первую очередь органическими). Потребление кислорода обусловлено также химическими процессами окисления содержащихся в воде примесей, а также дыханием водных организмов. Поэтому важным фактором является соблюдение качества очищенной воды, поступающей в естественные водоемы. [5, с. 49]

Оценка качественного и количественного состава загрязнителей сточных вод необходима не только для составления плана очистных мероприятий, но и для повышения их эффективности, а так же для мониторинга и последующего прогнозирования негативного антропогенного воздействия на гидросферу и экосистему в целом. Проблемы загрязненности сточных вод, методов очистки и возвращения в естественные источники или их повторное использование, давно перестали быть чем то далеким и несбыточным. За последние 150 лет качество наземных и подземных источников воды резко ухудшилось и требует не только использования современных норм и стандартов, но так же и поиск, разработку и внедрение новых идей и подходов, как к контролю поступающих загрязняющих веществ, так и к методам очистки сточных вод.

1. Советский энциклопедический словарь/Научно-редакционный совет: А. М. Прохоров (пред.).- М.: «Советская энциклопедия», 1981.- 1287 с.

2. Водоотведение и очистка сточных вод: Учебник для вузов/С. В. Яковлев, Я. А. Карелин, Ю. М. Ласков, В. И. Калицун.- М.:Стройиздат, 1996.- 59 с.

3. Комплексное использование и охрана водных ресурсов. Под редакцией О. А. Юшманова М.: Агропромиздат 1985.- 141 с.

4. Евилович А. З. Утилизация осадков сточных вод М.: Стройиздат 1989.- 76 с.

5. Методы охраны внутренних вод от загрязнения и истощения Под редакцией И. К. Гавич М.: Агропромиздат 1985.- 49 с.

источник