Меню Рубрики

Анализ проб воды на жесткость

Настоящий документ устанавливает методику количественного химического анализа проб природных и очищенных сточных вод для определения величины их общей жесткости в диапазоне от 0,1 до 8,0 ммоль/дм 3 эквивалента (мг-экв/дм 3 ) титриметрическим методом без разбавления и концентрирования пробы.

Если величина общей жесткости анализируемой пробы превышает верхнюю границу, допускается разбавление пробы дистиллированной водой таким образом, чтобы величина общей жесткости соответствовала регламентированному диапазону.

Определению мешают мутность, цветность, а также ионы металлов: алюминия (> 10 мг/дм 3 ), железа (> 10 мг/дм 3 ), меди (> 0,05 мг/дм 3 ), кобальта и никеля (> 0,1 мг/дм 3 ), вызывая нечеткое изменение окраски в точке эквивалентности. Другие катионы (свинец, кадмий, марганец (II), цинк, стронций, барий) могут частично титроваться вместе с кальцием и повышать расход трилона Б.

Устранение мешающих влияний осуществляется в соответствии с п. 10.

Метод определения общей жесткости основан на титровании пробы воды раствором динатриевой соли этилендиаминтетрауксусной кислоты (трилон Б) в присутствии индикатора эриохрома черного Т (хромогена черного), в результате чего при рН около 10 образуются комплексные соединения трилона Б с ионами кальция и магния. Поскольку комплекс кальция более прочен, чем магния, при титровании пробы трилон Б взаимодействует с ионами кальция, а затем с ионами магния, вытесняя индикатор, комплекс которого с ионами магния окрашен в вишнево-красный цвет, а в свободной форме имеет голубую окраску.

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1. Значения показателя точности методики используют при:

— оформлении результатов анализа, выдаваемых лабораторией;

— оценке деятельности лабораторий на качество проведения испытаний;

— оценке возможности использования результатов анализа при реализации методики в конкретной лаборатории.

Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости, правильности

Диапазон измерений величины общей жесткости, ммоль/дм 3 эквивалента

Показатель точности (границы относительной погрешности при вероятности Р = 0,95),
± d , %

Показатель повторяемости (относительное среднеквадр атическое отклонение повторяемости),
σr, %

Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости),
σR, %

Показатель правильности (границы относительной систематической погрешности при вероятности Р = 0,95),
± d c, %

Весы лабораторные общего назначения с наибольшим пределом
взвешивания 200 г и ценой наименьшего деления 0,1 мг любого типа

Весы лабораторные общего назначения с наибольшим пределом
взвешивания 200 г и ценой наименьшего деления 10 мг любого типа

СО с аттестованной величиной жесткости с погрешностью
не более 1 % при Р = 0,95

Цилиндры мерные или мензурки

Плитка электрическая с закрытой спиралью и регулируемой мощностью нагрева

Шкаф сушильный лабораторный с температурой нагрева до 130 °С

Стаканчики для взвешивания (бюксы)

Ступка фарфоровая с пестиком № 2(3)

Колонка хроматографическая диаметром 1,5 — 2,0 см и длиной 25 — 30 см

Стекло часовое диаметром 5 — 7 см

Прибор вакуумного фильтрования ПВФ-35 или ПВФ-47

Средства измерений должны быть поверены в установленные сроки.

Допускается использование других, в том числе импортных, средств измерений и вспомогательных устройств с характеристиками не хуже, чем у приведенных в п. п. 4.1 и 4.2.

Динатриевая соль этилендиамин-N, N, N’, N’-тетрауксусной кислоты,
дигидрат (трилон Б, комплексон III )

Аммиак водный, концентрированный

или диэтилдитиокарбамат натрия

Эриохром черный Т (хромоген черный)

Бумага индикаторная универсальная

Фильтры мембранные Владипор типа МФАС-МА или МФАС-ОС-2 (0,45 мкм)

или фильтры бумажные обеззоленные «синяя лента»

Все реактивы, используемые для анализа, должны быть квалификации ч.д.а. или х.ч.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже ч.д.а.

5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007.

5.2. Электробезопасность при работе с электроустановками обеспечивается по ГОСТ 12.1.019.

5.3. Организация обучения работающих безопасности труда проводится по ГОСТ 12.0.004.

5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.

Выполнение измерений может производить химик-аналитик, владеющий техникой титриметрического метода анализа.

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

· температура окружающего воздуха (22 ± 6) °С;

· атмосферное давление (84 — 106) кПа;

· относительная влажность не более 80 % при температуре 25 °С;

· частота переменного тока (50 ± 1) Гц;

· напряжение в сети (220 ± 22) В.

8.1. Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб».

8.2. Посуду, предназначенную для отбора и хранения проб, промывают раствором соляной кислоты 1:1, а затем дистиллированной водой.

8.3. Пробы воды отбирают в стеклянные бутыли. При фильтровании через любой фильтр первые порции фильтрата отбрасывают.

Объем отбираемой пробы должен быть не менее 300 см 3 .

8.4. Пробы не консервируют, хранят при комнатной температуре не более 6 месяцев.

Если в период хранения в пробе выпал осадок карбоната кальция, непосредственно перед анализом его растворяют прибавлением 0,5 — 1 см 3 концентрированной соляной кислоты, предварительно перелив с помощью сифона прозрачный слой над осадком в чистую сухую склянку. Затем перелитый раствор и жидкость с растворенным осадком соединяют вместе и нейтрализуют 20 % раствором гидроксида натрия, добавляя его по каплям и контролируя рН по индикаторной бумаге.

8.5. При отборе проб составляется сопроводительный документ по утвержденной форме, в котором указывается:

— цель анализа, предполагаемые загрязнители;

— должность, фамилия отбирающего пробу, дата.

9.1. Приготовление растворов и реактивов

9.1.1. Раствор тр илона Б с концентрацией 0,02 моль/дм 3 эквивалента.

3,72 г трилона Б растворяют в 1 дм 3 дистиллированной воды. Точную концентрацию раствора устанавливают по стандартному раствору хлорида цинка, как описано в п. 9.2.

Раствор хранят в полиэтиленовой посуде, проверяют его концентрацию не реже 1 раза в месяц.

0,35 г металлического цинка смачивают небольшим количеством концентрированной соляной кислоты и сейчас же промывают дистиллированной водой. Цинк сушат в сушильном шкафу при 105 °С в течение 1 ч, затем охлаждают и взвешивают на лабораторных весах с точностью до 0,1 мг.

Навеску цинка помещают в мерную колбу вместимостью 500 см 3 , в которую предварительно вносят 10 — 15 см 3 дистиллированной воды и 1,5 см 3 концентрированной соляной кислоты. Цинк растворяют, после чего объем раствора доводят до метки на колбе дистиллированной водой.

Рассчитывают молярную концентрацию эквивалента раствора хлорида цинка C Zn (1/2 ZnCl 2 ), моль /дм 3 , по формуле:

где а — навеска металлического цинка, г;

32,69 — молярная масса эквивалента Zn 2+ , г/моль;

V — объём мерной колбы, см 3 .

Раствор хлорида цинка хранят в плотно закрытой стеклянной или полиэтиленовой посуде не более 3 мес.

7,0 г хлорида аммония растворяют в мерной колбе вместимостью 500 см 3 в 100 см 3 дистиллированной воды и добавляют 75 см 3 концентрированного раствора аммиака. Объем раствора доводят до метки на колбе дистиллированной водой и тщательно перемешивают.

Буферный раствор хранят в плотно закрытой стеклянной или полиэтиленовой посуде не более 2 мес.

9.1.4. Индикатор эриохром черный Т.

При выполнении анализа индикатор может применяться как в виде раствора, так и сухого препарата.

Раствор индикатора. 0,5 г эриохрома черного Т растворяют в 10 см 3 буферного раствора, затем добавляют 90 см 3 этилового спирта и тщательно перемешивают. Раствор устойчив при хранении в холодильнике в плотно закрытой склянке в течение 2 мес.

Порошок индикатора. 0,5 г эриохрома черного Т тщательно растирают в ступке с 50 г хлорида натрия. Использование при определении точной концентрации раствора трилона Б. Устойчив при хранении в посуде из темного стекла в течение 1 года.

9.1.5. Раствор гидроксида натрия, 20 %.

20 г NaOH растворяют в 80 см 3 дистиллированной воды.

9.1.6. Раствор гидроксида натрия, 8 %.

40 г NaOH растворяют в 460 см дистиллированной воды.

9.1. 7. Раствор гидроксида натрия, 0,4 %.

2 г NaOH растворяют в 500 см 3 дистиллированной воды. Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде в течение 2 мес.

9.1.8. Раствор сульфида натрия.

2 г сульфида натрия растворяют в 50 см 3 дистиллированной воды. Хранят в плотно закрытой полиэтиленовой посуде не более недели.

9.1.9. Раствор диэтилдитокарбамата натрия.

5 г диэтилдитиокарбамата натрия растворяют в 50 см 3 дистиллированной воды. Хранят не более 2 недель.

9.1.10. Раствор гидрохлорида гидроксиламина.

5 г гидрохлорида гидроксиламина растворяют в 100 см 3 дистиллированной воды. Хранят не более 2 мес.

9.1.11. Раствор соляной кислоты, 1:3.

200 см 3 концентрированной соляной кислоты смешивают с 600 см 3 дистиллированной воды. Хранят в плотно закрытой посуде не более 1 года.

9.1.12. Активированный уголь.

Подготовку активированного угля осуществляют в соответствии с Приложением А.

В коническую колбу вместимостью 250 см 3 вносят 10 см 3 раствора хлорида цинка (п. 9.1.2 ), добавляют дистиллированной воды приблизительно до 100 см 3 , 5 см 3 буферного раствора и 10 — 15 мг индикатора эриохрома черного Т. Содержимое конической колбы тщательно перемешивают и титруют из бюретки раствором трилона Б до перехода окраски из красной в голубую.

Титрование повторяют 2 — 3 раза и при отсутствии расхождения в объемах раствора трилона Б более 0,05 см 3 за результат принимают среднюю величину.

Концентрацию раствора трилона Б рассчитывают по формуле:

где Стр — концентрация раствора трилона Б, моль/дм эквивалента;

CZn — концентрация раствора хлорида цинка, моль/дм 3 эквивалента;

V тp — объем раствора трилона Б, пошедшего на титрование, см 3 ;

VZn — объем раствора хлорида цинка, cm j .

Для устранения мешающего влияния катионов металлов к пробе перед титрованием прибавляют маскирующие реагенты: 0,5 см 3 раствора сульфида или диэтилдитиокарбамата натрия и 0,5 см 3 раствора гидрохлорида гидроксиламина.

Мешающее влияние взвешенных и коллоидных веществ устраняют фильтрованием пробы.

Если проба воды заметно окрашена за счёт присутствия веществ природного или антропогенного происхождения, затрудняется фиксация конечной точки титрования. В этом случае пробу перед выполнением анализа следует пропустить со скоростью 4 — 6 см 3 /мин через хроматографическую колонку, заполненную активированным углем (высота слоя 12 — 15 см). Первые 25 — 30 см 3 пробы, прошедшей через колонку, отбрасывают.

Как правило, окрашенные соединения антропогенного происхождения сорбируются активированным углем практически полностью, в то время как природного (гумусовые вещества) — лишь частично. При высокой и не устраняемой цветности пробы, обусловленной гумусовыми веществами, определение конечной точки титрования значительно облегчается использованием для сравнения перетитрованной пробы этой же воды (пробы-свидетеля).

11.1. Выбор объема пробы для анализа

Перед выполнением анализа пробы воды с неизвестной величиной жёсткости проводят оценочное титрование.

Для оценочного титрования берут 10 см 3 воды, добавляют 0,5 см 3 буферного раствора, индикатор и титруют раствором трилона Б до перехода окраски в голубую. По величине израсходованного на титрование объема раствора трилона Б выбирают из таблицы 3 соответствующий объем пробы воды.

Объем пробы воды, рекомендуемый для определения величины жесткости по результатам оценочного титрования

Рекомендуемый объем пробы, см 3

В коническую колбу отмеривают пипеткой требуемый объем пробы, доводят, если необходимо, до 100 см 3 дистиллированной водой, добавляют 5 см 3 буферного раствора и 5 — 7 капель раствора индикатора или 10 — 15 мг порошка индикатора. Пробу перемешивают и титруют раствором трилона Б до перехода окраски из красно-фиолетовой в голубую.

Повторяют титрование и, если расхождение между параллельными титрованиями не превышает 0,05 см 3 при объеме раствора трилона Б менее или равном 5 см 3 и 0,1 см 3 при объеме раствора трилона Б более 5 см 3 , за результат принимают среднее значение объёма трилона Б. В противном случае повторяют титрование до получения допустимого расхождения результатов.

12.1. Величину общей жесткости в анализируемой пробе воды находят по формуле:

где Х — общая жесткость воды, ммоль/дм эквивалента;

Стр — концентрация раствора трилона Б, моль/ дм 3 эквивалента;

V тр — объем раствора трилона Б, пошедшего на титрование пробы, см 3 ;

V — объем пробы воды, взятой для определения, см 3 .

Если величина общей жесткости в анализируемой пробе превышает верхнюю границу диапазона (8,0 ммоль/дм 3 эквивалента), разбавляют пробу с таким расчетом, чтобы она входила в регламентированный диапазон, и выполняют титрование в соответствии с п. 11.2.

В этом случае величину жесткости в анализируемой пробе воды X находят по формуле:

где XV — величина жесткости в разбавленной пробе воды, ммоль/дм 3 эквивалента;

v — объем аликвоты пробы воды, взятой для разбавления, см 3 ;

VV — объем пробы воды после разбавления, см 3 .

12.2. За результат анализа Хсрпринимают среднее арифметическое значение двух параллельных определений Х1 и Х2:

для которых выполняется следующее условие:

где r — предел повторяемости.

Значения предела повторяемости r при вероятности Р = 0,95 для всего регламентированного диапазона измерений величины общей жесткости составляет 6 %.

При невыполнении условия ( 1 ) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа, и в качестве окончательного может быть использовано их среднее арифметическое значение.

Читайте также:  Термохалинный анализ вод мирового океана

Значение предела воспроизводимости R при Р = 0,95 для всего регламентированного диапазона измерений величины общей жесткости составляет 11 %.

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

Результат анализа Хсрв документах, предусматривающих его использование, может быть представлен в виде:

где Δ — показатель точности методики.

Значение Δ рассчитывают по формуле:

Значение d приведено в таблице 1.

Если проводилось разбавление пробы воды из-за превышения величины общей жесткости верхней границы диапазона, значение d выбирают из таблицы 1 для величины жесткости в разбавленной пробе воды Х V .

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде:

где Хср результат анализа, полученный в соответствии с прописью методики;

±Δл — значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории, и обеспечиваемое контролем стабильности результатов анализа.

Численные значения результата измерения должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности.

Примечание . При представлении результата анализа в документах, выдаваемых лабораторией, указывают:

— количество результатов параллельных определений, использованных для расчета результата анализа;

— способ определения результата анализа (среднее арифметическое значение или медиана результатов параллельных определений).

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

— оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);

— контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

14.1. Алгоритм оперативного контроля процедуры анализа с использованием метода разбавления пробы

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры Ккс нормативом контроля К.

Результат контрольной процедуры Ккрассчитывают по формуле:

где Х’ср— результат анализа величины общей жесткости в разбавленной в два раза пробе — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 12.2.

Хср — результат анализа величины общей жесткости в исходной пробе — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию ( 1 ) раздела 12.2.

Норматив контроля К рассчитывают по формуле:

где Δ л,Х’cp , Δ л,Хcp — значения характеристики погрешности результатов анализа, установленные в лаборатории при реализации методики, соответствующие величине общей жесткости в разбавленной пробе и в исходной пробе соответственно.

Примечание . Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: Δл = 0,84 ·Δ, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

При невыполнении условия (2) контрольную процедуру повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

14.2. Алгоритм оперативного контроля процедуры анализа с применением образцов для контроля

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры Ккс нормативом контроля К.

Результат контрольной процедуры Ккрассчитывают по формуле:

где Сср— результат анализа величины общей жесткости в образце для контроля — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 12.2;

С — аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле:

где ± Δл — характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: Δл = 0,84 · Δ, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

При невыполнении условия (3) контрольную процедуру повторяют. При повторном невыполнении условия (3) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.

Порцию активированного угля, достаточную для заполнения колонки, помещают в коническую колбу, добавляют 100 — 150 см 3 раствора соляной кислоты 4 моль/дм 3 и кипятят 2 — 3 ч. Если раствор кислоты окрашивается, повторяют операцию до тех пор, пока он не останется бесцветным. Уголь отмывают дистиллированной водой до нейтральной реакции по универсальной индикаторной бумаге, добавляют 100 — 150 см 3 раствора гидроксида натрия 1 моль/дм 3 и выдерживают 8 — 10 ч. Если появляется окраска, операцию повторяют.

Очищенный уголь отмывают дистиллированной водой до нейтральной реакции. Хранят в склянке с дистиллированной водой до 6 месяцев.

Для заполнения колонки склянку встряхивают и переносят уголь вместе с водой в колонку, избыток воды сливают через кран. Высота слоя угля должна быть 12 — 15 см. Перед пропусканием пробы воду из колонки удаляют.

После пропускания каждой пробы воды уголь в колонке регенерируют промыванием 0,4 % раствором гидроксида натрия до исчезновения окраски последнего, затем дистиллированной водой до нейтральной реакции.

источник

Как выполняется контроль жёсткости воды. Понятие жёсткости, от чего она зависит. Анализ воды на жёсткость дома. Лабораторные методы контроля общей и временной жёсткости жидкости. Приборы для выполнения анализа. Методы борьбы с повышенной жёсткостью в быту. Контроль жёсткость воды или анализ воды на жёсткость нужен для определения концентрации солей в жидкости. Этот анализ можно проводить в лабораторных условиях и дома.

Жёсткость воды – термин, говорящий о процентном соотношении солевых частиц магния и калия в жидкости. Она подразделяется на две разновидности:

  • Временная (такая жидкость называется карбонатная);
  • Общая жёсткость (данная вода относится к некарбонатной).

Первый тип жёсткости характеризуется присутствием гидрокарбонатных солевых частиц магния и калия. Если такую воду закипятить, то элементы распадутся на карбонаты и гидроксиды и выпадут в осадок. Именно этот белый налёт часто покрывает наши чайники изнутри и собирается на других нагревательных элементах.

Для жидкости с общей жёсткостью характерно наличие других химических элементов (различных нитратов, хлоридов и тп.п). Обычно жёсткость питьевой воды связана с особенностями вашего региона, составом грунтов. Чем больше известковых пород находится в почве, тем выше жёсткость воды. Но важно не только понимать суть понятия, но и знать, как проверить жёсткость воды. Выполнить это легко как в быту, так и на заводе.

Для проверки жёсткости водопроводной воды дома можно использовать следующие способы:

  1. Постарайтесь обильно вспенить мыльный брусок или порошок для стирки. Если у вас образуется мало пены, то ваша вода имеет повышенную жёсткость. Это возникает по той причине, что солевые частицы калия и магния не позволяют мылу пениться. При обильной пышной пене от любого моющего средства можно утверждать, что вода нежёсткая. Но этот метод не позволят точно определить степень жёсткости.
  2. На вкус также можно отличить жёсткую воду от мягкой. Она более горькая. Но не все могут точно уловить горьковатый привкус солей магния и калия.
  3. Белый осадок в чайниках, накипь на нагревательных элементах других бытовых приборов – признак жёсткой воды. Осадок возникает из-за распада солей и выпадения их на дно. Данная особенность жёсткой воды очень вредит бытовым приборам и отопительному трубопроводу.
  4. От жёсткости воды зависит скорость заваривания чайного напитка. При мягкой воде на эту процедуру уйдёт от 3 до 6 мин., в жёсткой воде чай будет завариваться от 8 до 12 мин. Кстати, на вкус оба напитка будут существенно отличаться.
  5. Благодаря нехитрому компактному измерительному прибору можно очень легко определить жёсткость любой жидкости. Он называется TDS-метр. Агрегат измерят электропроводность жидкости. Чем выше показатель, тем больше уровень солесодержания жидкости. Обычно его ещё называют солемер. Чаще такой анализ воды на жёсткость делают владельцы аквариумов и цветоводы.
  6. Проверить жёсткость воды в быту можно, используя тест-полоски, продающейся в аптеках медтехники.

Для этого анализа можно использовать колориметрическую методику и принцип титрования. Процедура анализа выполняется так: порция воды смешивается с метилоранжем (индикатором), ёмкость устанавливается на светлом фоне. Во вторую тару с водой добавляют соляную кислоту, пока не получится красно-оранжевый цвет воды.

Временную жёсткость жидкости находят в процессе расчёта требуемого количества соляной кислоты по формуле: Нвр = NHCl * VHCL* 1000/ V1, где N-насыщенность раствора, V-его количество, V1-количество пробы.

Этот анализ проводят в лаборатории. Для него используют комплексонометрическую методику. Она базируется на принципе возникновения соединений ионов, подвергающихся анализу, с природными реагентами. Сначала воду в пробирке разводят раствором индикатора на спирту (чёрного этиохрома «Т»). Также для этих целей может использоваться сухая смесь кальциевых и натриевых хлоридов. В итоге полученная смесь окрашивается в насыщенный рубиновый цвет. Затем в пробирку капается вещество, называемое Трилон.

Расчёт общей жёсткости производится по уравнению: Жо=Nx*Vx*1000/V1, где N-насыщенность вещества Трилон, V-его количество, V1-количество пробы.

Как мы уже говорили выше, прибор контроля жёсткости воды называется солемер или TDS-метр. Точность проверки составляет 2%. Основной принцип работы данного агрегата построен на зависимости электропроводности жидкости от общего числа примесей солей магния и калия. То есть чем больше данных солей в воде, тем больше будут показания прибора, а следовательно, тем выше жёсткость воды.

На некоторых предприятиях и заводах наблюдается прямая зависимость между жёсткостью используемой воды и исправностью работы оборудования. Поэтому для обеспечения бесперебойной работы технологического оборудования требуется осуществлять постоянный автоматический контроль жёсткости воды.

Для этих целей используется специальное оборудование, например, анализатор «АКМС-1». Этот прибор непрерывно контролирует содержание солевых частиц кальция и магния в жидкости, поступающей в технологическое оборудование. То есть он подсчитывает общую жёсткость в пределах 0,005-25,0 мг-экв/л.

Как понять, что ваша водопроводная вода жёсткая, мы писали выше. Теперь перечислим ряд мер, позволяющих снизить жёсткость воды в домашних условиях:

  1. Самый простой способ – кипячение воды.
  2. Фильтрация воды через системы обратного осмоса (специальные мембраны).
  3. Использование смягчающих солей.
  4. Применение фильтрующих картриджей.
  5. Магнитное фильтрующее устройство.
  6. Использование ионообменной смолы в комплексе с солевым раствором.

Хотите провести контроль жёсткости воды? Заказать такую услугу вы можете у наших специалистов, для этого вам достаточно связаться с нами по указанным телефонам.

источник

Лабораторная работа №3

Взятие пробы воды для анализа

Для правильного суждения о качестве воды необходимо соблюдать следующие требования:

1. Брать пробы воды для анализа нужно из точно установленных мест, указанных в водном режиме котельной установи.

2. Если воду берут из трубопровода, то перед взятием пробы следует застоявшуюся воду слить в течение 2-3 минут.

3. Посуда, в которую берут пробу воды, должна быть чистой, ее следует 1-2 раза ополоснуть водой из-под крана, откуда берется проба.

4. Анализы качества котловой воды и теплого ящика проводятся ежесуточно, котельного танка (общая жесткость и содержание хлоридов) 1 раз в 5-7 суток. Полученные результаты фиксируются в журнале.

Проведение испытания

Водородный показатель (pH)

1.1 Метод определения и характеристики

Недородный показатель воды (pH, отрицательный десятичный логарифм концентрации водородных ионов) определяется двумя методами визуально-колориметрическим и потенциометрическим.

При визуально-колориметрическом определении, основанном на реакции ионов водорода с универсальным индикатором (ГД 24.031.120-91, РД 24.032.01-91), pH анализируемой воды определяют визуально сравнением окраски пробы с окраской об­разцов на контрольной шкале. Диапазон определяемых значений pH составляет 4,5-11,0 при точности анализа ±0,5 ед. pH.

Объём пробы для определения составляет 5 мл, продолжи­тельность выполнения определения — не более 1 мин.

Принадлежности, реактивы и материалы

Определение выполняется с использованием оборудования из состава навесного ящика №1 СЛКВ, секция №2 «pH» или pH-метра типа pH-410 .

Реактивы:раствор индикатора универсального.

Принадлежности, материалы:контрольная шкала образцов окраски растворов для определения pH (pH 4,5; 5,0; 5,5; 6,0; 6,5; 7,0; 7,5; 8,0; 8,5; 9,0; 10,0; 11,0); полимерная пипетка; пробирка колориметрическая с меткой «5 мл».

Отбор и хранение проб

Отбор проб воды и пара должен проводиться в соответствии с п. 9 настоящего руководства.

Для отбора проб используются бутыли из полимерного ма­териала или стекла. Выполнение определений следует проводить как можно скорее и предпочтительнее на месте отбора пробы. Максимальный рекомендуемый срок хранение проб — не более 6 часов.

1.3 Выполнение определения

1) Ополосните колориметрическую пробирку не­сколько раз анализируемой водой. Налейте в пробирку анализируемую воду до метки «5 мл».

2) Добавьте полимерной пипеткой 3-4 капли раствора индикатора универсального и встряхните пробирку.

3) Проведите визуальное колориметрирование пробы. Для это­го пробирку с пробой поместите на белое поле контрольной шкалы и, освещая пробирку рассеянным белым светом достаточной интенсивности, наблюдайте окраску пробы сверху вниз.

4)Определите ближайшее по окраске поле кон­трольной шкалы и соответствующее ему значение pH. При необходимости повторите определение.

2.1 Метод определения и характеристики

Щелочность воды — показатель, характеризующий содержание в воде соединений, способных реагировать с водородными ионами. К таким соединениям относятся гидроокиси щелочных металлов, карбонаты, гидрокарбонаты и фосфаты щелочных и щелочноземельных металлов, а также соли других слабых кислот.

Читайте также:  Тендер на анализ сточных вод

Метод определения щёлочности является титриметрическим (РД 24.031.120-91, РД 24.032.01-91, РД 34.37.523.7-88). Определение щёлочности воды основано на титровании растворённых в воде щелочных соединений кислотой в присутствии индикаторов, меняющих свою окраску в зависимости от реакции среды. Метод определения щёлочности зависит от вида анализируемой воды и предполагаемого значения щёлочности.

Методом А определяется щёлочность исходной, известкованной, катионированной и питательной вод. Титрование проводят с индикаторами метиловым оранжевым и фенолфталеином при использовании в качестве титранта раствора соляной кислоты 0,1 моль/л. При этом, при титровании с фенолфталеи­ном, определяется свободная щёлочность по фенолфталеину СВОБ), а при титровании с метиловым оранжевым — общая щелочность (ЩОБЩ). Величина ЩОБЩ условно характеризует суммарное содержание в воде бикарбонатов, карбонатов, гидратов, 2/3 ортофосфатов и гуматов, в то время как ЩСВОБ — гидра­тов, 1/2 карбонатов, 1/3 ортофосфатов и гуматов.

Методом Вопределяется общая щелочность котловой во­ды. Титрование проводят со смешанным индикатором для вод, имеющих значительную цветность, а также при титровании при электрическом освещении, при использовании в качестве титранта также раствора соляной кислоты 0,1 моль/л.

Методом С определяется щёлочность воды типа конден­сата, т.е. при значении щёлочности менее 0,2 ммоль/кг экв. Тит­рование проводят со смешанным индикатором или с индикато­ром метиловым оранжевым, при использовании в качестве титранта раствора соляной кислоты 0,01 моль/л.

Данные по изменению окраски индикаторов в зависимости от pH среды приведены в табл. 3.2.

Отбор и хранение проб

Отбор проб воды и пара проводится в соответствии с требованиями.

Для отбора проб используются бутыли из полимерного материалаили стекла. Выполнение определений рекомендуется пропилить сразу после отбора проб.

Максимальный рекомендуемый срок хранение проб при охлаждении до 2-5°С — не более 24 ч.

Подготовка к определению

Подготовка к определению общей щелочности состоит в приготовлении израсходованного раствора соляной кислоты (0,01 моль/л). Потребитель готовит его самостоятельно, используя раствор соляной кислоты (0,1 моль/л) из состава лаборатории.

Жёсткость общая

3.1 Методы определения и характеристики

Метод определения общей жёсткости как суммарной массовой концентрации эквивалентов катионов кальция и магния — комплексонометрической, основан на реакции образования в щелочной среде (pH = 9) в присутствии индикаторов окрашенных внутрикомплексонных соединений катионов кальция и магния с трилоном Б (двунатриевой солью этилендиаминтетрауксусной кислоты). (РД 24.031.120-91, РД 24.032.01-91, РД 34.37.523.8-88).

В зависимости от предполагаемого значения жёсткости, опредение выполняется тремя методами.

Метод Атитриметрический.Определяется жёсткость природной, известковой и коагулированной воды при величине более 0,1 °Ж. При титровании используется раствор индикатора хром темно-синего и в качестве титранта — раствор трилона Б 0,05 моль/л экв.

Метод Бтитриметрический.Определяется жёсткость любых вод при величине в диапазоне 0,02-0,1 °Ж. При титрова­нии используется раствор индикатора хром тёмно-синего и в качества титранта раствор трилона Б 0,005 моль/л экв.

МетодС — визуально-колориметрический.Определяется жёсткость вод при величине менее 0,02 °Ж. Особенностью дан­ного метода, на первом этапе, является необходимость выбора пары индикатор — буферный раствор, которая для данной ис­ходной (катионированной) воды обеспечивает оптимальный пе­реход окраски от розового к синему, что является индивидуаль­ной особенностью данной исходной воды.

Сравнение окраски анализируемой воды с окраской эталон­ных растворов позволяет определить фактическое значение жёст­кости с чувствительностью 0,001-0,002 °Ж.

Индикаторы кислотный хром тёмно-синий и эриохром чёр­ный Т образуют с катионами солей жёсткости непрочные окра­шенные соединения красного цвета. При добавлении в воду с по­добными окрашенными соединениями раствора трилона Б в точ­ке эквивалентности происходит их полное разрушение, при этом раствор становится синим.

В присутствии ионов цинка или меди (неотчётливый пере­ход окраски) определение жёсткости проводят с добавлением раствора сульфида натрия, связывающего эти катионы в нерас­творимые сульфидные соединения.

Влияние ионов марганца, приводящее к быстрому обесцве­чиванию окраски, устраняют добавлением к пробе раствора со­лянокислого гидроксиламина.

Объём пробы для анализа составляет, в зависимости от ме­тода, от 10 до 100 мл, продолжительность выполнения анализа — не более 15 мин.

Подготовка к определению

Подготовка к проведению анализа заключается в приготовлении расходных растворов из реактивов, входящих в состав ла­боратории.

Буферные растворы следует приготавливать с использованием очищенной катионированной воды либо воды, применение которой не приводит к холостому окрашиванию пробы.

Очищенную воду, необходимую для проведения анализа, приготавливают по ОСТ 34.70.953.2-88, либо используют набор для приготовления очищенной воды.

Отбор и хранение проб

Отбор проб воды и пара должен проводиться в соответствии требованиями.

Пробы анализируемой воды следует отбирать в стеклянные бутыли или полимерные бутыли с пробками. Допускается хране­ние пробы до 24 ч без консервации.

3.4 Выполнение определения

Метод А. Определение общей жёсткости воды более 0,1 °Ж

1. Налейте анализируемую воду в коническую колбу вместимостью 250 мл до метки «100 мл».

2. Добавьте полимерными пипетками 1 мл аммиачно­го буферного раствора, 7 капель раствора индика­тора кислотного хрома тёмно-синего.

3.Медленно титруйте пробу раствором трилона Б (0,05 моль/л экв.), используя бюретку или стойку-штатив с мерной пипеткой вместимостью 10 мл со шприцем-дозатором, до отчётливого изменения цвета с розового на синий.

Примечание.При нечётком переходе окраски или обесцвечивании пробы определение повторите с добавлением к пробе 0,5 мл раствора сернистого натрия для устранения мешающего действия ионов меди и цинка либо трёх капель раствора солянокислого гидроксиламина для устранения мешающего действия соединений марганца.

4Рассчитайте общую жёсткость (Жобщ) в °Ж по формуле:

ЖОБЩ =V × 0,5

На титрование 100 мл пробы воды израсходовано 3,5 мл раствора трилона Б (0,05 моль/л экв.). Общая жёсткость будет составлять:

ЖОБЩ = V × 0,5 = 3,5× 0,5 = 1,75°Ж

4.1 Метод определения и характеристики

Содержание хлоридов (массовая концентрация хлорид- иона) определяется методом аргентометрического титрования (РД 24.031.120-91, РД 24.032.01-91). Определение основано на титровании хлорид-ионов раствором нитрата серебра при pH 5,0- 8,0, в результате чего образуется суспензия практически нерастворимого хлорида серебра. В качестве индикатора используется хромат калия, который реагирует с избытком нитрата серебра с образованием хорошо заметного оранжево-бурого осадка хромата серебра.

Объём пробы для анализа — см. табл. 12, продолжительность выполнения анализа — не более 5 мин.

Отбор и хранение проб

Отбор проб воды и проводится в соответствии с требованиями.

Для отбора проб используются бутыли из полимерного ма­териала или из стекла. Допускается хранение пробы I мес. без консервации.

В зависимости от предполагаемого содержания хлоридов отбираются пробы для анализа в количествах согласно табл. 12.

На титрование 10 мл пробы котловой воды израсходовано 1,1 мл раствора нитрата серебра (0,05 моль/л экв.). Концентрация хлорид-ионов составит:

мг/л.

На титрование 10 мл пробы воды израсходовано 0,02 мл раствора нитрата серебра (0,05 моль/л экв.). Величина израсходованного на титрование объёма раствора нитрата серебра свидетельствует о том, что концентрация хлорид-ионов меньше предполагаемой.

мг/л.

Так как предполагаемая концентрация хлорид-иона оказалась меньше 4,0 мг/л (см. табл. 3.3), на анализ повторно отбирается проба объёмом 6000 мл, которая упаривается до 150 мл (в 40 раз). На титрование упаренной пробы объёмом 150 мл израсходовано 9,5 мл раствора нитрата серебра (0,05 моль/л экв.). Концентрация хлорид-ионов в этом случае составляет:

мг/л.

На титрование 10 мл пробы воды израсходовано 4,82 мл раствора нитрата серебра (0,05 моль/л экв.). Величина израсходованного на титрование объёма раствора нитрата серебра свидетельствует о том, что концентрация хлорид-ионов больше предполагаемой.

мг/л.

Так как предполагаемая концентрация хлорид-иона оказалась Тоньше 700 мг/л (см. табл. 3.3), отобранная проба разбавляется дистиллятом в 10 раз, на анализ берётся объем 10 мл разбавленной пробы. На титрование отобранной пробы израсходовано 0,48 мл раствора нитрата серебра (0,05 моль/л экв.). Концентрация хлорид-ионов в этом случае составляет:

мг/л.

Вопросы для самоконтроля:

1. Дать определения понятиям: главный конденсат, вспомогательный конденсат, дистиллят испарительной установки, дренажи, добавочная вода, питательная вода, котельная вода, котловая вода, продувочная вода, охлаждающая вода.

2. Охарактеризовать основные показатели: Общее содержание примесей, Растворённые вещества, Взвешенные вещества, Остаток после прокаливания, Потеря при прокаливании, Концентрация водородных ионов, Кислотность, Щёлочность, Щелочное число, Общая жёсткость воды, Карбонатная жёсткость, Некарбонатная жёсткость, Cодержание хлоридов, Фосфатное число, Нитратное число, Содержание окислов меди и железа, Содержание кислорода, Содержание нефтепродуктов.

Лабораторная работа №3

Тема: ОПРЕДЕЛЕНИЕ КАЧЕСТВА КОТЛОВОЙ ВОДЫ

Цель:Определение качества котловой воды, изучение норм качества котловой воды, рекомендации по водному режиму.

В пароконденсатном цикле СЭУ с паротурбинной установкой (ПТУ) вода и пар циркулируют по замкнутому контуру, в котором могут быть различные утечки воды или пара, вызывающие периодическое или непрерывное восполнение контура циркуляции технической водой. Поэтому в СЭУ с ПТУ существуют специальные определения воды в различных точках циркуляционного контура:

главный конденсат – вода после конденсации отработавшего пара на выходе из главного конденсатора;

вспомогательный конденсат – вода после конденсации отработавшего пара из вспомогательных конденсаторов (после вспомогательных механизмов и теплообменных аппаратов);

дистиллят испарительной установки – вода, полученная из морской путем её термической дистилляции;

дренажи – конденсаты после паровых подогревателей топлива и общесудовых потребителей пара;

добавочная вода – вода, подаваемая в циркуляционный контур для восполнения его в результате утечек (воды и пара);

питательная вода – вода, подаваемая в паровой котёл для поддержания его паропроизводительности (так же, как и забортная вода, поступающая в камеру испарения водоопреснительной установки);

котельная вода – питательная вода определённого химического состава, предназначенная исключительно для парового котла, находящаяся в танке котельной воды;

котловая вода – вода, находящаяся в циркуляционном контуре котла;

продувочная вода – котловая вода, удаляемая периодически или непрерывно из котла для уменьшения солесодержания в ней взвешенных частиц шлама;

охлаждающая вода – вода, с помощью которой отводят теплоту через поверхность теплообмена системы охлаждения теплотехнического объекта.

Питательная вода судовых паровых котлов обычно состоит из конденсата отработавшего пара и добавочной воды. Добавочная вода может быть природной, полученной с берега и прошедшей соответствующую водообработку, или дистиллятом от испарительной установки забортной воды. В целом, добавочная вода составляет 2–5 % от общего количества питательной воды.

Вода является одним из лучших природных растворителей органических и минеральных веществ, а также газов. Поэтому она в результате круговорота в природе приобретает множество примесей в виде газов, взвешенных мелкодисперсных частиц и растворенных минералов различного происхождения. Конденсат отработавшего пара на морских судах чаще всего содержит примеси в виде продуктов коррозии трубопроводов или забортной воды при подсосах в трубных решётках конденсаторов, а также – нефтеостатков СЭУ (частицы жидкого топлива и смазочного масла). Поэтому питательной водой, например, для судовых вспомогательных паровых котлов может быть конденсат отработавшего пара или природная вода, содержащая в себе частицы песка и глины, а также растворенные накипеобразователи щелочно-земельных металлов (Ca2+ и Mg2+), такие как бикарбонаты, сульфаты, хлориды и силикаты, а также коррозионно-активные газы – кислород, хлор и углекислый газ.

Поступление в котловую воду любых вышеперечисленных примесей является нежелательным, т. к. это приводит к появлению накипных отложений и коррозии на поверхности нагрева, что увеличивает расход топлива и снижает надежность котельных установок и эффективность их эксплуатации.

В СДВС с высокотемпературной системой охлаждения вышеуказанное также имеет место. Поэтому на морских транспортных судах системы охлаждения ДВС обычно низкотемпературные и двухконтурные. В первом контуре циркуляции для охлаждения СДВС обычно применяют водные растворы ингибиторов коррозии, а во втором – проточную морскую забортную воду.

Техническая эксплуатация СЭУ невозможна без проведения соответствующего водного режима, предусматривающего контроль основных показателей качества воды (водоконтроля) и определенной технологии водообработки. Качество используемой в СЭУ воды в значительной мере определяет надёжность элементов СЭУ и объём трудозатрат на восстановление работоспособности оборудования. Выбор технологии водоподготовки определяется её эффективностью и экономической целесообразностью.

Основными задачами водоподготовки в СЭУ являются: создание условий для предотвращения процессов накипеобразования и коррозии на поверхности нагрева, а также исключение уноса солей с влажным паром из зоны кипения воды. Поэтому каждый инженер-судомеханик должен уметь определять основные показатели качества питьевой и технической воды, а также корректировать водные режимы и технологии водообработки в соответствии с инструкциями по технической эксплуатации судового оборудования.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

источник

Определение жесткости воды в современном мире – это обязательное условие для обеспечения работоспособности всей техники, работающей с ней. Тем не менее нельзя сказать, что такая жидкость действительно вредна для человека. Всего должно быть в меру, ведь излишне мягкая вода наносит не меньше ущерба здоровью, чем жесткая.

Читайте также:  Тестеры для анализа питьевой воды

Начинать всегда следует с самых азов, чтобы было полное понимание проблемы. В нашем случае, прежде чем приступать к определению жесткости воды, сначала нужно понять, что она собой представляет. По результатам экспертизы, проведенной в 2011 на кафедре химии и экологии Новгородского университета им. Ярослава Мудрого, для природной натуральной воды жесткость является абсолютно нормальным явлением. Вплоть до момента появления современной техники этот вопрос вообще мало кого интересовал, тысячелетиями люди спокойно употребляли ее в том виде, в котором она есть. Придают воде жесткость растворенные в ней соли магния и кальция. Само понятие жесткости возникло по результатам ощущения людей, так как когда насыщенная этими солями и другими элементами вода вступает во взаимодействие с мылом, пена практически не образуется, затрудняя стирку или мытье.

Прежде чем понять, какую воду пить, следует учитывать тот факт, что жесткость не является однородной величиной. Есть как минимум две основные разновидности:

Зависят эти виды от типа растворенных солей, которые в любой жесткой воде присутствуют всегда вместе, составляя общую жесткость. Тем не менее разделять их можно и нужно. Временная жесткость напрямую зависит от наличия бикарбонатных и гидрокарбонатных анионов. Главная их особенность – разложение во время кипячения. В результате распада получается непосредственно сама вода, углекислый газ и карбонат кальция, который уже практически не растворяется. Получается, что от временной жесткости можно без особых проблем избавиться при помощи простого поднятия температуры воды до +100 градусов. В качестве примера можно привести любой чайник. После продолжительного использования можно обнаружить внутри осадок, который и является результатом описанного выше процесса распада. Все же, что не разлагается подобным образом, относится к постоянной жесткости, избавиться от которой без специальной обработки практически невозможно.

Это необходимо для того, чтобы понимать, какую воду пить можно без опаски, а также для того, чтобы любая техника, взаимодействующая с водой, не вышла из строя. Для человека излишне жесткая вода вредна. Но даже если этот параметр будет находиться на приемлемом для нашего организма уровне, все равно оборудование это не устроит. Аквариумы, кофейные, стиральные и посудомоечные машины, чайники, мультиварки и множество других вариантов техники требует воду строго определенной жесткости. Обычно справиться с этим помогают фильтры типа «Гейзер-3», однако зачастую такая мера может даже считаться излишней. Прежде чем тратить на них деньги, рекомендуется сначала провести тест на жесткость воды, ведь вполне возможно, что этот показатель и так на нормальном уровне.

Как уже было сказано выше, в первую очередь ущерб человеку наносит не какой-то определенный тип воды, а полное отсутствие баланса в организме.

  • Плохое растворение пищевых продуктов (связано с катионами Ca 2 + и Mg 2 +).
  • Кофе, чай и любые другие подобные напитки завариваются очень плохо.
  • При длительном употреблении возможно расслабление желудка.
  • Жесткая вода может стать причиной образования камней в почках.
  • Насыщает организм требуемыми ему элементами.
  • Улучшает состояние зубов, уменьшает вероятность возникновения кариеса.
  • Жесткая вода является причиной поломки большинства видов техники.
  • Выводит шлаки, но попутно вымывает полезные элементы (калий, магний и кальций). В результате кости становятся более хрупкими. Также не лучшим образом воздействует на сердечно-сосудистую систему.
  • Негативно воздействует на гипофиз-адреналиновую систему.
  • Оказывает плохое влияние на водно-солевой баланс организма.

Таким образом, определение жесткости воды должно производится не с целью избавиться от нее, а для того, чтобы свести негативное воздействие к минимуму и привести употребление такой жидкости к требуемому организмом балансу.

Согласно ГОСТу, питьевая вода должна проверяться на жесткость строго в лаборатории, посредством титриметрического анализа. Для этого сначала необходимо взять пробы, объем которых должен быть не менее 400 кубических сантиметров (0,4 литра). В качестве емкости, в которой будет производиться хранение, может использоваться любая тара, если она изготовлена из стекла или полимерного материала. Очень важно провести анализ не позднее чем через 24 часа после отбора пробы. В особых случаях, когда необходимо увеличить этот срок, производится подкисление жидкости посредством добавления соляной кислоты. В таком состоянии она может храниться уже около 1 месяца.

Среди всех методов определения жесткости воды данный вариант заслуженно считается самым достоверным и комплексным. В его основе лежит процесс образования соединений трилона вместе со щелочноземельными элементами ионов. Минимальный показатель жесткости, который поддается определению при помощи этого способа, – 0,1 о Ж (нормой считается 7-10 о Ж). В качестве пробы может быть использована обычная вода из-под крана. Лучшим выходом в ситуации с подозрением на повышенную жесткость является сразу же посетить соответствующую лабораторию, так как никакие домашние методы не смогут выдать точные данные. Но о них — ниже.

Полностью описывать весь процесс нет никакого смысла, так как воспроизвести его самостоятельно, без нужных навыков и химических элементов и оборудования невозможно. Тем не менее можно выделить несколько основных принципов реакции, которые сохраняются в любой ситуации и присущи абсолютно всем вариантам:

  • Всегда должен быть способ, позволяющий зафиксировать эквивалентность реакции, которая и является основой для определения жесткости.
  • Анализ проводится очень быстро.
  • Должно выполняться требование стехиометричности процесса. Проще говоря, это значит, что в процессе проведения реакции не должны образовываться никакие побочные продукты.
  • С момента начала реакции ее невозможно повернуть вспять или остановить.

Для определения жесткости воды в домашних условиях можно использовать специальные приспособления, купить которые не составит особого труда (они не запрещены и общедоступны). Выглядят они как стандартные тестовые полоски. Для использования достаточно погрузить одну из них в воду, требующую проверки, на указанный в инструкции период времени. В результате изделие изменит свой цвет. При использовании таких полосок для определения жесткости воды главной проблемой является определить, каков именно показатель жесткости. Чтобы это сделать, нужно сравнивать цвет на полосе и примеры с описанием на упаковке. К сожалению, далеко не всегда можно сразу же понять, что именно показывает приспособление, и даже в более четкой ситуации точность данных оставляет желать лучшего. В целом такие тест-полоски подходят только для общего понимания того, насколько жесткая или мягкая вода.

Проверить воду из-под крана на жесткость также можно при помощи подручных средств. Правда, это скорее занимательный опыт для детей, чем действительно вариант тестирования показаний жидкости.

  • Банку емкостью 1 литр (или любую другую подобную емкость).
  • Стакан в форме цилиндра.
  • Любые весы (удобнее всего использовать электронные).
  • Линейку.
  • Мыло хозяйственное (72% или 60%).
  • Дистиллированную воду.

Для проверки необходимо взять 1 грамм мыла, измельчить его и поместить в стакан. После этого следует подогреть дистиллированную воду, но не доводить до кипения. Ее следует налить в тот стакан, в котором уже лежит мыло. В итоге оно обязано растворится в воде. Следующий шаг – налить еще больше воды. После этого следует налить в банку обычной воды из-под крана и медленно вылить мыльную жидкость из стакана и перемешать (медленно). Если образуется пена, то это — показатель жесткости. К сожалению, более или менее четко сказать, каков именно ее уровень, при помощи такого метода практически невозможно.

Еще один вариант определения жесткости питьевой воды – воспользоваться специальным прибором – TDS-метром. В принципе, он предназначен для определения электропроводимости воды, на что влияют как непосредственно соли (создающие жесткость), так и множество других элементов, что не дает нужного уровня точности. Более того, показания прибора обычный человек, не умеющий их считывать, не поймет и скорее всего запутается. Попробуем упростить задачу. Подавляющее большинство таких устройств в качестве единиц измерения используется некие ppm. У нас же применяются другие варианты, основанные на эквиваленте миллиграмма на литр жидкости. В среднем, 1 наша единица (мг-экв/л) равняется 50,05 зарубежным ppm. По правилам, концентрация солей (т.е. жесткости) должна быть не более 350 ppm или же 7 мг-экв/л. На эти цифры и стоит ориентироваться. Если же прибор будет отечественным, все значительно облегчается. Хуже всего, когда подобное приспособление произведено где-то в Китае или другой подобной стране, где используются собственные единицы измерения. Тогда придется самостоятельно искать их эквивалент и переводить в привычные нам показания.

Из других приборов, способных определять жесткость воды, отдельно следует отметить уникальное устройство АКМС-1. Это достаточно большой стационарный агрегат, сходный по размерам с фильтрами «Гейзер-3». Просто так в домашних условиях с его помощью проверять жидкость не представляется возможным. Именно поэтому такие приспособления используются в первую очередь на производстве, где жесткость воды может повлиять на работу дорогостоящей техники или нанести другой подобный вред. В отличие от всех остальных аналогов, АКМС-1 действительно быстро и точно показывает текущий уровень жесткости, позволяя оператору своевременно реагировать. При помощи этого приспособления можно как пускать воду к рабочим агрегатам напрямую, если она не представляет для них угрозы, так и предварительно ее фильтровать. Это, конечно же, выльется в дополнительные затраты, но зато поможет сэкономить на ремонте техники, который обойдется значительно дороже.

Учитывая все указанное выше и требования ГОСТ, вода питьевая должна регулярно проверяться на уровень жесткости. Тем не менее принимать радикальные меры по ее умягчению не стоит, так как вредны оба состояния – слишком жесткая и слишком мягкая. Только в той ситуации, когда показатели действительно выше или ниже, стоит предпринимать какие-то действия. К слову, если с жесткостью регулярно борются, то про слишком мягкую воду практически не слышно, а ведь на это также нужно обращать не меньше внимания.

источник

Считается, что жесткая вода неприятна на вкус и легко узнаваема по плотному слою накипи на внутренней поверхности чайника и других нагревательных приборов. Между тем, в лабораторных условиях концентрацию солей магния и кальция определяют при помощи целого набора измерительных инструментов и вспомогательных реактивов.

Определение жесткости воды – одна из основных стадий водоподготовки. Для того чтобы измерить концентрацию солей кальция и магния, химики–лаборанты используют только разрешенные требованиями ГОСТ приборы и индикаторы. Для начала: что такое жесткость воды и как её обнаружить в домашних условиях.

На сегодняшний день самыми надежными считаются следующие методы определения жесткости:

— комплексонометрический метод выявления общей и временной жесткости,

— метод атомной спектрометрии

По карте кислотности и жесткости воды России можете оценить примерные показатели для вашего региона.

Для определения общей жесткости воды в лабораторных условиях используют комплексонометрический метод, основанный на образовании сложных соединений анализируемых ионов с органическими реагентами (комплексонами) (1). Перед началом работы пробу разбавляют спиртовым раствором индикатора эриохрома черного Т или сухой смесью хлорида натрия и кальция. К окрашенному в вино-красный цвет раствору добавляется по каплям Трилон Б. Величину общей жесткости вычисляют по формуле:

Жо=Nx*Vx*1000/V1

(N-нормальность раствора Трилона Б, V-объем раствора Трилона Б, V1-объем пробы).

Для справки: Титрование (титриметирческий анализ) – метод количественного расчета содержания вещества, реагирующего с реактивом известной концентрации.

При помощи титрования и колориметрического метода можно узнать не только величину общей, но и временной жесткости. Для этого исследуемые пробы соединяют с индикатором (метилоранж), после чего эталонный образец переставляют на белый фон, а вторую пробирку титруют раствором соляной кислоты до появления оранжево-красного оттенка. Рассчитывая необходимое количество «солянки», определяют временную жесткость воды.

Нвр = NHCl * VHCL* 1000/ V1

(N-нормальность раствора соляной кислоты, V-объем раствора соляной кислоты, V1-объем пробы)

Уравнение реакции:

Титрование – один из самых распространенных и простых методов определения концентрации ионов кальция и магния. К минусам традиционных методик следует отнести невысокую точность.

О том, как проверить жесткость воды с минимальными погрешностями, знает обслуживающий персонал высокоточных приборов. Ярким примером одного из самых надежных инструментов определения концентрации ионов кальция и магния является АКМС-1. По результатам сравнения разности электродных потенциалов с эталонными значениями, прибор автоматически выводит результаты анализа на дисплей.

Метод атомной спектрометрии основывается на резонансном поглощении света атомами исследуемых химических элементов. К преимуществам подобного метода относится высокая точность. Недостатком атомной спектрометрии считают высокую стоимость требуемых приборов.

Для определения жесткости воды можно воспользоваться приборами и инструментами, используемыми в аквариумистике. С точностью до 2% снимают показания TDS-метры.

Принцип действия подобного прибора основан на прямой зависимости электропроводности и количества растворенных солей кальция и магния.

На заводах и предприятиях, а также в лабораторных условиях очистных сооружений наиболее точными считаются результаты нескольких опытов, различающихся методикой вычисления концентрации «целевых» компонентов или частиц загрязнителя.

источник