Меню Рубрики

Анализ почвы и воды вывод

Практическая работа « Анализ почвы и воды» химия 8 класс

Тема урока : Анализ почвы и воды.

Тип урока : Практическая работа.

Цели урока : научить выполнять проектную работу

Обучающие: научить правилам и умениям при выполнении опытов по анализу почвы и воды.

Развивающие: развивать навыки наблюдения, умения формулировать выводы по результатам исследования; развивать творческие способности учащихся, рефлексивно-оценочные умения.

Воспитывающие : воспитывать умение работать в коллективе, воспитывать уверенность в себе, пути решения экологических проблем.

Почва с разных участков земли, дистиллированная вода, пробирка с пробкой, лупа.

Фильтр, воронка, штатив с кольцом, стакан с предметным стеклом, держатель для пробирок, пипетка, спиртовка, спички, стеклянная палочка, мерный цилиндр, вода (дистиллированная, из водоема, из крана), газета с печатным текстом, линейка, коническая колба, пробка, вода для исследования в стакане.

Цель: (выдвигают учащиеся)Исследовать состав почвы и воды

Задачи : (выдвигают учащиеся)1.Узнать из интернета о почве

2.Изучить механический состав почвы

3.Исследовать среду почвенного раствора

4.Изучить кислотность и прозрачность воды

Гипотеза: (выдвигают учащиеся)Почва и природная вода –это смесь веществ. Плодородие почвы зависит от кислотности.

Жили рядом по соседству две женщины. Пришло время посева. Всё лето обе женщины ухаживали за своим огородом: рыхлили почву, пропалывали сорняки, поливали. Наступило время уборки урожая. Одна женщина собрала богатый урожай, а другая плохой. Спрашивает одна другую: «Почему у тебя в огороде все уродилось, а у меня нет?»

Ответ –результат исследования

1.Состав почвы (презентация-выступления учащихся)

2.Какие бывают почвы (презентация-выступления учащихся)

3.Какие растения на каких почвах растут (презентация-выступления учащихся)

Опыт №1. Механический анализ почвы

Опят №2. Получение почвенного раствора и опыты с ним .

Опыт №3. Определение прозрачности воды.

Опыт №4. Определение интенсивности запаха воды

1.Теоретические исследования (презентация-выступления учащихся)

Почва – поверхностный слой земли,
обладающий свойством плодородия

Какие бывают почвы? (презентация-выступления учащихся)

Кислые и щелочные почвы неплодородны

Сильно кислая почва улучшается при внесении известняка, гашеной извести (пушонки)

Какие растения на каких почвах растут? (презентация-выступления учащихся)

предпочитают бархатцы, гайлария, агератум, анютины глазки, бегония, василек, гвоздика, гипсофилла , яблоня, морковь, огурцы, капуста, гладиолусы, свекла, лук, чеснок

-Растения, которые требуют слабокислой почвы

розы, примулы, левкои, хризантемы, василек, папоротник

-Растения, которые требуют почву умеренной кислотности ( рН5,0-5,5 ): картофель, томаты, редис, гортензии, вереск, азалии, рододендроны, люпин, малина, ирисы,примулы

-Кислая почва: хвощ полевой, щавель, кислица, голубика

Вода это удивительное вещество, благодаря которому сформировалась наша планета и возникло все живое на ней. Если бы на земле не было воды, то не было бы и растений, животных, не было бы и нас с вами.

Вода занимает 71% всей поверхности земли, а суша всего 29%.

Человек в день потребляет примерно 2, 5 литра воды, за 70 лет жизни примерно 65 тонн. В крупных городах каждый человек расходует в сутки около 300 литров воды. Воду используют в различных отраслях промышленности и в сельском хозяйстве.

Для того чтобы человек мог использовать воду для питья ее сначала очищают. Для обеззараживания воды применяют газы — хлор и озон.

Водопроводная вода содержит не только полезные человеку растворенные соли, но в некоторых случаях и вредные для организма вещества.

Воды на Земле очень много- это океаны, ледники, реки, дожди. Но в то же время очень мало. Почему мало? Потому что в процессе производства и жизнедеятельности человечество загрязняет больше воды, чем очищает; потому что большая часть земной воды не вода вовсе, а растворы, содержащие подчас очень вредные вещества.

Наша задача- исследовать воду, которую мы пьем.

Органолептические: изучение цвета , запаха, прозрачности

Практическая часть-экспериментальная (презентация-выступления учащихся)

Алгоритм проведения опыта:

1. Провести опыт в соответствии с инструктивной картой

5 Результаты записать в таблицу.

6.Рассказать о результатах своего исследования

Стаканы с почвой, дистиллированной и водопроводной водой

2 пустые пробирки, цилиндр, воронка, коническая колба, лупа

Фильтр, предметное стекло, держалка для пробирок, универсальная индикаторная бумага

Если зажечь спиртовку сразу же после снятия колпачка, загорается плёнка спирта на горлышке спиртовки как раз на том месте, где колпачок прилегает к горлышку. Пламя проникает под диск с трубкой, и пары спирта внутри резервуара загораются. Может произойти взрыв и выброс диска вместе с фитилём. Чтобы избежать этого, приподнимите на несколько секунд диск с фитилём для удаления паров .Если случится воспламенение паров, быстро отставьте в сторону предметы (тетрадь для практических работ) и позовите учителя

-Зажжённую спиртовку нельзя переносить с места на место, нельзя также зажигать одну спиртовку непосредственно от другой. Для зажигания спиртовки пользуйтесь спичками.

-Гасить спиртовку можно только одним способом – накрыть пламя фитиля колпачком. Колпачок должен находиться всегда под рукой.

-При работе со свечой пробирку держим не касаясь пламени

-Предметное стекло закрепляется в держателе у одного из его краёв аккуратно. При этом учитывается, что стекло – хрупкий материал и может треснуть, если на него сильно надавить.

-В процессе выпаривания воды из почвенной вытяжки вначале прогревается всё предметное стекло, а затем капля жидкости на нём.

Опыт №1. Механический анализ почвы

-Цель: изучить механическую структуру почвы.

-В пробирку поместите почву, прилейте воды, закройте пробкой, встряхните

-С помощью лупы наблюдайте за осаждением частиц почвы

Вывод: убедились , что почва содержит песок, глину, перегной.

Опыт №2.Получение почвенного раствора и опыты с ним

-Цель: исследовать среду почвенного раствора

-2)Несколько капель фильтрата поместите на

-предметное стекло и выпарите

-Что наблюдаете на стекле после выпаривания.

Сделайте вывод по результатам наблюдения

Почвенный раствор — это чистое вещество или смесь?

3)Проверьте почвенный раствор с помощью универсальной индикаторной бумаги.

Вывод: Почва осталась на фильтре, а в стакане прозрачный почвенный раствор – фильтрат.

Почва содержит минеральные соли .
При использовании лакмусовой бумаги определили, что исследуемая почва кислая .

Опыт №3. Определение прозрачности воды

Цель: Исследовать прозрачность воды

Установите цилиндр на бумагу с текстом, приливайте воду до уровня 20см

На какой высоте печатный шрифт становится невидным?

Измерьте высоты столбов воды линейкой

При сравнении прозрачности воды в качестве эталона использовать высоту столба читабельности печатного текста у дистиллированной воды (например 20 см). Тогда доля или степень прозрачности водопроводной воды (высота столбика читабельности которой, например, 17 см) составит:

W (прозрачности воды) = 17 см : 20 см = 0,85, или 85%.

Вода в открытых водоёмах сильно загрязнена и уровень прозрачности в них очень низок.

Вывод: Исследуемая вода прозрачна

Опыт №4. определение интенсивности запаха воды

Цель: Изучить характеристику запаха воды

Налейте в коническую колбу исследуемой воды (2/3 объёма), закройте пробкой, интенсивно встряхните

Откройте пробку, отметьте характер запаха

Оцените интенсивность запаха в баллах (смотрите таблицу)

Вывод: Запаха нет. Интенсивность запаха…(0) баллов.

Вывод : По органолептическим исследованиям вода пригодна для питья.

Вывод по результатам исследования:

Наша гипотеза подтвердилась.

Почва и природная вода –это смеси веществ. Плодородие зависит от кислотности. Плодородная почва –это нейтральная и слабокислая.

Сажать растения, изучив кислотность почвы.

Сильно кислая почва улучшается при внесении известняка, гашеной извести (пушонки), золы

Картофель дает хороший урожай при рН =5,0-5,5

(индикаторная бумага желтая)

Почва нашего огорода имеет рН=

Почву надо (не надо) известковать .

источник

Цель: обучить учащихся практике элементарного анализа, научить их делать практические выводы из проведенного анализа.

Задачи:

  • Закрепить начатое формироваться на предыдущем занятии умение наблюдать за явлениями, описывать их и делать умозаключения – выводы;
  • Продолжить формирование умений и навыков учащихся по использованию лабораторного оборудования для проведения химического эксперимента;
  • Научить ребят простейшим способам разделения смесей – отстаиванию, фильтрованию, выпариванию;
  • Учить выявлять межпредметные связи, находить причинно-следственные связи;
  • Продолжить формирование умения делать сообщение и выступать публично, используя компьютерную презентацию.

Оборудование и реактивы: ноутбук, проектор, экран, штатив для пробирок, пробирки, химический стакан, резиновая пробка для пробирки, воронка, бумажный фильтр, лабораторный штатив Бунзена, предметные стекла, тигельные щипцы, спиртовка, спички, универсальный индикатор, мерный цилиндр, линейка, коническая колба с пробкой, вода дистиллированная, вода из природных источников, почва.

Работа выполняется в парах. На столах учащихся необходимый набор посуды и реактивов.

— Сегодня у нас необычный день. Это день, когда вы соприкоснетесь с ОТКРЫТИЕМ в очередной раз. Мы продолжаем наш химический практикум. Тема практической работы “Анализ почвы и воды” (Приложение 1). Запишите в тетрадях для практических работ дату, номер и тему практической работы.

Далее учитель сообщает цель и задачи урока, а также сведения о воде, ее значении, экологическом состоянии (Приложение 1).

— Охарактеризуйте почвы и воды нашей местности.

Учащиеся выступают с сообщениями, используя компьютерную презентацию (Приложения 2, Приложения 3).

— Первая часть работы – анализ почвы. Напоминаю, что работу вы выполняете согласно инструктивной карте самостоятельно. При выставлении оценки за работу в целом будут учитываться умения проводить опыты, делать на их основе выводы, а также правильность и аккуратность оформления результатов работы. При выполнении работы необходимо соблюдать правила техники безопасности. Это также будет учитываться при выставлении итоговой оценки за работу в целом.

Таблица для оценивания практической работы.

№ п/п Фамилия, имя Умение выполнять опыты Соблюдение правил т/б Оформление работы, выводы Итоговая оценка
Петров Иван 4 5 5 5
Щербакова Екатерина 3 4 4 4

Опыт 1. Механический анализ почвы.

В пробирку с почвой прилейте 6мл дистиллированной воды. Закройте пробирку пробкой и встряхивайте 1 минуту. Затем наблюдайте за осадком частиц почвы и структурой осадков. Опишите и объясните свои наблюдения.

Опыт 2. Получение почвенного раствора и опыты с ним.

Приготовьте бумажный фильтр, вставьте его в воронку, смочите водой. Поставьте воронку в чистый стакан и профильтруйте полученную в первом опыте смесь почвы и воды. Перед фильтрованием смесь не встряхивайте. Почва останется на фильтре, а собранный в пробирке фильтрат представляет собой почвенную вытяжку (почвенный раствор).

Несколько капель этого раствора с помощью пипетки поместите на предметное стекло и подержите над спиртовкой до выпаривания воды. Что наблюдаете? Объясните.

Возьмите полоску универсального индикатора. Испытайте ею почвенный раствор. Сделайте вывод о реакции среды почвенного раствора.

— Следующая часть работы – анализ воды. У каждой группы вода из различных источников: вода из-под крана возле школьной столовой, питьевая вода из 6 микрорайона, вода из крана горячей воды 2 микрорайона, талый снег 2 микрорайона, талый снег возле порога школы, талый снег возле проезжей части, талый снег из парковой зоны. По окончании работы мы с вами узнаем экологическое состояние воды из данных источников.

Опыт 3. Определение прозрачности воды.

Мерный цилиндр поставьте на бумагу с напечатанным текстом. В мерный цилиндр вливайте тонкой струйкой дистиллированную воду до тех пор, пока исчезнет возможность читать текст (на текст смотрите сверху). Замерьте линейкой высоту столбика воды в цилиндре. Проделайте ту же операцию с водой из природного источника. Сделайте выводы.

Опыт 4. Определение интенсивности запаха воды.

В коническую колбу налейте исследуемую воду на 2/3 объема, закройте пробкой и сильно встряхните. Затем откройте колбу и отметьте характер и интенсивность запаха. Дайте оценку интенсивности запаха воды в баллах, используя таблицу:

Характер запаха Интенсивность запаха (балл)
Отсутствие ощутимого запаха
Очень слабый запах – не замечается потребителями, но обнаруживается специалистами 1
Слабый запах – обнаруживается потребителями, если обратить на это внимание 2
Запах легко обнаруживается 3
Отчетливый запах – неприятный и может быть причиной отказа от питья 4
Очень сильный запах – делает воду непригодной для питья 5

Учитель: проводит беседу по результатам качества воды из различных источников.

Учащиеся: делают выводы по результатам работы.

источник

11. Пробоотбор и подготовка образцов к химическому анализу.

Для проведения физико-химического анализа вначале проводят пробоотбор, используя метод конверта (см.ниже). Почва изымалась с глубины 10 см, по 800-900 мг каждого образца.

Пробы нужно взять на разных территориях (мин.5):

Затем почва высушивается и измельчается, из нее удаляются посторонние примеси и частицы при помощи набора сит с отверстиями разного диаметра от 5 до 1 мм и сокращении массы до 500 г. Для сокращения пробы использовали метод квартования: Измельченный материал тщательно перемешать и рассыпать ровным тонким слоем в виде квадрата, разделили его на четыре сектора. Содержимое двух противоположных секторов отбрасывали, а два оставшихся снова смешивали, после многократных повторений оставшуюся пробу высушили до воздушного состояния для получения водных вытяжек .

2. 2. Приготовление водной вытяжки .

Для приготовления водной вытяжки достаточно 20 г воздушно – сухой просеянной почвы. Почву помещали в колбу на 100 мл, добавляли 50 мл дистиллированной воды и взбалтывали в течение 5-10 минут, а затем фильтровали.

3. 3. Определение актуальной кислотности почвы .

Реакция почвы оказывает большое влияние на развитие растений и почвенных микроорганизмов, на скорость и направленность происходящих в ней химических и биохимических процессов. В природных условиях рН почвенного раствора колеблется от 3 до 10. Чаще всего кислотность почвы не выходит за пределы 4-8. Связь между кислотностью почвы и величиной рН приведена в табл. 3.

Зависимость кислотности почвы от рН

Актуальная (активная) кислотность — кислотность почвенного раствора. Этот вид кислотности оказывает непосредственное влияние на корни растений и почвенные организмы.

Актуальную кислотность определяют в водной почвенной вытяжке. Для этого необходимо поместить в пробирку или колбу 2 г почвы, добавить 10 мл. дистиллированной воды; полученную суспензию 1: 5 хорошо встряхнуть и дать отстоять осадку; в надосадочную жидкость внести полоску индикаторной бумаги и, сравнить её цвет с цветной таблицей, сделать вывод о величине pH почвы.

По величине кислотности почвы можно предсказать наличие тех или иных микроэлементов в почве, а также оценить их подвижность (табл.5). Наиболее подвижные катионы аккумулируются в тканях растений.

Подвижность микроэлементов в зависимости от кислотности почвы

ПН – практически неподвижные; СП – слабоподвижные; П — подвижные

4. 4. Качественное определение химических элементов в почве.

Карбонат-ионы . Небольшое количество почвы помещают в фарфоровую чашку и приливают пипеткой несколько капель 10%-го раствора соляной кислоты. Образующийся по реакции оксид углерода ( IV ) CO 2 выделяется в виде пузырьков (почва «шипит»). По интенсивности их выделения судят о более или менее значительном содержании карбонатов.

Сульфат-ионы . К 5 мл фильтрата добавить несколько капель концентрированной соляной кислоты и 2-3 мл 20%-го раствора хлорида бария. Если образующийся сульфат бария выпадает в виде белого мелкокристаллического осадка, это говорит о присутствии сульфатов в количестве нескольких десятых процента и более. Помутнение раствора также указывает на содержание сульфатов – сотые доли процента. Слабое помутнение, заметное лиши на черном фоне, бывает при незначительном содержании сульфатов – тысячные доли процента.

Нитрат-ионы. К 5 мл фильтрата по каплям прибавляют раствор дифениламина в серной кислоте. При наличие нитратов и нитритов раствор окрашивается в синий цвет.

Железо ( II и III ). В две пробирки внести по 3мл вытяжки. В первую пробирку прилить несколько капель раствора красной кровяной соли K 3 [ Fe ( CN ) 6 )], во вторую – несколько капель 10%-го раствора роданида калия KSCN . Появившееся синее окрашивание в первой пробирке и красное во второй свидетельствует о наличии в почве соединений железа ( II ) и железа ( III ). По интенсивности окрашивания можно судить об их количестве.

Алюминий. К 5 мл почвенной вытяжки прибавляют по каплям 3%-ный раствор фторида натрия до появления осадка. Чем быстрее выпадает осадок, тем больше алюминия содержится в почве.

Результаты химического анализа почвенной вытяжки(пример)

источник

Конспект урока химии в 8 классе. Практическая работа по теме » Анализ почвы и воды»

Практическая работа №3 по теме «Анализ почвы и воды»

Цель урока: обучить учащихся практике элементарного анализа, научить их делать практические выводы из проведенного анализа.

Закрепить начатое формироваться на предыдущем занятии умение наблюдать за явлениями, описывать их и делать умозаключения – выводы;

Продолжить формирование умений и навыков учащихся по использованию лабораторного оборудования для проведения химического эксперимента;

Научить ребят простейшим способам разделения смесей – отстаиванию, фильтрованию, выпариванию;

Учить выявлять межпредметные связи, находить причинно-следственные связи;

Продолжить формирование умения делать сообщение и выступать публично, используя компьютерную презентацию.

Оборудование и реактивы: компьютер, проектор, экран, штатив для пробирок, пробирки, химический стакан, резиновая пробка для пробирки, воронка, бумажный фильтр, предметные стекла, тигельные щипцы, спиртовка, спички, универсальный индикатор, мерный цилиндр, линейка, коническая колба с пробкой, вода дистиллированная, водопроводная вода, почва, спички.

Читайте также:  Анализ пробы воды в бассейне

Скажи мне и я забуду, покажи мне, и я запомню, дай мне действовать самому, и я научусь.

Работа выполняется в группах. На столах учащихся необходимый набор посуды и реактивов.

Как вы думаете, научное открытие: случайность, поиск, трудолюбие, гениальная догадка? (Учащиеся должны понимать, что любое открытие завершает кропотливую, многолетнюю деятельность многих ученых). Слайд 1

Какой путь научного поиска стоит за открытиями? (Учащиеся должны знать, что к любому химическому знаку, уравнению, закону надо относиться с большим уважением, как к результату чужого труда)

— Сегодня у нас необычный день. Это день, когда вы соприкоснетесь с ОТКРЫТИЕМ в очередной раз.

Мы продолжаем наш химический практикум. Тема практической работы «Анализ почвы и воды». Запишите в тетрадях для практических работ дату, номер и тему практической работы. Слайд 2

Далее учитель вместе с детьми ставит цель и задачи урока

— Какие воспитательные цели мы должны поставить перед собой на уроке?

Учащиеся: Воспитание трудолюбия, умения доводить начатое дело до конца, уметь работать в группах, быть внимательным, аккуратным).

Какие образовательные цели мы должны поставить пред собой?

Учащиеся: Проведение элементарного анализа почвы нашей местности, проведение анализа на примере оценки качества воды, закрепить умения проводить разделение смесей разными способами.)

Сегодня на уроке будут работать три лаборатории. В каждой лаборатории есть технолог который будет выполнять не только контролирующую функцию, но и обучающую.

Напоминаю, что работу вы выполняете согласно описанию по учебнику самостоятельно. При выставлении оценки за работу в целом будут учитываться умения проводить опыты, делать на их основе выводы, а также правильность и аккуратность оформления результатов работы. При выполнении работы необходимо соблюдать правила техники безопасности. Это также будет учитываться при выставлении итоговой оценки за работу в целом.

Таблица для оценивания практической работы.

Вспомним правила работы в группе

— Первая часть работы – анализ почвы. Что такое анализ? Один ученик находит в интернете определение.

Постановка проблемной задачи.

Жили рядом по соседству две женщины. Пришло время посева. Всё лето обе женщины ухаживали за своим огородом: Рыхлили почву, пропалывали сорняки, поливали. Наступило время уборки урожая. Одна женщина собрала богатый урожай, а другая плохой. Спрашивает одна другую: «Почему у тебя в огороде все уродилось, а у меня нет?»

Что такое почва? Почва- это верхний плодородный слой земли на котором растут растения.

Сообщение учащегося о почве.

Исследование почв производят для оценки её плодородия. В результате этого получают данные о физических и химических свойствах почв. Данными пользуются при разработке плана применения удобрений и известкований почв.

Наша задача выяснить какая почва в нашем поселке, а также исследовать воду и определить её прозрачность и интенсивность запаха.

Опыт 1 Механический анализ почвы

Вывод: после механического анализа убедились, что почва содержит песок, глину, перегной. Первыми осаждаются крупные частицы песка, потом глины и затем другие частицы.

Опыт 2 Получение почвенного раствора и опыты с ним

Вывод: почва содержит минеральные соли. После фильтрования смеси почвы и воды. Почва осталась на фильтре, а в стакане прозрачный почвенный раствор — фильтрат. Универсальная бумажка не изменила цвет. Значит среда нейтральная

— Следующая часть работы – анализ воды.

Сообщение учащегося о воде

Вода – это удивительное вещество, благодаря которому сформировалась наша планета и возникло всё живое на ней. Наша цель исследовать, какая вода течёт из наших кранов, находиться в наших водоёмах. Определить прозрачность и интенсивность запаха воды.

Опыт 3 Определение прозрачности воды.

Образец взят из под крана. Работу выполняйте, следуя указаниям учебника.

Вывод: отметили что на высоте столба воды … не видно печатного текста. Исследуемая вода не прозрачна.

Опыт 4 Определение интенсивности запаха воды

Вывод: После встряхивания открыли колбу и отметили запах. Характер запаха сравнили с таблицей. Интенсивность запаха … баллов.

Учитель: проводит беседу по результатам качества воды.

Учащиеся: делают выводы по результатам работы. В ходе выполнения практической работы изучались состав почвы, исследовалась прозрачность и интенсивность запаха воды, совершенствовались практические приёмы работы с веществами.

Самостоятельная работа с самопроверкой

1. Верны ли следующие суждения о правилах безопасной работы в химической лаборатории?
А. При определении запаха вещества пробирку с веществом надо поднести к носу и глубоко вдохнуть.
Б. В лаборатории можно знакомиться с запахом и вкусом веществ.

2. Верны ли суждения о назначении лабораторной посуды и оборудования?
А. Для измерения объёма жидкости используют мерный цилиндр.
Б. Чтобы перемешать жидкость в пробирке, ее отверстие закрывают пальцем и встряхивают несколько раз.

3. Верны ли суждения о чистых веществах и смесях?
А. Почва и вода — это однородная смесь.
Б. Питьевая вода –это чистое вещество.

4.Верны ли суждения о химическом загрязнении окружающей среды и его последствиях?
А. Ионы тяжёлых металлов, содержащиеся в овощах, выращенных у дороги, никак не влияют на здоровье человека.
Б. Повышенное содержание кислоты в воде отрицательно влияет на здоровье человека.

1. Верны ли следующие суждения о правилах безопасной работы в химической лаборатории и c препаратами бытовой химии?
А. В лаборатории наличие кислоты в растворе определяют на вкус.
Б. В лаборатории нельзя знакомиться с запахом веществ.

2. Верны ли суждения о назначении лабораторной посуды и оборудования?
А. Химическую воронку используют для фильтрования.
Б.. Химическую воронку используют для переливания жидкостей из широкогорлой посуды в сосуд с узким горлом.

3. Верны ли следующие суждения о чистых веществах и смесях?
А.Воздух и почва –это неоднородная смесь.
Б.Дистиллированная вода-это однородная смесь.

4. Верны ли суждения о химическом загрязнении окружающей среды и его последствиях?
А. Повышенная кислотность почв -это негативный фактор для жизнедеятельности растений.

Б. Наличие неорганических кислот в промышленных стоках положительно влияет на жизнедеятельность рыб в водоёмах.

Одна ошибка – 4, две ошибки – 3, три ошибки – 2

Что я узнал на уроке?

Чему научился?

Где мне пригодятся эти умения и знания?

Я достиг поставле-нной цели?

Что вызвало затруднения?

Какая цель была урока?

— Где мне пригодятся эти умения и знания?

— Я достиг поставленной цели?

Используя Интернет-ресурсы, найти организации в Алтайском крае, которые занимаются анализом почвы и воды. Составить проект, какие виды анализа почвы и воды проводят эти организации и с какой целью.

Подготовиться к практической работе № 4 с. 183.

источник

Анализ почвы в домашних условиях
Кислотность.

Чтобы получать высокие урожаи и эффективнее использовать удоорения, каждый садовод должен знать, какая почва у него на участке. Нейтрализация кислых почв (известкование) зачастую бывает просто необходима. Как известно, почвы бывают сильнокислыми (рН 3—4), кислыми (рН 4—5), слабокислыми (рН 5—6), нейтральными (рН 7), щелочными (рН 7—8) и сильнощелочными (рН 8—9).

Большинство плодово-ягодных, овощных и других культур предпочитает почвы от слабокислых до нейтральных (рН 5,5—7), а некоторорые (арония, облепиха, черная смородина) — нейтральные.

Приближенно о реакции почв можно судить по произрастающим сорнякам, но на садовых участках с ними ведется непрерывная борьба, поэтому такой фактор трудно использовать практически.

На своем участке для определения кислотности почвы вы можете использовать универсальную индикаторную бумагу (ТУ 16—99 —1181 — 71), применяемую в химических лабораториях для определения реакций различных растворов. Продают ее в магазинах «Химреактивы».

Это набор из 60 или 75 фильтровальных полосок светло-оранжевого цвета, пропитанных смесью индикаторов, которые при разных значениях рН принимают ту или иную окраску. Длина полосок 5 см, ширина 1 см, срок годности 5 лет. К бумаге прилагается цветная стандартная шкала с десятью разноцветными полосками, над каждой из которых указана величина рН. Точность измерения универсальной индикаторной бумаги — до одной единицы рН.

Почву для анализа нужно брать в разных местах и на разной глубине. Реакцию почвенного раствора нужно определять в водной вытяжке. Для этого в стеклянную или пластмассовую баночку налить воды. Уложить почву в чистую тряпочку, завязать ее и опустить в воду. Вода при этом не мутнеет. (На одну по объему часть почвы взять 4—5 частей воды.)

Через 5 минут сухую полоску индикаторной бумаги погрузить в почвенный раствор на 2—3 сек или нанести на нее каплю этого раствора. Затем бумагу вынуть и сразу же сравнить приобретенный ею цвет со шкалой. Получите значение рН почвенного раствора.

Если почва кислая, нужно внести золу или известь, мел или порошкообразный строительный цемент. Излишнюю щелочность можно уменьшать, добавляя земли с нейтральной или кислой реакцией, и все тщательно перемешать.

На участках с близким стоянием грунтовых вод анализ почвы можно проводить сразу на месте. Для этого после дождя в небольшую лунку с отстоявшейся водой достаточно опустить полоску универсальной индикаторной бумаги и определить рН. Для более точного определения реакции почвы можно использовать индикаторную бумагу «рифан». Это также фильтровальная бумага длиной 8 и шириной 1 см с нанесенными поперек цветными полосками разной окраски. На каждой цветной полоске указана величина рН с узким интервалом, например: 5,8; 6,2; 6,6; 7,0; 7,4.

Для определения рН сухую бумагу «рифан» опустить в почвенный раствор так, чтобы все цветные полоски оказались в воде, а затем сравнить ее с цветной шкалой на бумаге, имеющей цифровые обозначения рН. Одинаковая окраска индикаторной полоски с одной из полосок шкалы и укажет на величину рН. При определении реакции почвы вначале можно использовать универсальную индикаторную бумагу, а потом для уточнения величины рН — бумагу «рифан».

Анализ можно проводить и с помощью кислотно-щелочных двухцветных индикаторных бумаг: красной лакмусовой (переход окраски индикатора от красного цвета до синего), синей лакмусовой (переход окраски от красного цвета дд| синего) и нейтральной лакмусовой (до рН 5 — красный цвет, более 8 — синий).

Красная лакмусовая бумага в сильнощелочном растворе становится синей, не изменяя своей окраски в сильнокислом растворе (в интервале рН от 4 до 6,4 — цвет переходный).

Синяя лакмусовая бумага в кислом и сильнокислом растворах становится красной, не изменяя окраски в сильнощелочном растворе (в интервале рН от 5 до 8 — цвет переходный). При нейтральной реакции она приобретает фиолетово-сиреневую окраску.

Нейтральная лакмусовая бумага в сильнокислом растворе (рН до 5) становится красной, в сильнощелочном (рН более 8) — синей.

В отличие от красной и синей лакмусовых бумаг нейтральная лакмусовая бумага в интервале рН от 5 до 8 краску не меняет.

Таким образом, для приближенного определения реакции почвы можно использовать кислотно-щелочные двухцветные бумаги, для более точного — универсальную «рифан» и другие индикаторные бумаги с узкими интервалами рН.

Микробиологический анализ — нет ничего проще!

Многие, наверное, знают, что плодородие почвы определяется не только минеральным составом, но и теми гумусообразующими организмами, которые превращают органику и минеральные вещества в ту форму, которую могут воспринять растения. Общеизвестна роль обыкновенных червей, которые перерабатывают органические остатки в гумус. Но не все знают о том, что наряду с ними в почве живут миллионы микроорганизмов, которые превращают органические остатки в гумусный слой. Невидимые микроорганизмы, бактерии и грибки, постоянно перерабатывая органику, обеспечивают растения питанием на 57 процентов.

Видов таких микроорганизмов — превеликое множество. Есть среди них и агрономически полезные, которые связывают азот, фосфор, калий, микроэлементы, а есть и вредные в основном, это грибки, которые поражают растения. Особенность поражения микроорганизмами такова, что проявляются заболевания растений не сразу, да и не видны подчас, поэтому урожай бывает потерян уже после сбора.

Каждому, конечно, хотелось бы знать, какие микроорганизмы живут именно на его участке, и не получится ли так, что весь урожай будет поражен каким-нибудь вредным грибком. Проведение микробиологических тестов в лабораториях — дело долгое и весьма дорогостоящее.

Простые способы узнать микробиологический состав почвы в домашних условиях.

Методика очень проста. Готовятся полоски чистой ткани или фильтровальной бумаги, или же куски отработанной фотопленки или фотобумаги размером 5×15см. Затем ставятся полоски в почву в верхний слой в 3-4 местах. Это делается так: загоняем вертикально лопату в грунт, не вынимая, отодвигаем слой, закладываем листок к твердой стороне, осторожно вынимаем лопату. Слегка трамбуем прорез. Оставляем эту бумагу или ткань в почве на три месяца. Затем осторожно извлекаем пробы, очищаем от почвы и по характеру колоний микроорганизмов, разрушающих клетчатку, то есть тех, которые выросли на пробной ткани или бумаге и загрязнили её некоторыми фитопатогенами, определяем состояние почвы.

Как правило, фитопатогенные грибы образуют колонии чёрной, серой, фиолетово-малиновой окраски и распространяются по всей поверхности пробы. Если есть черные, сажистые колонии грибка стахиботриса, который поражает все луковые, чеснок, кукурузу, соломку злаковых, значит, надо на участке сменить севооборот. Этот грибок образует супермикотоксин, который в очень малой дозе, равной одной миллионной доле миллиграмма на килограмм массы, вызывает отравление (стахиботриотоксикоз) у лошадей, крупного рогатого скота и человека. Проявляется отёчностью нижней части головы, появлением трещин на губах и тягучего слюнотечения. Для сравнения, токсичность пестицидов (даже самых опасных, вызывающих летальный исход), составляет 5-40 мг/кг веса. Следует помнить, что токсин этого гриба не разрушается при высокой температуре, химической и механической обработке.

Если же на поверхности бумаги или ткани разовьются фиолетово-малиновые колонии, то они принадлежат грибку фузариуму. Токсическое действие на человека микотоксинов этого гриба было известно еще в 1943 году. При использовании зерна, хранившегося при низких температурах, но зараженного этим грибком, возникал эффект «пьяного хлеба». Действие его токсинов сходно с действием алкоголя. Фузариум вызывает корневые гнили многих культурных растений, у плодовых — опадание и усыхание листьев.

Если на поверхности ткани или бумаги разовьются серые круглые или округлые колонии, то они принадлежат грибку альтернария, вызывающему болезнь у многих растений. Он образует коричневые пятна на поверхности плодов, чем снижает товарный вид продукции.

Если поверхность ткани или бумаги желтая, зеленая или розовая, то это свидетельствует о хорошем развитии микобактерий и здоровом состоянии почвы.

Только не надо думать, что все микроскопические грибы вредны. Они встречаются повсеместно. Общее число видов микроскопических грибов в почвах — от 160 до 300, из них токсигенных только около 50 процентов. А теперь попробуем определить содержание нитратов. Об этом можно судить, прежде всего, по развитию микроорганизмов на фильтровальной бумаге, помещенной в почву. Если надо определить, много ли нитратов в моркови или огурце, то в междурядье этих культур поставьте в верхний слой пластинку с фильтровальной бумагой и оставьте её на семь дней. Затем извлеките, отряхните с неё почву и осмотрите.

Если на фильтре одна-две колонии гриба хетомиум в виде серо-зелёных выпуклых точек (это органы плодоношения гриба), значит, почва нормально обеспечена нитратным азотом, в продукции не будет большого накопления нитратов. В этом случае мы имеем дело с экологически безопасной продукцией.

Если же колонии гриба разбросаны по всему фильтру, то почва содержит очень много нитратов и вся продукция на этом участке сильно загрязнена и непригодна для использования. Такую продукцию необходимо обязательно вымачивать перед едой не менее одного часа. Этот же грибок образует плодовые тела и на покровных листьях капусты, т.е. его можно использовать и для определения нитратного загрязнения капусты.

О микробиологических методах определения потребности почвы в удобрениях.

Для определения потребности почвы в азотных удобрениях необходимо взять отработанные фотоплёнку, рентгеноплёнку или фотобумагу.

Поставить полоски в почву в верхний слой в трех-четырех местах под лопату вертикально, плотно прижав к стенке почвы. Оставить на пять дней. Затем извлечь, окунуть раза три в ведро с водой. Если с плёнки всё смылось, и она стала прозрачной, значит, почвенные микроорганизмы высокоактивны. На поверхности плёнки находится слой желатина, а это белок. При разложении его микроорганизмами образуется аммиак. При его взаимодействии с другими соединениями почвы образуются доступные растениям аммонийные формы азота. И там, где желатин на плёнке полностью разложился, пленка обесцветилась, нет необходимости во внесении азотных удобрений. Если же совсем не обесцветилась и осталась чёрной, то нужно внести полную дозу азотных, примерно одну столовую ложку на квадратный метр, Если обесцвечивание частичное, нужно внести дозу азотных удобрений соответственно степени разложения: 70-50-30 процентов.

Читайте также:  Анализ пробы воды из скважины

Чтобы определить потребность почвы в фосфорных удобрениях, нужно поставить пластинку с белой хлопчатобумажной тканью или фильтровальной бумагой. Делать это так же, как мы описали выше. Не забудьте плотно прижать ткань или фильтр к почвенному разрезу. Оставить ткань в почве на 30 дней. Затем извлечь, очистить от почвы и посмотреть степень разложения. Если рядом стоявшая пять дней плёнка обесцветилась, а ткань или фильтровальная бумага разложились на 75-100 процентов, то почва не нуждается ни в азотных, ни в фосфорных удобрениях.

Набор для самостоятельного анализа почвы

Вариант для ленивых — наборы Luster Leaf позволяют быстро оценить качество почвы в домашних условиях.

Luster Leaf предлагает наборы для определения содержания азота, фосфора и калия, а также для оценки pH. Чтобы проверить уровень pH, руководствуясь отметками на контейнере, насыпьте почву и залейте водой. Затем вскройте капсулу, высыпьте содержимое в пузырек и встряхните его. Теперь остается только сравнить цвет содержимого со шкалой, нанесенной на контейнер.

Проверка содержания азота, фосфора и калия немного сложнее. Для этого смешайте одну часть грунта с пятью частями воды, взболтайте и оставьте, чтобы выпал осадок. Затем возьмите пипетку и наполните контейнер, вскройте капсулу, высыпьте содержимое в пузырек и снова взболтайте. Сравните цвет жидкости со шкалой на контейнере. С наборами поставляется подробная инструкция, пользоваться которой предпочтительнее, чем кратким описанием, приведенным в данной статье.

источник

1 Исследовательская работа : Анализ почвы и сравнение образцов воды. Цель работы: Анализ механического состава почвы, определение качества воды из разных водных источников.

2 Был проведён анализ почвы на пришкольном участке школы и в лесной зоне Собраны образцы почвы: образец 1 на пришкольном участке, образец 2 пришкольный участок, образец 3 леснаязона,образец 4 уводоёмавлесу. Влеснойзонеуводоёмабылсделанпочвенныйразрезглубиной1м Было сделано описание разреза по плану: Выделены почвенные горизонты и их мощность -3 горизонта: 1 25 см, 2 55см, 3 20см — окраска- от серого до желтоватого оттенка -механический состав почвы каждого горизонта: 1-глина, 2-суглинок,3-песок — структура: мелко- зернистая -определили плотность почвы -рыхлая — влажность — наблюдается у поверхности — плодородие — средняя плодородность

3 Определили механический состав каждого образца: образец смачивали водой и скатывали в «колбаски» Сворачивается легко в кольцо без трещинглина Незначительные трещины -тяжёлый суглинок «колбаска» скатывается, но в кольцо не сворачивается-лёгкий суглинок Практически не скатывается «колбаска»- супесь «колбаска» не скатывается песок.

4 Сделали вывод: преобладает супесчаная почва, средней степени плодородности.

5 Сравнение воды из разных источников. Цель работы: определить качество воды из разных водных источников. Материалы: образцы воды из близлежащих природных источников Образец 1 -водоём в лесной зоне «Сказка», Образец 2 -вода из под крана школы 1, химические стаканы (200 мл); индикаторная бумага, хозяйственное мыло, пробирки, микроскоп.

6 . Ход работы: 1. Наливаем в пронумерованные пробирки воду: из водоема (пруд)и водопровода 2. Оцениваем запах воды по шкале (табл.1). Таблица 1. Оценка запаха воды: Различают травянистый, болотный, гнилой, затхлый, землистый запах Интенсивность запаха Описательное определение Баллы Нет Отсутствие ощутимого запаха 0 баллов Очень слабый Слабый Запах ощущается опытным наблюдателем, не ощущается при употребление. Обнаруживается, если обратить внимание. 1 балл 2 балла Заметный Ощущается легко. 3 балла Отчетливый Очень сильный Запах обращает на себя внимание, делает воду неприятной для питья. Запах настолько сильный, что вода совершенно непригодна для питья. 4 балла 5 баллов

7 Делаем вывод:вода из водопровода без запаха, вода из пруда имеет затхлый, болотный запах.

8 3. Оцениваем цвет и прозрачность: если видны изменения в цвете воды (стакан ставят на чистый лист белой бумаги), их описывают словами: зеленоватый, светло-коричневый. Делаем вывод:водопроводная вода без цвета и прозрачная не обнаружено взвешанныхчастиц, вода из пруда желтоватого цвета,но прозрачная, рассмотрев образцы под микроскопом было обнаружено наличие микроорганизмов простейших в воде из пруда.

9 4. Определяем рн среду:для определения используют индикаторную бумагу. Цветность определяют в сравнении с эталоном чистой воды (после фильтрации). 5. Определение жесткости воды. Цель работы: сравнить жесткость различных образцов воды. Материалы: образцы воды различной степени жесткости:, кусочки хозяйственного мыла, пробирки. Ход работы: 1. В пронумерованные пробирки наливают 2 образца воды по мл. 1 пробирка -водопроводная. 2 вода из пруда 2. В каждую пробирку кидают кусочек мыла и сильно встряхивают пробирку (около 5 минут). Дают отстояться и описывают внешний вид полученных растворов: есть ли осадок в виде хлопьев, много осадков или мало, раствор почти прозрачный и т.д.

10 Результаты занесли в таблицу : сделали вывод: Образец воды Водопроводная Вода из пруда Характеристика полученного раствора Осадок в виде хлопьев,много осадка Небольшой осадок

11 Результаты исследований качеств питьевой воды Сравнение образцов воды параметры / образец воды Запах Цвет Прозрачность (см) рн среды Прудовая отчетливый Желтовато-коричневый взвешанными частичками прозрачная 8,0 Водопроводная незаметный оттенок с взвешанными частичками прозрачная 7.0 Фильтрованная очень слабый бесцветный прозрачная 5,0

12 Вывод : Вода из водоема для питья не пригодна. Это подтверждается также тем, что в летний период на берегах водоема размещают предупреждающую надпись: «КУПАТЬСЯ ЗАПРЕЩЕНО!» Решение проблемы плохого качества питьевой воды видим: — экологические и социальные проблемы города: общее загрязнение пруда, бытовыми отходами, мытьё автомашин в водоёме, мусорные свалки. Чтобы улучшить положения необходимы целенаправленные и продуманные действия администрации города и привлечение населения к ответственности за загрязнения парковой зоны.

источник

Проект дизайна собственного загородного участка должен начинаться с анализа территории. Одним из первых этапов при его проведении является оценка почвенного плодородия и состава почвы. В своей книге «Красивые сады. Секреты ландшафтных дизайнеров» кандидат биологических наук, практикующий садовый мастер и консультант по вопросам почвенной экологии и почвенного плодородия Андрей Лысиков рассказывает о том, как эту оценку провести самостоятельно.


А вы знаете, какая почва на вашем участке?

Для начала надо отметить, сохранился ли почвенный покров: бывает, что после строительства значительная часть площади земельного надела занята глиной из котлована, строительным мусором, кучами песка и застывшего бетона. Это следует взять на заметку, чтобы потом рассчитать реальный объем земляных работ.

Следующий этап – постараться оценить почвенное плодородие участка. Даже если вы совсем не разбираетесь в почвах, большую помощь может оказать характер окружающей растительности. Приглядитесь к деревьям на участке или в близлежащем лесу: сосна обычно предпочитает легкие почвы, песчаные или супесчаные; ель поселяется на более тяжелых, суглинистых и глинистых почвах; ольха и ива распространены обычно вблизи рек и ручьев, часто – на переувлажненных почвах с близкими грунтовыми водами; липа, клен и дуб как довольно требовательные породы хорошо растут на богатых, достаточно увлажненных почвах.


Липа — довольно требовательная порода и растет обычно на богатых почвах

Многое может сказать о почве и состав травянистой растительности. Известно, что на кислом субстрате чаще обычного встречаются лютик, щавелек, хвощ, кислица и подорожник.


Хвощ предпочитает кислый субстрат

Показателями слабокислой и нейтральной реакции почвы служат пырей и многие луговые злаки, вьюнок, мать-и-мачеха, копытень и гравилат.

На богатые, гумусированные почвы с высоким содержанием азота указывают крапива, сныть, медуница, недотрога и ясменник.


Медуница встречается на богатых, гумусированных почвах

Индикаторами заболоченной почвы могут служить сфагновые мхи, осоки, ситник, рогоз, часто именуемый в народе камышом, и цветущая весной желтыми цветками калужница.


Ситник и рогоз — это растения-индикаторы заболоченной почвы

Важнейшим показателем почвы наряду с кислотностью, содержанием азота и других элементов питания является ее механический состав, отражающий содержание в почве частиц разных фракций: песка, глины и ила.

Многие садоводы знают, что механический состав можно ориентировочно определить, скатывая тонкую колбаску из увлажненной почвы. Если она, не трескаясь, сворачивается в колечко, то почва глинистая, если сильно растрескивается – средний суглинок, если не свертывается в кольцо – супесь, а если почва рассыпается, даже не успев скататься в колбаску, то это самая легкая, песчаная почва.


Определить механический состав почвы можно самостоятельно, скатав тонкую колбаску из увлажненного грунта

От того, какой по механическому составу окажется почва, часто зависит очень многое: дренированность участка, уровень грунтовых вод и наличие верховодки, запас в почве питательных элементов и ее плодородие, объем завозимого растительного грунта и сложность мелиоративных работ, перечень растений, которые удастся вырастить на участке, и многое другое. Это действительно важно, поэтому для получения информации по особенностям почвенного покрова на участке целесообразно отдать образцы почвы на анализ в агрохимическую лабораторию и получить грамотную консультацию.

Подробнее о том, как определить состав и реакцию почвы читайте в статье Как узнать тип почвы, и зачем это нужно.

Необходимость планирования дренажных работ на участке оценивается по уровню стояния почвенно-грунтовых вод. Для его приближенной оценки в почве выкапывают яму глубиной около 1 м. Если в летний недождливый период в этой яме, хотя бы и на дне, застаивается вода, дренаж придется проводить, иначе многие садовые радости (например, плодовый сад) станут недоступными.


Для приближенной оценки уровня грунтовых вод выкапывают яму глубиной около 1 м

Из книги Андрея Лысикова «Красивые сады. Секреты ландшафтных дизайнеров», которую можно приобрести в официальном магазине издательства, вы также узнаете о том, как самостоятельно составить проект своего участка, как оформить его границы и главные зоны, как подготовить почву к посадкам и много другой полезной информации о создании декоративного сада.

источник

1 Исследовательская работа : Анализ почвы и сравнение образцов воды. Цель работы: Анализ механического состава почвы, определение качества воды из разных водных источников.

2 Был проведён анализ почвы на пришкольном участке школы и в лесной зоне Собраны образцы почвы: образец 1 на пришкольном участке, образец 2 пришкольный участок, образец 3 леснаязона,образец 4 уводоёмавлесу. Влеснойзонеуводоёмабылсделанпочвенныйразрезглубиной1м Было сделано описание разреза по плану: Выделены почвенные горизонты и их мощность -3 горизонта: 1 25 см, 2 55см, 3 20см — окраска- от серого до желтоватого оттенка -механический состав почвы каждого горизонта: 1-глина, 2-суглинок,3-песок — структура: мелко- зернистая -определили плотность почвы -рыхлая — влажность — наблюдается у поверхности — плодородие — средняя плодородность

3 Определили механический состав каждого образца: образец смачивали водой и скатывали в «колбаски» Сворачивается легко в кольцо без трещинглина Незначительные трещины -тяжёлый суглинок «колбаска» скатывается, но в кольцо не сворачивается-лёгкий суглинок Практически не скатывается «колбаска»- супесь «колбаска» не скатывается песок.

4 Сделали вывод: преобладает супесчаная почва, средней степени плодородности.

5 Сравнение воды из разных источников. Цель работы: определить качество воды из разных водных источников. Материалы: образцы воды из близлежащих природных источников Образец 1 -водоём в лесной зоне «Сказка», Образец 2 -вода из под крана школы 1, химические стаканы (200 мл); индикаторная бумага, хозяйственное мыло, пробирки, микроскоп.

6 . Ход работы: 1. Наливаем в пронумерованные пробирки воду: из водоема (пруд)и водопровода 2. Оцениваем запах воды по шкале (табл.1). Таблица 1. Оценка запаха воды: Различают травянистый, болотный, гнилой, затхлый, землистый запах Интенсивность запаха Описательное определение Баллы Нет Отсутствие ощутимого запаха 0 баллов Очень слабый Слабый Запах ощущается опытным наблюдателем, не ощущается при употребление. Обнаруживается, если обратить внимание. 1 балл 2 балла Заметный Ощущается легко. 3 балла Отчетливый Очень сильный Запах обращает на себя внимание, делает воду неприятной для питья. Запах настолько сильный, что вода совершенно непригодна для питья. 4 балла 5 баллов

7 Делаем вывод:вода из водопровода без запаха, вода из пруда имеет затхлый, болотный запах.

8 3. Оцениваем цвет и прозрачность: если видны изменения в цвете воды (стакан ставят на чистый лист белой бумаги), их описывают словами: зеленоватый, светло-коричневый. Делаем вывод:водопроводная вода без цвета и прозрачная не обнаружено взвешанныхчастиц, вода из пруда желтоватого цвета,но прозрачная, рассмотрев образцы под микроскопом было обнаружено наличие микроорганизмов простейших в воде из пруда.

9 4. Определяем рн среду:для определения используют индикаторную бумагу. Цветность определяют в сравнении с эталоном чистой воды (после фильтрации). 5. Определение жесткости воды. Цель работы: сравнить жесткость различных образцов воды. Материалы: образцы воды различной степени жесткости:, кусочки хозяйственного мыла, пробирки. Ход работы: 1. В пронумерованные пробирки наливают 2 образца воды по мл. 1 пробирка -водопроводная. 2 вода из пруда 2. В каждую пробирку кидают кусочек мыла и сильно встряхивают пробирку (около 5 минут). Дают отстояться и описывают внешний вид полученных растворов: есть ли осадок в виде хлопьев, много осадков или мало, раствор почти прозрачный и т.д.

10 Результаты занесли в таблицу : сделали вывод: Образец воды Водопроводная Вода из пруда Характеристика полученного раствора Осадок в виде хлопьев,много осадка Небольшой осадок

11 Результаты исследований качеств питьевой воды Сравнение образцов воды параметры / образец воды Запах Цвет Прозрачность (см) рн среды Прудовая отчетливый Желтовато-коричневый взвешанными частичками прозрачная 8,0 Водопроводная незаметный оттенок с взвешанными частичками прозрачная 7.0 Фильтрованная очень слабый бесцветный прозрачная 5,0

12 Вывод : Вода из водоема для питья не пригодна. Это подтверждается также тем, что в летний период на берегах водоема размещают предупреждающую надпись: «КУПАТЬСЯ ЗАПРЕЩЕНО!» Решение проблемы плохого качества питьевой воды видим: — экологические и социальные проблемы города: общее загрязнение пруда, бытовыми отходами, мытьё автомашин в водоёме, мусорные свалки. Чтобы улучшить положения необходимы целенаправленные и продуманные действия администрации города и привлечение населения к ответственности за загрязнения парковой зоны.

источник

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙЦ УНИВЕРСИТЕТ»

Зачетная задача по предмету:

«Аналитические методы анализа в мониторинге объектов окружающей среды»

Дергунова Елена Сергеевна

Почва – особое природное образование, сформировавшееся в результате длительного преобразования поверхностных слоев литосферы под совместным взаимообусловленным взаимодействием гидросферы, атмосферы, живых и мертвых организмов. Почва состоит из органических, минеральных, органоминеральных комплексных соединений, почвенной влаги, воздуха и живых существ, населяющих ее.

Почва является одним из элементов биосферы, которые обеспечивают циркуляцию химических веществ в системе окружающая среда — человек. Причем это относится не только к эндогенным химическим веществам, но и к экзогенным химическим веществам, поступающим в почву с выбросами промышленных предприятий, сточными водами, выбросами авто- и авиатранспорта, при обработке сельскохозяйственных земель

Почва является местом сбора и хранения большого числа загрязнителей, куда они попадают в результате техногенной деятельности человека и выбросов загрязнителей из природных источников. Она не обладает свойством подвижности, характерным для других природных сред, и наиболее подвержена загрязнению. Кроме того, многие соединения, попадая в почву, вследствие химических и микробиологических превращений могут стать более токсичными, чем исходные. Из почвы может происходить загрязнение воды, воздуха, пищевых продуктов и других элементов биосферы канцерогенными и радиоактивными веществами.

Вследствие этого необходимо регулярно проводить мониторинг почв в различных раонах города и области.

В данной зачетной задаче проводился общий анализ почвы, отобранной в Усманском районе, Липецкой области.

Мониторинг состояния почв предназначен для регулярных наблюдений за химическим загрязнением почв, их состоянием; обеспечивает сбор, передачу и обработку полученной информации в целях своевременного выявления негативных процессов, прогнозирования их развития, предотвращения вредных последствий и определения степени эффективности осуществляемых природоохранных мероприятий.

В отличие от воды и атмосферного воздуха, которые являются лишь миграционными средами, почва является наиболее объективным и стабильным индикатором техногенного загрязнения. Она четко отражает эмиссию загрязняющих веществ и их фактического распределения в компонентах городской территории. Наиболее крупные промышленные города образуя обширные зоны загрязнений, постепенно превращаются в сплошные техногенные территории, представляющие серьезную опасность для здоровья проживающего на них населения.

В этой связи, постоянное наблюдение за содержанием промышленных токсикантов в почвах и тенденцией их содержанием является наиболее актуальным.

Одним из наиболее мощным факторов, приводящим к загрязнению окружающей среды, является промышленность.

Зона существенного загрязнения почв химическими элементами в окрестностях промышленных предприятий занимает площадь радиусом 10 км с гораздо большей протяженность (до 30 км и более) в направлении господствующих ветров, а также в направлении стока поверхностных и грунтовых вод.

Источниками загрязнения почвы являются:

выбросы вредных веществ в атмосферный воздух от стационарных и передвижных источников загрязнения;

полигоны промышленных и бытовых отходов;

несанкционированные свалки промышленных и бытовых отходов;

средства химической защиты растений и минеральные удобрения.

На загрязнение почвы значительное влияние оказывают проливы нефтепродуктов, неорганизованные сбросы ливневых и талых вод, а также санитарное состояние городской территории.

Основной единицей классификации почв является тип почв. Понятие «тип почв». Под типом почв понимают почвы, образованные в одинаковых условиях и обладающие сходными строением и свойствами.

Читайте также:  Анализ проба воды ростов на дону

К одному типу почв относятся почвы:

1) со сходными процессами превращения и миграции веществ;

2) со сходным характером водно-теплового режима;

3) с однотипным строением почвенного профиля по генетическим горизонтам;

4) со сходным уровнем природного плодородия;

5) с экологически сходным типом растительности.

Широко известны такие типы почв, как подзолистые, черноземы, красноземы, солонцы, солончаки и др.

Каждый тип почв последовательно подразделяется на подтипы, роды, виды, разновидности и разряды.

Подтипы почв представляют собой группы почв, различающиеся между собой по проявлению основного и сопутствующего процессов почвообразования и являющиеся переходными ступенями между типами. Например, при развитии в почве наряду с подзолистым процессом дернового процесса формируется подтип дерново-подзолистой почвы. При сочетании подзолистого процесса с глеевым процессом в верхней части почвенного профиля формируется подтип глееподзолистой почвы.

Подтиповые особенности почв отражаются в особых чертах их почвенного профиля. При выделении подтипов почв учитываются процессы и признаки, обусловленные как широтнозональными, так и фациальными особенностями природных условий. Среди последних первостепенную роль играют термические условия и степень континентальности климата.

В пределах подтипов выделяются роды и виды почв. Роды почв выделяются внутри подтипа по особенностям почвообразования, связанным прежде всего со свойствами материнских пород, а также свойствами, обусловленными химизмом грунтовых вод, или со свойствами и признаками, приобретенными в прошлых фазах почвообразования (так называемые реликтовые признаки).

Роды почв выделяются в каждом типе и подтипе почв. Самые распространенные из них:

1) обычный род, т. е. отвечающий по своему характеру подтипу почв; при определении почв название рода «обычный» опускается;

2) солонцеватые (особенности почв определяются химизмом грунтовых вод);

3) остаточно-солонцеватые (особенности почв определяются засоленностью пород, которая постепенно снимается);

6) почвы на кварцево-песчаных породах;

7) почвы контактно-глеевые (формируются на двучленных породах, когда супесчаные или песчаные толщи подстилаются суглинистыми или глинистыми отложениями; на контакте смены наносов образуется осветленная полоса, образующаяся за счет периодического переувлажнения);

Виды почв выделяются в пределах рода по степени выраженности основного почвообразовательного процесса, свойственного определенному почвенному типу.

Для наименования видов используют генетические термины, указывающие на степень развития этого процесса. Так, для подзолистых почв — степень подзолистости и глубина оподзоливания; для черноземов — мощность гумусового горизонта, содержание гумуса, степень выщелоченности; для солончаков — характер распределения солей по профилю, морфология поверхностного горизонта (пухлые, отакыренные, выцветные).

Внутри видов определяются разновидности почв. Это почвы одного и того же вида, но обладающие различным механическим составом (например, песчаные, супесчаные, суглинистые, глинистые). Почвы же одного вида и одного механического состава, но развитые на материнских породах разного происхождения и разного петрографического состава, выделяются как почвенные разряды.

Дерново-подзолистые почвы — отличаются невысоким содержанием гумуса (0,5-2,5%) и небольшим гумусовым слоем (10-20 см), в связи с этим — невысоким естественным плодородием и, как правило, кислой реакцией (рН=4-5). В большинстве случаев они пере увлажнены.

Нуждаются в дренажных и других осушительных работах, увеличении гумусового горизонта, а также регулярном известковании и внесении повышенных доз органических удобрений или землевании.

Дерново-карбонатные почвы. В отличие от дерново-подзолистых почв обладают более высокой продуктивностью (гумус — 2-4%), меньшей кислотностью рН=6 и более благоприятными физико-механическими показателями. Для получения высоких урожаев нуждаются только в повышенных дозах органических и минеральных удобрений.

Серые лесные почвы. По многим показателям близки к дерново-карбонатным почвам (только несколько выше кислотность (рН—5,5-6,5). Они склонны к замыванию и переуплотнению. Нуждаются в периодическом известковании, углублении пахотного горизонта, а также в удобрении фосфором и азотом.

Торфяно-болотные почвы. Характеризуются высоким естественным плодородием и большим содержанием азота (2-4%), низким содержанием фосфора, высокой кислотностью (рН=3,5-5) и низкими физико-механическими свойствами. Нуждаются в регулировании водного режима (осушение-орошение), внесении фосфорно-калийных удобрений, регулярном известковании и внесении микроэлементов.

Черноземные почвы. Лучшие из почв по всем показателям (уровню плодородия, глубине гумусового горизонта (если не эродированы), содержанию макро- и микроэлементов и физико-механическим параметрам почвы). Оподзоленные черноземы склонны к заиливанию и переуплотнению, а карбонатные черноземы бедны железом: в доступной для растений форме (провоцируется хлороз винограда и плодовых).

2 Методика определения гигроскопической влаги почвы

Навеску почвы 2-5 г берут на аналитических весах в предварительно высушенных при температуре 100-105 С и взвешенных стеклянных бюксах (бюксы взвешивают с крышками). Бюксы с почвой в течение 5 ч выдерживают в сушильном шкафу при температуре 100-105С. С помощью щипцов с резиновыми наконечниками бюксы вынимают из сушильного шкафа, закрывают крышками, охлаждают в эксикаторе и взвешивают. Условились считать, что выдерживание почвы в течение 5 ч при температуре 100-105С приводит к полной потере гигроскопической влаги. Если необходимо проверить полноту удаления гигроскопической влаги, бюксы с почвой снова ставят в сушильный шкаф на 1,5-3 ч и взвешивают. Высушивание прекращают, если масса равна или больше результата предыдущего взвешивания (увеличение массы может произойти за счет окисления некоторых компонентов почв). Расчет массовой доли гигроскопической влаги (%) проводят по уравнению:

Где m– масса воздушно-сухой почвы, г; m1– масса высушенной почвы, г.

2.1 Определение C и органических соединений по Тюрину

Приборы и реактивы: Аналитические весы, Колба коническая термостойкая на 100 мл., воронка стеклянная диаметром 3см, бюретка на 25 мл., пипетка медицинская, фильтровальная бумага, хромовая смесь 0,4н, соль Мора 0,2 н, ФАК 0,2%,KMnO4.

Взять мелкодисперсную навеску 0,5 г, Поместить в колбу емкостью 100 мл. Затем в колбочки пипеткой прилить по каплям 10 мл 0,4 н р-ра K2Cr2O7в H2SO4.Осторжно взболтать и поставить на эл. плитку.Кипятят 5 минут, одновременно проводят холостое кипячение без почвы, только 10 млK2Cr2O7.

После кипячения колбы охлаждают. Смывают капли хромовой смеси дистиллированной водой в колбочку и, добавив 4-5 капель 0,2% р-ра ФАК, титруют 0,2 н соли Мора.Переход окраски из вишнево-фиолетовой в зеленую. Одновременно проводят холостое титрование. По объему соли Мора, пошедшего на титрование, определяют колличество хромовой смеси, не израсходованной на окисление органического вещ-ва почвы. При титровании солью Мора избытка K2Cr2O7 происходит реакция:

6FeO4 (NH4)2SO4+K2Cr2O7+7H2 SO4=Cr2(SO4)3+3Fe2(SO4)3+6(NH4)2SO4+ K2SO4+7H2O

Содержание углерода вычисляют по формуле:

Где Vхол-объем соли Мора(мл) пошедший на титрование 10 мл K2Cr2O7.

2.2 Определение фенола в почве

Приборы и реактивы: п-нитроаналин,NaNo2(1н), Н2SО4(разбавл), Na2CO3(2н), смесь: уксуская кислота- бутанол- вода (3:5:2)

Растворяют 5г фенола в дистиллированной воде, разбавляют до 1л.Отбирают 1мл этого раствора, содержащий 5 мл фенола, вносим в делительную воронку, прибавляем 1 мл H2SО4, 25 мл Na2СО3, 2,5 мл п-нитроаналина. Затем прибавляем еще 50 мл H2SО4 и экстрагируют краситель 50 мл хлорбензола. Бензольный экстракт фильтруют в 50 мл колбу и доводят до метки чистым хлорбензолом (0,1 мл фенола содержит).

Далее вносим на покрытое смесью стекло, следующие концентрации: 5,0; 10,0; 20,0; 70,0; и Х мкг. Помещаем пластинку в хроматографическую камеру. Пятна фенола (розово-сиреневого цвета) появляются на расстоянии 1-15 см от стартовой линии.(Rf=0.1).

Каждое пятно экстрагируют изопропанольной смесью и измеряют оптическую плотность экстрактов при λ=540нм.

По градуировочному графику находят содержание фенола.

2.3 Определение общей щелочности и щелочности, обусловленной карбонат-ионами

Навеску почвы массой 40,0 г помещают в сухую колбу или другую емкость вместимостью 250 мл. К почве с помощью мерного цилиндра приливают 100 мл. 1 М раствора KCl. Содержимое колбы взбалтывают 1 час и фильтруют через складчатый фильтр в сухую коническую колбу. Чтобы получить прозрачные фильтраты, на фильтр переносят как можно больше почвы. Первые порции фильтрата могут опалесцировать, их перефильтровывают. Вытяжка должна быть прозрачной.

В полученной 1 М KCl-вытяжке определяют концентрацию карбонат-ионов. Для этого из мерной колбы в коническую колбу для титрования вместимостью 100 мл прибавляют 25 мл аликвоты раствора и несколько капель фенолфталеина. Титруют 0,01 М раствором H2SO4до обесцвечивания розовой окраски раствора. Записывают объем титранта V1, пошедший на титрование.

Далее определяют общую щелочность. Для этого из мерной колбы в коническую колбу для титрования вместимостью 100 мл прибавляют 25 мл аликвоты раствора и несколько капель метилового-оранжевого. Титруют 0,01 М раствором H2SO4до изменения окраски раствора из желтой в оранжевую. Записывают объем титранта V2, пошедший на титрование.

Концентрацию карбонат-ионов и общую щелочность вычисляют по формулам:

где н – нормальность кислоты; Vа– объем аликвоты, мл; V– объем, добавленный к навеске почвы, мл; m– навеска почвы, г.

2.4 Методика комплексонометрического определения валового содержания железа в почвах

На конических колбах вместимостью 250 мл делают отметку на уровне, соответствующем объему 50 мл. В колбу помещают 25 мл фильтрата, полученного после отделения кремниевой кислоты, добавляют 5-7 капель концентрированной азотной кислоты и нагревают до кипения, окисляя Fe(II).

Затем в колбу добавляют 10-15 капель 25%-ного раствора аммиака, помещают кусочек индикаторной бумаги Конго-рот и добавляют по каплям сначала 25%-ный раствор аммиака, а затем 10%-ный до перехода синей окраски индикаторной бумаги в бурую. Если при этом выпадет осадок, его растворяют несколькими каплями 1 н. HCl. В колбу приливают 5 мл 1 н. HCl, и объем жидкости дистиллированной водой доводят до отметки, соответствующей 50 мл. Содержимое колбы нагревают до 50-60 °С, добавляют 1-3 капли 10%-ного раствора сульфосалициловой кислоты и титруют 0,01 М раствором комплексона IIIдо перехода лиловой окраски сульфосалицилата железа в бледно-желтую комплексоната железа. Скорость реакции невелика, поэтому последние порции титранта добавляют медленно. Если в этой же порции анализируемого раствора будет определяться алюминий, нельзя добавлять избытка титранта.

2.5 Определение кальция и магния при совместном присутствии

Константы устойчивости этилендиаминтетраацетатов кальция и магния различаются на 2 порядка. Поэтому эти ионы нельзя оттитровать раздельно, используя только различие в константах устойчивости комплексонатов. При pHопт

10 в качестве металлоиндикаторов используют эриохромовый черный Т. При этих условиях определяют сумму кальция и магния. В другой аликвотной части создают pH> 12, вводя NaOH, при этом магний осаждается в виде гидроксида, его не отфильтровывают, и в растворе определяют комплексонометрический кальций в присутствии мурексида, флуорексона или кальциона, являющихся металлоиндикаторами на кальций. Магний определяют по разности.

Определение суммы кальция и магния.

Отбирают пипеткой 10 мл анализируемого раствора (водной вытяжки почвы) из мерной колбы вместимостью 100 мл в коническую колбу для титрования вместимостью 100 мл, прибавляют 2-3 мл буферного раствора с pH 10, 15 мл воды, перемешивают и прибавляют на кончике шпателя 20-30 мг смеси эриохромового черного Т и хлорида натрия. Перемешивают до полного растворения индикаторной смеси и титруют раствором ЭДТА до изменения окраски раствора из винно-красной в голубую.

Отбирают пипеткой 10 мл анализируемого раствора (водной вытяжки почвы) в коническую колбу для титрования вместимостью 100 мл, прибавляют 2-3 мл раствора NaOH или KOH, разбавляют водой примерно до 25 мл, вводят 20-30 мг индикаторной смеси мурексида, флуорексона, или кальциона с хлоридом натрия и титруют раствором ЭДТА до изменения окраски раствора от одной капли раствора ЭДТА.

Изменение окраски в конечной точке титрования зависит от выбранного металлоиндикатора. При использовании мурексида окраска изменяется из розовой в фиолетовую; при использовании флуорексона – из желтой с зеленой флуоресценцией в бесцветную или розовую с резким уменьшением интенсивности флуоресценции; при использовании кальциона – из бледно-желтой в оранжевую. В последнем случае щелочную среду создают только 2 М раствором KOH.

Определение магния. Объем титранта, израсходованный на титрование магния, вычисляют по разности объемов ЭДТА, пошедшей на титрование при pH 10 и при pH 12.

2.6 Методика определения обменной кислотности

Навеску почвы, пропущенной через сито с отверстиями диаметром 1-2 мм, массой 40 г помещают в колбу вместимостью 250 мл. В колбу приливают 100 мл 1М раствора KClи взбалтывают в течение 1 ч. Часовое взбалтывание суспензии может быть заменено трехминутным взбалтыванием с последующим суточным настаиванием. Содержимое колбы фильтруют в сухую коническую колбу или другую емкость. Первые 10 мл фильтрата выбрасывают.

После того, как суспензия будет профильтрована полностью, 50 мл фильтрата помещают в коническую колбу вместимостью 250 мл, добавляют 2-3 капли фенолфталеина и титруют 0,02-0,1М раствором NaOHдо появления розовой окраски, не исчезающей в течение 1 мин.

Обменную кислотность (Ноб) рассчитывают по уравнению:

Где Vи V1– объем NaOH, пошедший на титрование соответственно аликвоты вытяжки и контрольной пробы; н – молярная концентрация NaOH, ммоль/мл; Vали V– объем аликвоты вытяжки и общий объем добавленного к почве 1М KCl, мл; m— навеска почвы, г.

1М раствор KClрастворяют в 300-400 мл дистиллированной воды, раствор фильтруют и объем доводят до 1 л. Значение рН раствора соответствует 5,6-6,0 (рН дистиллированной воды, находящейся в равновесии с СО2атмосферного воздуха, имеет рН около 5,6).

2.7 Методика определения гидролитической кислотности

В сухую колбу вместимостью 250 мл помещают навеску почвы, пропущенной через сито с отверстиями диаметром 1 мм, массой 40,0 г. В колбу приливают 100 мл 1М раствора СН3СООNa и взбалтывают в течение часа. Часовое взбалтывание может быть заменено 3 минутным с последующим 18-20 часовым настаиванием с периодическим (4-5 раз) взбалтыванием суспензии. Суспензию взбалтывают круговыми движениями и фильтруют через сухой складчатый фильтр. Первые порции (около 10 мл) фильтрата выбрасывают. Если затем при фильтровании получают мутный раствор, его перефильтровывают. Аликвоту фильтрата 50 мл помещают в коническую колбу вместимостью 250 мл, добавляют 2-3 капли фенолфталеина и титруют 0,02-0,1 н раствором NaOH до слабо-розовой окраски, не исчезающей в течение 1 мин. Гидролитическую кислотность рассчитывают по уравнению:

Нг моль(+)/100 г почвы = [VнV0100]/[Vалm],

Где V и н – объем и концентрация раствора NaOH, ммоль/мл; Vал — объем аликвоты вытяжки, мл; V0– объем добавленного к навеске почвы раствора ацетата натрия, мл; m — навеска почвы, г. Если полученный результат умножают на 1,75 для компенсации неполного извлечения из почв кислотных компонентов при однократной обработке почвы экстрагирующим раствором, в комментарии к результатам анализа делают соответствующую оговорку.

1М раствор СН3СООNa с рН 8,3. Навеску ацетата натрия 82,0 г СН3СООNa или 136,0 г СН3СООNax3Н2О растворяют в дистиллированной воде ,(если необходимо, фильтруют), доводят объем до 1 л и измеряют рН. Величину рН доводят до 8,3 растворами СН3СООNa или NaOH с массовой долей 10%. Контроль рН раствора может быть осуществлен с помощью фенолфталеина. Раствор ацетата натрия при добавлении фенолфталеина должен иметь слабо-розовую окраску.

2.8 Методика определения концентрации фосфатов в 0,03 н. K2SO4-вытяжках (по Карпинскому – Замятиной)

Навеску почвы массой 20,0 г помещают в сухую колбу или другую емкость вместимостью 250 мл. К почве с помощью мерного цилиндра приливают 100 мл. 0,03 н. раствора K2SO4. Содержимое колбы взбалтывают 5 мин и фильтруют через складчатый фильтр в сухую коническую колбу. Чтобы получить прозрачные фильтраты, на фильтр переносят как можно больше почвы. Первые порции фильтрата могут опалесцировать, их перефильтровывают. Вытяжка должна быть прозрачной.В полученной 0,03 н. K2SO4-вытяжке определяют концентрацию фосфатов. Для этого в мерную колбу вместимостью 50 мл. помещают 20-40 мл. вытяжки. В колбу добавляют 8 мл. реагента Б. Объем жидкости в колбе доводят дистиллированной водой до метки, тщательно перемешивают и через 10 мин. Измеряют оптическую плотность раствора при длине волны 630-882 нм.

Перед окрашиванием анализируемого раствора необходимо приготовить шкалу стандартных растворов для получения градуировочной кривой. С этой целью в мерные колбы вместимостью 50 мл. приливают по 2 мл. 0,6 н. K2SO4, что обеспечит концентрацию сульфата калия в находящемся в колбе растворе приблизительно такую же, какую получают при анализе 40 мл K2SO4-вытяжки. Затем в каждую из колб с помощью бюретки приливают стандартный раствор с содержанием фосфора 0,005 мг Pв 1 мл. В колбы добавляют 0,5; 1,0; 3,0; 5,0; 7,0 и 10,0 мл стандартного раствора. В колбы приливают дистиллированную воду приблизительно до объема 35 – 40 мл, реагент Б. Содержимое колб тщательно перемешивают, через 10 мин измеряют оптическую плотность и строят градуировочную кривую в координатах: оптическая плотность – количество фосфора в мерной колбе. По градуировочной кривой находят концентрацию фосфора в анализируемых растворах. Результаты анализа выражают в мг/л:

где Vал– объем аликвоты вытяжки, мл; Сp– число миллиграммов фосфора в мерной колбе, мг/объем мерной колбы.

3 Экспериментальная часть

В экспериментальной части проводился анализ почвы. Почва была отобрана в Усманском районе, Липецкой области. Проба отбиралась с глубины около 20 см, масса пробы составила 0,5 кг.

3.1 Определение гигроскопической влаги

источник