Меню Рубрики

Анализ растворенного кислорода в воде

Кислород постоянно присутствует в растворенном виде в поверхностных водах. Содержание растворенного кислорода (РК) в воде характеризует кислородный режим водоема и имеет важнейшее значение для оценки его экологического и санитарного состояния. Кислород должен содержаться в воде в достаточном количестве, обеспечивая условия для дыхания гидробионтов. Он также необходим для самоочищения водоемов, т.к. участвует в процессах окисления органических и других примесей, разложения отмерших организмов. Снижение концентрации РК свидетельствует об изменении биологических процессов в водоеме, о загрязнении водоема биохимически интенсивно окисляющимися веществами (в первую очередь органическими). Потребление кислорода обусловлено также химическими процессами окисления содержащихся в воде примесей, а также дыханием водных организмов.

Поступление кислорода в водоем происходит путем растворения его при контакте с воздухом (абсорбции), а также в результате фотосинтеза водными растениями, т.е. в результате физико-химических и биохимических процессов. Кислород также поступает в водные объекты с дождевыми и снеговыми водами. Поэтому существует много причин, вызывающих повышение или снижение концентрации в воде растворенного кислорода.

Растворенный в воде кислород находится в виде гидратированных молекул О2. Содержание РК зависит от температуры, атмосферного давления, степени турбулизации воды, количества осадков, минерализации воды др. При каждом значении температуры существует равновесная концентрация кислорода, которую можно определить по специальным справочным таблицам, составленным для нормального атмосферного давления. Степень насыщения воды кислородом, соответствующая равновесной концентрации, принимается равной 100%. Растворимость кислорода возрастает с уменьшением температуры и минерализации и с увеличением атмосферного давления.

В поверхностных водах содержание растворенного кислорода может колебаться от 0 до 14 мг/л и подвержено значительным сезонным и суточным колебаниям. В эвтрофированных и сильно загрязненных органическими соединениями водных объектах может иметь место значительный дефицит кислорода. Уменьшение концентрации РК до 2 мг/л вызывает массовую гибель рыб и других гидробионтов.

В воде водоемов в любой период года до 12 часов дня концентрация РК должна быть не менее 4 мг/л. ПДК растворенного в воде кислорода для рыбохозяйственных водоемов установлена 6 мг/л (для ценных пород рыбы) либо 4 мг/л (для остальных пород).

Растворенный кислород является весьма неустойчивым компонентом химического состава вод. При его определении особо тщательно следует проводить отбор проб: необходимо избегать контакта воды с воздухом до фиксации кислорода (связывания его в нерастворимое соединение).

Контроль содержания кислорода в воде – чрезвычайно важная проблема, в решении которой заинтересованы практически все отрасли народного хозяйства, включая черную и цветную металлургию, химическую промышленность, сельское хозяйство, медицину, биологию, рыбную и пищевую промышленность, службы охраны окружающей среды. Содержание РК определяют как в незагрязненных природных водах, так и в сточных водах после очистки. Процессы очистки сточных вод всегда сопровождаются контролем содержания кислорода. Определение РК является частью анализа при определении другого важнейшего показателя качества воды – биохимического потребления кислорода (БПК).

Определение концентрации РК в воде проводится методом йодометрического титрования – методом Винклера, широко используемым и общепринятым при санитарно-химическом и экологическом контроле*. Метод определения концентрации РК основан на способности гидроксида марганца (II) окисляться в щелочной среде до гидроксида марганца (IV), количественно связывая при этом кислород. В кислой среде гидроксид марганца (IV) снова переходит в двухвалентное состояние, окисляя при этом эквивалентное связанному кислороду количество йода. Выделившийся йод оттитровывают раствором тиосульфата натрия в присутствии крахмала в качестве индикатора.

Определение РК проводится в несколько этапов. Сначала в анализируемую воду добавляют соль Мn (II), который в щелочной среде реагирует с растворенным кислородом с образованием нерастворимого дегидратированного гидроксида Мn (IV) по уравнению:

Таким образом производится фиксация, т.е. количественное связывание, кислорода в пробе. Фиксация РК, являющегося неустойчивым компонентом в составе воды, должна быть проведена сразу после отбора пробы.

Далее к пробе добавляют раствор сильной кислоты (как правило, соляной или серной) для растворения осадка и раствор йодида калия, в результате чего протекает химическая реакция с образованием свободного йода по уравнению:

Затем свободный йод титруют раствором тиосульфата натрия в присутствии крахмала, который добавляют для лучшего определения момента окончания титрования. Реакции описываются уравнениями:


J2 + крахмал —» синее окрашивание

О завершении титрования судят по исчезновению синей окраски (обесцвечиванию) раствора в точке эквивалентности. Количество раствора тиосульфата натрия, израсходованное на титрование, пропорционально концентрации растворенного кислорода.

В ходе анализа воды определяют концентрацию РК (в мг/л) и степень насыщения им воды (в %) по отношению к равновесному содержанию при данных температуре и атмосферном давлении.

В сточных и загрязненных поверхностных водах могут присутствовать компоненты, оказывающие мешающее влияние и искажающие результаты определения РК методом Винклера. К таким компонентам относятся следующие загрязняющие вещества.

1. Взвешенные и окрашенные вещества. Они могут помешать определению, адсорбируя йод на своей поверхности или химически взаимодействуя с ним. При наличии в анализируемой воде взвешенных веществ их отделяют отстаиванием (не фильтрованием!) либо осветлением при добавлении раствора алюмокалиевых квасцов и аммиака.

2. Биологически активные взвешенные вещества (например, активный ил биохимических очистных сооружений). Пробы сточных вод, содержащие плохо оседающие взвешенные вещества, которые могут вызвать снижение концентрации кислорода вследствие продолжающейся жизнедеятельности микроорганизмов, необходимо осветлять также прибавлением раствора алюмокалиевых квасцов при одновременном добавлении токсичного для микроорганизмов вещества (растворов сульфаминовой кислоты, хлорида ртути или сульфата меди) сразу после отбора пробы.

3. Восстановители, реагирующие с выделенным йодом в кислой среде (сульфиты, тиосульфаты, сульфиды). Для устранения влияния восстановителей используют метод Росса, основанный на добавках к пробам растворов гипохлорита натрия NaOCl, хлорной извести CaOCl2 и роданида калия KNCS.

4. Окислители, выделяющие йод из йодида калия (активный хлор, нитриты, катионы железа (III) и др.). Влияние железа (III) устраняется добавлением раствора фторида калия.

Влияние нитритов, которые часто встречаются в природных и сточных водах, устраняют добавлением раствора сульфаниловой кислоты, обычно предусмотренного в измерительных комплектах производства ЗАО «Крисмас+».

Процесс определения РК проводится в кислородных калиброванных склянках из комплекта и включает:
– специальную обработку пробы для устранения мешающего влияния примесей (выполняется при необходимости, преимущественно при анализе сточных вод);
– фиксацию кислорода, проводимую немедленно после заполнения кислородной склянки;
– титрование, которое может быть проведено через некоторое время (но не более суток).

При выполнении анализа несколько раз повторяются следующие операции.

1. Наполнение мерных пипеток растворами проводят с помощью медицинского шприца с соединительной трубкой (а не ртом!).
2. Перенос раствора в наполненной пипетке проводят (при необходимости), герметично зажав ее верхнее отверстие пальцем. Раствор не должен скапывать с пипетки!
3. Погружение пипетки с раствором в кислородную склянку осуществляют на глубину 2–3 см, как показано на рисунке, и по мере выливания раствора поднимают вверх. Излишек жидкости из склянки стекает через край на подставленную чашку Петри.
4. После введения раствора склянку быстро закрывают пробкой, слегка наклонив ее. Излишек жидкости стекает через край. В склянке не должно остаться пузырьков воздуха. Склянка не должна оставаться открытой.
5. Содержимое склянки перемешивают помещенной внутрь склянки мешалкой, удерживая склянку рукой.

Барометр любого типа; груша резиновая или медицинский шприц; колба коническая вместимостью 250–300 мл; склянка кислородная калиброванная (100–200 мл) с пробкой; мешалка (стеклянные шарик, палочка и т.п.) известного объема; пипетки мерные на 1 мл и 10 мл; термометр с ценой деления не более 0,5°С; поддон.
Раствор соли марганца; раствор серной кислоты (1:2); раствор тиосульфата натрия (0,02 моль/л экв.); раствор крахмала (0,5%); раствор йодида калия щелочной.
Если в лаборатории имеются приборы для измерения содержания растворенного в воде кислорода (оксиметры), их с успехом можно использовать для выполнения анализов в полевых условиях.
Приготовление растворов см. приложение 3.

Отбор проб на содержание РК имеет ряд особенностей.

Для отбора проб на РК в общем случае (ГОСТ 17.1.5.05) используют батометр, к крану которого прикреплена резиновая трубка длиной 20–25 см. Для отбора проб воды из поверхностных горизонтов используют эмалированную либо стеклянную посуду. Если отбирается общая проба воды для анализов по разным компонентам, то проба для определения РК должна быть первой, взятой для дальнейшей обработки.

Водой из отобранной пробы ополаскивают 2–3 раза чистые калиброванные склянки из состава комплекта или (если требуется специальная подготовка проб, например отстаивание) стеклянные бутыли.

Наполнение склянок из батометра осуществляют сифоном через резиновую трубку, опущенную до дна склянки. После наполнения кислородной склянки до горлышка ее наполнение продолжают до тех пор, пока не выльется около 100 мл воды, т.е. пока не вытиснится вода, соприкасавшаяся с находившимся в склянке воздухом, и еще один объем. Трубку вынимают из склянки, не прекращая тока воды из батометра. Аналогично проводят заполнение склянки из бутыли с анализируемой водой либо бутыли из батометра (в последнем случае резиновую трубку сифона погружают примерно до половины высоты водяного столба в бутыли). Сразу после заполнения склянки производят фиксацию кислорода, как описано ниже.

Отбор пробы для измерения концентрации РК непосредственно на водоеме выполняют следующим образом.

Примечания. 1. В склянке не должно остаться пузырьков воздуха.
2. Анализируйте пробу, по возможности, скорее.

А. Фиксация кислорода в пробе

1. Введите в склянку разными пипетками 1 мл раствора соли марганца, затем 1 мл раствора йодида калия и 1–2 капли раствора сульфаминовой кислоты**, после чего закройте склянку пробкой.
2. Перемешайте содержимое склянки с помощью имеющейся внутри мешалки, держа склянку в руке. Дайте отстояться образующемуся осадку не менее 10 мин.

Примечание. Склянку с фиксированной пробой можно хранить в затемненном месте не более 1 суток .

3. Введите в склянку пипеткой 2 мл раствора серной кислоты, погружая пипетку до осадка (не взмучивать!) и постепенно поднимая ее вверх по мере опорожнения.
4. Склянку закройте пробкой и содержимое перемешайте до растворения осадка.
5. Содержимое склянки полностью перенесите в коническую колбу на 250 мл.
Примечание. Определение концентрации РК в воде можно выполнять путем титрования части пробы. При этом в колбу на 100 мл цилиндром переносят 50,0 мл пробы с растворенным осадком***. Дальнейшие операции проводят, как описано ниже, для обработки полной пробы.
6. В бюретку (пипетку), закрепленную в штативе из состава комплекта, наберите 10 мл раствора тиосульфата и титруйте пробу до слабо желтой окраски. Затем добавьте пипеткой 1 мл раствора крахмала (раствор в колбе синеет) и продолжайте титрование до полного обесцвечивания раствора.
7. Определите общий объем раствора тиосульфата, израсходованный на титрование (как до, так и после добавления раствора крахмала).

При наличии в анализируемой воде мешающих примесей (взвешенных и окрашенных веществ, восстановителей, железа в концентрациях более 1 мг/л) выполняют специальную обработку пробы (подробно описано в паспорте на комплект «Растворенный кислород»). Далее пробой заполняют кислородную склянку, выполняют фиксацию и титрование, как описано выше.

В случае титрования всего количества раствора в кислородной склянке массовую концентрацию РК в анализируемой пробе воды (СРК) в мг/л рассчитайте по формуле:

где:
8 – эквивалентная масса атомарного кислорода;
CТ – концентрация титрованного стандартного раствора тиосульфата, моль/л экв.;
VТ – общий объем раствора тиосульфата, израсходованного на титрование (до и после добавления раствора крахмала), мл;
V – внутренний объем калиброванной кислородной склянки с закрытой пробкой (определяется заранее для каждой склянки отдельно), мл;
V1 – суммарный объем растворов хлорида марганца и йодида калия, добавленных в склянку при фиксации РК, а также мешалки, мл (рассчитывается как V1=1+1+0,5=2,5 мл);
1000 – коэффициент пересчета единиц измерения из г/л в мг/л.

Примечание. Принимается, что потери растворенного кислорода в фиксированной форме при сливе излишков жидкости из склянки и при выполнении других операций много меньше результата измерений (пренебрежимо малы).

В случае титрования части пробы (50,0 мл) в кислородной склянке, массовую концентрацию РК в анализируемой пробе воды (СРК в мг/л) рассчитывают по формуле:

Пример расчета концентрации растворенного кислорода в воде.

При общем объеме раствора тиосульфата, израсходованного на титрование, равном 4,7 мл, концентрации раствора тиосульфата 0,02 ммоль/л экв. и объеме кислородной склянки 102,5 мл содержание растворенного кислорода рассчитывается как:

Для определения степени насыщения воды кислородом по табл. 13 определите величину концентрации насыщенного раствора кислорода в воде (СН, мг/л), исходя из температуры воды, зафиксированной в момент отбора пробы.

Далее рассчитайте степень насыщения воды кислородом (R) в % с учетом фактической величины атмосферного давления по формуле:

где:
100 – коэффициент пересчета единиц измерения из мг/л в %;
760 – нормальное атмосферное давление, мм рт. ст.;
СН – величина концентрации насыщенного раствора кислорода для условий отбора, определенная по табл. 13.
Р – фактическая величина атмосферного давления в момент отбора пробы.

Примечание. При отсутствии данных об атмосферном давлении в момент отбора допускается его принимать равным нормальному (т.е. 760 мм рт. ст.).

Зависимость равновесной концентрации кислорода в воде от температуры
(атмосферное давление – 760 мм рт. ст.)

Температура Равновесная концентрация растворенного кислорода
(в мг/л) при изменении температуры на десятые доли °С (Сн)
°С 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
14,65 14,61 14,57 14,53 14,49 14,45 14,41 14,37 14,33 14,29
1 14,25 14,21 14,17 14,13 14,09 14,05 14,02 13,98 13.94 13,90
2 13,86 13,82 13,79 13,75 13,71 13,68 13,64 13,60 13,56 13,53
3 13,49 13,46 13,42 13,38 13,35 13,31 13,28 13,24 13,20 13,17
4 13,13 13,10 13,06 13,03 13,00 12,96 12,93 12,89 12,86 12,82
5 12,79 12,76 12,72 12,69 12,66 12,52 12,59 12,56 12,53 12,49
6 12,46 12,43 12,40 12,36 12,33 12,30 12,27 12,24 12,21 12,18
7 12,14 12,11 12,08 12,05 12,02 11,99 11,96 11,93 11,90 11,87
8 11,84 11,81 11,78 11,75 11,72 11,70 11,67 11,64 11,61 11,58
9 11,55 11,52 11,49 11,47 11,44 11,41 11,38 11,35 11,33 11,30
10 11,27 11,24 11,22 11,19 11,16 11,14 11,11 11,08 11,06 11,03
11 11,00 10,98 10,95 10,93 10,90 10,87 10,85 11,82 10,80 10,77
12 10,75 10,72 10,70 10,67 10,65 10,62 10,60 10,57 10,55 10,52
13 10,50 10,48 10,45 10,43 10,40 10,38 10,36 10,33 10,31 10,28
14 10,26 10,24 10,22 10,19 10,17 10,15 10,12 10,10 10,08 10,06
15 10,03 10,01 9,99 9,97 9,95 9,92 9,90 9,88 9,86 9,84
16 9,82 9,79 9,77 9,75 9,73 9,71 9,69 9,67 9,65 9,63
17 9,61 9,58 9,56 9,54 9,52 9,50 9,48 9,46 9,44 9,42
18 9,40 9,38 9,36 9,34 9,32 9,30 9,29 9,27 9,25 9,23
19 9,21 9,19 9,17 9,15 9,13 9,12 9,10 9,08 9,06 9,04
20 9,02 9,00 8,98 8,97 8,95 8,93 8,91 9,90 8,88 8,86
21 8,84 8,82 8,81 8,79 8,77 8,75 8,74 8,72 8,70 8,68
22 8,67 8,65 8,63 8,62 8,60 8,58 8,56 8,55 8,53 8,52
23 8,50 8,48 8,46 8,45 8,43 8,42 8,40 8,38 8,37 8,35
24 8,33 8,32 8,30 8,29 8,27 8,25 8,24 8,22 8,21 8,19
25 8,18 8,16 8,14 8,13 8,11 8,11 8,08 8,07 8,05 8,04
26 8,02 8,01 7,99 7,98 7,96 7,95 7,93 7,92 7,90 7,89
27 7,87 7,86 7,84 7,83 7,81 7,80 7,78 7,77 7,75 7,74
28 7,72 7,71 7,69 7,68 7,66 7,65 7,64 7,62 7,61 7,59
29 7,58 7,56 7,55 7,54 7,52 7,51 7,49 7,48 7,47 7,45
30 7,44 7,42 7,41 7,40 7,38 7,37 7,35 7,34 7,32 7,31
Читайте также:  Анализ на воду хим анализ

Пример расчета степени насыщения воды кислородом.

При значениях СРК=7,52 мг/л, СН=9,82 мг/л, Р=735 мм рт. ст. и температуре воды в момент отбора 16°С степень насыщения составляет:

При выполнении измерений концентрации РК в воде контроль точности необходимо проводить по поверенному (образцовому) оксиметру.

* Например, РД 52.24.419, ИСО 5813 и др.

** Если вода не содержит нитритов или их содержание менее 0,05 мг/л, раствор сульфаминовой кислоты можно не добавлять. Однако концентрация нитритов, как правило, неизвестна, поэтому мы рекомендуем добавлять сульфаминовую кислоту при каждом анализе.

*** В данном случае из одной фиксированной пробы можно получить несколько параллельных результатов измерений, однако это приводит к некоторому снижению точности анализа.

источник

Для определения растворенного в воде кислорода обычно используется несколько методов. Их можно разделить на физико-химические и химические.

Химические методы определения растворенного кислорода основываются на хорошей окислительной способности этого газа.

Обычно используют метод Винклера

Среди методов определения концентрации растворенного кислорода самым старым, но до сих пор не потерявшим своей актуальности, остается химический метод Винклера. В этом методе растворенный кислород количественно реагирует со свежеосажденной гидроокисью Mn(II). При подкислении соединения марганца более высокой валентности высвобождает йод из раствора иодида в эквивалентных кислороду количествах. Высвобожденный йод далее определятся титрованием тиосульфатом натрия с крахмалом, в качестве индикатора.

Метод известен с 1888 года. До конца двадцатого века методика работы постоянно совершенствовалась. И только в 1970 году для определения содержания кислорода, растворенного в воде, начали использовать физико-химические методы анализа. Хронология развития метода Винклера представлена в таблице 1 [3]. В настоящее время метод не потерял своей актуальности и сейчас основной проблемой для совершенствования метода является повышение точности и возможность определения малых концентраций кислорода.

Хронологическое развитие метода Винклера

Первая публикация Винклером новой методики .

Включение метода Винклера в сборник Standard methods (1925). Появление первых химических модификаций.

Развитие альтернативных инструментальных методов (газометрические, фотометрические).

Изучение основополагающих принципов метода Винклера . Попытки разработки унифицированной процедуры определения растворенного кислорода на основе работ Кэррита и Карпентера.

Развитие амперометрических анализаторов. ГОСТ 22018-84 , СТ СЭВ 6130-87

Разработка стандартов по определению растворенного кислорода на основе варианта Карпентера. ИСО 5813-83, ИСО 5814-84.

Проблема калибровки и сравнения методов определения растворенного кислорода в области микроконцентраций (меньше 1 мгО2/л).

Метод основан на окислении кислородом двухвалентного марганца до нерастворимого в воде бурого гидрата четырехвалентного марганца, который, взаимодействуя в кислой среде с ионами иода, окисляет их до свободного иода, количественно определяемого титрованным раствором гипосульфита (тиосульфата) натрия:

МnО (ОН)2 + 2I- + 4Н3О+ ? Мn2+ + I2 + 7Н2O,

I2 + 2Na2S2O3 ? Na2S4O6 + 2NaI.

Из уравнений видно, что количество выделившегося иода эквимольно количеству молекулярного кислорода. Минимально определяемая этим методом концентрация кислорода составляет 0,06 мл/л.

Данный метод применим только к водам, не содержащим окислителей (например, солей трехвалентного железа) и восстановителей (например, сероводорода). Первые завышают, а вторые занижают фактическое количество растворенного кислорода.

Проба для определения кислорода должна быть первой, взятой из батометра. Для этого после ополаскивания водой из батометра кислородной склянки вместе с резиновой трубкой в свободный конец последней вставляют стеклянную трубку длиной 10 см и опускают ее на дно кислородной склянки. Воду наливают с умеренной скоростью во избежание образования воздушных пузырьков и один объем склянки переливают через ее горло после заполнения. Не закрывая крана батометра, осторожно вынимают трубку из склянки и только тогда закрывают кран. Склянка должна быть заполнена до краев и не иметь пузырьков воздуха на стенках.

Сразу же после заполнения фиксируют растворенный кислород, для чего в склянку вносят последовательно 1 мл хлористого, (или сернокислого) марганца и 1 мл щелочного раствора йодистого калия (или натрия). Пипетки с вводимыми реактивами необходимо опускать до половины высоты склянки. После введения реактивов склянку тщательно закрывают пробкой, избегая попадания пузырьков воздуха, и энергично перемешивают образовавшийся осадок 15-20-кратным переворачиванием склянки до равномерного распределения его в воде. Затем склянки с зафиксированными пробами переносят в темное место для отстаивания. В таком состоянии их можно хранить максимум сутки при t

источник

Растворенный кислород находится в природной воде в виде молекул O2. На его содержание в воде влияют две группы противоположно направленных процессов: одни увеличивают концентрацию кислорода, другие уменьшают ее. К первой группе процессов, обогащающих воду кислородом, следует отнести:

· процесс абсорбции кислорода из атмосферы;

· выделение кислорода водной растительностью в процессе фотосинтеза;

· поступление в водоемы с дождевыми и снеговыми водами, которые обычно пересыщены кислородом.

Абсорбция кислорода из атмосферы происходит на поверхности водного объекта. Скорость этого процесса повышается с понижением температуры, с повышением давления и понижением минерализации. При каждом значении температуры существует равновесная концентрация кислорода, которую можно определить по специальным справочным таблицам, составленным для нормального атмосферного давления. Аэрация – обогащение глубинных слоев воды кислородом – происходит в результате перемешивания водных масс, в том числе ветрового, вертикальной температурной циркуляции и т.д.

Фотосинтетическое выделение кислорода происходит при ассимиляции диоксида углерода водной растительностью (прикрепленными, плавающими растениями и фитопланктоном). Процесс фотосинтеза протекает тем сильнее, чем выше температура воды, интенсивность солнечного освещения и больше биогенных (питательных) веществ (P, N и др.) в воде. Продуцирование кислорода происходит в поверхностном слое водоема, глубина которого зависит от прозрачности воды (для каждого водоема и сезона может быть различной, от нескольких сантиметров до нескольких десятков метров).

К группе процессов, уменьшающих содержание кислорода в воде, относятся реакции потребления его на окисление органических веществ: биологическое (дыхание организмов), биохимическое (дыхание бактерий, расход кислорода при разложении органических веществ) и химическое (окисление Fe 2+ , Mn 2+ , NO2 — , NH4 + , CH4, H2S). Скорость потребления кислорода увеличивается с повышением температуры, количества бактерий и других водных организмов и веществ, подвергающихся химическому и биохимическому окислению. Кроме того, уменьшение содержания кислорода в воде может происходить вследствие выделения его в атмосферу из поверхностных слоев и только в том случае, если вода при данных температуре и давлении окажется пересыщенной кислородом.

В поверхностных водах содержание растворенного кислорода варьирует в широких пределах – от 0 до 14 мг/дм 3 – и подвержено сезонным и суточным колебаниям. Суточные колебания зависят от интенсивности процессов его продуцирования и потребления и могут достигать
2,5 мг/дм 3 растворенного кислорода. В зимний и летний периоды распределение кислорода носит характер стратификации. Дефицит кислорода чаще наблюдается в водных объектах с высокими концентрациями загрязняющих органических веществ и в эвтрофированных водоемах, содержащих большое количество биогенных и гумусовых веществ.

Концентрация кислорода определяет величину окислительно-восстановительного потенциала и в значительной мере направление и скорость процессов химического и биохимического окисления органических и неорганических соединений. Кислородный режим оказывает глубокое влияние на жизнь водоема. Минимальное содержание растворенного кислорода, обеспечивающее нормальное развитие рыб, составляет около 5 мг/дм 3 . Понижение его до 2 мг/дм 3 вызывает массовую гибель (замор) рыбы. Неблагоприятно сказывается на состоянии водного населения и пересыщение воды кислородом в результате процессов фотосинтеза при недостаточно интенсивном перемешивании слоев воды.

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого и санитарного водопользования содержание растворенного кислорода в пробе, отобранной до 12 часов дня, не должно быть ниже 4 мг/дм 3 в любой период года; для водоемов рыбохозяйственного назначения концентрация растворенного в воде кислорода не должна быть ниже
4 мг/дм 3 в зимний период (при ледоставе) и 6 мг/дм 3 – в летний.

Определение кислорода в поверхностных водах включено в программы наблюдений с целью оценки условий обитания гидробионтов, в том числе рыб, а также как косвенная характеристика оценки качества поверхностных вод и регулирования процесса очистки стоков (табл. 15). Содержание растворенного кислорода существенно для аэробного дыхания и является индикатором биологической активности (т.е. фотосинтеза) в водоеме.

Содержание кислорода в водоемах с различной степенью загрязненности

Уровень загрязненности воды и класс качества

источник

Измерение растворенного кислорода в технологических водах котельных и теплосетей. Приборный или химический анализ

А.Г. Кутин, ведущий специалист, ООО «ВЗОР», г. Нижний Новгород

Надежность работы оборудования, трубопроводов котельной и тепловой сети зависит в большой степени от качества водоподготовки, которая, в свою очередь, немыслима без должного контроля на всех участках технологического процесса. Контроль содержания растворенного кислорода в теплоэнергетике является важнейшей задачей для предотвращения повреждаемости металла кислородной коррозией.

Содержание кислорода в технологических водах нормируется жестко и обычно лежит в пределах, не превышающих 50 мкг/дм 3 . В отечественной теплоэнергетике середины-конца прошлого века для контроля содержания растворенного кислорода широко применялись химические методы анализа, изложенные, например, в ОСТ 34-70-953.23-92, ГОСТ-26449.3-85. Наиболее часто применяемым являлся визуально-колориметрический метод с использованием метиленового голубого индикатора, причем персоналом химических лабораторий иногда применялись не только типовые шкалы с максимальным определением кислорода до 100 мкг/дм 3 , но и с более широкими диапазонами до 200 и 400 мкг/дм 3 . Немногим реже встречается использование колориметрического метода с использованием индигокармина. На многих объектах использовались шкалы до 100, 140, 170 мкг/дм 3 . Достаточно редко встречается применение колориметрического метода с использованием сафранина «Т» со шкалой до 30 мкг/дм 3 . В некоторых случаях лабораториями применялся йодометрический анализ с возможностью измерения высоких концентраций (от 200 мкг/дм 3 ) при контроле нарушений в работе оборудования, но применение данного анализа для контроля высоких концентраций кислорода не распространено, т.к. считается, что шкалы колориметрических методов достаточны не только для контроля нормативного содержания кислорода, но и для выявления превышения данных норм.

В последние два десятилетия в российской теплоэнергетике все более широко стали применяться анализаторы растворенного кислорода.

Опыт внедрения кислородомеров МАРК производства ООО «ВЗОР» более чем на 300 ТЭС и теплосетей России и ближнего зарубежья показал, что многие объекты работали с существенными нарушениями норм растворенного кислорода, и данные нарушения не всегда выявлялись колориметрическими методами, а йодометрический метод для определения высоких концентраций кислорода не применялся лабораториями, т.к. считалось, что нарушений нет либо они незначительны. Иногда, в случаях несоответствия показаний приборов и химического анализа, правильность показаний кислородомеров ставилась под сомнение как персоналом химических лабораторий, так и руководством. Необходимо отметить, что анализаторы растворенного кислорода МАРК всех поколений, включая самые ранние разработки, включены в госреестр СИ РФ. Также главным конструктором ООО «ВЗОР» Родионовым А.К. опубликована методика проверки такой важнейшей характеристики датчиков растворенного кислорода приборов МАРК как линейность [1]. Данная методика позволяет проверить погрешность прибора на всем диапазоне измерения (от 1-3 до 20000 мкг/дм 3 ) и свидетельствует о высокой линейности характеристики датчиков (отклонение от линейности не более 0,5% на всем диапазоне).

Случаи несоответствия данных, полученных поверенными анализаторами растворенного кислорода и визуально-колориметрическим методом с использованием метиленового голубого, был выявлен и опубликован, например, специалистами ГУП ТЭК-СПб [2]. Выяснилось, что при реально больших концентрациях растворенного кислорода метиленовый голубой реактив дает существенное занижение результатов (рис.1-2).

При концентрации свыше 200 мкг/дм 3 показания, полученные кислородомером, совпадают с методом Винклера, при этом анализ с использованием метиленового голубого не только не показывает высоких концентраций, но и главное, не показывает максимума шкалы 100 мкг/дм 3 , что не позволяет при использовании только лишь этого метода выявить серьезные нарушения в работе теплоэнергетического оборудования.

Для проверки достоверности анализа с применением метиленового голубого реактива авторами статьи была предложена методика насыщения деаэрированной воды кислородом воздуха, диффундирующего через стенки силиконового шланга. При постоянном потоке деаэрированной воды концентрация кислорода в ней оказывается пропорциональной длине шланга. На рис. 3 показаны результаты замеров приборным методом и методом с использованием метиленового голубого. Как видно из графиков, зависимость результатов измерений метиленовым голубым от длины шланга является весьма нелинейной. Результаты существенно занижены по сравнению с результатами приборного анализа.

Подобный метод позволяет оперативно и наглядно проводить «сверку» показаний кислородомеров с результатами химического анализа. Метод неоднократно использовался специалистами ООО «ВЗОР» совместно со специалистами теплоэнергетических предприятий для анализа качества проводимых кислородных измерений. На одной из ТЭС был проведен опыт сличения результатов замеров поверенным анализатором растворенного кислорода с результатами анализа двумя химическими методами, применявшимися на данной ТЭС. До этого между собой на станции два метода никогда не сравнивались. Результаты испытаний приведены на рис. 4.

Как видно из эксперимента, показания кислородомера пропорциональны длине шланга, показания химических анализов не только ниже, но, главное, не соответствуют друг другу, отличаясь в 2-3 раза. Сходимость есть только на нулевой точке.

В некоторых случаях при выявлении серьезных нарушений в работе энергетического оборудования с помощью кислородомера проводилась проверка реакции метода с использованием метиленового голубого на сырой воде, насыщенной кислородом (табл. 1).

Таблица 1. Пример искажения измерений при использовании метиленового голубого.

Очевидно, что в сырой недеаэрированной воде содержание растворенного кислорода составляет несколько тысяч микрограмм на литр и соответственно колориметрический метод должен давать окраску, соответствующую максимальному значению по шкале. Иногда это выполняется, однако выявлены десятки случаев, когда максимальной окраски не получалось, метод показывал некое промежуточное значение, что является ошибкой измерения в 50-200 (!) раз. Метод с индигокармином не давал максимальной окраски в сырой воде дважды за всю историю сравнений. При сравнении результатов приборного анализа с методом с использованием сафранина «Т» расхождений не было выявлено ни разу. В итоге можно отметить, что наиболее часто применяемый метод с использованием метиленового голубого может давать существенное занижение результатов при анализе растворенного кислорода и, как следствие, не удается выявить и устранить нарушения ведения водно-химического режима.

Читайте также:  Анализ на хлориды в воде

Надо отметить, что на достаточно большом количестве объектов при внедрении анализаторов растворенного кислорода их показания соответствовали результатам химического анализа. Как правило, на этих станциях концентрация растворенного кислорода не превышала установленных норм, а нарушения выявлялись и своевременно устранялись. Персонал таких объектов, в первую очередь, и отказывался от химического анализа в пользу приборного контроля. Причинами же серьезных искажений при измерении растворенного кислорода визуально-колориметрическими методами может быть как низкое качество химреактивов, так и ошибки персонала при проведении анализа. Для примера ниже показаны результаты измерений относительно высокой концентрации кислорода разными методами и разными операторами. Виден исключительно большой разброс полученных результатов (табл. 2).

Таблица 2. Результаты измерения кислорода различными методами и операторами.

ГРЭС, прямоточные котлы, блоки 300 МВт
метод питательная вода
МАРК-ЗОЗТ, МАРК-409, мкг/л 200-205
Индигокарминовый, мкг/л 90
Метод Винклера (лаборант), мкг/л 480
Метод Винклера (инженер), мкг/л 320

На данный момент подавляющее большинство химических лабораторий тепловых электростанций и тепловых сетей РФ перешли на приборный контроль растворенного кислорода. Тем не менее, есть объекты, где применение кислородомеров саботируется инженерным персоналом и лаборантами, либо находится под запретом руководства из-за высоких показаний и выявления неудовлетворительного кислородного режима. В журнале фиксируются некие нормативные цифры, полученные с помощью визуально-колориметрического анализа, притом что на объектах и теплосетях выявляются высокие уровни язвенной кислородной коррозии.

Анализ опыта внедрений кислородомеров МАРК на многих ТЭС показал, что примерно в 30% случаях, даже при использовании исправного поверенного анализатора растворенного кислорода, результат измерения оказывается некорректным. Самой распространенной ошибкой персонала было применение силиконовых присоединительных шлангов для подачи пробы к проточным кюветам. Диффузия кислорода из атмосферного воздуха приводила к сильным завышениям результатов. Типовые шланги из резины либо ПВХ не допускают диффузии кислорода из атмосферы в пробу. Тем не менее, они имеют свойство накапливать кислород в стенках при нахождении на воздухе, и при малых потоках пробы результаты могут быть завышены на несколько микрограмм. Рекомендуемая скорость потока через кювету датчика должна быть в пределах 400-800 мл/мин, однако на многих пробоотборных точках такой поток обеспечить невозможно в силу ряда причин, в первую очередь, проблем с охлаждением. Предприятием ВЗОР разработан принципиально новый кислородомер, адаптированный к реальным условиям эксплуатации на отечественных ТЭС и котельных.

Рис. 5. Измерительный узел кислородомера.

Конструкция их измерительного узла (см. рис. 5) позволяет отказаться от применения классических гибких шлангов для подачи пробы. Датчик с помощью специального устройства крепится на любую пробоотборную линию диаметром от 5 до 20 мм. Отказ от гибких полимерных шлангов позволяет производить измерения на любых, даже сверхмалых, скоростях потока (от 25 мл/мин) и производить измерения без искажений остаточным кислородом с внутренних стенок подводящих шлангов. Типовое время измерения 2-3 минуты. Также расширен температурный диапазон прибора, можно производить измерения на пробах с температурой до 70 О С.

1. Родионов А.К. Методика измерения метрологических характеристик датчика растворенного кислорода // Теплоэнергетика. 2009. № 7. С. 2-6.

источник

Однако, в общем, коэффициент Генри зависит от давления, хотя и в небольшой степени. Зависимость растворимости от температуры или, что то же самое, зависимость К (р°, Т) проявляется в уменьшении растворимости с повышением Т или в более сложных по характеру зависимостях, когда исследуют широкий температурный интервал рис. 1. Изменение растворимости y в условиях, удаленных от критических точек для раствора или растворителя, можно описать эмпирическим уравнением

Растворение кислорода и других газов в воде вызывает нарушение ближнего порядка. Это требует затраты энергии и в результате растворимость в воде оказывается на порядок меньше, чем в неполярных жидкостях. Учет особенностей молекулярного строения воды оказался достаточно сложным, и до сих пор нет хороших теоретических подходов для его оценки. Поэтому приходится пользоваться эмпирическими данными.

Процесс растворения является самопроизвольным. Растворение следует рассматривать как совокупность физических и химических явлений, выделяя при этом три основные стадии:

а) разрушение химических и межмолекулярных связей в растворяющихся газах, требующее затраты энергии. Энтальпия системы при этом растет: ΔH1 > 0;

б) химическое взаимодействие растворителя с растворяющимся веществом, вызванное образованием новых соединений – сольватов (или гидратов), сопровождающееся выделением энергии. Энтальпия системы при этом уменьшается: ΔН2 0.

Суммарный тепловой эффект процесса растворения (ΔН= ΔH1 + ΔН2 + ΔН3 ) может быть положительным (эндотермическое растворение) и отрицательным (экзотермическое растворение).

Растворение протекает самопроизвольно (ΔG 2+ + 2OH — = Mn(OH)2

Иодометрическое титрование (кислая среда)

По мере использования этого метода в природных водах было отмечено существенное влияние редокс-активных примесей. Но несмотря на это, методическая простота и надежность позволила уже 1925 году включить метод Винклера в сборник стандартных химических методов анализа вод. Обнаруженное влияние редокс примесей инициировало разработку химических модификации метода Винклера, некоторые из которых познее были также включены в Standard methods. В этих модификациях активно используются процедуры пробоподготовки, применение маскирующих агентов, методы холостой пробы, метод параллельной йодной пробы, регламентируются условия проведения анализа, при которых действием той или иной примеси можно пренебречь. Как показывает анализ научной периодики начало исследований по разработке таких химических модификаций относится к 20–30 годам. Ниже кратко представлены те трудности, которые могут возникать при проведении анализа по Винклеру при одновременном присутствии в воде часто встречающихся редокс-примесей.

Мешающее действие редокс-активных примесей:

Соединения двухвалентного железа на стадии фиксации кислорода могут выступать как конкуренты по отношению к марганцу. Прореагировав с кислородом образуется гидроксид Fe(III), кинетика взаимодействия которого с иодидом в кислой среде замедлена. Так при концентрции железа более 25 мг/л использование классического варианта метода Винклера приводит к занижению результатов определений. Было предложено элиминировать влияние железа(III) добавками фторида или использованием фосфорной кислотой при подкислении пробы. Образующийся фторидный или фосфатный комплекс не дает железу взаимодействовать с ионами иодида. Но этот способ не дает возможности элиминировать влияние двухвалентного железа.

Обычно присутствие в воде нитритов обусловлено микробиологическим преобразованием аммония в нитрат. И известно, что нитриты в кислой среде способны окислять иодид ионы, вызывая тем самым завышений результатов в методе Винклера. Тем не менее при содержании в воде до 0.05–0.1 мгN/л можно применять прямой метод Винклера. В настоящее время самым распространенным способом нейтрализации влияния нитритов считается использование добавок азида натрия (метод Альстерберга). Здесь нельзя забывать, что излишнее увеличение концентрации азида может привести и к отрицательной ошибке. Это обусловлено возможностью протекания реакции:

Кроме применеия азида есть и другие способы подавления или учета влияния нитритов: применение мочевины или сульфаминовой кислоты. Все эти реактивы разрушают нитрит до молекулярного азота.

Понятно, что влияние орг. веществ, как выраженных восстановителей будет проявляться на всех этапах определения растворенного кислорода по Винклеру. Молекулярный кислород, окисленные формы марганца, молекулярный йод – все это достаточно сильные окислители для взаимодействия с органическими примесями. Если вода богата орг. веществами (окисляемость 15–30мгО2 /л и более), то оказывается необходимым вводить поправку на их взимодействие. Например в руководстве предлагается проводить параллельную йодную пробу, находя тем самым сколько йода израсходовалось на иодирование орг. примесей. Но есть методы, которые основаны на проведении метода Винклера, в отличающихся от классических условиях (время анализа, концентрации реагентов). Таким образом удается подобрать условия, при которых мешающим действием примеси можно пренебречь.

Нельзя здесь не отметить оригинальные работы Голтермана. В этой работе ему удалось разработать химический метод, сочетающий в себе определение концентрации растворенного кислорода и определение химического потребления кислорода (ХПК-Суммарная нормальность восстановителей, выраженная в мгО2 /л.). В соответствии с его методикой растворенный кислород в щелочной среде фиксируется не Mn(II), а солью Ce(III).

Выделившейся Ce(IV) после растворения его в растворе кислоты определяется фотометрически или титриметрически. Кроме того, использование солей церия (III, IV) позволяет учесть расход церия (IV) на окисление примеси-восстановителя, проводя «холостой» опыт, т.е. вводя в пробу воды не Ce(III), а Ce(IV) на стадии фиксации кислорода.

Обнаружено, что содержание в анализируемой воде сульфидов приводит к занижению результатов метода Винклера. При этом обнаружено, что взаимодействие сульфида с окислителями носит стехиометрический характер: 1 моль кислорода и 2 моля сульфида. В результате реакции выделяется элементарная сера. Поскольку в методе Винклера сильными окислителями являются кроме кислорода также йод и маргенец (III, IV), то в формулировании механизма взаимодействия сульфида с окислителем есть различные мнения. Так в работе считается, что сульфид взаимодействует с окисленными формами марганца, а в с йодом. В работе разработан метод одновременного определения сульфидов и кислорода в пробе воды. Авторы, используя соли Zn, осаждают ZnS, который далее отделяют и определяют спектрофотометрически, а в оставшейся над осадком воде проводят определение растворенного кислорода. В более ранней работе использована сходная схема, но использовался не сульфат, а ацетат Zn. При взаимодействии кислорода и сульфида возможно также образование тиосульфата, в качестве промежуточного соединения. В работе предложен способ учета такого тиосульфата по методу холостой пробы.

источник

Сложность взаимосвязей в системе окружающая среда и здоровье человека, их изменчивость и непредсказуемость, обусловливают необходимость совершенствования эколого-гигиенического мониторинга среды обитания. Важнейшей целью любого мониторинга является определение степени потенциальной опасности внешней среды для здоровья человека. Его реализация применительно к водным объектам, в первую очередь предусматривает регистрацию и количественное содержание в тестируемых водоисточниках биогенных элементов. В условиях высокой антропогенной нагрузки на водные экосистемы и тенденции роста неудовлетворительного качества воды питьевого водоснабжения эколого-гигиенический мониторинг приобретает дополнительные особенности.

В настоящей работе основное внимание уделено количественному содержанию растворенного кислорода в воде как одному из показателей характеризующих высокую чистоту и физиологическую полноценность питьевой воды.

В последнее время имеет место повышенный интерес влияния растворенного кислорода в воде на здоровье человека. Известно, что многие болезни начинаются тогда, когда ткани организма испытывают кислородное голодание. Известна также роль кислорода в «окислительной детоксикации» в тканях организма, окислении жиров на стенках артерий и предотвращении развития атеросклероза. При этом атмосферный кислород, который получает организм из воздуха, не попадает в ткани организма в достаточном количестве.

Известно, что качество исходной воды поверхностного водоисточника напрямую зависит от постоянства в ней макро — и микроэлементного состава, наличия биогенных элементов, обусловливающих физиологическую полноценность. По данным многих авторов байкальская вода, обладающая постоянством гидрологических, химических и микробиологических показателей находится в так называемых реликтовых зонах озера, начиная с глубин 300…400 м. Содержание растворенного кислорода в Байкале составляет в среднем: в поверхностных слоях 11…14 мг/л; на глубине 1400 м — 9,9-10,6 мг/л; на максимальных глубинах (около 1600 м) — 9,5 мг/л. При этом современные нормативы, предъявляемые к питьевой воде высшей категории, определяют оптимальное насыщение кислородом 9 мг/л при температурах +20°…+22°С. На содержание кислорода в воде оказывают влияние температура, атмосферное давление, количество осадков, а также степень ее минерализации. Поступление кислорода в озеро Байкал происходит путем растворения его при контакте с воздухом, с дождевыми и снеговыми водами, а также в результате биохимических процессов. Основным источником поступления кислорода является фитопланктон. Интенсивное развитие фитопланктона в весенний период, когда Байкал покрыт льдом, приводит к увеличению концентрации кислорода в воде до 18 мг/л. [1].

Для исследования нами была выбрана вода озера Байкал, поднятая с глубины 400 м., поверхностная вода уреза озера, бутилированная вода (упаковка ПЭТ), прошедшая все наши стадии водоподготовки. В качестве биогенного макроэлемента — растворенный кислород. Концентрацию растворенного кислорода определяли по методу Винклера.

Вода из глубинного водовода характеризовалась стабильными химическими и гидрологическими показателями. Среднегодовая температура воды из глубинных водоводов составляла +3,6°…+4,0°C. В период открытой воды (май-декабрь) температура поверхности озера в районе оголовка глубинного водовода была максимальной — +15,8°C (август), и минимальной +2,6°C (декабрь). Среднегодовые химические показатели были следующими: железо общее (

Директор Лимнологического института СО РАН Андрей Федотов опроверг заявления СМИ о якобы отравленной воде Байкала. По словам ученого, речь идет лишь о том, что в нескольких местах на мелководье исследователи зафиксировали рост численности цианобактерий и их «цветение». А концентрация продуцируемого ими токсина на этих участках вплотную приблизилась к тому уровню, который не рекомендуем для питьевой воды.
— Это не означает, что вода отравлена, и сделавший глоток или искупавшийся в ней умрет. Это означает, что употреблять ее для питья не рекомендуется, в крайнем случае, воду надо фильтровать и кипятить. А за самим явлением надо наблюдать, сделать концентрацию токсина цианобактерий официально контролируемым показателем. Сейчас он никак не контролируется и не регламентируется, — рассказал Андрей Федотов корреспонденту «РГ». — И еще раз уточню, что речь ни в коем случае не идет о всем Байкале, а только об отдельных участках мелководья. Чаще всего это явление встречается в проливе Малое море.

Площадь всего мелководья Байкала (участки глубиной до 40 метров) занимает не более пяти процентов поверхности озера.

Как пояснил директор ученый, цианобактерии и раньше обитали на Байкале. Вспышку их численности исследователи связывают с поступлением в озеро большого количества питательных веществ. Одним из источников могли стать продукты горения (пепел и т.п.) от пожаров вокруг озера. Бактерии усваивают содержащиеся в них соединения азота. Также влияние, по всей видимости, оказывает антропогенное загрязнение.

Исследования токсинпродуцирующих цианобактерий в Байкальском регионе началось в 2008-2009 годах, в связи со вспышкой их численности на озере Котокель в Бурятии. Тогда накопление токсинов в воде маленького озера привело к случаям Гаффской болезни у людей и животных после употребления в пищу рыбы.

Читайте также:  Анализ на воду в лыскове

По словм Федотова, на Байкале рост цианобактерий ученые отмечали уже в 2015-2016 годах.

Доклад о микробиологических исследованиях на озере ученый озвучил на Всероссийском водном конгрессе в Москве.

источник

Большинство химических и биологических процессов влияют на уровень растворенного в воде кислорода. Поэтому в обработке промышленных, муниципальных вод и в области аквакультуры важной задачей является непрерывное и точное измерение концентрации растворенного кислорода.

В данной статье описаны три стандартных метода определения концентрации растворенного кислорода. Приведены принцип работы этих методов, их преимущества и недостатки, а также результаты сравнения точности и надежности измерений в различных условиях среды.

Процедура титрования исторически является первым методом определения концентрации кислорода в воде.

Образец воды обрабатывают сульфатом марганца, гидроксидом калия и йодидом калия с образованием гидроксида марганца, Mn(OH)2. Кислород в воде реагирует с Mn(II), переводя его в Mn(III). Нестабильный Mn(III) затем реагирует с другой молекулой O2, переходя в Mn(IV). Для фиксации реакции в раствор добавляют сильную кислоту (серную или соляную), переводят осадок MnO(OH)2 в сульфат марганца, при этом MnO(OH)2 действует как окисляющий агент на йод, I2. Этот йод — стехиометрический эквивалент к растворенному кислороду в образце, его титруют тиосульфатом натрия или фениларсиноксидом с крахмалом. Крахмал нужен для более точного определения окончания реакции.

J2 + крахмал -> синее окрашивание

Метод имеет многочисленные помехи, которые вносят ионы нитрита, двух и трехвалентные ионы железа, взвешенные частицы и органика. Он показывает завышенные значения растворенного кислорода в аноксической среде и заниженные значения в гипероксичной среде, потому что проба воды и сами реагенты испаряются во время работы.

Для измерения кислорода в воде обычно используют датчик, состоящий из мембраны, которая покрывает амперометрический сенсор. В ноябре 1959 года изобретатель Кларк (H. A. Clark) получил патент (US Patent 2913386), «Электрохимическое устройство для химического анализа».

В пластмассовом цилиндрическом корпусе 1 имеются сквозные отверстия для проводников, в которых находятся индикаторный (рабочий) электрод 2 из платины и электрод сравнения 3 из серебряных проволок, концы которых покрыты пастой из хлорида серебра. Нижний конец корпуса обтягивают газопроницаемой полимерной мембраной 4 из полипропилена (тефлона, полиэтилена, фторопласта, целлофана и т.п.), которую механически фиксируют на корпусе с помощью резинового кольца 5. В пространство между электродами и мембраной залит водный раствор хлорида кальция 6. Извне мембрана 4 контактирует с контролируемой средой 7. Это может быть как жидкость, так и газ.

Если в контролируемой среде кислорода нет, то при подаче напряжения между электродом сравнения (анод) и рабочим электродом установившийся стационарный ток очень слаб. При наличии в контролируемой среде кислорода его молекулы диффундируют сквозь мембрану 4 и через раствор 6. Когда они достигают индикаторного электрода 2, то благодаря каталитическим свойствам платины здесь происходит реакция восстановления:

O2 + 4e- + 4H+ = 2H2O, вследствие которой ток через электрохимический элемент значительно возрастает.

Стационарный ток линейно зависит от концентрации кислорода в контролируемой среде.

Специально подбирая материал электродов, состав внутреннего электролита, электродное напряжение, удается построить амперометрические сенсоры подобной конструкции также для определения концентраций таких газов, как хлор, сероводород, серный газ, водород, угарный газ, окислы азота и т.д.

Вследствие потребления кислорода катодом и необходимостью диффузии кислорода через мембрану, для точности измерений следует поддерживать достаточный поток свежей воды. Загрязнение воды маслами и другими полимерами снижает диффузию и искажает результаты. С течением времени, мембрана разрушается, электролит становится грязным, а электроды расходуются до такой степени, что дают ограниченный ответ на присутствие кислорода.

Тушение люминофоров кислородом описано в далеком 1939 году (Kautsky, 1939), но в области анализа воды технология, основанная на этом феномене, является относительно новой (Klimant et al., 1995; Glud et al., 1999; Wenzhöffer et al., 2001). Много позже, получили развитие оптические устройства, детекторы, устройства обработки информации. Значительного прогресса в 1990-х годах достигли технологии регистрации растворенного кислорода в жидкости с использование люминофоров, оптод (оптические датчики) и портативных компьютеров. Успехи в области создания диодов с синим спектром свечения и маломощной высокоскоростной электроники позволили миниатюризировать чувствительные к кислороду оптоды до размера портативных устройств. Датчики не потребляют кислород и стабильны длительное время. Они имеют быстрое время отклика, обычно τ63% менее 60 секунд, часто менее 30 секунд для изменений концентрации кислорода ниже 8 мг/л. Оптоды имеют температурную зависимость, их значения корректируются с помощью локального температурного датчика.

Приложение технологии тушения люминофоров кислородом для оценки качества воды активно изучается. Обнаружено, что технология чрезвычайно хорошо подходит для анализа качества воды, и для коммерческого внедрения необходимо преодолеть два препятствия:

— защитить люминофор от фотовыгорания, чтобы датчик мог работать длительный срок в полевых условиях;

— обеспечить воспроизводимость процесса печати, чтобы последовательно и недорого интегрировать люминофор в колпачок датчика.

Кислородная оптода обеспечивает более удобный и надежный способ измерения растворенного кислорода, чем титрование и электрохимические датчики . Фундаментальный принцип основан на способности некоторых веществ действовать как динамические гасители флюоресценции. В случае определения концентрации кислорода, если рутениевый комплекс освещают синим светом, он возбуждается и испускает красную люминесценцию с интенсивностью и сроком жизни, которые зависят от концентрации кислорода в образце воды.

Важно отметить три параметра, на которых строятся измерения: интенсивность (насколько возвратное излучение сильное), срок жизни (как быстро возвратная люминесценция прекращается) и смещение фаз.

Измерения, базирующиеся на интенсивности, легче провести, но полученные значения меняются с течением времени. Различные технологии определения сигнала и области их приложения обобщены в работах Wolfbeis (1991), Demas et al. (1999) и Glud et al. (2000).

Сенсорная пленка состоит из чувствительного к кислороду люминесцентного вещества (люминофор), который погружен в полимерный слой, который, в свою очередь, тонким слоем покрывает полиэстеровую подложку.

Чаще всего в качестве люминофора используют рутениевые комплексы, но иногда платиновые комплексы порфиринов [полициклические ароматические углеводорода, Ru(II), Os(II), Rh(II), фосфоресцентные порфирины]. В последнем случае датчик имеет в пять раз больший срок жизни сигнала, поэтому сигнал проще считывать, и показания более стабильные. Кроме того, платиновые комплексы порфиринов менее чувствительны к фотовыгоранию.

Газопроницаемый защитный черный силиконовый слой работает как оптический изолятор, защищает от возможных люминесцентных/флюоресцентных материалов в воде, от солнечного излучения.

Пленку освещают синим/зеленым светодиодом с частотой 5 кГц. Возвратное красное флюоресцентное свечение от пленки принимает фотодиод. Красный оптический фильтр снижает отраженный свет, поступающий в фотодиод непосредственно от синего/зеленого излучателя.

Хотя детектор измеряет интенсивность флюоресцентного свечения, эта интенсивность восприимчива к оптическим связям и фотовыгоранию люминофора. Для измерения уровня тушения люминесценции кислородом гораздо лучше определять время жизни излучения от возбужденных люминофоров в пленке по отношению к возбуждающему сигналу. Время жизни измеряют опосредованно, через фазовое смещение между возбуждающим синим/зеленым сигналом и испускаемым от люминофора красным сигналом. Дополнительный красный светодиод включен в качестве невозбуждаемого сигнала сравнения как средство компенсации потенциального дрейфа в электронных схемах передатчика и приемника.

Использование техники фазовой модуляции означает, что флуктуации интенсивности излучения от синего/зеленого светодиода и излучения от люминофора не вносят помехи в измерения на протяжении всего срока службы оптического датчика. Кроме того, так как между концентрацией растворенного кислорода и фазовым смещением возвратной красной флюоресценции отмечается обратная зависимость, «отношение сигнал шум» имеет особое значение для измерения очень низкой концентрации растворенного кислорода. Наконец, между циклами измерения поочередно включаются синий и красный светодиоды, что обеспечивает внутреннее сравнение для оптического и электронного прохождения сигнала. Этот внутренний контроль обеспечивает стабильность в условиях корректировки температуры.

  1. Оптический датчик проводит измерения, последовательно включая синий и красный светодиоды.
  2. Синий свет возбуждает молекулы красителя люминофора на чувствительной пленке.
  3. Испускаемый светодиодом красный свет обеспечивает нулевое сравнительное значение; он не возбуждает молекулы люминофора.
  4. Возбужденные молекулы люминофора испускают красный свет в обратную сторону.
  5. Фотодиод обнаруживает возвратный красный свет от возбужденных молекул люминофора и красный свет от светодиода.

Оптическое тушение люминофора сильно зависит от температуры. Важно с высокой точностью измерять температуру (с множеством повторений), при этом датчик температуры и оптода должны располагаться близко друг к другу. Во время калибровки необходимо равенство температур образца воды, колпачка оптоды и температурного датчика.

Например, когда для калибровки значения 100% насыщения используется водонасыщенный воздух, колпачок оптоды и температурный датчик должны находиться на воздухе в температурном равновесии. Аналогично, когда для калибровки значения 100% насыщения используется насыщенная воздухом вода, колпачок оптоды и температурный датчик должны погружаться в воду и находится в температурном равновесии друг с другом и с водой.

Во время калибровки в полевых условиях рекомендуют защищать колпачок от термического нагревания при помощи солнечного щита.

Для создания уравновешенных образцов воды с известными значениями температуры и давления использовали поверочную газовую O2/N2 смесь Национального института стандартов и технологий (NIST, США). Измерения концентрации растворенного кислорода титрованием, электродом Кларка и оптическим датчиком Hach LDO сравнивали с теоретическими значениями растворенного кислорода (Hitchman, 1978).

Измерения концентрации растворенного кислорода титрованием, электродом Кларка и оптическим датчиком Hach LDO сравнивали с теоретическими значениями растворенного кислорода (Hitchman, 1978)

Используя автоматический титратор по методике Виклера, измерения модели зонда Hydrolab Series 5 от компании Hach LDO показали высокую степень корреляции со значениями титратора. Каждая группа данных включала два образца, и эти данные перекрывались.

Сравнения показаний оптоды с автоматическим титрованием по Виклеру Измерения при высокой солености. Сравнение показаний оптоды Hach LDO и электрода Кларка

В контролируемых лабораторных условиях с помощью коммерческой морской соли корректировали соленость воды до желаемого уровня. Емкость продували азотом, снижая концентрацию кислорода, а затем растворяли кислород, продувая емкость кислородом. Сравнения оптоды Hach LDO с электрохимическим мембранным датчиком при средней (6.9 млрд -1 ) и высокой солености (45.5 млрд -1 ) показали аналогичные значения, с ошибками ±0.2 мг/л для мембранного датчика и ±0.1 мг/л для Hach LDO датчика (значения ниже 8 мг/л) и ±0.2 мг/л для Hach LDO датчика (значения выше 8 мг/л).

В контролируемых лабораторных условиях корректировали концентрацию растворенного кислорода при помощи продувки азотом и кислородом. Емкость продували азотом, снижая концентрацию кислорода, а затем растворяли кислород, продувая емкость кислородом. Брали несколько сотен значений на кривой концентрации кислорода для датчика Hach LDO. Значения насыщения для датчика Hach LDO и электрохимического датчика аналогичные. Процент насыщения, рассчитанный через измерения в абсолютных значениях (мг/л) одинаков для двух методов регистрации.

Определения процента насыщения

Время отклика оптического датчика изменялось поэтапно, менее 30 секунд, достигая τ95%, когда концентрация снижалась с 8 мг/л до 0 мг/л и когда она возрастала от 0 мг/л до 8 мг/л.

Время отклика оптического датчика Hach LDO

Сравнения измерений Hach LDO и титрования по Виклеру в условиях низкой концентрации кислорода и температур показали аналогичные результаты. Это говорит о способности оптического датчика достигать нуля и работать при низких температурах.

Сравнение измерений оптического датчика Hydrolab Series 5 с датчиком Hach LDO и электрода Кларка в течение недели проводилось в естественном водоеме города Найвот, Колорадо. Регистрация проводилась каждые 15 минут, и результаты измерений показали четкий суточный ритм в зеленом пруду.

Тестирование в природных водоемах

Параметр Титрование по Виклеру Оптический датчик Электрохимический электрод Гальванический электрод
Средняя исходная ошибка, net bias, мг/л 0.19 0.55 0.22 Насколько датчик точен в начале
Частота исходных ошибок 0.2 мг/л или меньше, % 50 40 10
Частота исходных ошибок 0.2 мг/л или больше, % 10 60
Расброс значений в начале измерений, мг/л 0.9 3.1 9.5
Индивидуальная точность, % 0.22 0.11 0.11 0.18 Насколько идентичны одинаковые модели датчиков
Обычное отклонение за первую неделю, мг/л 0.39 0.77 1.01 Насколько высокие отклонения измерений
Вариабельность отклонений (завышает или занижает), мг/л 0.58 3.94 0.74
Ранний срок начала отклонений более 2.0 мг/л, дни 14 3 8
Mooney R., Arnerich T., Performance of optical dissolved oxygen sensors in seven site, mix matrix study

Рассмотрены три стандартных метода определения концентрации растворенного кислорода в воде.
Титрование по Винклеру подходит для точного измерения кислорода в природных водоемах, но имеет ограничения, касающиеся токсичной природы химических реактивов и трудозатрат на выполнение процедуры. Кроме того, сложно анализировать образцы, далекие от равновесного состояния (слишком аноксические и гипероксические).

В электродах Кларка мембрана покрывает амперометрический сенсор. Полвека назад этот датчик стал шагом вперед в реал-тайм мониторинге уровня растворенного кислорода. Электроду присущи ограничения, так как он потребляет кислород и требует частого обслуживания.

Оптические датчики, работающие на технологии фазового смещения сигнала и принципе гашения люминесценции кислородом, имеют существенные преимущества. Они наиболее точные и имеют самый долгий срок службы среди других датчиков, включая оптоды, использующие оценку интенсивности сигнала. В условии нормальных концентраций веществ, они лишены каких-либо помех, и в этом плане превосходят электрохимический метод измерения и титрование.

Таким образом, метод не имеет таких ограничений, какие имеет химический мембранный метод. Мембрана не взаимодействует с кислородом, поэтому нет необходимости помешивания датчика. Кроме того, прочная конструкция датчика обеспечивает калибровку на долгие годы.

В качестве рабочего варианта приведу характеристики модели In-Situ ®Inc.’s Rugged Dissolved Oxygen (RDO) Titan Probe. Далее следуют выдержки из руководства по эксплуатации.

Прочность конструкции

Датчик устойчив к стиранию и потери флуоресценции в ходе фотовыгорания. Выдерживает высокую соленость раствора, состоит из устойчивых к коррозии материалов. Нечувствителен к помехам, которые обычно возникают у датчиков с мембраной (сероводород, хлор, аммоний и другие).

Простота обслуживания

Датчик не требует частой калибровки. Включает средства диагностики состояния датчика. Работает с очень малыми отклонениями в течение длительного периода времени. Быстро реагирует на изменения концентрации кислорода и температуры. Обеспечивает стабильные, воспроизводимые результаты ( 5%, перекись водорода >3%, раствор гипохлорита (белизна) >3%, газообразный диоксид серы, газообразный хлор.

источник